
Investigation of Data Locality in MapReduce

Zhenhua Guo, Geoffrey Fox, Mo Zhou
School of Informatics and Computing

Indiana University Bloomington
Bloomington, IN USA

{zhguo, gcf, mozhou}@cs.indiana.edu

Abstract— Traditional HPC architectures separate compute
nodes and storage nodes, which are interconnected with high
speed links to satisfy data access requirement in multi-user
environments. However, the capacity of those high speed links
is still much less than the aggregate bandwidth of all compute
nodes. In Data Parallel Systems such as GFS/MapReduce,
clusters are built with commodity hardware and each node
takes the roles of both computation and storage, which makes
it possible to bring compute to data. Data locality is a
significant advantage of data parallel systems over traditional
HPC systems. Good data locality reduces cross-switch network
traffic - one of the bottlenecks in data-intensive computing. In
this paper, we investigate data locality in depth. Firstly, we
build a mathematical model of scheduling in MapReduce and
theoretically analyze the impact on data locality of
configuration factors, such as the numbers of nodes and tasks.
Secondly, we find the default Hadoop scheduling is non-
optimal and propose an algorithm that schedules multiple
tasks simultaneously rather than one by one to give optimal
data locality. Thirdly, we run extensive tests to quantify
performance improvement of our proposed algorithms,
measure how different factors impact data locality, and
investigate how data locality influences job execution time in
both single-cluster and cross-cluster environments.

Keywords: MapReduce, Hadoop, scheduling, data locality

I. INTRODUCTION

Data-intensive computing brings more challenges to
process the ever-growing amount of data collected by
modern instruments such as Large Hadron Collider and next-
generation gene sequencers. Under the new circumstance,
some assumptions that were made in prior distributed
computing research need to be revised. One important
aspect is the overall architectures of distributed systems.

In grid systems, compute nodes and storage nodes are
separated and interconnected with high speed network links.
A three-level data hierarchy with typically temporary data
stored on cluster nodes, a shared set of files and a backend
archival storage system is adopted. The shared files are either
managed by computers in hosted storage or as dedicated
(SAN/NAS/etc.) storage. Parallel file systems such as Lustre
and GPFS have been developed to support high-performance
scientific computing. This architecture has been used for
both data and simulation intensive work with good success.
There are many attractive features of this architecture
including separation of concerns - storage and its backup are
managed separately from the possibly large number of

clusters supported; computers and storage can be separately
upgraded; and a single storage system can be mounted to
multiple computing venues. There is an obvious problem in
data intensive applications that the bandwidth between the
compute and data system components may be too small.
Note clusters typically have bisection bandwidths that scale
up with system size. The link between storage and compute
subsections are typically provisioned with static number of
interconnects (perhaps some number of Gigabit or 10Gigabit
Ethernet connections). Even simulation systems see the same
issues [1,2,3] at the largest scales when programs output data
(for visualization) at volumes that overwhelm the connection
to shared storage.

An alternative architecture addresses these issues by
using Data Parallel Systems such as Google File System
(MapReduce)[4], Hadoop Distributed File Systems
(Hadoop)[5], Cosmos (Dryad)[6,7] and Sector(Sphere) [8]
with compute-data affinity optimized for data processing.
The same set of nodes is used for both computation and
storage. Data parallel systems bring more flexibility to
scheduling. For instance, the scheduler can bring data to
compute, bring data close to compute or bring compute to
data. In other words, data locality can be explored to
improve performance, which was impossible in traditional
grid systems. To move data around imposes significant load
on both storage and network. Large supercomputers and
clusters have millions of cores, and concurrent data
movement from all tasks can result in severe bandwidth
contention. So we believe that data parallel systems are
more suitable for data-intensive computing. Among existing
data parallel systems, Hadoop is representative which is a
widely used implementation of GFS/MapReduce and has
been deployed to multi-thousand node production clusters.

The rest of this paper is organized as follows. Section II
surveys related work. In section III, we build a model to
theoretically deduce the relationship between system factors
and data locality. In addition, we analyze the drawbacks of
state-of-the-art scheduling algorithms in Hadoop and
propose an optimal scheduling algorithm. We have also
studied fairness in detail with good results for our approach,
which will be described elsewhere. In section IV,
experiments are conducted to demonstrate the effectiveness
of our proposed algorithm, evaluate the influence of various
factors on data locality and measure how network
heterogeneity impacts the performance. Both simulation and
real Hadoop systems are used in our tests. We conclude in
section V.

II. RELATED WORK

Computation scheduling and data replication in data grids
are investigated in [9], which shows it is beneficial to
incorporate data location into job scheduling and
automatically create new replicas for popular data sets across
sites. Their proposed mechanisms outperform traditional
HPC approaches for data-intensive computing. The
minimization of the loss of data locality is studied in [10]
with the assumption that the number of splits of an item is
inversely proportional to the data locality. They found it is
NP-hard to find optimal solutions and a polynomial-time
approach is proposed to give near-optimal solutions. But
their runtime model is different from MapReduce in that the
whole data set needs to be staged in before a job can run.
Close-to-Files strategy for processor and data co-allocation is
proposed and evaluated for multi-cluster grid environments
in [11] with the assumption that a single file has to be
transferred to all job components prior to execution. A
reservation-like scheduling mechanism is adopted. These
are not valid in the system we will investigate.

