QuakeSim Portal and Services for Geophysical Applications and Sensor Grids

Marlon E. Pierce, Geoffrey C. Fox, Galip Aydin, and Zhigang Qi

Community Grids Laboratory, Indiana University

501 North Morton Street

Bloomington, IN 47404

812-856-1212

mpierce@cs.indiana.edu
Andrea Donnellan, Jay, Parker, Robert Granat

NASA Jet Propulsion Laboratory

M/S 183-335

4800 Oak Grove Drive

Pasadena, CA 90089-8099
Abstract—We discuss significant recent updates and revisions to the QuakeSim portal and Web services for geophysical applications, data sets, and real time sensor data. These include a) significant updates to the Web portal, b) a revision of Web services to better encapsulate applications, c) additional services for generating Keyhole Markup Language markups of maps, and d) support for real-time Global Positioning Data.

Table of Contents

11. Introduction

2. QuakeSim Web Portal
1
3. Web Services
2
5. Real-Time Sensor Support
3
6. Summary and Future Work
4
References
4
Biography
4

1. Introduction

The QuakeSim project, led by the NASA Jet Propulsion Laboratory, researches the causes and interactions of fault systems that produce earthquakes. Closely related to the geophysical research is the information technology and distributed computing development work. In addition to JPL, QuakeSim project includes participants from the Univeristy of Southern California, University of California (Davis and Irvine), and Indiana University. This paper will concentrate on the information technology aspects of the project.

QuakeSim’s basic architecture is based around a multi-tiered Web portal and Web Services model, separating functionality from the presentation layer. This approach is typical of science gateways [REF]. Web Services may be generally categorized as providing access to information (databases) and applications, although from a data flow model, this distinction is one of implementation only. Earlier work on the QuakeSim Grid architecture is described in [REF].

We have expanded on the earlier work significantly to revise the portal and services. The remainder of this paper will describe these revisions. All of this work is open source and is available from the QuakeSim SourceForge page [REF]. The portal work in particular has been packaged to enable installation using the Apache Maven build environment.

2. QuakeSim Web Portal

QuakeSim was a pioneer in the use of portlet components for assembling portals out of reusable parts. Our earlier work was based on the Apache Jetspeed portlet model. The Jetspeed portlet development model had several undesirable features (particularly, poor support for externally developed Web applications), which led to our development of some custom components, particularly the WebForm Portlet [REF].

The Java Specification Request (JSR) 168 standardized (and simplified) the portlet model used by Jetspeed and other containers. Although the Jetspeed container served QuakeSim adequately, it needed to be updated to a standard compliant container to enable interoperability with the rest of the science gateway community. In particular, interoperability with the NASA REASoN project’s GPS Explorer portal was also desirable so that we could mutually share user interfaces. We also had limited scalability from the WebForm Portlet component, which used network rather than standard I/O for portlet-container interactions.

The QuakeSim portal’s current version has been developed using the JSR 168-compliant GridSphere container [REF]. In place of the Web Form Portlet, we have adopted the Apache Portlet Bridges project. All portlets are now developed initially as standalone applications using Java Server Faces (JSF). The JSF portlet bridge can then be used to convert this application into a portlet relatively quickly. We find this model to be preferable to working directly with the portlet programming interface.

 The current set of QuakeSim portlets is listed below:

· Disloc: a simple Okada [REF]-based application for determining surface stress from a given fault model;

· Simplex: an inversion of Disloc that uses surface deformation information to determine the best fit fault model;

· GeoFEST Suite: a set of codes for modeling faults in realistic materials with finite element meshes.

· RDAHMM: a data mining application that automatically classifies modes and patterns in time series data, such as Global Positioning System (GPS) positions;

· Analyze_tseri: part of the ST-Filter [REF] suite of codes that is used for filtering GPS signals to help identify anomalies; and

· Station Monitoring: this portlet provides access to the latest real-time GPS data from the California Real Time Network [REF].

Future work will also include the addition of VirtualCalifornia. This code, GeoFEST, Disloc, and Simplex all use a variation of the same model for geometric faults. We are currently working to standardize this object representation within the portal and with the QuakeTables fault database.

3. Web Services

The portlets listed in Section 2 are clients to one or more supporting, remote Web Services. Data services include fault models from the QuakeTables service [REF] and GPS data from REASoN’s GRWS service [REF]. We have also, in previous work, built Web Service versions of the Open Geospatial Consortium’s Web Feature and Web Map services.

