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Abstract—Subgraph counting involves comparing a sub-
graph template across a large input graph. Many domains
have networks that can benefit from fast subgraph isomorphism
for billion- or trillion- edge graphs generated by Internet of
Things, social networks, and biological networks. However,
it is computationally challenging with large template sizes
since the time complexity and space grow exponentially. In
this paper, we investigate parallelization and memory reducing
strategies and propose a new pipelined adaptive-group commu-
nication for massive subgraph counting problems. In contrast
to point-to-point MPI solutions for graph problems, we leverage
model-centric parallelism and communication optimization.
This includes 1) a fine-grained pipeline communication with
regroup operation to significantly reduce memory footprint,
2) partition of big model such as neighbor list of subgraph
for better in memory thread concurrency and load balance,
and 3) interleaved computation and communication. We run
experiments with tree-like subgraph counting based on color
coding algorithm over an Intel Xeon cluster. The experimental
results show that our implementation of Harp-DAAL subgraph
counting achieves 5x speedups compared to related work and
reduce memory utilization by a factor of 30 on large templates
of 12 to 15 vertices and input graphs of 2 to 5 billions of edges.
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I. INTRODUCTION

Counting subgraphs in massive graphs is one of the funda-
mental tasks in graph analysis and has various applications,
including analyzing the connectivity of social networks,
uncovering network motifs (repetitive subgraphs) in gene
regulatory networks of organism, indexing graph databases,
task scheduling optimization in infrastructure monitoring,
event detection in cyber security and other areas of national
interest. Although these advanced graph analytics may pro-
vide a deep insight into the network’s functional abilities,
they will require the computing power to analyze the billion-
and trillion-edge graphs generated by the Internet of Things,
ever-expanding social networks, biological networks and
future sensor networks.

In the Subgraph counting, we are given two graphs T
and G as an input, and the question is whether G = (V,E)

contains a subgraph (also called graphlet) that is isomorphic
to T (template) and subsequently counting the number
of matching. These problems generalize subgraph isomor-
phism, which is NP-hard, even for very simple templates.
The best algorithms for exact counting run in time Ω(nk/2)
for trees [1], which motivates approximation algorithms.
Color-coding [2] is a powerful technique to solve this
problem using dynamic programming algorithm when the
template has a bounded treewidth. This gives a fixed param-
eter tractable algorithm: for trees of size k, color coding
runs in time exponential in k, but linear in m, the number
of edges of the input graph. Treelet counting can also be used
as a kernel to estimate the Graphlet frequency distribution
(GFD), another widely used problem which estimates the
relative frequency among all subgraphs of the same size.
[3] shows that a careful implementation of treelet counting
can push the limits of the state-of-the-art of GFD, both in
terms of the size of the input graph and the template.

In this paper, we focus on treelet counting problem, and
our main contributions in this paper are the following:

• We investigate computing capabilities that can solve
subgraph counting problem with large tree-like tem-
plates (up to 15 vertices) and large graph (up to 5 billion
edges and 0.66 billion vertices).

• A novel pipeline Adaptive Group communication with
regroup operation is developed to accelerate communi-
cation. The pipeline design reduces memory usage by
a factor of 30 on large templates (12 to 15 vertices)
and hides communication via overlapping with compu-
tation. Additional optimization reduces load imbalance
by fine-grained parallelism at node level.

• We compare our results to state-of-the-art MPI Fascia
implementation with 5X speedups.

The rest of the paper is organized as follows. Section
II introduces the problem, color coding algorithm and
scaling challenges. Section III presents our approach on
pipelined Ring-AlltoAll communication, as well as load



balance optimization for sparse input graphs. Section IV
contains experimental analysis of our proposed methods and
show performance improvements. After section V on related
works, we conclude in Section VI.

II. BACKGROUND AND PRELIMINARIES

A. Subgraph Counting Problem
Let G = (V,E) denote a graph on the set V of nodes and

set E of edges. We say that a graph H = (VH , EH) is a
non-induced subgraph of G if VH ⊆ VG and EH ⊆ EG. We
note that there may be other edges in EG −EH among the
nodes in VH in an induced embedding. A template graph
T = (VT , ET ) is said to be isomorphic to a non-induced
subgraph H = (VH , EH) of G if there exists a bijection
f : VT → VH such that for each edge (u, v) ∈ ET , we have
(f(u), f(v)) ∈ EH . In this case, we also say that H is a
non-induced embedding of T .