Delay scheduling has been proposed to improve data
locality in MapReduce [12]. For a system in which most of
jobs are short, if a task cannot be scheduled to a node where
its input data reside, to delay its scheduling by a small
amount of time can greatly improve data locality. In
Purlieus, MapReduce clusters in clouds are provisioned in a
locality-aware manner so that data transfer overhead among
tasks is minimized [13]. MapReduce jobs are categorized
into three classes: map-input heavy, map-and-reduce-input
heavy and reduce-input heavy, for each of which different
data and VM placement techniques are proposed. Task
splitting and consolidation proposed in [14] can be used to
dynamically adjust the granularity of tasks to give better load
balancing. However, only CPU-intensive jobs are
investigated for which data locality is not critical. In [15],
scattered grid clusters controlled by different domains are
unified to form a MapReduce cluster by using a Hierarchical
MapReduce framework. But they assumed data are fed in
dynamically and staged to local MapReduce clusters on
demand.

To improve speculative execution in Hadoop in
heterogeneous environments, LATE is proposed that uses the
estimated remaining execution time of tasks as the guideline
to select tasks to speculate, and avoids assigning speculative
tasks to slow nodes [16]. It has been incorporated into
Hadoop 0.21.0 [17] which is used in our tests. Our work
shows that LATE is not sufficient to cope with the drastic
heterogeneity of network.

III. ANALYSIS OF DATA LOCALITY

A. Background of GFS/HDFS and MapReduce

In GFS/HDFS, files are split into equally-sized blocks
which are placed across nodes. In Hadoop implementation
of MapReduce, each node has a configurable number of map
and reduce slots, which limit the maximum number of map
and reduce tasks that can concurrently run on the node.
When a task starts to execute, it occupies one slot; and when

it completes, the slot is released so that other tasks can take
it. Each slot can only have one task assigned at most at any
time. There is a single central master node where Job
Tracker runs. Job Tracker manages all slave/worker nodes
and embraces a scheduler that assigns tasks to idle slots.

Data locality is defined as how close compute and input
data are, and it has different levels – node-level, rack-level,
etc. In our work, we only focus on the node-level data
locality which means compute and data are co-located on the
same node. Data locality is one of the most important factors
considered by schedulers in data parallel systems. Please
note that here data locality means the data locality of input
data. Map tasks may generate intermediate data, but they are
stored locally (not uploaded to HDFS) so that data locality is
naturally gained. We define goodness of data locality as the
percent of map tasks that gain node-level data locality.

In this paper, the default scheduling algorithm in Hadoop
is denoted by dl-sched. In Hadoop, when a slave node sends
a heartbeat message and says it has available map slots, the
master node first tries to find a map task whose input data are
stored on that slave node. If such a task can be found, it is
scheduled to the node and node-level data locality is gained.
Otherwise, Hadoop tries to find a task that can achieve rack-
level data locality – input data and task execution are on the
same rack. If it still fails, a task is randomly picked and
dispatched. So dl-sched favors data locality and does not
consider other factors such as system load and fairness.

B. Goodness of Data Locality

Firstly, we develop a set of mathematical symbols to
characterize HDFS/MapReduce which are shown in Table I.
Data replicas are randomly placed across all nodes. And idle
slots are randomly chosen from all slots. This assumption is
reasonable for modestly utilized clusters that run lots of jobs
with diverse workload from multiple users. In such a
complicated system, it is difficult, if not impossible, to know
which slots will be released and when. In addition, we
assume that I is constant within a specific time frame and
may vary across time frames. This assumption implies that
new tasks come into the system at the same rate that running
tasks complete. So the system is in a dynamic equilibrium
state for small time frames. Time is divided into time frames
each of which is associated with a corresponding I.

Our goal is to study the relationship between the
goodness of data locality and significant system factors.
Obviously, it depends upon scheduling algorithms. Default
Hadoop scheduling algorithm dl-sched is the target of our
analysis here. To simplify mathematical deduction, we
assume replication factor C and the number of slots per node
S are both 1. Firstly we need to calculate p(k, T) (the
probability that k out of T total tasks can achieve data
locality). Each task can be scheduled to any of the N nodes,
so the total number of cases is NT. Because both the data
placement and idle slot distribution are random, we can fix
the distribution of idle slots without affecting the correctness
of analysis. We simply assume that the first IS slots among
all slots are idle. To guarantee that k tasks have data locality,
we first choose k idle slots from total IS idle slots to which

