
Instantiations of Shared Event Model in Grid-based Collaboration

Minjun WANG

Electrical Engineering and Computer Science Department, Syracuse University
Syracuse, New York 13244, U.S.A

Community Grid Laboratory, Indiana University,
501 N Morton, Suite 222, Bloomington, Indiana 47404, U.S.A

Geoffrey FOX

Community Grid Laboratory, Computer Science Department, School of Informatics and Physics
Department, Indiana University, Bloomington, Indiana 47404, U.S.A

 Marlon PIERCE

Community Grid Laboratory, Indiana University,
501 N Morton, Suite 224, Bloomington, Indiana 47404, U.S.A

ABSTRACT

The Internet is a global infrastructure that brings resources
and people together. Diverse fields are prospering on it, such as
Grid computing and collaboration.

We demonstrate the Grid-based Collaboration idea by
making three interface applications collaborative between
computers over networks, using a common message broker as
the underlying communication system.

To achieve the global collaboration, we have brought
together in the research a Grid-based Collaboration paradigm, a
Shared Event model, different implementing structures,
methodologies and technologies. We describe the applications’
event structures in messages coordinating the Grid-base
collaboration.

We further abstract the collaboration of the applications to
be collaboration between paradigms with message as the glue or
the key, and point out the implications from this.

Keywords: Shared Event Model, Grid-based Collaboration

1. INTRODUCTION

The Internet is a network of networks; it brings intelligence,
knowledge, computing power, database, and people together
from virtually every corner of the world. The advantages from it
is enormous – e-Science, e-Business, e-Learning, distance
education, online conference, web services, just name a few.

Cooperation across the boundaries of companies,
organizations and institutions and collaboration within or
between groups of people are becoming more regular and
important.

Grid-based collaboration manifests itself to have strengths
in respects such as performance, tolerance, consistency, security,
etc. Grids offer consistent computational and informational
environments that enable applications to make use of resources
managed by diverse organizations worldwide.

In this paper, we introduce three collaborative applications
developed in our lab, which are Grid-based collaboration tools

using Shared Event Model in message communication. They are:
Collaborative PowerPoint applications [1], Collaborative
Impress applications [2], and Collaborative ReviewPlus IDL
applications [3]. They are instantiations of shared event model
in grid-based collaboration, and can be used in e-Learning,
distance education, online conference, e-Science, and more.

They work on a Grid-base Collaboration paradigm, in which
Shared Event Model as messenger, and Peer-to-Peer Grid
computing [4, 5, and 1] as basis.

We design the overall structure of each of the three
collaborative applications to consist of a type of Master (or
Master Client) and a type of Participant (or Participating Client)
using small text event messages for the communication between
them. During a session, the Master captures events in its process,
deal with them, and send the event messages to the participant
for rendering the displays in the participant’s process, so that
both of them can share the screen displays simultaneously.
There can be multiple participants working with the Master
concurrently and independently. We use a common message
broker – NaradaBrokering Message Service [6, 7] – as the
media for message communication implied by the shared event
model.

The basic software – Microsoft Office, Open Office/Star
Office, or RSI IDL – is required to install on both the hosts of
the Master and the Participant, and if files are needed in a
session, they are deployed beforehand on the same directories
on the hosts. This deployment guarantees the access of the files
is correct on the hosts under the control of event messages.

All clients are required to be in a session and keep in that
session for the whole collaboration, because an event message
coordinates each client to change its current status, and the
correct transition to a subsequent status depends on the previous
one.

We first describe each instantiation in detail in the following
sections, focusing on its event structures and its implementing
structures as a whole for capturing events on the Master and
rendering them on Participants.

Then, we make comparisons like the event structures of the
instantiations and explain the specific fields in which they have
strengths and play important roles.

Finally, we abstract the whole demonstration to have a more
general view for collaborative applications, which results in
collaboration between models, patterns or paradigms, of the
same type or different ones. We point out the implications of
this, which could relate the popular computing architectures to
each other, such as 3-tier client/server computing, web service,
online meeting/education, etc.