T	

G	

(a) Embedding of Template

u10-2

u14 u15-1 u15-2

u12-2 u13

(b) Tree-like Templates

Figure 1: (a) Example showing an embedding of a template T in
the graph G. (b) Tree-like Templates with large number of vertices

Let n(T,G) denote the number of all embeddings of
template T in graph G. Our problem is to find an accurate
estimate of n(T,G).

B. A sequential algorithm: the color coding technique
Color coding is a randomized approximation algorithm

which is able to approximately count the number of em-
beddings of trees of size k in time O(ckpoly(n)) time for a
constant c—this is an example of a fixed parameter tractable
algorithm, which is exponential in a suitable parameter (in
this case, the size), but polynomial in the input size. We
briefly describe the key ideas of the color coding technique
here, since our algorithm involves a parallelization of it.
1. Counting colorful embeddings. The main idea is that
if we assign a color col(v) ∈ {1, . . . , k} to each node v,
“colorful” embeddings, namely those in which each node
has a distinct color, can be counted easily in a bottom up
manner. For tree of size T and root v, let C(v, T, S) denote
the number of colorful embeddings of it that use colors from
the set S. With split the tree into two subtrees by an edge cut,
we can compute C(v, T, S) using the following recurrence.

C(v, T, S) =
∑

u∈N(v)

∑
S=S1∪S2

C(v, T1, S1) · C(u, T2, S2)

where T1 and T2 denote the subtrees resulting from remov-
ing edge (ρ(T ), u) from T , and u is neighbour of v.
2. Random colorings. The second idea is that if the coloring
is done randomly with k = |VT | colors, there is a reason-
able probability that an embedding is colorful. Specifically,
an embedding H of T is colorful with probability k!

kk
.

Therefore, the expected number of colorful embeddings is
n(T,G) k!

kk
. Alon et al. [2] show that this estimator has

bounded variance, which can be used to estimate n(T,G)
efficiently. Algorithm 1 describes the sequential color coding
algorithm.

Algorithm 1 The sequential color coding algorithm.

1: Input: Graph G = (V,E), a template T = (VT , ET ),
and parameters ε, δ

2: Output: A (1 ± ε)-approximation to n(T,G) with
probability at least 1− δ

3: N = O( e
k log(1/δ)

ε2 )
4: for j = 1 to N do
5: For each v ∈ VG, pick a color c(v) ∈ S =
{1, . . . , k} uniformly at random, where k = |VT |.

6: Pick a root ρ(T ) for T arbitrarily
7: Partition T into subtrees recursively to form T .
8: For each v ∈ V , Ti ∈ T with root ρi = ρ(Ti), and

subset Si ⊆ S, with |Si| = |Ti|, we compute:

c(v, Ti, Si) =
∑
u

∑
c(v, T ′i , S

′
i) · c(u, T ′′i , S′′i ),

(1)
where Ti is partitioned into trees T ′i and T ′′i in T .

9: Compute C(j), the number of colorful embeddings
of T in G for the jth coloring as

C(j) = 1
q
kk

k!

∑
v∈VG

c(v, T (ρ), S), (2)

where q denotes the number of vertices ρ′ ∈ VT such
that T is isomorphic to itself when ρ is mapped to ρ′.

10: end for
11: Partition the N estimates C(1), ..., C(N) into t =

O(log(1/δ)) sets of equal size. Let Zj be the average
of set j. Output the median of Z1, ..., Zt.

C. Challenges to Scale out Color-Coding

1) Peak Memory Utilization: It’s well known that color-
coding has a main drawback of huge space requirement
as the template size grows. The state-of-the-art FASCIA,
although adopting an efficient compressed data structure,
suffers from high demand of memory resource. If a graph
G has n vertices and a template T contains k vertices, FAS-
CIA implementation has an upper bound of peak memory
utilization as

PeakMemG,T = O(n(
∑
Ti∈T

C
|Ti|
k )) (3)



where Ti is a sub-template attached to the root ρ(T ). The
Peak memory grows linearly with dataset size n, however,
it grows exponentially, known as combinatorial explosion,
with the template size k. Considering a middle-sized graph
with 20 millions of vertices, a template u12-2 in Figure 1
used by [4] has a peak memory utilization of 96 GByte,
which is likely beyond the single node memory capacity of
commodity clusters.

