
Internetics: Technologies, Applications and Academic Field
or

Parallel Computing and Computational Science Do Not Quite Work

Geoffrey C. Fox
Syracuse University

Northeast Parallel Architectures Center
111 College Place

Syracuse, New York 13244-4100
gcf@npac.syr.edu

http://www.npac.syr.edu

Dedicated to Richard Feynman

 Ten years ago, we were all sure that parallel computing technology and the
interdisciplinary academic field of computational science would be center pieces of both
academic and economic growth. We show that this insight was, in principle, correct but
was an incomplete vision for large-scale computation implies both increased computer
power and increasing numbers of users and applications. Parallel computing undoubtedly
works on essentially all problems, but we were unable to produce deployable software
systems. Further, few industries could achieve adequate return to justify investment in
parallel computers, except in a few areas such as databases. Computational science is the
academic field on the interface of computer science with fields such as physics,
chemistry, and applied mathematics. This expertise allows you to be very useful and, in
principle, is an excellent area of study, but is not a wise field for many students as
employers and universities prefer traditional fields.
 We show how parallel computing and computational science has evolved into
Internetics, which is a vibrant growing and much larger field that surely does work both
in principle and in practice. Internetics embodies the technologies and expertise used in
building large-scale distributed systems and linking fields like physics not just with
parallel computers, but with the Web of complex heterogeneous computers. This is
CORBA and Java, and not just MPI and HPF. It is Internetics that is the emerging
academic field, and not computational science, and internetics is of growing attraction to
students and employers. Using an Internetics base, we will produce much better software
environments for parallel systems, but the commercial and academic fields associated
with parallelism will not grow in the near future.
 We argue that we almost "got it right" and the essential features of the original vision
were correct and are part of current broader thrust.

1 Introduction

 In our first book on parallel computing, we joyfully used the well-known fairy tale
centered on a mirror that could be asked the question,

"Mirror mirror on the wall - which is the most powerful computer of them all?"

mailto:gcf@npac.syr.edu

We thought, in 1987, that choice was between a microprocessor-based parallel array, and
a traditional vector supercomputer. However, the mirror distorted our vision, and what
we should have seen was a distributed array, and not just a closely coupled parallel
simulation, but a complex metaproblem with multiple concurrent asynchronous
components. There should not be one power user using a single large machine, but
communities linked by a geographically distributed ensemble that, incidentally, could
include one or more large parallel systems.
 In our current vision, applications of interest extend from those in science and
engineering to the information area; computing with a hint of communications - the
original parallel computing thrust - becomes communications with some large-scale
computing; compilers become interpreters; Fortran becomes Java, and many changes like
these. We term this overall concept as Internetics, which is the field centered on
technologies, applications, and services enabled by worldwide computing and
communications. This is defined to be interdisciplinary, as both base technologies and
applications are included. It includes issues of large scale from all points of view, not
just large individual parallel or distributed compute engines or networks, but also one
web client talking to one server. This is large scale for a different reason - it is pervasive.
 As described in [Fox:91f; Fox:92d], we found in our work at Caltech that
interdisciplinary research at the interface of computer science and areas such as physics
and chemistry was very rewarding [Fox:94a]. Indeed, individuals who knew both areas,
seemed well placed to lead the expected surge of interest in large-scale simulations using
parallel systems. Several other groups came to similar conclusions, and the academic
field of computational science was set up in several universities, and studied in many
conferences [Rice:95e]. However, this initiative seems to have stalled as student interest
has shifted in both the computer science and application areas. In the latter case, in fact,
fields like physics are seeing a general drop of enrollment as this is perceived as a
difficult area to get jobs. Classic computational science (computational physics) is not a
large enough field to change this. We argue that internetics combined with physics
could, however, offer significant growth opportunities for this and similar traditional
fields.