2. GRID-BASED COLLABORATION MODEL

We use a Grid-based Collaboration Model in the design and

development of the collaborative applications, as shown in
Figure 1.

Figure 1. A grid-based collaboration model

There are two categories of computing in this model – Grid

computing and Peer-to-Peer computing.
Grid computing [4, 8] is the basis; it largely comprises stable,

formal, and efficient high-functionality services like Web
Services, Grid Services, Common Message Brokers, etc., which
are deployed as Grids on structured, well-organized and
powerful supercomputers. They are in the core of the model.

Peer-to-Peer computing is the interface to this world; it
offers user-friendly, convenient, intuitive and easy accessible
applications and services such as the popular commodity
software used daily and everywhere. They are installed on a
variety of personal devices, such as desktops, laptops, PDA’s,
smart phones, etc. They are at the edge of the model.

The infrastructure of Networks and the Internet ties up and
correlates the two computing categories. It enables Peer-to-Peer
Grids computing to be a trend, which harnesses the advantages
of the two categories so that they complement each other, which
also brings new opportunities and challenges to computing in all.

Grid computing offers robust, structured, security services
that scale well in pre-existing hierarchically arranged
enterprises or organizations; it is largely asynchronous and
allows seamless access to supercomputers and their datasets.

Peer-to-Peer computing is more convenient and efficient for
the low-end clients to advertise and access the files on the
communal computers; it is more intuitive, unstructured, and
largely synchronous.

In our design and development of the collaborative
applications, we realize the Peer-to-Peer Grids computing idea.
We deploy the Narada Message Broker as a Grid and use it for

message communication between the Master and Participants of
the applications; we deploy the Master and Participants as Peers
at the edge and make them collaborate on events.

3. SHARED EVENT MODEL

We use a Shared Event Model in the communication
between Peers. In this model, small text event messages are
transmitted via the Grids of common message brokers and used
to coordinate the operations between the peers so that they can
cooperate concurrently and share the screen output
simultaneously.

In our design of the collaborative applications, one type of
the Peers is Master Client, another type is Participant. During a
session, the Master captures events in its process, deals with
them, and sends the event messages to the participant for
rendering the displays in the participant’s process, so that both
of them can share the screen displays simultaneously [9]. There
can be multiple participants working with the Master
concurrently and independently. We use Narada Message
Broker as the Grid for the message communication.

On the Master, the client captures the event, gets the event
structure, and packages the information from it into a delimited
string, as in {widget_base|id 0|top 0|handler 0|x 0|y 0}, with
possibly other information like session, source, destination, etc.,
and sends the result message string to Narada message broker
for broadcasting to participants. This is a serialization process.

On the participant, the client parses the received message
string, gets the different part of the delimited information, and
rebuilds the event structure by interpreting the sub-string
sections like “id 0” to corresponding field types of the event
structure. This is a de-serialization process.

The constructed event structure is then used (as a parameter)
in its event handler which is invoked by the participant client
programs to generate the same event results as that happened on
the Master client.

4. COLLABORATIVE POWERPOINT

APPLICATIONS

PowerPoint is a presentation application of the Microsoft
Office suite. We made it collaborative by developing a master
client and a participating client, which control and call the
functionality of PowerPoint.

The master client of the collaborative PowerPoint
applications captures events (such as slide changes, window
selection changes, etc.) and broadcasts its event messages to all
participating clients during a presentation of a currently opened
PowerPoint file. The participating clients receive and deal with
the event messages, and render the process of the presentation
individually, say, navigate to a specific slide of a specific
presentation, or to a specific shape/text range within a slide,
based on the messages. This way, they share the presentation or
conferencing synchronously.

Implementing Structure

Microsoft Office suite is proprietary and binary component
object oriented. The events there are named strings (e.g.
“WindowActivate”), or hexadecimal dispatch identifiers (e.g.
0x614).

