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Abstract—Bare metal servers are widely available on public
clouds to provide direct access to hardware and the system config-
uration with high performance storage and network devices are
well suited for big data applications. Highly-optimized server with
additional CPU core count and dense storage may lead to better
performance in certain workloads and to ensure responsiveness
of deployed services. Recent work on Hadoop ecosystems has
addressed the performance improvement of scale-up machines
configured with SSD storage and increased network bandwidth.

The paper evaluates big data processing on dedicated clusters
and provides the performance analysis of NVMe devices and SSD
block storage options available on Amazon, Google, Microsoft,
and Oracle Clouds. We show the benchmark results along
with the system performance tests as we want to demonstrate
the compute resource requirements for large-scale applications.
The system capacity and limits for the underlying servers are
described along with the cost analysis of scaling workloads on
these platforms.

Keywords—Benchmark, Performance Evaluation, Bare metal,
NVME, SSD, Big Data

A. Categories and Subject Descriptors

H.3.4 [Systems and Software]: Performance evaluation (effi-
ciency and effectiveness); H.2.4 [Systems]: Distributed systems;

I. INTRODUCTION

In the Big Data ecosystem, the bare metal server has
become a high performance alternative to hypervisor-based
virtual machines since it offers advantages of direct access
to hardware and isolation from other tenants’ workloads.
However, benchmark results or comprehensive data of in-
frastructure options are not generally available. This paper
reports on the results of a big data benchmark of commercial
cloud services that have provided bare metal equivalent server
types. This work aims to address data processing performance
using Hadoop-based workloads including Terasort, and the
results would be useful in designing and building infrastructure
along with the cost analysis and performance requirements
depending on use cases. We perform big data benchmark on
production bare metal environments to demonstrate compute
performance with local NVMe and block storage are tested as
an alternative storage option.

We started using bare metal servers with Hadoop workloads
because the previous work indicated the needs of the exascale-
like infrastructure for data-intensive applications [1], and we
wanted to see how these new servers perform differently with

additional computing power and large volumes of storage.
Oracle Cloud Infrastructure has bare metal server types which
offer 104 virtual cores with hyper-threading, 768GB memory
and 51.2TB size of local storage per instance which can be
better solutions to any existing big data problems in which
massive intermediate data are generated rapidly for subsequent
analysis with many CPU and memory intensive sub-tasks.
Other cloud providers have a different configuration of those
resources resulting in a broad range of choices in bare metal
environments, for example, Amazon r5.24xlarge instance of-
fers similar resources compared to Oracle in compute, memory
and network except the local NVMe storage or z1d.metal for
high CPU clock speeds. Google and Microsoft do not explicitly
have bare metal servers but equivalent options are available to
compare such as n1-highmem-96 with local scratch volumes
on GCE and L64s v2 on Azure. Furthermore, persistent block
storage can mitigate extra storage needs for those who have
data-intensive workloads with large volumes. This is particu-
larly helpful when terabyte-scale volume is not enough or data
separation from compute is necessary. There is also a lack of
evaluation data indicating actual performance optimization and
designing efficient clusters with scalability.

Hardware performance data is subject to the actual execu-
tion time of applications, high IOPS and low latency storage
devices contribute to the performance of I/O intensive jobs
and FLOPS is a measure of provisioned computing resources,
as well as high network bandwidth for fast communication.
In practice, however, the complex workloads have multiple
characteristics to detect tuning factors and inspect bottlenecks
if exists and therefore performance evaluation with various
scenarios is necessary for understanding the environment de-
ployed.

Bare metal servers are widely available with various op-
tions to add extra CPU cores, memory, and local NVMe as
well as high network bandwidth. Big data users with data
intensive application may utilize these configurations when
vertically scaled clusters generate better performance than
constructing many numbers of commodity servers. In addition,
improved performance results in increasing cost efficiency as
more resources are quickly returned for further use.