To enable in-memory processing of much larger datasets
and templates, it must scale out to use memory resource
on other cluster nodes. Based on the vertices partitioning
strategy, however, local vertices on each node still require
counting information of subtrees from all the neighbour
vertices located on remote nodes, and therefore curse large
volume of data transfer.

MPI-Fascia, a distributed FASCIA in [4], uses
MPI AlltoAll or MPI Send/Recv operations in a collective
way. In that scenario, MPI-Fascia starts the computation
after all of its remote data requests being satisfied, which
requires it to temporarily store all the counting information
from its neighbours. For datasets with billions of edges,
this local copy of remote data immediately neutralizes the
benefits of memory reduction by node scaling out. In fact,
we find that the color coding algorithm does not need to
wait for all the remote neighbour data copy before starting
its local computation, which suggests an interleaving of
communication by local computation and motivates our
contributions.

2) Choice of Framework: Color coding algorithm has
been implemented by big data frameworks, like Hadoop
Mapreduce, Spark, GraphX, and HPC framework such as
MPI. For instance, SAHAD [5] is built upon Hadoop and
being able to run on a 300 node Cluster. FASICA [4] uses
MPI and scales sub-template sizes up to 10 vertices.

We choose a new type of trending strategy named HPC-
ABDS, which represents Cloud-HPC interoperable software
with HPC like performance and rich functionalities of Big
Data Stack. Harp-DAAL is our effort to bring HPC-ABDS
into reality, where harp is a data analytics framework
plugined into Hadoop ecosystem and invokes Intel’s Intels
Data Analytics Acceleration Library (DAAL)1 to leverage
highly optimized c/c++ kernels on Intel’s Xeon and Xeon
Phi architectures.

III. METHOD AND IMPLEMENTATION

A. Design of Adaptive Group Communication

Adaptive Group is motivated by group communication
that is suitable for interactions between neighbor lists for
graph applications. However this may require complicated
routing patterns implemented with advanced group operation
to accommodate for irregular graph computation, which

1https://software.intel.com/en-us/intel-daal

is not implemented in standard MPI AlltoAll and point-
to-point MPI operations. To design a new communication
mechanism, our basic idea is to break up a standard collec-
tive operation of MPI AlltoAll into steps of group commu-
nications. Adaptive Group shall meet the requirements as
follows:

1) In each step, every process i sends data to k processes
and receives data from k processes in a partial alltoall
operation.

2) For every process, the k processes to send data and
k processes to receive data are not required to be the
same.

3) Each partial alltoall operation still benefits optimiza-
tion from collective communication.

4) An internal routing algorithm ensures its effectiveness
(the same result with a standard alltoall operation )
and efficiency (no redundant data transfer).

Assuming that p processes attend the Adaptive Group in N
steps, and within each step, a process chooses k processes
to send data and receive data. We have the time complex-
ity, lower bound and optimal case, of Adaptive Group in
Equation 4

TimeAG,low =

N−1∑
s=0

((k − 1)(ts + twm)) (4)

and in Equation 5

TimeAdaptAlltoAll,opt =

N−1∑
s=0

(log2 kts+m(k/2)(log2 k)tw)

(5)
Accordingly, the memory footprint of buffer in Adap-
tive Group is

MemAdaptAlltoAll = MaxN−1s=0 (

k−1∑
i=0

(SendSizei+RecvSizei))

(6)
What makes the group communication adaptive is the

configuration of parameter k, which depends on application,
hardware environment, and user demand. If the communi-
cation overhead is critical, e.g., small communication data
with large number of processes, a large k value will lead to
faster data transfer. Whereas, if peak memory consumption
is critical, e.g., large communication data and/or limited
hardware memory capacity, a small k value is usually
beneficial. The characteristics of the application also affects
the choice of k value. For instance, if an application is
able to pipeline the work on the already received data with
the rest of the communication, a small k value could still
deliver a low overall execution time complexity supposing
that communication is interleaved by computation.