unscheduled tasks will be assigned, which gives IS
kC cases

(shown as step ○1 in Fig. 1). Then we divide all unscheduled
tasks into two groups: g1 and g2. For group g1, the input data
of all its tasks are located on the nodes that have idle slots.
For group g2, the input data of all its tasks are located on the
nodes that have no idle slots. The input data of the tasks in
group g1 need to be stored on k idle nodes so that exact k
tasks can achieve data locality (note if the input data of
multiple tasks are stored on the same node with only one idle
slot, only one task can be scheduled to the node and other
tasks will not achieve data locality). Assume group g1 has i
tasks, the number of ways to choose these tasks from total T
tasks is T

iC , and the number of ways to distribute their input
data onto k nodes is S(i, k) (stirling numbers of the second
kind) (shown as step ○2 in Fig. 1). The number of tasks in
group g2 is T-i and each of them can choose among N-IS
busy nodes to store input data, which gives (N-IS)T-i

 cases
((shown as step ○3 in Fig. 1). Combining all above steps, we
deduce (2) to calculate p(k, T). Then the expectation E can
be calculated using (3) and the goodness of data locality R
can be calculated using (4).

TABLE I. DEFINITIONS

Symbols Description
N the number of nodes
S the number of map slots on each node
I the ratio of idle slots
T the number of tasks to be executed
C replication factor
IS the number of idle map slots (N * S * I)

p(k, T) the possibility that k out of T tasks can gain data locality
goodness of
data locality

the percent of map tasks that gain node-level data locality

 0 0k T T IS≤ ≤ ≤ ≤ (1)

 (,) ((,) ! ()) /
TIS T T i T

k ii k
p k T C C S i k k N IS N−

=
= ⋅ ⋅ ⋅ ⋅ − (2)

0
((,))

T

k
E k p k T

=
= ⋅ (3)

 /R E T= (4)

So the goodness of data locality can be accurately

calculated. For cases where C and S are larger than one, the
mathematical deduction is much more complicated and we
are working on it. In our experiments below we take the

approach of simulation instead of accurate numerical
calculation for two reasons: a) calculating (2) involves
factorial and exponential operations requiring enormous
computation if operands are large; b) we have not deduced
closed-form formulas for the cases where C and S are not 1.

C. Optimality of Scheduling In Terms of Data Locality

Here the term optimality means the maximization of the
goodness of data locality. Given a set of tasks to schedule
and a set of idle slots, if a scheduling algorithm achieves the
best data locality, we call it is optimal. We will show that
scheduling multiple tasks all at once outperforms the task-
by-task approach taken by dl-sched.

1) Non-optimality of dl-sched Fig. 2 demonstrates dl-
sched is not optimal. Fig. 2(a) shows an instantaneous state
of a system. There are three tasks (T1, T2 and T3) to
schedule, and three nodes (A, B and C) that have idle map
slots. Each data block has multiple replicas and each node
has three map slots among which those marked as black are
not idle. If a data block B is marked with the same color
and pattern as a task T, it means B is the input data of T.
Only the nodes that have idle slots are shown. From the
graph, we can see the input data of task T1 are stored on
nodes A, B, and C; the input data of task T2 are stored on
nodes A and B; and the input data of task T3 are stored on
node A. Fig. 2(b) shows an example of dl-sched
scheduling. Node A has one idle map slot and it hosts the
input data of task T1, so T1 is scheduled to A. Node B has
one idle map slot and hosts the input data of task T2, so T2 is
scheduled to B. Now the only node that has idle map slots
is C and task T3 must be scheduled there. However, node C
does not host the input data of task T3. To summarize, tasks
T1 and T2 gain data locality while task T3 loses data locality.
But, we can easily find another way to schedule the three
tasks to make all of them achieve data locality, which is
shown in Fig. 2(c). The reason that dl-sched and its variants
(e.g. fair scheduling, delay scheduling) are not optimal is
that tasks are scheduled one by one and each task is
scheduled without considering its impact on other tasks. To
achieve a global optimum, all unscheduled tasks and idle
slots at hand must be considered at once to make global
scheduling decisions.

2) Optimal scheduling We reformulate the problem into
a formal definition using symbols defined in section III (B).
The assignment of maps tasks to idle slots is defined as
function φ. Given task i, φ(i) is the slot to which it is
assigned. Function φ needs to be injective to guarantee that
multiple tasks are not assigned to the same idle slot. We
associate an assignment cost to each task-to-slot
assignment. Low assignment cost means good data locality
and high assignment cost means bad data locality. Cij
represents the assignment cost to assign task i to slot j, and
is defined in (5). If a task is scheduled to a node which
stores its input data, its assignment cost is 0. Otherwise,
the cost is 1. Basically the cost matrix C measures the data

Figure 1. The deduction sketch for given i and k

locality of assigned tasks. So it is good for IO intensive
jobs and needs to be enhanced for other types of jobs.
Given φ, the total assignment cost is the summation of the
assignment cost of all scheduled tasks, which is formulated
in (6). The goal function is shown in (7), which tries to find
a φ that minimizes the total assignment cost. As we
showed, the function φ given by dl-sched is not optimal, and
therefore not a solution to (7).
1 ; 1