2 Does Parallel Computing Work

 It has been clear for some ten years or more than one can parallelize the majority of
large-scale applications. Further, this parallelization scales and can be implemented on
machines with very many nodes. The essential point is that one only needs to parallelize
large problems, and these can be usually thought of as an algorithm applied iteratively to
a dataset. The computation is large because the dataset is large. Then parallelism is
achieved by breaking the dataset up into parts and placing one part in each processor. In
Figures 1 and 2, we illustrate this for the examples we studied at Caltech

• Seismic wave propagation
• Astrophysics
• Computer Chess
• Hadrian's Palace (adapted from an earlier example using his wall)

 The datasets are respectively the terrain in which the waves are propagated; the
universe in which the galaxies are simulated; the set of moves in a computer generated
decision tree; and the set of bricks that the masons must lay to build the wall and tile the
floor. The latter analogy (where the "computation" is performed by humans and not
digital systems) shows that domain decomposition and parallelism is well known and has
established success in all aspects of the human experience. While at Caltech, I use to
remark that NASA, when it needed to build a shuttle, did or rather could not hire
superman to address the task; rather some 50,000 workers were hired. These built the

SEISMIC EXPLORATION

PROBLEMCOMPUTER
(A)

Grid Point

0 1

2 3

0 1

2 3

(B)

UNIVERSE SIMULATION

10 11

0

4

8 9

5

1 2 3

76

0

1

2 3

4 5 6 7

8
9 10

11

12
13

14

15
13 14 1512

COMPUTER PROBLEM
shuttles using a dynamic complex heterogeneous decomposition of this single problem.
The workers had to be instructed (programmed); be arranged in a hierarchical set of
teams (architecture); and the process was designed to ensure workers could proceed
effectively and not spend too much time interfering with other team members (minimize
inter-processor communication). This was accompanied by dynamic planning and

assignment of tasks (adaptive dynamic resource management). The parallel computing
terminology is placed in brackets and it is clear that the fundamental computer science
issues are familiar concepts in society and that in principal they should be "naturally"
soluble. Further, one noted that nature's parallel systems all communicate via message
passing whether they be swarms of bees, colonies of ants, collections of neurons, or
teams of human minds.

......

COMPUTER CHESS(C)

13 0311 02 2

0 POSITION
CURRENT

MOVES
OPPONENT
POSSIBLE

MOVES

3 3 2

3030

0
P-K4 P-K3

P-K4 P-Q4 COMPUTER
POSSIBLE

COMPUTER PROBLEM

3

20

1

Figure 1: Three examples of parallel computing using domain decomposition to map
problem onto computer.

So we were very confident that parallel computing was possible, and set up the "Caltech
Concurrent Computation Program" to demonstrate this. The parameters of hypercubes
built first by Seitz and then JPL were chosen to support this type of parallelism. As
rather tardily demonstrated [Fox:94a], we successfully implemented over 50 distinct
significant parallel applications.

Now the above arguments have compelling generality but are, of course, superficial.
There are important cases where parallelism is not trivial, including cases where time and
not dataset size is the "large" parameter. Here, we looked at studies of the motion of the
solar system, with a few-way parallelism, over long time periods. Solar system studies
(using parallelism over planets) cannot use massive parallelism directly but typically

planetary evolution is sensitive poorly known initial conditions. These would be studied
by multiple runs with different parameter values. This exploratory work is, as they say

today, pleasingly parallel (in Feynman's day, it was "embarrassingly" parallel) and
recovers our ability to use parallel systems. Gerry Sussman implemented this parallelism
with a specialized digital orrery while on sabbatical at Caltech. This, like the hypercube,

was discussed in Feynman's class. A second and more important case is event-driven
simulations, which are commonly used in the modeling and simulation of macroscopic
systems. The military is a major user of this technology and in the U.S.A., this work is

coordinated by the DMSO office [dmso]. Event-driven simulations must execute entities
in the time ordering of event occurrences and this essentially sequentializes the myriad

.

.

.

.

.