The office suite exposes its functionality through the
standard IDispatch interface, also known as the Automation
utility [10]. The IDispatch interface’s primary purpose is to

Common Message
Brokers

Web
Services

Grid
Services

expose the otherwise solely user-driven applications’
functionality for other applications to use programmatically.

Each exposed method or property has an associated DISPID.
The events we are concerned are special ones, which can be
fired by source object (connection point) and be caught by event
handler (sink).

Next, we describe the way to catch the events fired in the
applications of Microsoft Office suite, and the specialties in
PowerPoint.

Microsoft designed the Connectable Object technology that
enables client and server objects to communicate with each
other in both directions. The Connection Point objects are
managed by the Connectable Object, where the outgoing
interfaces are defined but their implementations are in the client
event sinks. Each Connection Point is associated with only one
outgoing interface. This is where the events occur and is
therefore called the source interface for the client sink interface.
The sink is where the handlers of events are implemented.

The Client first gets a reference to the Server’s
IConnectionPointContainer interface. It then uses this reference
to call method FindConnectionPoint() to get the connection
point for the outgoing interface, where the events of interests
reside. Finally, the client sets up an advisory
connection/relationship with the server by calling the method
Advise() with a pointer to its sink’s IUnknown interface. Now
the server object has a pointer to the outgoing interface of its
client’s sink and fires back events whenever something
interesting happens in its process. The event handlers of the sink
catch the events and process.

This is elaborated in Figure 2.
The master client gets the events fired at its PowerPoint

server just like that, and it sends the event messages through
message broker to participants for rendering.

The participant client controls and calls the functions of its
PowerPoint server through Automation technology, under the
instructions of the received message, rendering the same display
as that of the Master.

Figure 2. The steps to set up an advisory
connection between the client and the server so
that the server’s connectable object can obtain a
pointer to its client’s sink and fire back events.

Event Structure

The events fired back and caught in the sink are in the form
of hexadecimal DISPIDs. By the aid of OLE View, we can map
them to their corresponding meaningful named strings in the
type library of an application, and thus we know what functions
we need to call later in automation programs. In Excel, Word,
etc. things go like that, but not in PowerPoint.

If we open the object library of PowerPoint (MSPPT.OLB)
using OLE View and expand the “Application” coclass, we can
see there is a Dispatch event interface called “EApplication”,
which is the connection point for event source and is associated
with the outgoing interface of the event sink. Events in this
interface include actions of the PowerPoint working
environment and transactions of presentation files and slides.

But in this interface, we can not find the DISPID for each
named string (which is meaningful and self-descriptive) for an
event; however in programs we can only catch any event in the
form of a DISPID. With the hexadecimal codes like this, one
can not know the meanings of them and can not figure out
which is which. We have done logical analysis according to the
input/output of presentation processes, and finally mapped each
of the codes to its corresponding meaningful string name in the
event interface of PowerPoint.

This is shown in Table 1.

Table 1. Hexadecimal codes and their
corresponding text named strings for the events

in the “EApplication” dispatch interface of
PowerPoint.

Hexadecimal Code Text String

7d1 WindowSelectionChange
7d2 WindowBeforeRightClick
7d3 WindowBeforeDoubleClick
7d4 PresentationClose
7d5 PresentationSave
7d6 PresentationOpen
7d7 NewPresentation
7d8 PresentationNewSlide
7d9 WindowActivate
7da WindowDeactivate
7db SlideShowBegin
7dc SlideShowNextBuild
7dd SlideShowNextSlide
7de SlideShowEnd
7df PresentationPrint
7e0 SlideSelectionChanged
7e1 ColorSchemeChanged
7e2 PresentationBeforeSave
7e3 SlideShowNextClick

5. COLLABORATIVE IMPRESS

APPLICATIONS

Impress is a presentation application in Open Office/Star
Office [11]; it has similar functionality as Microsoft PowerPoint.

We have developed collaborative Impress applications
which make use of the functionality of Open Office/Star Office,
and collaborate between the Master and Participating clients so
that they share the same presentation results during a
collaborative Impress session.