In the process of upgrading the portal front end, we determined that the application services that provide access to executables were in need of upgrades. Earlier versions of the QuakeSim system were built around the concept of a generic Application Web Service that could wrap any executable. This service was built on generic Web services for running remote commands and interacting with remote file systems. For related work in this field, see [GFAC] and [OPAL].

We found ultimately that our Application Web Service approach was too closely tied to the portal environment. Web Services ideally should be self-contained, stateless (or nearly so), and completely self-describing. This allows them to bind easily to any client environments such as workflow engines, portals, and desktop user interfaces. It also enables other development groups to use the services with minimal guidance from the developer: the service’s WSDL provides sufficient information for invocation.

Our original services did not meet these criteria. Designing for generality, we embedded too many specific steps, such as creating application-specific input files, into the portal instead of the service. Thus the semantics of invoking the Disloc code, for example, were not encapsulated in a single WSDL file but rather in Application Web Service metadata.

Our revised service interfaces have been more an effort of code refactoring and reuse. Our core job management service, which extends Apache Ant, is still in place but not exposed directly as a service. Instead, all new versions of execution services (Disloc, Simplex, etc) extend this parent service (in the object oriented sense) in their implementation. We have likewise attempted to design the WSDL for these services to capture all information needed to invoke a particular code.

A full listing of the service WSDL descriptions is available from [REF], but we do not include it hear since it is generally unreadable. We note implement these with Apache Axis 1.4. Instead, we summarize the Disloc service’s messages below:

· Fault Model: this provides a description of major fault geometric and material properties, including latitude and longitude of starting and ending points, length, width, strike, slip, dip, and Lame parameters.

· Input Parameters Model: Disloc calculates surface displacements associated with the fault at either grid or scatter points provided by the user, so we must send this information as well as the fault model parameters. The current version of the service supports the grid model. The input parameters model contains all information needed to create this part of the input file.

· Output Model: the Disloc service creates input, output, and standard output files. The Output Model message contains the URLs for these files on the service. In contrast to our earlier execution services, we do not have a specific “file management” service that manages downloads and crossloads between services. These are instead done with simple HTTP GET operations.

These messages are XML encodings that correspond to simple JavaBeans in implementation. They may also be bound to C structs or other simple data structures. These messages are used to communicate the details of the desired invocation and its results over the wire.

All QuakeSim execution services implement blocking and non-blocking invocations of the executable, which are inherited from the generic parent class. As the names imply, blocking executions keep the connection between the client and service open until the invocation is complete. This is useful for codes such as Disloc, Simplex, Analyze_tseri and RDAHMM, which take typically only a few seconds (to tens of seconds) to execute.

Longer running codes (GeoFEST and VirtualCalifornia) use non-blocking invocations. This allows the service to return immediately, but the application will continue to run. The user can monitor the application by examining messages from the output files and logs. We also provide a call-back mechanism: a simple Event Service stores and retrieves messages. The running application’s Ant wrapper monitors the major stages of the application (started or complete) and posts state changes to the Event Service. Clients, such as the portal, can query the Event Service to determine the current state. This service is admitted simplistic when compared to WS-Notification and WS-Eventing, but sophistication has often proven to not be virtue. A more serious criticism would be our lack of use of general-purpose distributed event systems. We do make extensive use of this in our real-time GPS system, described in the next section.

Output files must be usually plotted to be comprehensible. Earlier versions of the portal wrapped Generic Map Tool (GMT) commands with the generic execution service, and we also have implemented the Web Map Service for creating plots. More recently, however, we have found tools such as Google Maps and the associated Keyhole Markup Language (KML) to be a much better mixture of simplicity, interactivity, and power. We have developed KML services that generate grid and arrow plots useful for visualizing Disloc and Simplex output. These services consume Disloc and Simplex output (which are passed to the service via URL), although future versions of the execution services may incorporate these internally, providing the URL of for the generated KML as another part of the execution services’ return message. The current portal includes Google Maps that plot the KML files, although these are memory limited. We use the EGeoXML class, a small JavaScript extension to the Google Map API for working with KML. This is superior to Google Map’s GGeoXML class. We also provide the KML files for direct download, which allows them to be included in Google Earth.

5. Real-Time Sensor Support

Besides fault models, the other major data types that QuakeSim applications must ingest are seismic events and GPS data. In addition to the archival GPS data services such as GRWS, which provide daily position data, there is also interest in real-time and custom data products. The California Real Time Network (CRTN) [REF] provides online access to GPS position data at 1 Hz, and higher rates are possible.