Parallel Construction of Hadrian's Palace

Figure 2: Tilers laying dance floor in two-dimensional decomposition with masons
building the wall with a one-dimensional decomposition.

components. This is in principle insoluble, but in practice parallelism can be found as
events in a large simulation are geographically distributed and do not effect each other for
long time periods. This feature, combined with various ingenious variations of the time
warp rollback mechanism, actually allows large-scale event-driven simulations to run
effectively even on relatively loosely coupled distributed systems. In fact, while at
Caltech investigations of such problems was a major activity of our collaboration with
the Jet Propulsion Laboratory.
 However, these nifty technical issues are not the reason why parallel computing is or is
not successful. Rather, the critical point was explained one day in a wonderful public
lecture by Carver Mead in Caltech's Beckman Auditorium. He explained how the
computing industry faced and would see many technology transitions. However, any
new approach needed enough "headroom" to replace the old way. Changes in deployed
technology are like the phase transitions in physics to which Feynman made so many
contributions.
 Systems can live for a long time in a "false minimum" that is the older technology if
there is a substantial energy barrier to change, as shown in Figure 3.
 We can use a complex systems language as advocated by Feynman's colleague, Gell
Mann, and the Santa Fe Institute. A complex system is a set of interconnected entities
that, although governed at a low level by standard laws of physics, have interactions that
are best described by a "macroscopic coarse graining". As most enterprises involve some
sort of optimization, one can usually associate a phenomenological energy function that

Barrier to Change

"Technology Approach"

Old Way

New Way

"Energy"

Headroom

Figure 3: Phase Transitions in Complex Systems

is minimized by our complex system. For instance, the "no-arbitrage opportunity" used
in economic modeling implies that one can view the stock market as a complex system.
Trading is the heat bath providing a myriad of microscopic interaction that equilibrates
this system, and financial instruments are priced by maximizing value. In the computer
industry, market forces equilibrate the system while innovation causes the complex
system to evolve while always maximizing some unclear energy function representing
customer satisfaction per unit dollar.
 After this digression, we return to our discussion of parallel computing. In the
framework of Figure 3, taking an over simplified view that captures the essence, there are
indeed two minima: the "current sequential computing" and the "large-scale parallel
systems" minima. The technical computer science studies show that "Parallel Computing
Works" so this second minima is distinct, well defined, and lower than the "sequential
minimum". However, sequential computing technology has advanced dramatically over
the last 15 years and the "headroom" shown in Figure 3 is not so great. We argued that
parallel computing was inevitable, as the feature size reduction in chips implied one
would "have to spend" one's computer budget on parallel systems as technology reduced
the unit sequential system cost. This argument is fallacious for two reasons. Firstly, the
industry made the sequential chip architecture "better" as we increased from a few
hundred thousand to the current several million transistors in each chip. This did involve
parallelism, but only that which could be implemented without user intervention. Current
chips are much faster than those of five years ago but, in fact, use transistors less
efficiently, as "automatic parallelism" is not as efficient as (user directed) data
parallelism. However, this approach stays in the "same minimum" of Figure 3 and
requires no "phase transitions". Thus, it is chosen by our market forces. A second, and
perhaps more important, development is that effectively users are spending less money
each on computing. The dominant thrust in the computing industry is not on a few very
powerful systems but on wide spread deployment of very many small (PC's) systems.
This is the critical point we missed - large-scale computing was as we always said
inevitable, but the scaling included not just the number of processors (as we foretold), but