The previous work claimed that Hadoop jobs often run
better on scale-up servers than horizontally scaled servers [2]
so that one can take advantage of an increased number of
virtual cores, memory sizes and network bandwidth provided
by typical bare metal servers. Fig 1 shows distributed I/O
benchmark, TestDFSIO, as an example between two different



Fig. 1: TestDFSIO between VM and Bare Metal

environments, one with 8 worker nodes, 48 virtual cores each
and the other with half number of the worker nodes, four, but
increased core count, 104 virtual cores each. For writing task
of TestDFSIO between 2TB to 8TB data sizes, about 4 to 6
times reduced execution time and throughput was observed
on vertically scaled bare metal servers, i.e. BM.DenseIO2.52.
For reading task of TestDFSIO, the throughput is slightly
improved as data size increased from 2TB to 8TB for bare
metal servers. Note that these two environments have same
hardware specifications on local NVMe storage and CPU and
memory although the bare metal setup has a few more core
counts and memory sizes due to the different CPU/MEM ratio
per server type.

With the advent of high performance storage options and
reduced hardware costs, public data centers and academic plat-
forms are now equipped with either solid state devices (SSDs)
with Serial ATA (SATA) or NVMe SSD with PCI Express
bus for better I/O performance than magnetic storage, i.e. hard
disk drives (HDDs) and bare metal servers are typically offered
with SSDs to support increased performance needs. Production
cloud services have two storage types, one is temporal local
terabyte-scale NVMe dedicated to a server instance and the
other one is persistent remote petabyte-scale block storage.
We tend to explore these options for I/O intensive workloads
so that one can understand the difference between these two
storage options for running big data workloads.

We know that bare metal servers are available on most
production cloud environments but it is difficult to find the
analysis of big data workloads across these environments. This
paper is the first evaluation of commercial bare metal environ-
ments focusing on various storage options for running big data
applications. Amazon EC2, Google Cloud, Oracle Cloud, and
Microsoft Azure are considered to run our experiments.

Fast and powerful hardware accelerates large data pro-
cessing, and we have observed that real world workloads are
a mixture of compute intensive, i/o intensive, and memory
intensive, in which bare metal clouds can be a solution for
these. We use built-in Hadoop benchmark tools which are
useful to measure the performance of Hadoop systems by
varying workload volumes and configurations. The workloads
tested here include WordCount, PageRank, K-Means, TeraSort,
and DFSIO and the performance data would be widely ap-
plicable to various applications running on similar compute

environments.

The block storage is a network storage device which
provides an individual mount point to access, and therefore
multiple devices with various volume sizes can be attached
and detached in a few steps. Block storage also ensures
scalability as more attached volumes with increased sizes
deliver additional capacity and performance. The service limit
per server instance, however, prevents to scale vertically and
requires to use additional instances for achieving increased
performance. For example, Amazon Elastic Block Store (AWS
EBS) generates 64,000 IOPS and 1,000 MB/s throughput per
volume but extra I/O operations will be throttled if two or
more volumes attached to the same instance. It is caused by
the service limit, 80,000 IOPS and 1.7 GiB throughput per
server and non-optimized server types for block storage may
reduce these caps additionally.

We have tested Hadoop cluster using the block storage to
demonstrate these problems. Table I is an IOPS comparison
between block storage and local NVMe per server instance and
the performance difference is ranging from 11 times (GCE)
to 41 times (AWS). It is trivial that choosing local NVMe
against block storage is good for high IOPS required workloads
as long as the limitations do not apply. First, petabyte scale
data would not fit into local NVMe as it is currently offered
between 3TB to 51.2TB per instance. Amazon’s Block storage
EBS offers up to 496TiB by attaching 31 volumes and Oracle
allows up to 1PB by aggregating 32 attachments with 32TiB
volume size each. Handling intermediate and temporal data
would work better on local NVMe otherwise there is a cost
moving data from/to other permanent storage. Processing data
generated during analysis and simulation is a good use case in
this context.

Block storage is convenient to use and applicable to
Hadoop data nodes but there are several limitations. IOPS in
the table cannot be achievable at a small volume size, and each
provider has a different ratio such as IOPS per provisioned
volume size. For example, Amazon provides 64k IOPS for the
volume of 1280GiB or greater with 50:1 ratio. Google cloud
provides 60k IOPS for the volume of 2048 GiB or greater with
30:1 ratio, Oracle cloud provides 25k IOPS for the volume of
417 GB or greater with 60:1 ratio. Note that the numbers in the
table only indicate reading performance at a 4096 byte block
size. It does not include IOPS for write with different block
sizes which will be lower than those.

