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Dedicated to Richard Feynman 
 
   Ten years ago, we were all sure that parallel computing technology and the 
interdisciplinary academic field of computational science would be center pieces of both 
academic and economic growth.  We show that this insight was, in principle, correct but 
was an incomplete vision for large-scale computation implies both increased computer 
power and increasing numbers of users and applications.  Parallel computing undoubtedly 
works on essentially all problems, but we were unable to produce deployable software 
systems.  Further, few industries could achieve adequate return to justify investment in 
parallel computers, except in a few areas such as databases.  Computational science is the 
academic field on the interface of computer science with fields such as physics, 
chemistry, and applied mathematics.  This expertise allows you to be very useful and, in 
principle, is an excellent area of study, but is not a wise field for many students as 
employers and universities prefer traditional fields. 
   We show how parallel computing and computational science has evolved into 
Internetics, which is a vibrant growing and much larger field that surely does work both 
in principle and in practice.  Internetics embodies the technologies and expertise used in 
building large-scale distributed systems and linking fields like physics not just with 
parallel computers, but with the Web of complex heterogeneous computers.  This is 
CORBA and Java, and not just  MPI and HPF.  It is Internetics that is the emerging 
academic field, and not computational science, and internetics is of growing attraction to 
students and employers.  Using an Internetics base, we will produce much better software 
environments for parallel systems, but the commercial and academic fields associated 
with parallelism will not grow in the near future. 
   We argue that we almost "got it right" and the essential features of the original vision 
were correct and are part of current broader thrust. 
 
1  Introduction 
 
   In our first book on parallel computing, we joyfully used the well-known fairy tale 
centered on a mirror that could be asked the question, 
      

"Mirror mirror on the wall - which is the most powerful computer of them all?" 
 

mailto:gcf@npac.syr.edu


We thought, in 1987, that choice was between a microprocessor-based parallel array, and 
a traditional vector supercomputer.  However, the mirror distorted our vision, and what 
we should have seen was a distributed array, and not just a closely coupled parallel 
simulation, but a complex metaproblem with multiple concurrent asynchronous 
components.  There should not be one power user using a single large machine, but 
communities linked by a geographically distributed ensemble that, incidentally, could 
include one or more large parallel systems. 
   In our current vision, applications of interest extend from those in science and 
engineering to the information area; computing with a hint of communications - the 
original parallel computing thrust - becomes communications with some large-scale 
computing; compilers become interpreters; Fortran becomes Java, and many changes like 
these.  We term this overall concept as Internetics, which is the field centered on 
technologies, applications, and services enabled by worldwide computing and 
communications.  This is defined to be interdisciplinary, as both base technologies and 
applications are included.  It includes issues of large scale from all points of view, not 
just large individual parallel or distributed compute engines or networks, but also one 
web client talking to one server.  This is large scale for a different reason - it is pervasive. 
   As described in [Fox:91f; Fox:92d], we found in our work at Caltech that 
interdisciplinary research at the interface of computer science and areas such as physics 
and chemistry was very rewarding [Fox:94a].  Indeed, individuals who knew both areas, 
seemed well placed to lead the expected surge of interest in large-scale simulations using 
parallel systems.  Several other groups came to similar conclusions, and the academic 
field of computational science was set up in several universities, and studied in many 
conferences [Rice:95e].  However, this initiative seems to have stalled as student interest 
has shifted in both the computer science and application areas.  In the latter case, in fact, 
fields like physics are seeing a general drop of enrollment as this is perceived as a 
difficult area to get jobs.  Classic computational science (computational physics) is not a 
large enough field to change this.  We argue that internetics combined with physics 
could, however, offer significant growth opportunities for this and similar traditional 
fields. 
 
2  Does Parallel Computing Work 
 
   It has been clear for some ten years or more than one can parallelize the majority of 
large-scale applications.  Further, this parallelization scales and can be implemented on 
machines with very many nodes.  The essential point is that one only needs to parallelize 
large problems, and these can be usually thought of as an algorithm applied iteratively to 
a dataset.  The computation is large because the dataset is large.  Then parallelism is 
achieved by breaking the dataset up into parts and placing one part in each processor.  In 
Figures 1 and 2, we illustrate this for the examples we studied at Caltech 
 

• Seismic wave propagation 
• Astrophysics 
• Computer Chess 
• Hadrian's Palace (adapted from an earlier example using his wall) 

 