Implementing Structure

The master client connects to Open Office/Star Office which
serves as a server, listens to events fired there during a session,
and sends the event messages to Narada message broker for
broadcasting to participating clients for rendering the screen
displays as those of the master client, so that they work
synchronously in a session.

The client (Master/Participant) communicates information
with the office server through TCP/IP socket. The office server
listens to client TCP/IP connections using a connection URL as
parameter, indicating hostname/IP address, port number,
protocol, etc.

In order to do their jobs and work with the data located on
the Office servers, both the Master and the Participating clients
need to establish a remote communication bridge with their
respective Office Server and get the server’s service manager.

After it has set up the remote bridge, the Master client takes
control of the programming features via Frame-Controller-
Model (FCM) paradigm [12].

In FCM, the Model is the document object; it has document
data and also methods that access the data. The methods can
change the data directly without having to use a controller
object. The controller is the screen interaction with the model; it
observes the changes made to the model, and manages the
presentation of the document. The frame is the controller-
window linkage; it contains the controller for a model, and has
knowledge about the window, but not the functionality of the
window. That functionality is encapsulated in the underlying
windows system – whatever platform it is. This decouples
specific windows implementation from the frame, thus makes it
possible to use a single frame implementation for different
windows in Open Office. The specific windows work with the
frame to make the screen presentation.

The master client registers listeners at the remote bridge to
listen to events fired at the Office server, as in Figure 3. One of
the registered listeners is the “Property Change Listener,” which
listens to property change events of an object. The client makes
the listener listen to changes of “Current Page” of the current
presentation file object.

Narada Message Broker

R
e
m
o
t
e

B
r
i
d
g
e

Event Handler 1

Event Handler 2

Event Handler N

Controls
for the server

User controls the
process of presentation

files and slides

Master Client

Office Server
Listener 1

Listener 2

Listener N

event messages

event messages

documents

events

controls

:

Figure 3. The structure of the Master client
applications

Whenever a presentation slide changes in the Impress server,

the listener catches the event and notifies the event handler to
do further processing. The event handler gets the slide number
using method getPropertyValue(“Number”) of XPropertySet
interface.

All the event messages like this are sent to the Narada
Message Broker.

When the Narada message broker receives event messages
from the Master client, it notifies the participating clients and
broadcasts the messages to them, as in Figure 4.

Narada Message Broker

R
e
m
o
t
e

B
r
i
d
g
e

Processes/parses
event messages

Controls the server's
rendering of displays
under the instructions
of the messages, by

calling the functions of
the server via Remote

Bridge.
This process is
Automation

Participating Client
Office Server

event messages

event messages

documents

automation
Rendering

Figure 4. The structure of the Participating client

applications

Each participating client connects to, controls, and makes
use of the Office server. It first creates a remote bridge, gets the
server’s component context and service manager; then it gets
control of the server’s Frame, Controller and Model, and makes
use of the FCM paradigm to use the server’s functionality to
control the rendering process.

When the client receives a message from the Narada
message broker, it parses it and gets the different parts of
information such as event type and its properties, or a URL of a
presentation file. It then calls the functions of the server, such as
loadComponentFromURL(), to open/switch to a presentation; it
calls the method getDrawPages() of the XDrawPagesSupplier
interface, the method getByIndex(index) of the XDrawPages
interface, and the method select(xDrawPage) of the
XSelectionSupplier interface, to navigate to a specific slide of an
opened presentation, etc. The event type is the key to call
different processing functions, and its associated properties are
used in the functions to generate the correct presentation results.
This rendering process is automation; the functions of the
Office server are called under the instructions of the event
messages.

Event Structure

Each event listener listens to a specific event type fired at the
Office Server; the event handler catches the event and translates
it into a corresponding string for transmitting. These event types
are for actions as well as properties. The event structures are
thus the types of the events, or in the form of single strings
(short messages) in transmitting to and controlling of the
rendering on the participants.