Local NVMe storage has tremendous performance but
there are also limitations. Fixed number of volumes are offered
with server types and the volume size is not changeable.
For example, GCE provides a local NVMe disk in one size,
375GB, and Oracle has two options, 28.8TB and 51.2TB in
bare metal server types. To utilize the maximum IOPS, data has
to be evenly distributed on attached volumes, i.e. 8 volumes
per instance. Server types are limited to the use of local NVMe
storage. i3.metal server type on AWS, L64s v2 on Azure,
any server with 32+ vCPUs on GCE and BM.DenseIO2.52
on OCI is available for the IOPS on the table. We believe
that new products with improved hardware will replace these
performance data and eliminate the limitations anytime soon.
For example, Azure Ultra SSD in preview provides 160k IOPS
for the block storage which 8 times greater than the current
performance, 20k per volume.



TABLE I: IOPS

Provider Block Storage IOPS Local NVMe IOPS
AWS 80,000 (64,000 per volume) 3,300,000
Azure 80,000 (20,000 per volume) 2,700,000
GCE 60,000 (60,000 per volume) 680,000
OCI 400,000 (25,000 per volume) 5,500,000

In this paper, we emphasize on the performance analysis by
evaluating Hadoop benchmark workloads and comparing the
results with system metrics e.g. IOPS and FLOPS across the
environments. Our results indicate that there is performance
benefit of leveraging bare metal servers due to the increased
compute resources per node in the Hadoop cluster but system
upper limit may prevent fully utilizing provisioned resources
when applications become I/O intensive. We also provide cost
analysis for those workloads to show the economic benefits of
provisioned resources so that one can choose the best option
of running their applications with the consideration of the
economic value and performance requirements.

The contributions of this work are:

• Comparing the performance of Hadoop workloads on
different bare metal platforms

• Understanding the difference between block storage
and local NVMe for I/O intensive workloads

• Providing the analysis of cost efficiency potentially
reducing storage costs

The rest of the paper is prepared as follows. In Section II,
we describe our experimental configuration and explain the
results in the next section III. The section IV, we described
related work briefly.

II. HARDWARE SPECIFICATION AND APPLICATION
LAYOUT

A. Experimental Setup

We built a Hadoop cluster with a various number of
workers ranging from 3 to 8 and two master nodes and one
gateway node. The deployment was completed by Cloudera
5.16.1.

Amazon EC2 has a memory optimized server type
(r5.24xlarge) with Intel Xeon 8175M processors running at
2.5 GHz, with a total of 48 hyper-threaded cores, 96 logical
processors and recently added bare metal server type i.e.
r5d.metal is excluded in this experiment [3] which offers
3.6 TB size of local NVMe divided by four mount points.
Microsoft Azure also has an E64s v3 server type which
provides 64 virtual cores by Xeon E5-2673 processor and 432
GB size of memory. We noticed that the number of vCPUs
offered by Azure is increased in powers of two and 96 and 104
vCPUs are not available in the ESv3 series. M128 server types
are excluded because of the pricing ($13.338/hour for 2TiB of
memory, and $26.688/hour for 4TiB). n1-highmem-96 server
from Google Compute Engine offers 96 virtual cores on Intel
Xeon Skylake and 624 GB of memory. Local scratch storage
allows us to choose between NVMe and SCSI interface with a
maximum volume size of 3TB. BM.Standard2.52 is a standard
server type from Oracle with Intel Xeon Platinum 8167M

TABLE II: Cluster Configuration

Item AWS Azure GCE OCI
Server
name

r5.24xlarge E64s v3 n1-
highmem-
96

bm.standard2.52

CPU type Intel Xeon
Platinum
8175M

Intel Xeon
E5-2673
v4 (Broad-
well)

Intel Xeon
Scalable
Processor
(Skylake)

Intel Xeon
Platinum
8167M

Clock
Speed

2.5 GHz 2.3 GHz 2.0 GHz 2.0 GHz

Turbo
Boost

3.1 GHz 3.5 GHz - 2.4 GHz

Core Count 96 64 96 104
Memory
Size

768 GB 432 GB 624 GB 768 GB

Network
Bandwidth

25 Gbps 30Gbps - 2x25 Gbps

OS CentOS 6 CentOS 6 CentOS 6 CentOS 7
Kernel Ver-
sion

2.6.32 2.6.32 2.6.32 3.10.0

Storage
type
attached

General
purpose
SSD (gp2)