   The datasets are respectively the terrain in which the waves are propagated; the 
universe in which the galaxies are simulated; the set of moves in a computer generated 
decision tree; and the set of bricks that the masons must lay to build the wall and tile the 
floor.  The latter analogy (where the "computation" is performed by humans and not 
digital systems) shows that domain decomposition and parallelism is well known and has 
established success in all aspects of the human experience.  While at Caltech, I use to 
remark that NASA, when it needed to build a shuttle, did or rather could not hire 
superman to address the task; rather some 50,000 workers were hired.  These built the 
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shuttles using a dynamic complex heterogeneous decomposition of this single problem.  
The workers had to be instructed (programmed); be arranged in a hierarchical set of 
teams (architecture); and the process was designed to ensure workers could proceed 
effectively and not spend too much time interfering with other team members (minimize 
inter-processor communication).  This was accompanied by dynamic planning and 



assignment of tasks (adaptive dynamic resource management).  The parallel computing 
terminology is placed in brackets and it is clear that the fundamental computer science 
issues are familiar concepts in society and that in principal they should be "naturally" 
soluble.  Further, one noted that nature's parallel systems all communicate via message 
passing whether they be swarms of bees, colonies of ants, collections of neurons, or 
teams of human minds. 
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Figure 1:  Three examples of parallel computing using domain decomposition to map 
problem onto computer. 
 
So we were very confident that parallel computing was possible, and set up the "Caltech 
Concurrent Computation Program" to demonstrate this.  The parameters of hypercubes 
built first by Seitz and then JPL were chosen to support this type of parallelism.  As 
rather tardily demonstrated [Fox:94a], we successfully implemented over 50 distinct 
significant parallel applications. 

Now the above arguments have compelling generality but are, of course, superficial.  
There are important cases where parallelism is not trivial, including cases where time and 
not dataset size is the "large" parameter.  Here, we looked at studies of the motion of the 
solar system, with a few-way parallelism, over long time periods. Solar system studies 
(using parallelism over planets) cannot use massive parallelism directly but typically 

planetary evolution is sensitive poorly known initial conditions.  These would be studied 
by multiple runs with different parameter values.  This exploratory work is, as they say 

today, pleasingly parallel (in Feynman's day, it was "embarrassingly" parallel) and 
recovers our ability to use parallel systems. Gerry Sussman implemented this parallelism 
with a specialized digital orrery while on sabbatical at Caltech.  This, like the hypercube, 

was discussed in Feynman's class.  A second and more important case is event-driven 
simulations, which are commonly used in the modeling and simulation of macroscopic 
systems.  The military is a major user of this technology and in the U.S.A., this work is 

coordinated by the DMSO office [dmso].  Event-driven simulations must execute entities 
in the time ordering of event occurrences and this essentially sequentializes the myriad 
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Parallel Construction of Hadrian's Palace 
 
Figure 2:  Tilers laying dance floor in two-dimensional decomposition with masons 
building the wall with a one-dimensional decomposition. 
 
components.  This is in principle insoluble, but in practice parallelism can be found as 
events in a large simulation are geographically distributed and do not effect each other for 
long time periods.  This feature, combined with various ingenious variations of the time 
warp rollback mechanism, actually allows large-scale event-driven simulations to run 
effectively even on relatively loosely coupled distributed systems.  In fact, while at 
Caltech investigations of such problems was a major activity of our collaboration with 
the Jet Propulsion Laboratory. 
   However, these nifty technical issues are not the reason why parallel computing is or is 
not successful.  Rather, the critical point was explained one day in a wonderful public 
lecture by Carver Mead in Caltech's Beckman Auditorium.  He explained how the 
computing industry faced and would see many technology transitions.  However, any 
new approach needed enough "headroom" to replace the old way.  Changes in deployed 
technology are like the phase transitions in physics to which Feynman made so many 
contributions. 
   Systems can live for a long time in a "false minimum" that is the older technology if 
there is a substantial energy barrier to change, as shown in Figure 3. 
   We can use a complex systems language as advocated by Feynman's colleague, Gell 
Mann, and the Santa Fe Institute.  A complex system is a set of interconnected entities 
that, although governed at a low level by standard laws of physics, have interactions that 
are best described by a "macroscopic coarse graining".  As most enterprises involve some 
sort of optimization, one can usually associate a phenomenological energy function that 
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Figure 3:  Phase Transitions in Complex Systems 
 