B. Implementation wit Harp-DAAL

We choose Harp-DAAL, instead of MPI, as the framework
to implement Adaptive Group for our subgraph counting
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application. Harp/Harp-DAAL provides MPI-like collective
communications that are highly optimized for data-intensive
applications and deliver comparable performance to MPI
solutions [6] [7]. Furthermore, communication operations
within Harp/Harp-DAAL have better easy-to-use interfaces
than MPI operations. For instance, two MPI processes within
the same MPI AlltoAll operation must have a consistent data
size in a pair-wised send/receive process, which requires
users to communicate the information of data sizes before
launching the MPI AlltoAll operation. Harp/Harp-DAAL op-
erations, however, use a Java object called Table to manage
data, where users may transfer an arbitrary size of data
without a prior notification of the data size to the receiver.
In addition, Harp/Harp-DAAL allow users to customize
their own communication operations from a variety of basic
collective types, while MPI only provides customization on
the data types.

Our Adaptive Group is thus extended from a Harp col-
lective operation called regroup illustrated in Figure 2 (a).
In the regroup operation, each mapper send out its partitions
and receive partitions from other mappers. The partitions are
routed by their partition IDs, which are by default equal to
the mapper IDs of receivers. By customizing the partition ID
and the routing algorithm, we implement Adaptive Group
operation with the following features.

• Each mapper keeps a group of Message Queues
(GMQ), with each of them labeled by the mapper ID
of a receiver. A GMQ is implemented by a Harp Table

• Each Message Queue (MQ) contains a number of data
chunks that correspondent to Harp table partitions.

• Each data chunk is associated with a 32 bits integer
Meta ID, which is bit-wise packed from three parts: A
Receiver mapper ID, A Sender mapper ID (self ID),
and an offset of data chunk in its MQ.

• When the router receives a data chunk from a mapper,

it routes it to the receiver by the decoded the receiver
mapper ID from the chunk Meta ID.

• When the receiver obtain a chunk from the router, it
also decodes the Meta ID to find the sender mapper ID
and offset in MQ.

Figure 2 (b) explains the workflow of Adaptive Group, and
in each step s it executes the procedure as follow:

1) Selecting k receiver IDs and activate the labeled k
MQs

2) Allocate memory and load data into active MQs.
3) Divide data in each MQ into chunks according to a

pre-configured chunk size.
4) Generate a Meta ID for each chunk and push them to

the router.
5) Router transfers data chunks to receiver mappers.
6) Receivers release data chunks to MQs labeled by

sender mapper IDs, and keep them in the same offsets
in the sending MQs.

By using aforementioned Meta ID and bit-wise encoding
mechanism, we are able to map the three-level (GMQ, MQ,
Data Chunk) data structure of Adaptive Group to the two-
level (Table, Partition) data structure of Harp operation,
where MQ is abstracted as the set of data chunks with the
same receiver or sender mapper IDs. From the procedure,
we see that our implementation of Adaptive Group within
Harp/Harp-DAAL already satisfies the first and second re-
quirements in Section III-A. Because regroup operation of
Harp is a collective operation, thus our extension to Adap-
tive Group inherits the benefits of collective communication.
Even if there is only one MQ (k = 1) in a mapper, it
still has multiple data chunks, which makes it a collective
operation and meets the third requirement. To meet the
last requirement for the effectiveness and efficiency of the
scheduling algorithm, we provide a ring-like scheduling
policy in Figure 2 (c), where we illustrate the case of k = 1.



This scheduling algorithm assumes that each mapper has the
same communication distances to each other at the hardware
level.

In practice, people can conceive much complicated
scheduling policies according to the hardware specifications
and application features.

C. Interleaving Computation in a Pipeline

A major motivation of using Adaptive Group in color-
coding is to create the pipeline for interleaving computation
and communication and reducing peak memory usage. We
implement a pipeline by using multi-threading programming
model. The pipeline has two slots, each of them attached to
a group of threads respectively. For communication slot, it
uses a single thread; For computation slot, a multi-threaded
library like OpenMP registers the rest of the physical threads
resources. The pipeline has a cold start, where computation
slot is waiting for data from communication slot. There
is a cross-slot threads synchronization after each counting
each sub-template to ensure the consistency of local data.
The pipeline process is launched after the first step of
Adaptive Group, and each mapper computes the received
data from last step while keeping in transferring data at the
current step in a non-blocking way. Algorithm 2 illustrates
the workflow of Adaptive Group pipeline, where one group
of threads are dedicated to communication task, the rest of
threads are executing computation tasks concurrently. Except
for the first step, the threads compute will compute on the
data received from the previous step by threads comm, and
simultaneously, the threads comm continues to transfer
data.