Premium
SSD (P30)

Regional
SSD

Block
Storage
SSD
(iSCSI)

HDFS Vol-
umes

2048GB x
7

1024GB x
7

834GB x 8 700GB x 6

Max IOPS
per volume

6000 5000 25000 25000

Max IOPS
per worker

42000 35000 60000 (r)
30000 (w)

150000

Max
throughput
per volume

250MiB/s 200MB/s 400MB/s 320MB/s

Max
throughput
per worker

1750MB/s 1400MB/s 1200MB/s (r)
400MB/s (w)

1920MB/s

Package
Version

hadoop-2.6.0+cdh5.16

Number of
Workers

3

resulting in a total of 104 logical processors. BM.DenseIO2.52
is a server type with eight of local NVMe in a total size of
51.2 TB from Oracle [4]. Table II provides the details of the
server types with a hardware specification and we believe that
these server choices are comparable although the numbers are
not completely the same across different environments. We
are aware that the performance gaps of provisioned resources
among each other may reduce the consistency of our experi-
ments and we address this limitation when we represent our
results in the following sections.

B. I/O Test

We ran flexible I/O tester (fio) on this storage to measure
performance data before running our experiments. Our Hadoop
clusters mount data nodes by either local NVMe or block
storage and storage performance make a big difference for
running our HDFS-based jobs. Table III shows our test results
in detail. Note that these are aggregated IOPS by fio’s group
reporting and randread means random read, randwrite means
random write, and rw50 means random read and write in 50/50
distribution. Generally speaking, high IOPS at small block size
is good for database systems which have usage patterns of
frequent access for handling transaction data, and high IOPS
at large block size is good for data intensive jobs including



TABLE III: Flexible I/O Tester (fio) Results
(IOPS x 1000)

Block Size,
I/O Pattern

AWS
i3.metal
8 x 1.9T

Azure
L64s 2

8 x 1.9T

GCE
highmem96
8 x 375G

OCI
BM.DenseIO2.52

8 x 6.4T
4K, randread 2048.9 886.3 275.9 1334
4K, randwrite 1457.5 760.5 269.7 1098
4K, rw50 1528.5 840.9 345.2 1180
16K, randread 891 750.9 161.6 1088
16K, randwrite 378.1 534.4 90.7 713
16K, rw50 427.3 529.9 115.8 850
256K, randread 60.1 58.2 11.1 75.4
256K, randwrite 24.6 38.5 6.2 68.7
256K, rw50 27.6 33.8 7.9 82.6

Hadoop which requires high throughput for sequential reading
and writing. Also, most high-end SSD devices generate steady
performance across different block sizes although we find
interesting results from the test. Amazon shows the best storage
performance at a small block size, 2 million IOPS at 4k,
but Oracle has significant performance at a large block size,
21.6 GB throughput per second. This will affect data intensive
workloads of our experiments such as DFSIO, Wordcount, and
Terasort. The results also revealed that Google does not offer
comparable storage performance per instance in terms of IOPS
and volume size and therefore scaling out approach would be
appropriate to build a system for data intensive workloads. It
is worth to mention that high IOPS for writing is important as
frequent writing and deleting are expected. The local NVMe is
created as an empty space when a server instance is launched
and any data to analyze or permanent data to keep has to
be copied from/to other space e.g. block storage. Changing
the status of an instance may purge contents in the storage
handling like temporal scratch space. With these IOPS, OCI
produced the maximum 18 GB/s throughput whereas AWS
produced 6.1 GB/s throughput for random write.

C. Scalability

We wanted to evaluate the scalability of our workloads
by using the scaling context of HPC systems. Figure 2 shows
Hadoop benchmark results to describe how our cluster handles
terabyte scale data with additional worker nodes. The upper
plot in the figure shows reduced execution time when the
number of workers is increased. Each benchmark ran with the
same data size over 3, 6, and 8 worker nodes which indicate
good scaling with more resources. This is not always valid for
certain workloads due to shuffling costs. Typical workloads
go through data reduction from map to reduce phase which
decreases the amount of data exchanged between nodes but
in some applications e.g. PageRank may not or increase the
amount of data transferred over additional worker nodes. I/O
intensive workloads which can be partitioned by the number of
mappers generally guarantee performance improvements over
an increased number of nodes. Wordcount and DFSIO are
identified in this context.