is minimized by our complex system.  For instance, the "no-arbitrage opportunity" used 
in economic modeling implies that one can view the stock market as a complex system.  
Trading is the heat bath providing a myriad of microscopic interaction that equilibrates 
this system, and financial instruments are priced by maximizing value.  In the computer 
industry, market forces equilibrate the system while innovation causes the complex 
system to evolve while always maximizing some unclear energy function representing 
customer satisfaction per unit dollar. 
   After this digression, we return to our discussion of parallel computing.  In the 
framework of Figure 3, taking an over simplified view that captures the essence, there are 
indeed two minima: the "current sequential computing" and the "large-scale parallel 
systems" minima.  The technical computer science studies show that "Parallel Computing 
Works" so this second minima is distinct, well defined, and lower than the "sequential 
minimum".  However, sequential computing technology has advanced dramatically over 
the last 15 years and the "headroom" shown in Figure 3 is not so great.  We argued that 
parallel computing was inevitable, as the feature size reduction in chips implied one 
would "have to spend" one's computer budget on parallel systems as technology reduced 
the unit sequential system cost.  This argument is fallacious for two reasons.  Firstly, the 
industry made the sequential chip architecture "better" as we increased from a few 
hundred thousand to the current several million transistors in each chip.  This did involve 
parallelism, but only that which could be implemented without user intervention.  Current 
chips are much faster than those of five years ago but, in fact, use transistors less 
efficiently, as "automatic parallelism" is not as efficient as (user directed) data 
parallelism.  However, this approach stays in the "same minimum" of Figure 3 and 
requires no "phase transitions".  Thus, it is chosen by our market forces.  A second, and 
perhaps more important, development is that effectively users are spending less money 
each on computing.  The dominant thrust in the computing industry is not on a few very 
powerful systems but on wide spread deployment of very many small (PC's) systems.  
This is the critical point we missed - large-scale computing was as we always said 
inevitable, but the scaling included not just the number of processors (as we foretold), but 



also the number of users.  Thus, the dominant system today is not a central closely 
coupled parallel system linking many individuals and their machine together.  There are 
important problems that still need all the computing they can get.  These include large-
scale academic computations such as astrophysics and quantum chemistry, and many 
areas of importance to national security, such as the well-known U.S. Department of 
Energy ASCI program to model nuclear stockpiles.  However, more generally, the 
anticipated growth has been in this area, but rather in the distributed systems area where 
the user base has increased at the same rate as the deployment of computer power. 
   Returning to Figure 3, the "barrier to change" is very large and this is central to 
understanding why the use of large-scale parallel systems has not expanded.  We know 
good parallel algorithms for almost every important problem and can express these in 
efficient parallel software.  Unfortunately, there are three major difficulties with this 
process.  Firstly, there is usually no easy way to "port (migrate)" existing sequential code 
to parallel systems.  Secondly, the current clean parallel languages are all low level - and, 
in fact, not much better than what we used in Feynman's courses 10-15 years ago.  They 
are based around explicit user-specified message passing, as in the current PVM and MPI 
systems today, or the CrOS system we used at Caltech.  There are better higher-level 
systems, but these are not universal "silver bullets" and do not provide a clearly excellent 
broad-base programming environment, so we have no compelling high-level language 
that expresses the majority of problems.  Even for what we know how to do, there is a 
further difficulty.  Namely, the high-performance parallel-computing field is of order 1% 
in dollar volume of the commodity computer market.  However, it has all the software 
problems that PCs have plus all the additional parallel computing issues.  Thus, the field 
does not have the capital investment or market size to be able to develop quality software.  
We have argued recently that this implies that the parallel-computing field should rethink 
its software strategy [Fox:98a; Fox:98b].  It should build wherever possible on top of 
software produced for commodity markets, such as the web and business enterprise 
systems.  Here we view parallel computers as a special case of distributed systems with 
especially tight synchronization constraints. 
   Note distributed computing assumes problems are already decomposed and designs 
software to access, store, and integrate decomposed parts together.  Parallel computing's 
central difficulty is different - it is finding a way of expressing tightly integrated 
problems in a way that they can be efficiently decomposed.  We need to focus on this 
problem, and integrate it with tools taken where possible from the much larger 
commodity market.  Previously, the high-performance parallel-computing community has 
tried to solve an essentially impossible problem - develop a complete programming 
environment from scratch with much less available resources than the existing sequential 
"false minimum" of Figure 3. 
   Thus, we see that parallel computing established its possibilities but did not, in Carver 
Mead's terminology, have enough headroom to effect transition from the current 
sequential "meta-stable equilibrium state". 
   We can ask if this will change?  Firstly, we have oversimplified, as always in such 
broad-based discussions.  There are important areas - especially parallel databases where 
the transition has been successful.  This is understandable because once a single tool (the 
database) was parallelized, all applications of it could take advantage of parallel 
machines.  Secondly, there is one compelling argument in favor of the inevitable 