0 if the input data of task and slot collocate

1 otherwiseij

i T j IS

i j
C

≤ ≤ ≤ ≤

=

 (5)

 ()1
()

T

sum i ii
C C φφ

=
= (6)

 min ()sumg C φ= (7)

We found that this problem can be converted to the well-
known Linear Sum Assignment Problem[18] (LSAP) briefly
described below. The difference is that LSAP requires that
the cost matrix be square. In our case, if T and IS are equal,
matrix C is square and we can directly apply LSAP.
Otherwise, LSAP cannot be directly applied and we figure
out how to convert the problem to LSAP by manipulating
matrix C.

If T is less than IS, we make up IS-T extra dummy tasks

whose assignment cost is 1 no matter which slots they are
scheduled to. Fig. 3(a) shows an example in which ti and sj
represent tasks and idle slots respectively. The first T rows
are from the original cost matrix. The last IS-T rows are for
the dummy tasks we make up and filled with constant 1.
Now we get a IS x IS square cost matrix and can apply LSAP
algorithms to find an optimal solution. LASP algorithms will
give us an optimal assignment for all IS tasks. Among them
we just pick those that are not dummy tasks, and we get a
specific φ (termed φ-lsap) for the original problem. Now let

us prove that φ-lsap is a solution to (7) by using
contradiction.

Proof: The assignment cost given by φ-lsap is Csum(φ-
lsap) (see (6)). As a result, the total assignment cost given
by LSAP algorithms for the expanded square matrix is
Csum(φ-lsap) + (IS-T). The key point is that the total
assignment cost of dummy tasks is IS-T no matter where
they are assigned. Assume that φ-lsap is not a solution to
(7), and another function φ-opt gives smaller assignment
cost. It implies Csum(φ-opt) is less than Csum(φ-lsap). We use
the same mechanism to create dummy tasks and extend the
cost matrix. We extend function φ-opt to include those
dummy tasks and arbitrarily map them to the remaining IS-T
idle slots. So the total assignment cost for the expanded
square matrix is Csum(φ-opt) + (IS-T). Because Csum(φ-opt) is
less than Csum(φ-lsap), we can deduce that Csum(φ-opt) + (IS-
T) is less than Csum(φ-lsap) + (IS-T). That means the solution
given by LSAP algorithm is not optimal. This contradicts
with the fact that LSAP algorithms give optimal solutions. �

Constant 1 has been used as the assignment cost for
dummy tasks. It turns out that we can choose any constant
without violating optimality. The reason is the total
assignment cost of all dummy tasks is a constant as well so
that all task assignments perform equally well for dummy
tasks. So what matters is the assignment of the T real tasks.
It can be proved formally with the same method as above.

s1 … sIS-1 sIS

t1 1 1 0 0
… … … … …
tT 0 1 1 0
tT+1 1 1 1 1
… 1 1 1 1
tIS 1 1 1 1

 s1 ... sIS sIS+1 ... sT

t1 1 … 1 1 1 1
t2 0 … 0 1 1 1
t3 1 … 1 1 1 1
t4 1 … 1 1 1 1
… 1 … 1 1 1 1
tT 1 … 1 1 1 1

(a) T < IS (b) T > IS

Figure 3. Expand cost matrix to make it square.
For (a), last IS-T rows are for dummy tasks we make up and all filled with 1.
For (b), last T-IS columns are for dummy slots we make up and filled with 1.

For the case where T is larger than IS, we can use the
same technique developed above to add extra T-IS columns
representing dummy slots and fill them with 1, and therefore
convert the original cost matrix to a square matrix. Fig. 3(b)
shows an example. Then we can apply LSAP algorithms.
After that, because dummy slots do not exist in reality, we
remove those tasks that are assigned to dummy slots from
the task assignment given by LSAP algorithms and get the
final task assignment. We can prove its optimality ditto.
Again, any constant can be used to fill the columns of
dummy slots.

We integrate LSAP into our proposed optimal scheduling
algorithm lsap-sched shown below. It naturally follows our
prior discussion. Function co-locate(T, S) checks whether
slot S and the input data of task T are collocated on the same
node. Function expandToSquare(C, value) expands matrix C
to the closest square matrix by adding extra rows or columns
filled with value. Function lsap(C) uses an existing LSAP
algorithm to calculate the optimal assignment for cost matrix
C. Function filterDummy(R) removes assignments for
dummy tasks or dummy slots and returns the valid optimal

Linear Sum Assignment Problem: Given n items and n
workers, the assignment of an item to a worker incurs a
known cost. Each item is assigned to one worker and each
worker only has one item assigned. Find the assignment
that minimizes the sum of cost.

Figure 2. An example showing Hadoop scheduling is not optimal.

task assignment.