The bottom plot of the Figure 2 depicts flat lines for
processing an increased amount of data by adding more work-
ers which are good for weak scaling. K-Means, Wordcount,
and DFSIO are relevant to this interpretation. PageRank and
Terasort were slightly worsened as more worker nodes were

Fig. 2: Scaling Results

Fig. 3: CPU Performance (GFLOPS)

added and this concludes the same results that we discussed in
the strong scaling results, shuffling costs over multiple worker
nodes. The tested data size are varied between 1.6TB and
3.2TB for Wordcount, 50 million and 100 million pages for
PageRank, 1.2 billion and 2.4 billion samples for K-Means,
600GB and 1.2TB for Terasort and 2TB and 4TB for DFSIO.
The worker node consists of 104 hyper-threaded CPU cores,
768 GB memory and a dual port 25GB Ethernet adapter.

III. EXPERIMENTAL RESULTS

A. Compute Performance

Processing power from various server types and plat-
forms are very different from each other which prevents us
from building equivalent compute environments. Floating point
operations per second (FLOPS) is, however, a reasonable
methods to compare CPU performance on target server types.
Figure 3 shows our results on the four server types in which
measured gigaFLOPS in double precision calculations are
917.78 for AWS r5.24xlarge (96 vCores), 825.51 for OCI
BM.Standard2.52 (104 vCores), 806.07 for GCE n1-highmem-
96 (96 vCores), and 704.13 for Azure e64s v3 (64 vCores) in a
rank order. We believe that these are the closest match we can
find for our experiments with negligible gaps of provisioned
resources. We were searching for one of the largest server
types offering a large number of vCPUs, high amount of
memory and increased network bandwidth but around 100
vCores, less than 1TB of memory (10GB of memory per
vCPU) and up to 50 gigabit networks by spending under $10
per an hour. The different types of hardware configuration may
reduce the consistency of our experiment, therefore, we use the



Fig. 4: TestDFSIO between Block Storage and local NVMe

TABLE IV: Oracle I/O Performance (Per Instance)

Item 12 x 700 GB
Block Storage

8 x 6.4 TB
Local NVMe Difference

4K randwrite IOPS 303,000 1,098,000 3.62x ↑
4K randread IOPS 292,000 1,334,000 4.56x ↑
256K randwrite Throughput 3.0 GB/s 18.0 GB/s 6x ↑
256K randread Throughput 3.0 GB/s 19.8 GB/s 6.6x ↑
4k randwrite Latency 7,908µsec 1,455µsec 5.4x ↓
4k randread Latency 8,205µsec 1,198µsec 6.8x ↓

performance data as a reference, not a direct measure of the
evaluation.

B. Storage Performance

We discussed the storage performance in the section I
and evaluated by running TestDFSIO with data nodes on
block volumes and local NVMe volumes respectively. With
the understanding of the performance gaps, i.e. 652K IOPS
vs 1334K IOPS, it is expected to see better results with local
NVMe volumes but we may find other benefits using block
storage. Figure 4 shows the comparison results between these
two storage options by TestDFSIO write (upper subplots) and
read (bottom subplots). First, the performance difference is
significant as data size increased on both write and read tests.
For the writing results, We find that 1.3 times reduced exe-
cution time on NVMe for 360GB data and 2.4 times reduced
execution time for 8TB data size. The write throughput results
(subplot on the top right) explains why the gaps were enlarged.
The write throughput on block storage was decreased but one
on local NVMe was improved over increased data sizes. For
the reading results, NVMe is not always better than block
storage because Hadoop uses memory to retrieve data until
it is overfilled. Only the first two bars show compatible results
for reading because the worker nodes had 2.3GB memory
in total. As a reference for these results, we also measured
storage performance data, IOPS, throughput and latency which
is described in the table IV. One observation for the write
throughput is that the maximum throughput is reached by block
storage according to the DFSIO results but local NVMe. We
may find high I/O wait on the server with block storage and
lack of CPUs to process I/O operations with local NVMe.