adoption of parallel techniques.  One notes that personal computer chips will "soon" have 
so many transistors that designers must use them to implement parallelism.  It is argued 
that this will force the commodity market to take parallelism seriously, and drive the 
pervasive deployment of this technology.  This argument has some truth to it, but it is not 
clear that the degree of parallelism involved is enough.  If one "just" needs to use up a 
"few-way" parallelism, then the functional approached (as used by (Java) threads in 
simultaneously processing different components of a web page) may be sufficient.  Such 
parallelism avoids the critical difficulties of large-scale data parallelism, and will stay in 
current minimum and not drive the phase transition of Figure 3.  Thus, we expect, over 
the next five years, that the level of activity and importance of parallel computing will 
remain roughly constant.  It will not become the dominant force we thought in the early 
1990s.  We do expect that parallel-programming environments will improve significantly, 
but not enough to make it possible to easily leap across the boundary in Figure 3. 
 
3  Is Computational Science a New Academic Field? 
 
   So while at Caltech, my studies of both high energy physics and parallel computing 
were helped immeasurably by an excellent group of students who I diligently trained in 
an interdisciplinary fashion.  I have no doubt that this training was highly effective and 
was essential for the generally accepted success of our activities.  However, these 
students were typically not so successful on their graduation.  Their training was a "jack 
of all trades" (or at least two trades) and getting a good job - especially in universities - 
requires excellence in one recognized field.  I have, for the last 10 years, recommended 
students not to perform interdisciplinary work until "they get tenure".  This advice flies 
somewhat in the face of the growing interest in interdisciplinary activities by funding 
agencies - especially the National Science Foundation.  However, not entirely, as one can 
perform interdisciplinary activities in two ways; firstly, using one or more individuals - 
each of whose expertise spans multiple fields; secondly, one can build a team of 
specialized individuals whose combined knowledge spans multiple fields.  The latter has, 
in my opinion, been the mode adopted successfully in most recent projects whereas at 
Caltech, I largely used the first model.  Good universities find it hard to hire 
interdisciplinary faculty.  The tenure review system, in spite of some flaws, has 
successfully built the quality American research universities.  This assumes there is a 
peer group inside and outside the university that can provide reliable information on 
which to judge the merits of faculty promotions.  This is almost impossible to do in 
interdisciplinary fields where a candidate, whose work falls into multiple areas, will get 
less than perfect reviews in any of the component areas of his or her expertise. 
   There is another more mundane problem with implementing interdisciplinary fields.  
Suppose we have N basic fields - physics, chemistry, biology, medicine, computer 
science, electrical engineering, environmental studies, and so on.  Then we can design  
2N-1 interdisciplinary areas by choosing any combination of these basic fields.  This leads 
to a plethora of subjects with probably limited life times and no good way to choose 
where to focus.  Thus, it seems best to set up academic institutions with a few core 
subjects (a basic liberal arts education perhaps?) and building around this an evolving 
web of interdisciplinary studies.  Interdisciplinary work can be recognized by certificates, 
minors, masters or other "lesser degree" forms.  Even this modest goal requires changes 



in university structure as currently the core subjects have too many requirements and a 
broader educational experience is hard.  However, I believe these changes can and, in 
fact, probably will be made.  In particular, one core field physics is seeing a major 
reduction in enrollment as it is correctly perceived that there are few jobs in the "pure 
field" of physics.  However, I have found physics is, in fact, an excellent training for 
general interdisciplinary research.  Physics teaches problem solving based on 
fundamental principles - a good approach in most areas. 
   My attempts to understand the academic role of computational science revealed another 
bothering recurring theme.  Namely, nobody could agree as to what it was.  Individuals at 
Caltech insisted it was the same as what I call (Σi computational i) i.e., an amalgam of 
computational physics, chemistry, etc.  However, NSF in its recent "partners for 
advanced computational infrastructure" solicitation, I think views it, as I do, more 
broadly as shown in Figure 4.  This include as well "applied computer science" or those 
aspects of computer science involved with hardware, software, and algorithms of 
scientific and  
 

departments
drawn from existing

Science Faculty
Computational

Northeast Parallel
Architectures

Implemented within current academic framework

& Geography
Geology

resources
computing

provides parallel
Center (NPAC)