also the number of users. Thus, the dominant system today is not a central closely
coupled parallel system linking many individuals and their machine together. There are
important problems that still need all the computing they can get. These include large-
scale academic computations such as astrophysics and quantum chemistry, and many
areas of importance to national security, such as the well-known U.S. Department of
Energy ASCI program to model nuclear stockpiles. However, more generally, the
anticipated growth has been in this area, but rather in the distributed systems area where
the user base has increased at the same rate as the deployment of computer power.
 Returning to Figure 3, the "barrier to change" is very large and this is central to
understanding why the use of large-scale parallel systems has not expanded. We know
good parallel algorithms for almost every important problem and can express these in
efficient parallel software. Unfortunately, there are three major difficulties with this
process. Firstly, there is usually no easy way to "port (migrate)" existing sequential code
to parallel systems. Secondly, the current clean parallel languages are all low level - and,
in fact, not much better than what we used in Feynman's courses 10-15 years ago. They
are based around explicit user-specified message passing, as in the current PVM and MPI
systems today, or the CrOS system we used at Caltech. There are better higher-level
systems, but these are not universal "silver bullets" and do not provide a clearly excellent
broad-base programming environment, so we have no compelling high-level language
that expresses the majority of problems. Even for what we know how to do, there is a
further difficulty. Namely, the high-performance parallel-computing field is of order 1%
in dollar volume of the commodity computer market. However, it has all the software
problems that PCs have plus all the additional parallel computing issues. Thus, the field
does not have the capital investment or market size to be able to develop quality software.
We have argued recently that this implies that the parallel-computing field should rethink
its software strategy [Fox:98a; Fox:98b]. It should build wherever possible on top of
software produced for commodity markets, such as the web and business enterprise
systems. Here we view parallel computers as a special case of distributed systems with
especially tight synchronization constraints.
 Note distributed computing assumes problems are already decomposed and designs
software to access, store, and integrate decomposed parts together. Parallel computing's
central difficulty is different - it is finding a way of expressing tightly integrated
problems in a way that they can be efficiently decomposed. We need to focus on this
problem, and integrate it with tools taken where possible from the much larger
commodity market. Previously, the high-performance parallel-computing community has
tried to solve an essentially impossible problem - develop a complete programming
environment from scratch with much less available resources than the existing sequential
"false minimum" of Figure 3.
 Thus, we see that parallel computing established its possibilities but did not, in Carver
Mead's terminology, have enough headroom to effect transition from the current
sequential "meta-stable equilibrium state".
 We can ask if this will change? Firstly, we have oversimplified, as always in such
broad-based discussions. There are important areas - especially parallel databases where
the transition has been successful. This is understandable because once a single tool (the
database) was parallelized, all applications of it could take advantage of parallel
machines. Secondly, there is one compelling argument in favor of the inevitable

adoption of parallel techniques. One notes that personal computer chips will "soon" have
so many transistors that designers must use them to implement parallelism. It is argued
that this will force the commodity market to take parallelism seriously, and drive the
pervasive deployment of this technology. This argument has some truth to it, but it is not
clear that the degree of parallelism involved is enough. If one "just" needs to use up a
"few-way" parallelism, then the functional approached (as used by (Java) threads in
simultaneously processing different components of a web page) may be sufficient. Such
parallelism avoids the critical difficulties of large-scale data parallelism, and will stay in
current minimum and not drive the phase transition of Figure 3. Thus, we expect, over
the next five years, that the level of activity and importance of parallel computing will
remain roughly constant. It will not become the dominant force we thought in the early
1990s. We do expect that parallel-programming environments will improve significantly,
but not enough to make it possible to easily leap across the boundary in Figure 3.