D. Fine-grained Load Balance via Partitioning the Neigh-
bour List

The efficiency of pipeline may be affected by the load
imbalance among different mappers, which is due to the
skewness of out degree distribution of the input graph.
For graph data with large skewness, some vertices have
several orders of magnitude more adjacent vertices in their
neighbour list than by average. A standard multi-threaded
counting kernel for local computation takes a vertex and the
counting over all entries of its neighbour list as a single task.
If the sub-template requires a substantial computation per
vertex, this difference in neighbour list length is amplified
significantly and curses a sever thread-level workload imbal-
ance. Furthermore, the poor thread concurrency due to these
“straggler” tasks finally cause certain mappers running much
slower than the others and lead to node-level imbalance.

A traditional way to alleviate load imbalance is to pre-
process the graph data in the partition stage for mappers.
By regrouping vertices according to their total neighbour list
lengths, each mapper shall get a comparable workload. How-
ever, this method could not resolve the intra-node thread-
level load imbalance, because that there are still threads

Algorithm 2 Adaptive Group pipeline workflow at Mapper
i

1: procedure RINGALLTOALL(p mappers, Vi vertices on
i)

2: create threads comm, threads compute
3: initialize commOrder(i)
4: objComm = commOrder(i).next()
5: threads comm.start(objComm)
6: threads comm.join()
7: for j = 0; j < p− 1; j + + do
8: objCompute = objComm
9: objComm = commOrder(i).next()

10: if is threads comm then
11: threads comm.start(objComm)
12: else
13: threads compute.start(objCompute)
14: end if
15: threads comm.join(), threads compute.join()
16: end for
17: objCompute = objComm
18: threads compute.start(objCompute)
19: threads compute.join()
20: end procedure

assigned by “straggler” tasks, which take much long time
than the other threads.

We provide another fast and lightweight method, see
Algorithm 3, to address this problem by partitioning the
work on a vertex with long neighbour lists into multiple
tasks instead of a single one. After choosing a task size
tlen, we break up any neighbour list if its length is larger
than tlen. In this way, it is guaranteed that each task has
a neighbour list length no larger than tlen. Also, we can
adjust the number of tasks by increasing or decreasing tlen,
which is the granularity of a single task. This fine-grained
tasks creation process is also adaptive to different hardware
architectures.

IV. EXPERIMENTATION AND RESULTS

A. Experimental Setup

We used 25 nodes of an Intel Xeon cluster. The node
specification is described in Table I. In testing MPI-Fascia,
all of the 120 GB Memory per node is used by the MPI pro-
cess. However, in testing Harp-Subgraph and Harp-DAAL-
Subgraph, we need to reserve 10 GB of memory for Hadoop
daemons and JVM, which reduces the effective memory to
110 GB for a Harp mapper. The Java codes is compiled
by JDK 8.0. The C/C++ codes of DAAL is compiled by
Intel Compiler 2016 while the MPI/C++ codes of MPI-
Fascia is compiled by OpenMPI 1.8.1. The MPI-Fascia
directly uses InfiniBand setups via the runtime option –mca
btl openib,self, however, Harp-Subgraph and Harp-DAAL-
Subgraph requires TCP/IP emulation layers like IP over



Algorithm 3 Neighbour List Partitioning for Node i

1: procedure TASK CREATION(Task size s, vertices Vi)
2: for all j ∈ Vi do
3: if nbr(j).size < s then
4: taskQueue.add(new Task(j, nbr(j)))
5: else
6: taskRemain = nbr(j).size
7: nbrPos = 0
8: while taskRemain > 0 do
9: newTaskLen = (taskRemain > s) ? s :

taskRemain
10: taskQueue.add(new Task(j, nbr(j, nbrPos,

nbrPos+newTaskLen)))
11: nbrPos += newTaskLen
12: taskRemain -= newTaskLen
13: end while
14: end if
15: end for
16: shuffle(taskQueue)
17: end procedure

Table I: Specification of Xeon E5-2670v3 Node

Cores Specs Uncore Specs

Cores 12 DDR4 120 GB
Base Freq 2.3GHz DDR4-Band 90 Gbps
L1 Cache 64 KB Network InfiniBand
L2 Cache 256 KB Peak Port Band 100 Gbps
L3 Cache 30720 KB Socket 2
Instruction Set 64 bit Disk 1 TB
IS Extension AVX256
Max Threads 48

InfiniBand (IPoIB) to use InfiniBand, which compromises
communication speed in some extent.