Program in Computational Science

Now

After
Computational
Science
Initiative

Biology

ChemistryEngineering

PhysicsEconomics
Computer

Science
and

Computer
Engineering

 
Figure 4:  A classical view of computational science as implemented at Syracuse in the 
early 1990s. 
 
engineering computation.  Most academic implementations have, in fact, given 
computational science a central home in some sort of computer science or applied 
mathematics department and so emphasizing the last component.  The academic 
computing tower of Babel is further confused by the fields of computer engineering, 
computational science and engineering, and scientific computing.  These take the fields 
we have discussed and given them different emphases, but leading to, again, good 
educational opportunities with an unclear national recognition.  The major problems for 
students in computational science is that most employees generally have no idea what the 
word "computational science" means, and computer science is the best academic degree 



with which to hunt for jobs.  This being said, it is also true that it is the applied and not 
the theoretical computer science skills that most employers demand.  Thus, the strategy 
explained at the beginning of this section is sound.  Get a degree labeled by a basic well 
understood field such as computer science, but do arrange one's studies to obtain "lesser 
degrees"  (master, certificates) demonstrating proficiency in fields like computational 
science, which teach good practical skills. 
   After these general remarks on interdisciplinary research, let us discuss computational 
science defined as the academic field lying in between computer science (and applied 
mathematics/computer engineering) and the various fields of science and engineering that 
use high-performance (parallel) computing.  We show in Figure 4, the particular view of 
computational science we developed at Syracuse University.  This was designed in 
accordance with earlier remarks to be implemented within the existing academic 
framework and not require a new academic unit.  This is consistent with approaches at 
other universities as described in John Rice's fine summary [Rice:95a]. 
   Our vision for the success of this field is well captured in these words from Daedalus 
[Fox:92d] in 1992. 
 

"This essay is constructed around a single premise: the inexorable increase 
in the performance of computers can open up new vistas in essentially all 
fields.  We need skilled people to explore and exploit these possibilities, 
however, and our educational system is behind the times.  Current curricula 
at grade schools and colleges will not educate students to exploit the 
possibilities opened up by parallel computers and the emergence of the 
computational methodology.  Furthermore, the young but relatively traditional 
field of computer science will only give us a small fraction of the scientists 
in the computational wave that will lead the revolution.  Computer scientists 
will develop the wonderful machines - a critical enabling technology. 
However, what we need most are computational scientists - individuals  
trained to use computers.  High-performance computing is critical to the 
nation's needs.  The Gulf War illustrated this in our military, but the future 
battles will increasingly be economic.  Thus, high-performance computers 
can assure the industrial competitiveness of the nation, but this can only be 
true if we educate those who can use parallel computers in new ways for 
industry." 

 
   These were sound arguments, but they embody the flaw exposed in Section 2.  
Computation will open up new vistas in essentially all fields, but parallel computing on 
its own will not.  I moved from permanent summer to winter (Caltech to Syracuse) 
because I wanted to implement the original computational science vision broadly in a 
university closely linked to the real world (industry).  However, I soon realized the flaw 
as when I surveyed New York State industry [Fox:92e, Fox:94h, Fox:94i,  Fox:95d,  
Fox:96b, Mills:93a], I found little interest in parallel computing. 
   In fact, at Syracuse, I developed some reasonable core courses in computational science 
[CPS615, 714 see http://www.npac.syr.edu/Education] but after peaking with some 50 students 
and two sections in the early 90s, student interest has waned and the current enrollment is 
down by an order of magnitude.  Syracuse students are pretty bright, but they tend to be 
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pragmatic and go to courses where they think there are jobs to be found.  Anticipating the 
discussion of the next section, over the period 1995-98, enrollment in web technology 
classes has grown by an order of magnitude. 
   So we do need to change university curricula as computing is impacting every field and 
this must be reflected in the material students earn.  However, I now believe that our 
original vision of computational science was too limited, and not broad enough to survive 
the inevitable slings and arrow of uncertain technological progress.  We do need some 
key characteristics - in particular, strong flexible core subject curricula with enough 
latitude that there is room for students to take interdisciplinary studies.  This is a sound 
lesson we have learnt from the experiments in computational science. 
 