We list some of the event listener interfaces and their
corresponding event types we tried in our programs, in table 2.

Table 2. Event listener interfaces and their
corresponding event types

Event listener interface Event type
XPropertyChangeListener PropertyChangeEvent
XSelectionChangeListener EventObject
XFrameActionListener FrameActionEvent
XKeyListener KeyEvent
XMouseListener MouseEvent
XMenuListener MenuEvent
XWindowListener WindowEvent
XContentEventListener ContentEvent
XFocusListener FocusEvent
XModeChangeListener ModeChangeEvent
XContainerListener ContainerEvent

6. COLLABORATIVE REVIEWPLUS

APPLICATIONS

Interactive Data Language (IDL) [13, 14] is an array-
oriented data analysis and visualization environment, which is
widely used in research, commerce, and education. Its
application areas include engineering, medical physics,
astronomical and space science, earth science, etc.

We are working on a real application package developed in
IDL – ReviewPlus [15] from General Atomics (USA), which is
a general-purpose data visualization tool consisting of a GUI
user interface and underlying computing and controlling

modules – and trying to make it collaborative by using a Polling
structure. We describe the development and special issues in the
implementation next.

Implementing Structure

Basically, the Master client of the collaborative ReviewPlus
applications consists of a GUI building and managing part, and
an event handling part.
• It makes use of the IDL-Java Bridge, calls methods in

a Java program to connect to NaradaBrokering.
• It captures events, gets event messages in event

handlers whenever a user triggers events in the GUI,
such as button clicking, and sends the messages to
message broker for broadcasting to participants.

This process is elaborated in Figure 5.

GUI calls methods of Narada Message Broker via IDL-Java Bridge

User interacts with GUI through Physical Events (mouse clicks,

Event Handler associates to GUI; GUI Notifies Event Handler

Event Handler processes event and sends message to Narada

Narada Message Broker broadcasts message to all subscribed clients

1
and connects Master client to the Broker

2
keyboard strokes) to control session

3
whenever a GUI event occurs

4
Message Broker via IDL-Java Bridge

5

Master Client in IDL

GUI

Event Handler

IDL-Java Bridge

Physical Events

1

2

3

4

Narada Message Broker

5

Figure 5. The mechanism of master client

The participant client is implemented on a Polling Structure,

which works as follows:
It connects to NaradaBrokering by calling methods of the

broker’s interface via the IDL-Java Bridge.
In a Java class, which is an interface to NaradaBrokering,

and which the participating clients codes instantiate and make
use of, we add public global variables for event change flag and
event message, and make a notification related method

onMessage() update them whenever the Broker broadcasts
event messages to the clients. The update includes setting event
flag and storing event message in the variables.

For instance, the event structure for BASE widget is:

{WIDGET_BASE, ID:0L, TOP:0L, HANDLER:0L, X:0L,

Y:0L} The participating client code now has an instance of the Java
class; it is constantly testing, or Polling, the instance variable –
event flag. If it finds the flag is set, it resets the flag and
retrieves the event message from the event message instance
variable. It then follows the instructions of the message to
execute different parts of the IDL programs to do the rendering.

Where X is the width of the base, and Y is the height.

Table 3. Part of the event structures used in

widget programming of Interactive Data
Language This process is elaborated in Figure 6.

Participant client connects to NB by calling methods of NB interface via

The client accesses the public variables of NB interface by calling the

The Broker invokes method onMessage() of NB interface when it has event

Method onMessage() then accesses the public variables of NB interface by

Narada Message Broker

IDL-Java Bridge

set event flag

store event message
get event flag

event occurred?

reset event flag

retrieve event message

call IDL routines or
commands for

rendering under the
instructions of the

message

Method onMessage()

Public Variables

int event_flag = ...
String message = ...