B. Graph Datasets and Tree-like Templates

We used both of datasets collected from online reposito-
ries and synthetic generated datasets. In Table II, Miami and
Orkut are social contact network in [8] [9] [10]; Twitter [11],
sk-2005 [12], and friendster [9] are social network with
billions of edges. Since color-coding works on undirected
graph, we converted directed graph datasets to undirected,
and the edge number in Table II is the number after con-
version. Synthetic datasets are generated by PaRMAT [13],
which uses RMAT recursive model [14] to create graphs
with user-specified vertex number and edge number. Fur-
thermore, the skewness of out-degree distribution is also
configurable. A typical social network graph has a skewness
around 3, but we also use graphs with skewness 1, 8, 10.

We use large tree-like templates in Figure 1 (b) for
experiments. u10-2 and u12-2 are collected from [4], while
u13 to u15 are beyond any previous work

Table II: Datasets in Experiment

Data Vertex Edges Deg Avg Deg Max Source

Miami 2.1M 51M 49 9868 synthetic
social network

Orkut 3M 230M 76 33K social network
NYC 18M 480M 54 10K synthetic

social network
Twitter 44M 2B 37 750K Twitter users
sk-2005 50M 3.8B 73 15M UbiCrawler
Friendster 66M 5B 57 92K social network

C. Performance on Single Node

We examine our neighbour list partitioning work in
Section III-D by only running small datasets on a single
Xeon E5-2670v3 node due to the limited memory capacity.
The measured time is the time spent in effective counting
work for a single iteration, which excludes the data loading
time for both of Harp-DAAL-Subgraph and MPI-Fascia. In
Figure 3 (a), the time in Miami (MI) is comparable between
Harp-DAAL-Subgraph and MPI-Fascia, while Harp-DAAL-
Subgraph is almost 8 times faster than MPI-Fascia in OR
which has near 4 times more edges than MI, and 2 times
higher skewness from Table II, which is likely to contain
more long neighbour lists that is benefited from neighbour
list partitioning. It is clear with RMAT data on skewness 1
and 3, where Harp-DAAL-Subgraph achieves 27x speedups
on R15K3.

1) Thread Scaling: In Figure 3 (b), we examine the effect
of neighbour list partitioning on the thread-level scaling.
From 1 thread to 24 threads, the benefits of neighbour list
partitioning is not significant; After 24 threads, when Xeon
E5-2670v processor enabling hyper threading, the scalability
of neighbour list partitioning is still growing while the other
one drops. Hyper threading generally weakens single thread
performance, which makes it more vulnerable to skewness
in neighbour list workload and benefits from partitioning.

2) Variation of Task Size: Finally, we study the perfor-
mance variation on partitioning task sizes in Figure 3 (c).
With two skewness values 3 and 8, we observe that except
for small task size 10, the other task sizes give a comparable
performance, implying that the neighbour list partitioning
strategies works well for wide range of task sizes. In the
rest of the tests, we set 50 as the default task sizes.

3) Thread Concurrency: To demonstrate the effectiveness
of our intra-node optimization at the hardware level, we
explore the thread concurrency from using Intel VTune
amplifier. In Figure 3 (d), we compare the statistics of con-
current running threads number from Harp-DAAL-Subgraph
and MPI-Fascia on RMAT data with a high skewness of 8.
The x-axis represents the different number of simultaneously
running threads, the larger the better. The y-axis records the
time spent in a certain concurrent running threads number.
Given the total VTune profiling of 200 seconds, the major
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Figure 3: Single Node test on template u12-2, use neighbour list size 50 by default (a) Counting time on Miami, Orkut and synthetic data
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performance on different neighbour list partitioning task size; (d) Thread concurrency test on RMAT 250 million edges with skewness 8
measured by Intel VTune

time of Harp-DAAL-Subgraph is more shifted toward high
number of concurrent threads than that of MPI-Fascia. We
also calculate the average concurrent thread usage, and
Harp-DAAL-Subgraph outperforms MPI-Fascia by 40 to 18.
This result is consistent with Figure 3 (a)