3 Is Computational Science a New Academic Field?

 So while at Caltech, my studies of both high energy physics and parallel computing
were helped immeasurably by an excellent group of students who I diligently trained in
an interdisciplinary fashion. I have no doubt that this training was highly effective and
was essential for the generally accepted success of our activities. However, these
students were typically not so successful on their graduation. Their training was a "jack
of all trades" (or at least two trades) and getting a good job - especially in universities -
requires excellence in one recognized field. I have, for the last 10 years, recommended
students not to perform interdisciplinary work until "they get tenure". This advice flies
somewhat in the face of the growing interest in interdisciplinary activities by funding
agencies - especially the National Science Foundation. However, not entirely, as one can
perform interdisciplinary activities in two ways; firstly, using one or more individuals -
each of whose expertise spans multiple fields; secondly, one can build a team of
specialized individuals whose combined knowledge spans multiple fields. The latter has,
in my opinion, been the mode adopted successfully in most recent projects whereas at
Caltech, I largely used the first model. Good universities find it hard to hire
interdisciplinary faculty. The tenure review system, in spite of some flaws, has
successfully built the quality American research universities. This assumes there is a
peer group inside and outside the university that can provide reliable information on
which to judge the merits of faculty promotions. This is almost impossible to do in
interdisciplinary fields where a candidate, whose work falls into multiple areas, will get
less than perfect reviews in any of the component areas of his or her expertise.
 There is another more mundane problem with implementing interdisciplinary fields.
Suppose we have N basic fields - physics, chemistry, biology, medicine, computer
science, electrical engineering, environmental studies, and so on. Then we can design
2N-1 interdisciplinary areas by choosing any combination of these basic fields. This leads
to a plethora of subjects with probably limited life times and no good way to choose
where to focus. Thus, it seems best to set up academic institutions with a few core
subjects (a basic liberal arts education perhaps?) and building around this an evolving
web of interdisciplinary studies. Interdisciplinary work can be recognized by certificates,
minors, masters or other "lesser degree" forms. Even this modest goal requires changes

in university structure as currently the core subjects have too many requirements and a
broader educational experience is hard. However, I believe these changes can and, in
fact, probably will be made. In particular, one core field physics is seeing a major
reduction in enrollment as it is correctly perceived that there are few jobs in the "pure
field" of physics. However, I have found physics is, in fact, an excellent training for
general interdisciplinary research. Physics teaches problem solving based on
fundamental principles - a good approach in most areas.
 My attempts to understand the academic role of computational science revealed another
bothering recurring theme. Namely, nobody could agree as to what it was. Individuals at
Caltech insisted it was the same as what I call (Σi computational i) i.e., an amalgam of
computational physics, chemistry, etc. However, NSF in its recent "partners for
advanced computational infrastructure" solicitation, I think views it, as I do, more
broadly as shown in Figure 4. This include as well "applied computer science" or those
aspects of computer science involved with hardware, software, and algorithms of
scientific and

departments
drawn from existing

Science Faculty
Computational

Northeast Parallel
Architectures

Implemented within current academic framework

& Geography
Geology

resources
computing

provides parallel
Center (NPAC)

Program in Computational Science

Now

After
Computational
Science
Initiative

Biology

ChemistryEngineering

PhysicsEconomics
Computer

Science
and

Computer
Engineering

Figure 4: A classical view of computational science as implemented at Syracuse in the
early 1990s.

engineering computation. Most academic implementations have, in fact, given
computational science a central home in some sort of computer science or applied
mathematics department and so emphasizing the last component. The academic
computing tower of Babel is further confused by the fields of computer engineering,
computational science and engineering, and scientific computing. These take the fields
we have discussed and given them different emphases, but leading to, again, good
educational opportunities with an unclear national recognition. The major problems for
students in computational science is that most employees generally have no idea what the
word "computational science" means, and computer science is the best academic degree

with which to hunt for jobs. This being said, it is also true that it is the applied and not
the theoretical computer science skills that most employers demand. Thus, the strategy
explained at the beginning of this section is sound. Get a degree labeled by a basic well
understood field such as computer science, but do arrange one's studies to obtain "lesser
degrees" (master, certificates) demonstrating proficiency in fields like computational
science, which teach good practical skills.
 After these general remarks on interdisciplinary research, let us discuss computational
science defined as the academic field lying in between computer science (and applied
mathematics/computer engineering) and the various fields of science and engineering that
use high-performance (parallel) computing. We show in Figure 4, the particular view of
computational science we developed at Syracuse University. This was designed in
accordance with earlier remarks to be implemented within the existing academic
framework and not require a new academic unit. This is consistent with approaches at
other universities as described in John Rice's fine summary [Rice:95a].
 Our vision for the success of this field is well captured in these words from Daedalus
[Fox:92d] in 1992.