:

Polling

Yes
No

NB InterfaceParticipant Client in IDL
A

A

B

B

C

D

A
IDL-Java Bridge

B
Bridge's methods getProperty() and setProperty()

C
message to broadcast

D
setting event flag and storing message

{WIDGET_BASE, ID:0L, TOP:0L, HANDLER:0L, X:0L,
Y:0L}
{WIDGET_BUTTON, ID:0L, TOP:0L, HANDLER:0L,
SELECT:0}
{WIDGET_DRAW, ID:0L, TOP:0L, HANDLER:0L,
TYPE:0, X:0L, Y:0L, PRESS:0B, RELEASE:0B,
CLICKS:0, MODIFIERS:0L, CH:0, KEY:0L}
{WIDGET_LIST, ID:0L, TOP:0L, HANDLER:0L,
INDEX:0L, CLICKS:0L}
{WIDGET_SLIDER, ID:0L, TOP:0L, HANDLER:0L,
VALUE:0L, DRAG:0}
{WIDGET_TABLE_CH, ID:0L, TOP:0L, HANDLER:0L,
TYPE:0, OFFSET:0L, CH:0B, X:0L, Y:0L}
{WIDGET_TABLE_CELL_SEL, ID:0L, TOP:0L,
HANDLER:0L, TYPE:4, SEL_LEFT:0L, SEL_TOP:0L,
SEL_RIGHT:0L, SEL_BOTTOM:0L}
{WIDGET_TEXT_STR, ID:0L, TOP:0L, HANDLER:0L,
TYPE:1, OFFSET:0L, STR:’’}
{WIDGET_TEXT_SEL, ID:0L, TOP:0L, HANDLER:0L,
TYPE:3, OFFSET:0L, LENGTH:0L}

The master client captures event, gets the event structure and

serializes it in a message string along with other information
such as of event handler, and sends it out. The participant client
de-serializes the received message from the public variables in
the polling structure, locates the event handler and rebuilds the
event structure in IDL types. It then calls the event handler with
the event structure like this:

ReviewPlus_SignalDialog_event, {WIDGET_BUTTON,
ID:15, TOP:1, HANDLER:15, SELECT:1}

7. COMPARISONS
 Figure 6. The mechanism of participant client in

polling structure Technologies Used
In Microsoft suite and in our collaborative PowerPoint

applications, COM/DCOM (Distributed Component Object
Model) technology [10] is used. It includes Dispatch interface,
Connectable Object, Connection Point, Outgoing interface,
Event Sink, Type library, Wrapper class and Automation for
catching and dealing with events in the Master and rendering
the events in Participants.

Event Structure

Part of the event structures used in IDL widget programming
(as in ReviewPlus) is listed in table 3. They correspond to a
variety of primitive widgets in IDL, such as Button, Slider, Text
field, Draw area, etc. The event structure for each widget is
different; each one contains state information specific to that
widget, e.g., flags and values. However, there are three common
items in all the event structures, they are: ID, TOP, and
HANDLER. They are long integers and the first three items in
the structure.

In Open Office/Star Office and our collaborative Impress
applications, Universal Network Object (UNO) technology [16]
plays an important role. With it, remote communication bridge
is set up between the client and the office server; component
objects are instantiated in the client and server processes and
communicate with each other to perform tasks across the
processes boundaries. Frame-Controller-Model (FCM)
paradigm plays another important role in every status of the
actions of the programs.

1. ID is the widget ID number of the widget that
generates the event.

2. TOP is the widget ID number of the top-level base
that contains the widget that generates the event.

3. HANDLER is the widget ID number of the widget
that is associated with an event handler. In IDL and our collaborative ReviewPlus applications, GUI

(Graphical User Interface) programming technology and GUI

Components (Widgets) take their places. Object-oriented
programming/design is in every non-trivial application and
manifests itself.

Figure 7. Paradigms linked by message in
collaboration

 This abstraction and the Grid-based collaboration model

imply: Event Structures
 The event structures in Microsoft Office suite are

hexadecimal dispatch identifiers or meaningful named strings;
each string is associated with one DISPID. Within the
applications of the Office suite those DISPIDs are actually used
to perform functions. It looks neat and efficient.