Algorithm skeleton of lsap-sched

Input: instant system state
Output: assignment of tasks to idle map slots
Algorithm:
 TS the set of unscheduled tasks
ISS the set of idle map slots
C empty |TS| x |ISS| matrix
for i = 0; i < |TS|; ++i
 for j = 0; j < |ISS|; ++j
 if co-locate(TS[i], ISS[j])
 C[i][j] = 0
 else
 C[i][j] = 1
if C is not square: expandToSquare(C, 1)
R = lsap(C)
R = filterDummy(R)
return R

Now we investigate when lsap-sched can be applied.
Generally, the more idle slots and tasks there are, the more
lsap-sched outperforms dl-sched. For the extreme case where
there is only one idle slot, dl-sched and lsap-sched perform
equally well. For lightly used Hadoop clusters, a large
portion of slots are idle. At the start of a new job, the
scheduler has multiple tasks to schedule and multiple idle
slots at disposal so that lsap-sched performs much better. For
heavily used clusters, only a small number of slots are idle
and the superiority of lsap-sched is not fully demonstrated if
new tasks are scheduled immediately. Instead, scheduling
can be delayed by a small amount of time before lsap-sched
is applied so that “enough” idle slots are gathered. Tradeoffs
between data locality and scheduling latency need to be
made. It is our future work to decide scheduling latency
adaptively and dynamically.

IV. EXPERIMENT

A. How Optimal is Default Hadoop Scheduling

We have shown the default Hadoop scheduling algorithm
dl-sched is not optimal. However, we are not clear yet about
how non-optimal it is. In this experiment, we ran
simulations to measure how close dl-sched is to the
optimum. The reasons why we run simulations rather than
use closed-form formulas have been explained in section III.

We consider the case where the number of tasks to
schedule is no greater than the number of idle slots. In the
simulated system, the number of nodes was 100; the number
of slots per node was 1; the number of idle slots was 50 (half
of all slots were idle); and replication factor was 5. We
varied the number of tasks from 1 to 50 and calculated the
improvement of our proposed lsap-sched over dl-shed. We
ran each test 10000 times and calculated the mean. Results
are shown in Fig. 4(a). It clearly shows that as the number of
tasks is increased, lsap-sched increasingly improves data
locality over dl-sched. The goodness of data locality is
improved by 14% at most when the system has equal number
of unscheduled tasks and idle slots.

Secondly, we varied replication factor between 1 and 19.
The basic setup was the same as above except that the
number of tasks was fixed to 50. Fig. 4(b) shows the results.
The curve has a clear trend. As replication factor increases

from small values, the improvement of lsap-sched
scheduling is increased drastically. At some point, the best
improvement is reached. As replication factor increases
further, the improvement decreases gradually. Theoretically,
if each node has 1 slot, dl-sched is optimal for the extreme
cases where replication factor is 1 or equals the number of
nodes N. For those cases, it performs as well as lsap-sched.
When replication factor falls between 1 and N, lsap-sched
performs better. And there is a replication factor that makes
lsap-sched outperform dl-sched most. In Hadoop, default
replication factor is 3 and obviously lsap-sched scheduling is
more efficient.

Lastly, we varied the number of nodes between 10 and
200 with step size 10. Meanwhile, the number of tasks was
changed accordingly to make it equal the number of idle
slots so that all idle slots would be utilized (note the ratio of
idle slots was fixed). The result is shown in Fig. 4(c). We
observe that the improvement oscillates. We conjecture that
it is caused by the fact that our simulation only covers a
portion of all possible data placements and idle slot
distributions. When there are 100 nodes and 50 tasks, the
input data of each task can be placed onto any of the 100
nodes and the number of all possible placements is 10050.
That number does not even take into consideration how idle
slots are distributed across all slots. So it is impossible to
enumerate all possible cases and calculate result for each.

(a)Data locality impr. vs. Num. of tasks(b)Data locality impr. vs. Rep. factor

(c) Data locality impr. vs. Num. of nodes

Figure 4. Data locality improvement of lsap-sched over dl-sched

B. Impact of Various Factors on Data Locality

In this set of tests, we evaluate how different factors
impact the goodness of data locality. The investigated
factors include the number of tasks, the number of map slots
per node, replication factor, the number of nodes and the
ratio of idle map slots. The configuration is shown in table
II. For each test, we varied one factor while fixing all others.
All results are shown in Fig. 5.

Fig. 5(a) shows how the goodness of data locality
changes with the number of tasks. We observe that the
goodness of data locality decreases as the number of tasks is
increased initially. When the number of tasks becomes 27
(128), data locality is the worst. As the number of tasks is

 (a) Vary the number of tasks (b) Vary the number of slots per node (c) Vary replication factor (d) Vary the ratio of idle slots

 (e) Vary the number of nodes (f) Redraw (a) and (e) using different x-axes (g) Real trace copied from [4] (h) Sim. result with similar config

Figure 5. Impact of various factors on the goodness of data locality and Comparison of real trace and simulation result

increased further beyond 27, the ratio of data locality
increases quickly. The degree of increment is decreased as
there are more and more tasks.