Fig. 5: Hadoop Workloads on AWS, Azure, GCE and OCI

C. Production Comparison

We chose to evaluate production bare-metal environments
by HDFS based Hadoop workloads because these benchmark
tools are popular and widely used to verify provisioned re-
sources including compute, storage, and network. Figure 5
provides a single view for the six different workloads, tested
with block storage attachments. As we discussed earlier, block
storage generates different IOPS by varying volume sizes and
we configured the storage to meet certain performance level,
i.e. 25,000 IOPS and 200MB throughput per volume. Word-
count ran with about 2TB size of text files which is to stress
HDFS filesystem with simple computations. OCI completed
Wordcount in about 42 minutes whereas Azure took twice, 87
minutes. GCE failed to complete this workload in two hours
and we had to cancel it leaving an empty bar in the plot.
PageRank updates score with some amount of data exchange
between worker nodes and iterative tasks for counting and
assigning values to unique records of pages. Our result shows
that processing 50 million pages needs less than 10 minutes
among all environments. K-Means clustering implementation
ran with 10 iterations for processing 1 billion samples. AWS
completed the task in 45 minutes while Azure took 64 minutes.
However, it does not mean Amazon outperforms Azure as
the CPU FLOPS is 1.3 times better on r5.24xlarge. Terasort



stresses both CPU and storage and high IOPS are required.
We find a similar result compared to PageRank. Both AWS
and OCI completed the task in 10 minutes as GCE and Azure
took about 24 minutes to finish. It explains that Azure needs
more core count and GCE needs additional volumes to show
similar results. We have additional experiments for Terasort,
see Section III-D2. TestDFSIO has two tasks, writing and
reading. We reduced the number of a replica to 1 which
removes a data exchange task for better results but this will
result in increased reading time. OCI completed writing in 15
minutes but GCE took 1 hour and 23 minutes. The cap of
IOPS for write on GCE is 30,000 per instance and we suspect
that this is a major contribution to the long execution time.

D. Workloads

We dedicate this subsection to describe Hadoop workloads.
K-Means and Terasort implementation were explained with our
experiments.

1) K-Means: The KMeans clustering method is a well
known iterative algorithm and is a common example to exam-
ine MapReduce functions. The distance computation between
data points with centroids runs in parallel at a Map function
step by reading the dataset from HDFS, and representing a
new centroid to the subsequent iterations completes a cycle.
The intermediate data is stored on HDFS, therefore I/O per-
formance is critical as well as computing requirements for this
workload.

2) Terasort: Terasort is characterized by high I/O band-
width between each compute and data node of a Hadoop
cluster along with CPU intensive work for sorting 10 bytes
key of each 100 bytes message. Running Terasort is a common
measure of system performance and Figure 6 shows our results
for handling 10TB size over a different number of workers.
As we learned that Hadoop may skip data exchange between
nodes if there are enough memory spaces, we increased the
data size enough to overfill the available amount of memory
in the cluster. Scaling efficiency was decreased after 6 worker
nodes but we see linear scaling performance in our results.
In addition, we also find that measured system performance
data is useful to understand the behavior with the workload,
especially if it requires a mixture of CPU and I/O resources.
Figure 7 is added to show the system behavior for processing
600GB of Terasort data. The plot (a) Write I/O shows that
many IOPS were generated during the reducer phase with the
maximum of 22,528 IOPS. ’w/s’ legend indicates a number
write operations per second in the plot. The second plot
shows network activity and most traffic was generated during
the mapper phase. The last plot in Figure 8 describes CPU
utilization and we find that the system was idling slightly
during the transition phase between mapper and reducer. The
system monitoring can be applied to other workloads identify-
ing bottlenecks occurred by lack of provisioned resources i.e.
high iowait with low IOPS storage and poor network speeds
with a saturated network adapter so that system performance
is ensured without under provisioning.

E. Cost Efficiency

The evaluation of the cost efficiency needs two sub metrics,
one for evaluating the total CPU cost required for workloads
and another one for evaluating the total storage cost.