"This essay is constructed around a single premise: the inexorable increase
in the performance of computers can open up new vistas in essentially all
fields. We need skilled people to explore and exploit these possibilities,
however, and our educational system is behind the times. Current curricula
at grade schools and colleges will not educate students to exploit the
possibilities opened up by parallel computers and the emergence of the
computational methodology. Furthermore, the young but relatively traditional
field of computer science will only give us a small fraction of the scientists
in the computational wave that will lead the revolution. Computer scientists
will develop the wonderful machines - a critical enabling technology.
However, what we need most are computational scientists - individuals
trained to use computers. High-performance computing is critical to the
nation's needs. The Gulf War illustrated this in our military, but the future
battles will increasingly be economic. Thus, high-performance computers
can assure the industrial competitiveness of the nation, but this can only be
true if we educate those who can use parallel computers in new ways for
industry."

 These were sound arguments, but they embody the flaw exposed in Section 2.
Computation will open up new vistas in essentially all fields, but parallel computing on
its own will not. I moved from permanent summer to winter (Caltech to Syracuse)
because I wanted to implement the original computational science vision broadly in a
university closely linked to the real world (industry). However, I soon realized the flaw
as when I surveyed New York State industry [Fox:92e, Fox:94h, Fox:94i, Fox:95d,
Fox:96b, Mills:93a], I found little interest in parallel computing.
 In fact, at Syracuse, I developed some reasonable core courses in computational science
[CPS615, 714 see http://www.npac.syr.edu/Education] but after peaking with some 50 students
and two sections in the early 90s, student interest has waned and the current enrollment is
down by an order of magnitude. Syracuse students are pretty bright, but they tend to be

http://www.npac.syr.edu/Education

pragmatic and go to courses where they think there are jobs to be found. Anticipating the
discussion of the next section, over the period 1995-98, enrollment in web technology
classes has grown by an order of magnitude.
 So we do need to change university curricula as computing is impacting every field and
this must be reflected in the material students earn. However, I now believe that our
original vision of computational science was too limited, and not broad enough to survive
the inevitable slings and arrow of uncertain technological progress. We do need some
key characteristics - in particular, strong flexible core subject curricula with enough
latitude that there is room for students to take interdisciplinary studies. This is a sound
lesson we have learnt from the experiments in computational science.

4 Internetics - The Correct Vision?

 In last two sections, we described parallel computing as the expected driving
technology that would increase the role of computation in all fields and so drive a new
interdisciplinary academic field of computation science. This vision was not quite right
as it did not anticipate the rapid improvement in sequential architectures. Further, it
missed a critical feature of "large-scale"; namely, it was more important to scale the
number of people involved than to scale the power of individual computers.
 The new technology vision is the wide spread deployment of computational devices
and communication links with the essentially identical architecture whether in a central
massively parallel server or a distributed set of digital set-top boxes in a suburban
community. All are linked commodity processors exchanging messages between
themselves. This scenario will not be trapped in a niche market that is 1% of the total but
rather will overtake all computer systems. In this world, the operating system seen by the
users is WebWindows [Fox:96c] as currently seen in the integration of Microsoft's
Internet Explorer with the PC Windows Operating System. According to the basic
market principles, web technology will lead to the best available software as it addresses
the largest possible market, and so can amortize software development costs over the
largest possible volume. Further, the web has a particularly good creative model as its
modular distributed software design is designed and built by a loosely knit world wide
software team. Note we have had previous pervasive software models such as those of
IBM mainframes or of the PC itself. The web is different from these, as it is a pervasive
complete software model that addresses distributed heterogeneous computing. We can
regard any other computing system as a special case of the web. Studying parallel
computing will start with its distributed computing base, and as mentioned earlier, add
support for tight synchronization. Studying military or electronic commerce applications
will add security to the mix, while CORBA is naturally linked to the web to satisfy the
need for managed distributed objects.
 We can follow Xiaoming Li and call the resultant field Internetics. This is the study of
technologies enabling and applications enabled by the world wide, large-scale, object
web hardware and software infrastructure. As shown in Figure 5, this field includes
computing, but also a rich collection of networking and information infrastructure,
services, and tools. We had realized the importance of this area from our sad survey at