TABLE II. SYSTEM CONFIGURATION

Parameter
Default
value

Range (used when a
factor is tested)

Env. in Delay
Sched. Paper

num. of nodes 1000 [300, 5000]; step 100 1500

slots per node 2 [1, 32]; step 1 2

num. of tasks 300 (20, 21, …, 213) (24, …, 213)

ratio of idle slots 0.1 [0.01, 1]; step 0.02 0.01

replication factor 3 [1, 20]; step 1 3

Increasing the number of slots per node results in more
idle slots, as the ratio of idle slots is fixed. Its impact on data
locality is shown in Fig. 5(b). The data locality improves
drastically as the number of slots per node increases initially.
5, 8 and 10 slots per node give the goodness of data locality
50%, 80% and 90% respectively. Considering the reality
that modern server nodes have multiple cores and multi
processors, it is reasonable to allow 5-10 tasks to run
concurrently on each node. So to specify more slots per node
improves not only the resource utilization ratio but also the
data locality. Prior research investigated the impact of
concurrently running tasks on resource usage, but has not
explored its impact on data locality. Our result quantifies the
relationship and serves as guidance for users to tune the
system.

The impact of replication factor is shown in Fig. 5(c). As
we expect, replication factor has positive impact, which
means the increase of replication factor gives better data
locality. However, the relationship between replication
factor and data locality is not linear. The degree of
improvement decreases with increasing replication factor.
Obviously, more storage space is required as replication
factor is increased and that relationship is linear. Fig. 5(c)

can help system administrators choose the best replication
factor that balances storage usage and data locality, because
it tells how much data locality is lost/gained when replication
factor is decreased/increased. As replication factor gets
larger and larger, the benefit becomes more and more
marginal. Based on how scarce storage space is, the sweet
spot of replication factor can be carefully chosen according
to Fig. 5(c) to achieve the best possible data locality,
compared with the case where replication factor is arbitrarily
chosen.

Fig. 5(d) shows the impact of varying the ratio of idle
slots. When the ratio of idle slots is around 40% and
therefore the utilization ratio is 60%, the goodness of data
locality is over 90%. This means the utilization ratio of all
slots need not be very low to get a reasonably good data
locality, which is a little counter-intuitive. Even if most of
the slots are busy, the goodness of data locality can still
reach around 30% given that many tasks are to be scheduled,
because the scheduler can choose the tasks that can achieve
the best data locality among all unscheduled tasks at hand.

A general intuition is that as more nodes are added to a
system, the performance usually should be improved.
However, the degree of performance improvement is not
necessarily linear with the number of nodes. In this test, we
increased the number of nodes from 300 to 5000 and the
results are shown in Fig. 5(e). Surprisingly, the goodness of
data locality drops as we add more nodes initially. When
there are around 1500 nodes, the goodness of data locality
becomes the lowest. Beyond 1500, the goodness of data
locality is positively related to the number of nodes. To
figure out why 1500 is the stationary point, we calculated the
ratio of the number of idle slots to the number of tasks,
which is used as the x-axis in Fig. 5(f). Data locality is the
worst when there is equal number of idle slots and tasks. We
also redraw Fig. 5(a) using the same transformation and
present the result in Fig. 5(f). The two curves in Fig. 5(f)
have the similar shapes. From these two plots, we can see

that data locality deteriorates sharply when there are less idle
slots than tasks and the ratio between them increases. Under
these circumstances, tasks need to be scheduled in multiple
waves for all of them to run. For each wave, the scheduler
can cherry-pick from remaining tasks those that can achieve
the best data locality. As the number of idle slots gets close
to the number of tasks, the freedom of cherry-picking is
decreased because in each wave more tasks need to be
scheduled. The freedom is totally lost when the numbers of
tasks and idle slots are equal because all tasks need to be
scheduled in one wave. When there are more idle slots than
tasks, the scheduler can cherry-pick the slots that will give
the best data locality. To summarize, when there are
less/more idle slots than tasks, the scheduler can cherry-pick
tasks/idle slots among all possible assignments to obtain the
best locality. The degree of cherry-picking freedom
increases as the difference between the numbers of idle slots
and tasks gets larger. Another observation is that the curve is
not symmetric with respect to the vertical line ratio=1. The
loss of data locality when the ratio grows towards 1 is much
faster than the regaining of data locality when the ratio grows
beyond 1. When the number of tasks is 40 times that of idle
slots, the goodness of data locality is above 90%; while it is
only around 50% when the number of idle slots is 200 times
that of tasks.