4 Internetics - The Correct Vision? 
 
   In last two sections, we described parallel computing as the expected driving 
technology that would increase the role of computation in all fields and so drive a new 
interdisciplinary academic field of computation science.  This vision was not quite right 
as it did not anticipate the rapid improvement in sequential architectures.  Further, it 
missed a critical feature of "large-scale"; namely, it was more important to scale the 
number of people involved than to scale the power of individual computers. 
   The new technology vision is the wide spread deployment of computational devices 
and communication links with the essentially identical architecture whether in a central 
massively parallel server or a distributed set of digital set-top boxes in a suburban 
community.  All are linked commodity processors exchanging messages between 
themselves.  This scenario will not be trapped in a niche market that is 1% of the total but 
rather will overtake all computer systems.  In this world, the operating system seen by the 
users is WebWindows [Fox:96c] as currently seen in the integration of Microsoft's 
Internet Explorer with the PC Windows Operating System.  According to the basic 
market principles, web technology will lead to the best available software as it addresses 
the largest possible market, and so can amortize software development costs over the 
largest possible volume.  Further, the web has a particularly good creative model as its 
modular distributed software design is designed and built by a loosely knit world wide 
software team.  Note we have had previous pervasive software models such as those of 
IBM mainframes or of the PC itself.  The web is different from these, as it is a pervasive 
complete software model that addresses distributed heterogeneous computing.  We can 
regard any other computing system as a special case of the web.  Studying parallel 
computing will start with its distributed computing base, and as mentioned earlier, add 
support for tight synchronization.  Studying military or electronic commerce applications 
will add security to the mix, while CORBA is naturally linked to the web to satisfy the 
need for managed distributed objects. 
   We can follow Xiaoming Li and call the resultant field Internetics.  This is the study of 
technologies enabling and applications enabled by the world wide, large-scale, object 
web hardware and software infrastructure.  As shown in Figure 5, this field includes 
computing, but also a rich collection of networking and information infrastructure, 
services, and tools.  We had realized the importance of this area from our sad survey at  
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Figure 5:  Professor Xiamong Li's view of Internetics 
 
Syracuse, which had shown that industry in New York State was not so interested in 
parallel computing.  We did identify that although large-scale simulation was of "tertiary 
importance" (as told to me by a now defunct military aircraft company), information 
processing was of general interest.  I also like to recount the tale of a large appliance 
company that could only find a small, beleaguered audience of six engineers for my talk 
on the value of simulation and high-performance computing.  However, a few years later, 
they were ecstatic to learn from us how to link their product database to the web. 
   Even while we were setting up a "classical" computational science program at 
Syracuse, we realized early on from the feedback from industry that it was incomplete.  
So, in late 1995, we started an "information track" of the computational science program 
at Syracuse.  The idea is illustrated in Figure 6 and generalizes the concept explained in 
Section 3 that computational science was at the interface of "applied computer science" 
and a set of applications.  In the information track, we replace the science and 
engineering applications of Figure 4 with areas shown in Figure 6 where information 
processing is the key computation task.  This includes areas such as education, health 
care, crisis management, journalism (perhaps using the web for dissemination), and 
marketing. 
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Figure 6:  The 1995 extension of Figure 4 at Syracuse to include all applications into 
computational science.  This is a forerunner of an academic implementation of 
Internetics. 
   
   Combining Figure 4 and 6, we find the academic implementation of  Internetics as the 
field that lies between modern applied computer science and application areas.  We have 
designed a tentative Internetics curricula running from the K-12 (school children) to 
graduate level.  It starts by teaching school children the essence of the web and how to 
program in Java.  Java is a particularly good language for the K-12 age group, as it has 
good graphics and obvious utility in improving web pages.  Thus, we can easily motivate 
the language and our beginning programmers get the gratification of better personal web 
pages to share with their peers.  The technologies of Internetics are more social than that 
of the original computational science.  At the graduate level, we designed a six semester 
course certificate covering technologies (such as the basic Web, VRML, multimedia, 
collaboration, distributed objects) and a choice of application specializations, such as 
those in Figures 4 and 6. 
   We see a general trend towards Internetics (although, of course, typically not with this 
name) but so far there is not the necessary consensus to expect widespread adoption.  For 
instance, as a subset of Internetics, an interesting field is called by some just 
"multimedia" and Syracuse scoped this out, but did not adopt a "masters in multimedia" 
program.  However, we see that Internetics embodies the essential vision of 
computational science that the use of modern computers and communications systems 
will revolutionize many fields.  Thus, it is essential for both academic and economic 
reasons to train a generation of students to be familiar with both computing and particular 



applications.  In fact, there is substantial interest from industry in retraining existing 
workers in the techniques of Internetics. 
   Thus, although details of our original vision were flawed, it is included in the new 
broader picture, which will succeed. 
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