JavaCORBA

editors

service specific middleware

languages

ActiveX

computation

collaboration

transaction

information

general middlewarecomputercommunication

ToolsServices

Infrastructure

Internetics

plug-ins

OpenDoc

Client

Server

Figure 5: Professor Xiamong Li's view of Internetics

Syracuse, which had shown that industry in New York State was not so interested in
parallel computing. We did identify that although large-scale simulation was of "tertiary
importance" (as told to me by a now defunct military aircraft company), information
processing was of general interest. I also like to recount the tale of a large appliance
company that could only find a small, beleaguered audience of six engineers for my talk
on the value of simulation and high-performance computing. However, a few years later,
they were ecstatic to learn from us how to link their product database to the web.
 Even while we were setting up a "classical" computational science program at
Syracuse, we realized early on from the feedback from industry that it was incomplete.
So, in late 1995, we started an "information track" of the computational science program
at Syracuse. The idea is illustrated in Figure 6 and generalizes the concept explained in
Section 3 that computational science was at the interface of "applied computer science"
and a set of applications. In the information track, we replace the science and
engineering applications of Figure 4 with areas shown in Figure 6 where information
processing is the key computation task. This includes areas such as education, health
care, crisis management, journalism (perhaps using the web for dissemination), and
marketing.

Implemented Within Current Academic Program

Computer
Science

and

Engineering
Computer

Program in Information Age Computational Science

School of Information
Studies

(digital library)
After Computational
Sciences Initiative

Medical Schools
(SUNY)

Dept. of Defense
Society

Business

School of
Architecture

Computational
Science Faculty
drawn from existing
departments

Northeast Parallel
Architectures
Center (NPAC)
provides parallel
computing
resources

Maxwell School of
Citizenship and
Public Affairs

School of
Management

School of Visual and
Performing Arts

Newhouse School of
Communication

School of Education

Now

Figure 6: The 1995 extension of Figure 4 at Syracuse to include all applications into
computational science. This is a forerunner of an academic implementation of
Internetics.

 Combining Figure 4 and 6, we find the academic implementation of Internetics as the
field that lies between modern applied computer science and application areas. We have
designed a tentative Internetics curricula running from the K-12 (school children) to
graduate level. It starts by teaching school children the essence of the web and how to
program in Java. Java is a particularly good language for the K-12 age group, as it has
good graphics and obvious utility in improving web pages. Thus, we can easily motivate
the language and our beginning programmers get the gratification of better personal web
pages to share with their peers. The technologies of Internetics are more social than that
of the original computational science. At the graduate level, we designed a six semester
course certificate covering technologies (such as the basic Web, VRML, multimedia,
collaboration, distributed objects) and a choice of application specializations, such as
those in Figures 4 and 6.
 We see a general trend towards Internetics (although, of course, typically not with this
name) but so far there is not the necessary consensus to expect widespread adoption. For
instance, as a subset of Internetics, an interesting field is called by some just
"multimedia" and Syracuse scoped this out, but did not adopt a "masters in multimedia"
program. However, we see that Internetics embodies the essential vision of
computational science that the use of modern computers and communications systems
will revolutionize many fields. Thus, it is essential for both academic and economic
reasons to train a generation of students to be familiar with both computing and particular

applications. In fact, there is substantial interest from industry in retraining existing
workers in the techniques of Internetics.
 Thus, although details of our original vision were flawed, it is included in the new
broader picture, which will succeed.