D. Peak Memory Utilization

In Figure 4 (a), we examine the peak memory utilization
by periodically querying the used physical memory flushed
within system file “/proc/self/status”. We use 8 nodes to
test small datasets group from R12K3 to R25K8 and 25
nodes to test large datasets from Twitter to Friendster. When
dataset size grows, e.g., from R25K3 to Twitter on template
u12-2, Harp-DAAL-Subgraph has twice larger peak memory
and MPI-Fascia has 4 times larger peak memory. When
template size grows from u10-2 to u15-2 for the same
Twitter datasets, peak memory on Harp-DAAL-Subgraph
and MPI-Fascia both grows 3.5 times. Compared to MPI-
Fascia, Harp-DAAL-Subgraph requires around half of the
peak memory utilization in the cases of large datasets and
templates on the same number of nodes.

In addition, we explore reduction of peak memory uti-
lization on single node in distributed mode. In Figure 4 (b),
we check Harp-DAAL-Subgraph with Twitter and template
u12-2 from 10 nodes to 25 nodes, and it effectively reduces
peak memory from 67 GBytes to 27 GBytes by 2.4 times,
which gives almost a linear reduction by number of nodes.
In contrast, the tests on MPI-Fascia proves a poor memory
reduction in Figure 4 (c), which reflects the lack of pipeline
design to save memory space in remote data copies analyzed

in Section II-C1.

E. Communication Efficiency

We investigate the communication from two aspects: 1)
Data throughput is defined as the division of total transferred
data by total communication time. Here, the communica-
tion also includes data compression and decompression of
subgraph counts ahead of transferring, therefore it reflects
the overall communication performance at application level
instead of benchmarking like throughput on naive MPI
operations. 2) Effectiveness of pipeline interleaving is the
percentage of interleaved communication and waiting time
in the total synchronization overhead.

1) Communication Data Throughput: In Figure 5 (a),
we first check the throughput at RMAT datasets by using
8 nodes, where MPI-Fascia achieves comparable or even
better throughput at RMAT of skewness 8. However, for
large dataset Twitter and 25 nodes, Harp-DAAL-Subgraph
achieves around 3 times higher throughput than MPI-Fascia,
it also keeps this high throughput for even larger SK-2005
and Friendster. In Figure 5 (b), we notice that throughput
increases with number of nodes at both of small datasets
RMAT and large datasets Twitter. However, there is still
some fluctuation, e.g., Twitter on 15 nodes has a higher
throughput than on 20 nodes, which implies that Adap-
tive Group may be affected by other factors than number
of nodes. In Figure ?? (b), we focus on the chunk size
defined in Section III-B. With small template u5-2, the
throughput is insensitive to varied chunk size; With large
template sizes, which brings in high communication data
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Figure 5: Communication Efficiency measured by communication throughput and ratio of pipelined overhead. (a) Throughput on RMAT
datasets by 8 nodes, and Twitter, Sk-2005, Friendster by 25 nodes (b) Throughput variation with node number, tested on u12-2 and R25K3
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time from the whole synchronization overhead, tested by 25 nodes on Twitter, Sk-2005, Friendster with templates u10-2 to u15-2

volume, Adaptive Group favors chunk sizes within a range.
For instance, Sk-2005 datasets and u12-2 achieves 3x higher
throughput at chunk size 250 than the other sizes. In
general, a too small chunk size will increase the times
of data copy between DAAL and harp, the compression
and decompression time, and the communication latency
overhead in Adaptive Group. It is not optimal to use large
chunk sizes since they will generate less number of chunks
and make it hard to do fine-grained optimization for harp’s
collective operations.

2) Effectiveness of Pipeline Interleaving: The pipeline
design does reduce peak memory utilization, however, it
will cause more communication time if not effectively
overlapped by computation. In Figure ?? (c), we examine
the ratio of interleaved communication and waiting time

caused by load imbalance. For template u10-2, all of the
three datasets show a overlapping ratio less than 40%,
which is due to the low computation intensity that provides
insufficient computation time in pipeline to cover the com-
munication overhead. With template u12-2, the overlapping
ratio increases to more than 50%, and it achieves more than
90% with u13 to u15. Thus, for large templates, the pipeline
design hides most of the communication and waiting time
by computation, which benefits both of time and scalability.