Scenario 1
We have addressed the collaboration of MVC and FCM

paradigms based on message. More or new paradigms can be
added to this picture. With message, not only can paradigms of
the same type collaborate with each other, but also can those of
different types, e.g., MVC with FCM. It decouples the type of
paradigms and enables more freedom in collaboration; it brings
diversity and diversity is important in enabling and facilitating
collaboration.

In Open Office/Star Office, the event structures are event
types/short strings for methods or properties.

In both the Office systems, the events are mainly for
interactive actions or transactions, and they are short strings and
simple. This is an advantage in Grid-based collaboration as in
distance education, e-Learning and online conference. It poses
little network traffic in communication between the involved
clients.

Scenario 2

Traditional three-tier computing includes the tiers of client,
server and database.

The event structures in IDL are more complicated; they have
the form of a structure containing hierarchy information and are
data-intensive in favor of science and engineering data analysis
and computation. However, they are still short text strings in
transmitting, at most several hundred characters long, as shown
in table 3.

What if bring this computing model into Grid-base
collaboration, using message in communication and controlling?

The server and database can be deployed as Grids, taking
advantage of the computing power and security of the Grid
infrastructure; common message broker can be served as the
solid underlying message communication; shared event model
and message play important roles. Thus, client and server can be
developed in different languages and run on diverse platforms,
and database can be in multiple database environments as well.
The message glues them together, coordinates, controls and
invokes the functionality in the three tiers.

8. IMPLICATIONS

We described the Grid-based Collaboration Model in Figure

1. Let us zoom in and exemplify it with our collaborative
applications, and see the role of the Shared Event Model in
collaboration. We think it would result in higher performance,

collaboration and diversity. In the collaborative PowerPoint, Impress and ReviewPlus
applications, the masters and the participants connect to and
communicate event messages with each other through a
common message broker which serves as a Grid. Each client
takes advantage of a well-known paradigm in updating,
controlling and displaying. In Open Office/Star Office, it is
Frame-Controller-Model (FCM); in the others it is Model-
View-Controller (MVC) [17].

Scenario 3

Let us further deduce in Scenario 2.
Suppose the client is in active mode, and the server is in

passive mode, in other words, clients in multiple languages and
platforms take control of the process of a session by sending out
request in message, and the server supplies functionality
services on receiving it and sends the result message back. This
case naturally evolves into Web Service and complies with the
Web Service Architecture.

We can abstract the collaboration to be collaboration
between paradigms linked by message; the master gets the
message from its paradigm, especially from the Model where
the data reside and the Controller, and the participant renders
the received message to generate the results through its
paradigm, including modifying the data in its Model and
coordinating the Controller. Both the master and the participant
leverage the power and elegance of the paradigms. This is
illustrated in Figure 7.

For performance and quality of service considerations, if
Web Service takes advantage of the Grid and common message
brokers, wouldn’t it be better?

Now, let us suppose the server is in active mode, and the
client is in passive mode, that is, the server generates and
broadcasts the message, and the client interprets and executes
the received message. This case fits into the situation in distance
education, e-Learning, online conference, etc., and it
consequently becomes the structure of our collaborative
applications described in this paper, in which the master site is
the source of the event message and the participant site is the
destination. Once again, the master and participants could be in
different languages, platforms, and paradigms as well.

Message

Model-View-
Controller

Model-View-
Controller

Frame-Controller-
Model

Frame-Controller-
Model

9. CONCLUSION

In this paper we described the Grid-base collaboration

paradigm, the shared event model, and instantiations of it in the
form of three collaborative applications on the infrastructure of
Networks/Internet and common message brokers. We described
the applications’ implementing structures, technologies and

their event structures in message coordinating the Grid-base
collaboration between master/participant clients via the shared
event model. We made comparisons of them and pointed out the
application fields in which they have strengths. We further
abstracted the collaboration of the applications to be actually
collaboration between paradigms with message as the glue or
the key. We analyzed the implications from this more general
model and the Grid-base collaboration paradigm in several
scenarios, which could relate fields in client/server computing,
web service, and distance education/conference.