We have developed a system using topic-based publish/subscribe distributed computing techniques to manage this data. This system is described in greater detail in [REF] and summarized here. Raw GPS data is passed through a number of filters, which act as subscribers to a particular topic and publishers to another topic. An example topic is a path-like name that is used to indicate the network or station source and the data format. For example, the topic name

/SOPAC/GPS/PARKFIELD/ASCII

is used to publish or subscribe to the ASCII formatted data from the Parkfield network.

[image: image1.png])

Raw Data

®)

JSOPAC/GPS/CRING1/PS
SOPAC/GPSCRINO1/DSME

Figure 1: (A) QuakeSim's Sensor Grid system successively filters the incoming, binary GPS data from the California Real Time Network. Arrows indicate network connections. (B) Filter chains are associated with structured topics so that associated with specific data products.

The simplest filters are used to demultiplex the incoming binary GPS stream. The CRTN consists of a eight sub-networks, each with one or more individual GPS stations. The demultiplexing filters translate this binary formatted signal and extract the individual stations’ data. The filter than publishes the data for each GPS station to a new topic. Downstream filters can than get individual station data for further processing. For example, we have developed RDAHMM filters that perform mode classification on the real-time positions.

The system is implemented using the NaradaBrokering software. Extensive network performance and scaling analyses are available from []. In summary, we find we are able to (with simple filters) deliver data with overhead far below the 1 Hz frequency, and our system with a single broker scales to 1000 publishers or subscribers. With networks of brokers the system will scale to larger numbers. Our tests with two coupled brokers acting as a single logical broker showed scaling to 1500 connections.

6. Summary and Future Work

In this paper, we have summarized extensive revisions and enhancements to the QuakeSim infrastructure over the previous eighteen months. These include complete revisions of the portal and the execution Web services. Prominent new capabilities include access to archival and real-time GPS data (in collaboration with NASA REASoN) and a KML generating service for plotting vector output.

Support for Grid Computing: QuakeSim applications typically run on small computers and clusters in which batch scheduling and related issues are not important. This is adequate for codes such as Disloc, RDAHMM, Simplex, and Analyze_tseri. However, only small GeoFEST and VirtualCalifornia simulations can be done this way. Rather than revise our Web Services to address these issues, we are adapting our infrastructure to work with the Globus toolkit. Our Grid Tag Libaries and Beans project extends Java Server Faces to provide components for invoking Grid services. This wwork is part of our broader Grid portal software efforts, the Open Grid Computing Environments project [REF].

QuakeSim Portal and Web 2.0: As described in [REF], we have analyzed the so-called Web 2.0 movement and have concluded it is architecturally nearly identical to QuakeSim and other science gateways, although implementations may be very different.

This may call for significant rethinking of implementations in future work (see Section 6). However, we find initially that Web 2.0 approaches (particularly rich client interfaces and AJAX-style techniques) are compatible with the portlet model. Figure 1 illustrates this by showing a Google Map embedded in a portlet displaying real-time GPS data. We have also found JavaScript widgets, such as the Yahoo User Interface library [REF] and interactive plotting routines from Big Faceless Organization [REF], to be compatible with our JSF-portlet (i.e. server side) development model.

We acknowledge the collaborations of the QuakeSim team: John Rundle (UC-Davis), Lisa Grant (UC-Irvine), and Dennis McLeod (USC). We also thank the members of the NASA REASoN project for assistance and collaboration using their GPS services.
References

[1]
References should be in 10-point type.

[2]
Michael Hammer and James Champy, Reengineering the Corporation, New York: Harper Business, 1993.

[3]
G. Edward Bryan, “Not All Programmers Are Created Equal,” 1994 IEEE Aerospace Applications Conference Proceedings, February 5–12, 1994.

[4]
G. Edward Bryan, “CP-6: Quality and Productivity Measures in the 15-Year Life Cycle of an Operating System,” Software Quality Journal 2, 129–144, June 1993.

[5]
Aerospace Conference Web site http://www.aeroconf.org/
Biography

Marlon Pierce is assistant director of the Community Grids Laboratory and leads the portal and services development for the QuakeSim project.

Geoffrey Fox is the director of the Community Grids Laboratory.

Andrea Donnellan is the principal investigator of the QuakeSim project.

PAGE
5