Acknowledgement

These ideas owe a lot to my interactions with many people. Feynman taught me much
about how one should conduct scientific research maintaining both practical relevance
and theoretical depth. The members of the Caltech Concurrent Computation Program
(C3P) taught me interdisciplinary research while Professor Xiaoming Li from Peking has
been a wonderful collaborator in many ways during the last few years.

References

[dmso] High Level Architecture and Run-Time Infrastructure by DoD Modeling and
Simulation Office (DMSO), http://www.dmso.mil/hla

[Fox:91f] Fox, G. C., "Achievements and Prospects for Parallel Computing,"
Concurrency: Practice and Experience, 3(6):725-739, December 1991. Special Issue:
Practical Parallel Computing: Status and Prospects. Guest Editors: Paul Messina and
Almerico Murli. SCCS-29b, C3P-297b, CRPC-TR90083.

[Fox:92d] Fox, G. C. "Parallel Computing and Education," Daedalus Journal of the
American Academy of Arts and Sciences, 121(1):111-118, 1992. CRPC-TR91123,
SCCS-83. Caltech Report C3P-958.

[Fox:92e] Fox, G. C. "Parallel Computing in Industry - An Initial Survey," in
Proceedings of Fifth Australian Supercomputing Conference (supplement), pages 1-10.
Communications Services, Melbourne, December 1992. Held at World Congress Centre,
Melbourne, Australia. Syracuse University, NPAC Technical Report SCCS-302b.
CRPC-TR92219.

[Fox:94a] Fox, G. C., Messina, P. C., and Williams R. D., editors. "Parallel Computing
Works!", Morgan Kaufmann Publishers, San Francisco, CA, 1994.
http://www.infomall.org/npac/pcw/.

[Fox:94h] Fox, G., Hawick, K., Podgorny, M., and Mills, K. "The Electronic InfoMall -
HPCN Enabling Industry and Commerce," Volume 919 of Lecture Notes in Computer
Science, pages 360-365. Springer-Verlag, November 1994. Syracuse University, NPAC
Technical Report SCCS-665.

[Fox:94i] Fox, G. C. "Involvement of Industry in the National High Performance
Computing and Communication Enterprise," in Developing a Computer Science Agenda
for High Performance Computing, edited by U. Vishkin, ACM Press. Syracuse
University, NPAC Technical Report SCCS-716, Syracuse, NY, May 1994..

http://www.dmso.mil/hla
http://www.infomall.org/npac/pcw/

[Fox:95d] Fox, G. C., and Furmanski, W. "The Use of the National Information
Infrastructure and High Performance Computers in Industry," in Proceedings of the
Second International Conference on Massively Parallel Processing using Optical
Interconnections, pages 298-312, Los Alamitos, CA, October 1995. IEEE Computer
Society Press. Syracuse University, NPAC Technical Report SCCS-732.

[Fox:96b] Fox, G. C. "An Application Perspective on High-Performance Computing and
Communications," RCI, Ltd. (to be published). Syracuse University, NPAC Technical
Report SCCS-757, April 1996.

[Fox:96c] Fox, G. C., and Furmanski, W. "SNAP, Crackle, WebWindows!," RCI, Ltd.,
Management White Paper, (29), 1996. Syracuse University, NPAC Technical Report
SCCS-758.

[Fox:98a] Fox, G. C., and Furmanski, W. "Parallel and Distributed Computing using
Pervasive Web and Object Technologies," in Proceedings of ParCo Conference, Bonn,
September 16-19, 1997 (to be published). Syracuse University, NPAC Technical Report
SCCS-807, February 1998.

[Fox:98b] Fox, G. C., and Furmanski, W. "High Performance Commodity Computing,"
in Computational Grids: The Future in High Performance Distributed Computing, C.
Kesselman and I. Foster, editors, 1998 (to be published). Syracuse University, NPAC
Technical Report SCCS-808, February 1998.

[Rice:95a] Rice, J. R., "Computational Science and the Future of Computing Research,"
in IEEE Computational Science and Engineering, 2(4) 35-41, 1995.