Fig. 6: Terasort 10TB

Fig. 7: System Metrics for Terasort

Total Execution Cost (TEC) calculates the expense of the
entire virtual cores provisioned by aggregating the individual
wall time for completed workloads which is:

TEC =

T∑
n=1

cpun + storagen (1)

where cpun is the total cost of provisioned CPU cores
per second, storagen is the total cost of provisioned storage
volumes and T is the execution second of workloads.

1) CPU: The server pricing consists of CPU cost, memory
cost and storage cost and core count is the main factor to yield
a final value. Cost analysis for running big data workloads
on these infrastructures need to verify actual performance
on CPU and storage. We already measured FLOPS in the
section III-A and we just need to convert them with pricing
so that one can understand how much they actually pay.
We are aware that FLOPS is not perfectly accurate as a
performance metric, and we seek other methods to compare
among different VM server types. We created Figure 8 by
applying FLOPS to pricing. BM.Standard2.52 is 45% cheaper
than AWS r5.24xlarge according to the pricing in the Table V
while the measured FLOPS are similar, 684 and 687 GFLOPS
for AWS and OCI respectively.

2) Storage: Storage performance is a good indicator to find
reduced execution time of workloads especially if they are



TABLE V: Instance Pricing

Provider Pricing Type VCPUs Memory
AWS $6.048 per Hour r5.24xlarge 96 768GB
Azure $3.629 per Hour E64s v3 64 432GB
GCE $5.6832 per Hour n1-highmem-96 96 624GB
OCI $3.3176 per Hour bm.standard2.52 104 768GB

Fig. 8: Cost for 1TFLOPS

I/O intensive. Multiple options are available to reduce costs of
provisioning high performance storage and several limitations
exist based on the type of storage and the type of instance
attached. Table VI indicates maximum IOPS and throughput
for SSD based block storage and Google persistent SSD disk
and Azure Blob is included as well to show similar storage
choices among others. This will help plan a scalable system
with performance and to avoid exceeding performance limits
where throttling will occur to reject additional requests.

Maximum IOPS and throughput per instance is also an
important metric because multiple volumes per instance can
easily reach these limits. This also affects cost on provisioning
block storage as they may require additional instances to have
volumes with high IOPS or high throughput. In other words, a
64k IOPS EBS volume attached to an instance does not have
additional space to ensure a maximum IOPS per volume as
throttling occurs by instance IOPS limit. OCI produces great
performance in this context, 400,000 aggregated IOPS per
instance when multiple volumes attached with the maximum
IOPS per volume, 25k. This will affect the cost effectiveness
of block storage resulting in more instances, i.e. extra cost for
the needs of high IOPS volumes.

With the high performance storage options, storage cost can
be expensive with the extra charge on IOPS and throughput.
The base pricing, however, is simple, OCI has the most inex-
pensive price tag compared to others. For example, OCI block
storage is $0.0425 per GB in a month which is 57.5% cheaper
than AWS general purpose SSD (gp2), $0.1. In addition, IOPS
and throughput may require additional charges to pay. AWS
io1, Azure Ultra SSD and Google SSD persistent disk have
an extra cost for provisioned IOPS and throughput. We added
instance cap data in the table but these are not applicable to
all server types. Many CPU server types are usually applicable
with these maximum numbers but the numbers in our table
were referenced from the following instance types: AWS
r5.24xlarge, Azure Standard M128m, OCI bm.standard2.52.
IOPS can vary by block sizes and I/O pattern e.g. sequential
read or random write, but the numbers in our table were

prepared by 16384 bytes block size for reading in AWS, 8096
bytes block size for reading in GCE, and 4096 bytes block size
for reading in OCI. Maximum throughput is for 128kilobytes
or greater block size as IOPS affects this rate.

Block storage is offered by network storage solutions
e.g. NAS or SAN and we find that throughput is more
controlled than IOPS based on TableVI. For example, we
see the maximum IOPS per instance is ranging from 60K
to 400K but throughput is between 1.2GB/s and 3GB/s. It
is mainly by the dedicated network bandwidth. However, we
expect to have increased throughput in the near future as big
data applications have to process rapidly growing data needs.
Oracle, again shows good throughput performance, 3GB/s
compared to other providers, although Oracle block storage
shares network bandwidth with other traffic and iSCSI block
storage. Luckily, Oracle has a dual port 25GB Ethernet adapter
for bare metal servers, therefore additional bandwidth can be
achieved by adding a new network interface card (NIC). Better
throughput will improve the cost effectiveness of block storage,
especially for data intensive applications.