F. Scaling for Large Problems

1) Increase Dataset and Template Size: From single node
performance to communication efficiency, all the results im-
ply a good time performance of Harp-DAAL-Subgraph with
large datasets and templates in distributed systems compared
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Figure 6: Scaling tests: (a) The same dataset Twitter with increasing template sizes; (b) Same Twitter and template u12-2 but growing
number of nodes; (c) The node-level scaling for Datasets Miami and Orkut with template u10-2; (d) The node-level scaling for Datasets
Miami and Orkut with template u12-2

to MPI-Fascia. Figure ?? presents the time performance for
small and large scale problems.

For small-scale tests on 8 nodes, Harp-DAAL-Subgraph
has a comparable performance with MPI-Fascia on datasets
with a small skewness of 1, however, with normal skewness
3 (real social network) and high skewness of 8, 10, the
performance gap attains at least 5 times (R15K3) and as high
as 22 times (R25K10). For large-scale tests on 25 nodes,
we find a consistent performance gap of 5 times at Twitter,
which is a social network with skewness of 3.

To confirm the time performance with different template
sizes, we compare the results on Twitter on 25 nodes but
with templates from u10-2 to u15. Because MPI-Fascia
could not run Twitter beyond u12-2, we can only compare
its performance on u10-2 and u12-2. Figure 6 (a) shows
that the performance gap increases from 2x (u10-2) to 5x
(u12-2).

2) Node-Level Scalability: In Figure 6 (b), we measure
the strong scalability of Harp-DAAL-Subgraph on Twitter
and template u12-2. From 10 nodes to 15 nodes, it attains
a speedup of 12, which is close to the linear value (15).
From 15 nodes to 25 nodes, the speedup still increase to
14 but much lower than the linear value of 25. This is due
to the insufficient computation workload because the local
computation time on 20 nodes is 636 seconds and on 25
nodes is 623 seconds. In Figure 6 (c) and (d), we compare
strong scaling at small-scale. Harp-DAAL-Subgraph keeps a
increasing scalability while that of MPI-Fascia drops after a
certain number of nodes, where the communication overhead
becomes dominant.

V. RELATED WORK

ParSE [15] was the first distributed algorithm based on
color coding that scale to graphs with millions of vertices,
for template of size up to 10, within a few hours. It works
on tree-like template that can be partitioned by a cut edge.
SAHAD [5] further expand this algorithm up to 12 vertices
labeled template on graph with 9 million vertices within less
than an hour by using hadoop-based implementation. FAS-
CIA [16], [17], [4] is the current state-of-the-art color coding
treelet counting tool. By highly optimized data structure and
MPI+OpenMP implementation, it supports tree-like template
of size up to 10 vertices in billion-edge networks in a few
minutes. Recent work [18] also explores the direction of
more complex template with treewitdth 2, its solution scales
up to 10 vertices for graphs of up to 2M vertices. Our work
provides a color coding solution for treelet counting to a
much larger scale, with template of 15 vertices and graph
of 5 billion edges.

VI. CONCLUSION

Subgraph counting is a challenging computation problem,
both computationally intensive and memory intensive. We
proposed a pipelined adaptive-group communication for
finding and counting large tree-based subgraph templates.
We show that the new approach can scale up to 12 or 15
vertices of templates in Twitter input graphs of half a billion
vertices and 2 billion edges. The experiments ran on a cluster
of 25 nodes Intel Xeon (Haswell 24 core) architectures and
achieved 5x speedups over state-of-the-art MPI solution in
related work.

The pipelined Adaptive Group is a novel collective com-
munication technique that effectively reduces memory uti-
lization, reduces load imbalance of sparse graphs, and hides



communication by overlapping with computation, thereby
can scale to large datasets and templates. We have demon-
strated its computing capability and run big data Harp-
DAAL-Subgraph applications with 12 nodes of templates in
massive input Friendster graph of 0.66 billion vertices and 5
billion edges, which is the largest graph size in related work.
In future work, we can apply Harp Adaptive Group to other
data intensive sparse graph applications such as random
subgraphs for scalable solutions to the computational and
spacial challenges.
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