Tests in Fig. 5(b), (d) and (e) all result in the change of
idle slots with the number of tasks fixed, but they have
different curves. The critical difference is that in Fig. 5(e)
the number of nodes is changed while in Fig. 5(b) and (d) the
number of nodes is constant. The difference of those curves
originates from the fact that tasks are scheduled to slots
while input data are distributed to nodes. For Fig. 5(b) and
(d), the distribution of data is constant and task scheduling
varies according to the change of the number of idle slots.
Having more nodes means the input data of a set of tasks are
more spread out, which has a negative impact on data
locality. For Fig. 5(e), both data distribution and idle slot
distribution vary. Increasing the number of slots per node is
not equivalent to adding more nodes in terms of data locality.

To verify how close our simulation is to the real system
in terms of accuracy, we compared a real trace and our
simulation result. In [12], the authors analyzed the trace data
collected from Facebook production Hadoop clusters. They
found that the system is more than 95% full 21% of the time
and 27.1 slots are released per second. The total number of
slots is 3100, so the ratio of idle slots is 27.1 / 3100 ≈1%.
We could not find the number of slots per node in the paper.
So we assumed the Facebook cluster uses the default Hadoop
setting: 2. Then we can deduce that there are 3100/2 ≈ 1500
nodes in the system. Replication factor is not explicitly
mentioned in the paper for the trace and we assumed the
default Hadoop setting 3 is used. The cluster configuration
is summarized in the last column of table II. The authors
measured the relationship between percent of local map tasks
and job size (number of map tasks). We duplicate their plot
in Fig. 5(g), in which both node locality and rack locality are
shown. We ran simulation tests with the same configuration
and show results in Fig. 5(h). By comparing the two plots,
we observe that our simulation gives reasonably good

results. Firstly, the curves are similar and both have an “S”
shape. Secondly the concrete y values are also close. So the
assumptions we made are valid for real clusters. As we said,
although the ratio of idle slots in real systems is not constant
across time, we can divide the whole time span into shorter
periods (e.g. peak hours, off-peak hours) for each of which
the ratio of idle slots is approximately constant and our
simulation can be conducted.

C. Impact of Data Locality in Single-Cluster Environments

In this test, we evaluate how important data locality is in
single-cluster Hadoop systems. In other words, we want to
know to what extent performance will degrade due to the
deterioration in data locality. We wrote a random scheduler
rand-sched which by default randomly assigns tasks to idle
slots so that data locality greatly worsens. In addition, users
can specify a parameter called randomness which tells rand-
sched how random the scheduling should be. If its value is
100%, the scheduling will be thoroughly random; if its value
is 0%, rand-sched degenerates to dl-sched. Other values
give a mixture of random and default scheduling. We
compared the cases where rand-sched with randomness 0.3,
0.5, 0.7 and 1 and dl-sched were applied. An IO intensive
application input-sink, which mainly reads data from HDFS,
was written and used in the tests. We calculated the
slowdown of rand-sched relative to dl-sched and show it in
Fig. 6. The horizontal line y=0 is the baseline which implies
the performance is as good as dl-sched. We observe that
rand-sched with randomness 1 gives the worst performance
and the slowdown is positively related to randomness.

D. Impact of Data Locality in Cross-Cluster Environments

1) With high-speed interconnection among clusters: In
this test, we evaluate how Hadoop performs in cross-cluster
environments. We categorize deployments into three
classes: single-cluster, cross-cluster and HPC-style. For
cross-cluster deployments, HDFS and MapReduce share the
same set of nodes that are distributed across multiple
physical clusters. For HPC-style deployments, HDFS uses
nodes in one cluster and MapReduce uses nodes in another
cluster so that storage and compute are totally separated.
We used clusters in FutureGrid that are equipped with high-
speed inter-cluster network. Each node has 8 cores and
gigabit Ethernet. Single-cluster deployments used 10 nodes
in cluster India; cross-cluster deployments used 5 nodes in
India and 5 nodes in Hotel; HPC-style deployments used 10
nodes in India for MapReduce and 10 nodes in Hotel for
HDFS. Again, input-sink was used as test application, and
results are shown in Fig. 7(a). The plot matches our
intuitive expectation. HPC-style deployment thoroughly
loses data locality and performs the worst. dl-sched in
single-cluster deployments performs the best. However, dl-
sched in cross-cluster deployments performs better than
rand-sched in single-cluster deployments. The reason is
those clusters only see light use and the interconnection
between clusters is fast enough to match the speed of local
network to fulfill read/write requests.

Figure 6. Single-cluster performance

2) With drastically heterogeneous network We set up a
unified Hadoop cluster across multiple physical clusters by
building a virtual network overlay with ViNe[19]. To know
to what extent performance is impacted by the throughput of
inter-cluster links, ViNe provided low throughput: only 1-
10Mbps. We compared rand-sched with dl-sched and show
results in Fig. 7(b). The loss of data locality slows down the
execution by thousands of times. The results also apply to
the case where the inter-cluster network is fast but heavily
oversubscribed so that on average each application can only
get a fairly small share. This demonstrates that Hadoop is
not optimized for fairly heterogeneous networks (e.g. Wide-
Area Network) so that Hadoop deployments over
geographically distributed clusters with oversubscribed
interconnection should be carefully investigated.