High IOPS to volume size ratio is recommended to effec-
tively provide storage devices if applications are sensitive to
IOPS. A low ratio may have to provision unnecessary volume
sizes to achieve high IOPS, especially in distributed data
placements e.g. HDFS data nodes. For example, 3:1 ratio from
AWS general purpose SSD (gp2) requires 5334GB volume
size to achieve 16000 IOPS whereas 60:1 ratio from OCI
ensures the same IOPS from 267GB or greater volume sizes.
Table VI indicates that the minimum volume size to provision
for maximum IOPS.

IV. RELATED WORK

We use this section to describe the previous work related
to the evaluation of bare metal servers, performance analysis
of storage and address big data benchmark tools.

While there was a significant overhead created by virtual-
ization with a hypervisor, research has been conducted [5],
[6], [7] to evaluate cloud environments for seeking perfor-
mance improvement. In a recent study, Rad et al [8] showed
promising results on scaling HPC and scientific applications by
OpenStack Ironic software and Omote et al [9] introduced non-
virtualized development for bare-metal servers with a quick
startup. These activities are not directly related to our work
but their experiments indicated the performance benefits of
bare metal servers.

There are several Hadoop benchmark suites available
including HiBench and BigDataBench [10], [11] supported
by Intel and Institute of Computing Technology, Chinese
Academy of Sciences. These tools contain various big data
workloads to evaluate the workload performance with low-
level system information.

Performance analysis with NVMe disks has been growing
with hardware improvements. Several studies [12], [13], [14],
[15] have focused on the evaluation of storage systems with
I/O intensive applications. Their experiments were made to
examine the scalability of storage with software developments.



TABLE VI: SSD Based Block Storage

Provider Cost
(per GB-
month)

Max
Throughput
per Volume
(MiB/s)

Max
Throughput
per Instance
(MiB/s)

Max IOPS
per Volume

Max IOPS
per Instance

IOPS Ratio to
Volume Size
(IOPS/GB)

Max Volume
Size (TiB)

AWS General Purpose
SSD(gp2) $0.1 250 1750 16000 80000 3:1 16

AWS Provisioned IOPS
SSD (io1) $0.125

+ $0.065/IOPS
1000 1750 64000 80000 50:1 16

Azure Premium SSD
(p80) $0.1 900 1600 20000 80000 - 32

Azure Ultra SSD
(preview) $0.05986 +

$0.02482/IOPS +
$0.5MB/s

2000 2000 160000 160000 - 64

GCE SSD persistent disk $0.17 +
$0.0057/IOPS

write: 400,
read: 1200

write: 400,
read: 1200

write: 30000
read: 60000

write: 30000
read: 60000

30:1 60

OCI $0.0425 320 3000 25000 400000 60:1 32

V. CONCLUSION

With the advance of bare metal servers for big data work-
loads, a significant amount of research have been accomplished
with the latest techniques and hardware accelerations. The
rapid increasing challenges in big data, however, extend the
discussion to the exclusive and consistent compute resource,
bare metal clouds which can be embraced by the big data
community.

Our experiment results indicate that Hadoop systems provi-
sioned by bare metal servers with powerful storage options can
be better options to build a high performance virtual clusters
for processing various workloads with a cost consideration.
The result of our experiments delivers a thorough analysis of
production environments with extensive research on storage
options, i.e. block storage and local NVMe. Our results for
Hadoop workloads on Amazon, Google Oracle, and Microsoft
expose underlying hardware requirements e.g. IOPS, along
with service limitations e.g. throughput allowance per instance.

High storage performance made a significant impact on
HDFS based jobs with a large number of virtual cores. JBOD-
style (’just a bunch of disks’) non-RAID storage attachment
shows 6 times better results with additional volume counts
and CPUs per server than large numbers of low-end servers
according to our result in Fig 1. Data intensive workloads, for
that reason, may gain better scalability and efficiency on high
capacity servers and bare metal servers are suitable for seeking
performance improvements and cost savings.

In the future, we plan to extend our work to HPC server
types evaluating communication intensive applications, and
practical experience will be gained to improve actual perfor-
mance with high-end network adapters.
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