REFERENCES

[1] Minjun Wang, Geoffrey Fox, and Shrideep Pallickara,
“Demonstrations of Collaborative Web Services and Peer-to-
Peer Grids”, Journal of Digital Information Management,
Volume 2, Issue 2, June 2004, pp. 93-96.
[2] Minjun Wang and Geoffrey Fox, “Design of a Collaborative
System” for Open Office, Proceedings of IASTED KSCE 2004
Conference, US Virgin Islands, November 2004.
[3] Minjun Wang, Geoffrey Fox and Marlon Pierce, “Grid-
based Collaboration in Interactive Data Language Applications”,
Proceedings of IEEE International Conference on Information
Technology, Las Vegas, Nevada, April 4-6, 2005.
[4] Fran Berman, Geoffrey Fox, and Tony Hey, Grid
Computing: Making the Global Infrastructure a Reality,
Chichester, West Sussex PO19 8SQ, England: John Wiley &
Sons Ltd, 2003.
[5] Geoffrey Fox, Hasan Bulut, Kangseok Kim, Sung-Hoon Ko,
Sangmi Lee, Sangyoon Oh, Shrideep Pallickara, Xiaohong Qiu,
Ahmet Uyar, Minjun Wang, and Wenjun Wu, “Collaborative
Web Services and Peer-to-Peer Grids”, presented at 2003
Collaborative Technologies Symposium (CTS'03).
[6] Geoffrey Fox, Shrideep Pallickara, and Xi Rao, “A Scalable
Event Infrastructure for Peer to Peer Grids”, Proceedings of
2002 Java Grande/ISCOPE Conference, Seattle, November
2002, ACM Press, ISBN 1-58113-599-8, pp. 66-75.
[7] Shrideep Pallickara and Geoffrey Fox, “Efficient Matching
of Events in Distributed Middleware Systems”, Journal of
Digital Information Management, Volume 2, Issue 2, June
2004, pp. 79-87.
[8] The Globus Alliance
http://www.globus.org
[9] Geoffrey Fox, “The Rule of the Millisecond”, for CISE
Magazine, March/April 2004.
[10] G. Eddon and H. Eddon, Inside Distributed COM, One
Microsoft Way, Redmond, Washington: Microsoft Press, 1998.
[11] OpenOffice.org
http://www.openoffice.org/
[12] OpenOffice.org, Developer’s Guide, Chapter 6: Office
Development
http://api.openoffice.org/docs/DevelopersGuide/OfficeDev/Offi
ceDev.htm
[13] Liam E. Gumley, Practical IDL Programming, San
Francisco, CA 94104-3205, USA: Morgan Kaufmann
Publishers, 2002.
[14] Research Systems Inc. http://www.rsinc.com/
[15] ReviewPlus Data Visualization Software User Manual
http://web.gat.com/comp/analysis/uwpc/reviewplus/manual/
[16] OpenOffice.org, Developer’s Guide, Chapter 3:
Professional UNO
http://api.openoffice.org/docs/DevelopersGuide/ProfUNO/Prof
UNO.htm

[17] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design
Patterns: Elements of Reusable Object-oriented Software,
201 W. 103rd Street, Indianapolis, IN 46290: Pearson Education
Corporate Sales Division, 2002.

http://www.globus.org/
http://www.openoffice.org/
http://api.openoffice.org/docs/DevelopersGuide/OfficeDev/OfficeDev.htm
http://api.openoffice.org/docs/DevelopersGuide/OfficeDev/OfficeDev.htm
http://www.rsinc.com/
http://web.gat.com/comp/analysis/uwpc/reviewplus/manual/
http://api.openoffice.org/docs/DevelopersGuide/ProfUNO/ProfUNO.htm
http://api.openoffice.org/docs/DevelopersGuide/ProfUNO/ProfUNO.htm