(a) with high-speed cross-cluster net (b) with drastically heterogeneous net

Figure 7. Cross-cluster Hadoop performance

V. CONCLUSION

The overall goal of this paper is to investigate data
locality in depth for data parallel systems, among which
GFS/ MapReduce is representative and therefore our main
research target. We have mathematically modeled the
system and deduced the relationship between system factors
and data locality. Simulations were conducted to quantify
the relationship and some insightful conclusions have been
drawn which can help to tune Hadoop effectively. In
addition, non-optimality of default Hadoop scheduling has
been discussed and an optimal scheduling algorithm based
on LSAP has been proposed to give the best data locality.
We ran intensive experiments to measure how our proposed
algorithm outperforms default scheduling and demonstrate
its performance superiority. Above research uses data
locality as a performance metric and the target of
optimization. Besides that, we investigated how data locality
impacts the user-perceived metric of system performance:
job execution time. Three scenarios – single-cluster, cross-

cluster and HPC-style setup, have been discussed and real
Hadoop experiments were conducted. It shows data locality
is important to single-cluster deployments. Also it shows the
inability of Hadoop to cope with significant network
heterogeneity and inter-cluster connection is critical to
performance.

ACKNOWLEDGMENT

This material is based upon work supported in part by the
National Science Foundation under Grant No. 0910812.

REFERENCES
[1] C.S. Chang. “Needs for Extreme Scale DM, Analysis and

Visualization in Fusion Particle Code XGC,” CPES at Exascale data
management, Analysis, and Vis., Feb. 22-23, 2011, Houston, TX.

[2] Scientific Grand Challenges: Fusion Energy Sciences and the Role of
Computing at the Extreme Scale. U. S. Department of Energy,
March 18-20, 2009. Washington DC

[3] J. Chen and J. Bell, “Combustion Exascale Co-Design Center,” 6th
IESP Workshop, San Francisco, CA, April 6-7, 2011

[4] S. Ghemawat, H. Gobioff, and S. Leung, “The Google file system,”
In Proc. of SOSP 2003. New York, NY, USA, 29-43.

[5] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
Distributed File System,” IEEE MSST 2010

[6] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
distributed data-parallel programs from sequential building blocks,”
In Proc. of EuroSys 2007. ACM, New York, NY, USA, 59-72.

[7] J. Ekanayake, T. Gunarathne, J. Qiu, G. Fox, et. al., “Applicability of
DryadLINQ to Scientific Applications,” January 30, 2010, Tech
report in Community Grids Laboratory, Indiana University.

[8] Y. Gu and R. Grossman, “Sector and Sphere: The Design and
Implementation of a High Performance Data Cloud,” Crossing
boundaries: computational science, e-Science and global e-
Infrastructure, I. Trans. R. Soc. A, 2009. vol. 367, p. 2429-2445.

[9] K. Ranganathan and I. Foster, “Decoupling computation and data
scheduling in distributed data-intensive applications,” In Proc. of
HPDC 2002, p. 352- 358, 2002

[10] F. Chung, R. Graham, R. Bhagwan, S. Savage, and G. M. Voelker,
“Maximizing data locality in distributed systems,” J. Comput. Syst.
Sci. 72, 8 (December 2006), 1309-1316.

[11] H. H. Mohamed and D. H. J. Epema, “An evaluation of the close-to-
files processor and data co-allocation policy in multiclusters,” In
Proc. of Cluster 2004, p. 287- 298, 20-23 Sept. 2004

[12] M. Zaharia, D. Borthakur, J. Sarma, K. Elmeleegy, S. Shenker, and I.
Stoica, “Delay scheduling: a simple technique for achieving locality
and fairness in cluster scheduling,” In Proc. of EuroSys 2010, New
York, NY, USA, 265-278.

[13] B. Palanisamy, A. Singh, L. Liu and B. Jain, “Purlieus: Locality-
aware Resource Allocation for MapReduce in a Cloud,” In Proc. of
SC 2011

[14] Z. Guo, M. Pierce, G. Fox and M. Zhou, “Automatic Task Re-
organization in MapReduce” CLUSTER2011, Sep. 2011, Austin, TX.

[15] Y. Luo, Z. Guo, Y. Sun, et. al. “A Hierarchical Framework for Cross-
Domain MapReduce Execution,” HPDC workshop ECMLS 2011

[16] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica,
“Improving MapReduce performance in heterogeneous
environments,” In Proc. of OSDI 2008, Berkeley, CA, USA

[17] https://issues.apache.org/jira/browse/HADOOP-2141

[18] http://www.assignmentproblems.com/doc/LSAPIntroduction.pdf

[19] M. Tsugawa and J. Fortes, “A Virtual Network (ViNe) Architecture
for Grid Computing,” IPDPS 2006, p. 10, April 2006

