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Abstract— Traditional HPC architectures separate compute 
nodes and storage nodes, which are interconnected with high 
speed links to satisfy data access requirement in multi-user 
environments.   However, the capacity of those high speed links 
is still much less than the aggregate bandwidth of all compute 
nodes.  In Data Parallel Systems such as GFS/MapReduce, 
clusters are built with commodity hardware and each node 
takes the roles of both computation and storage, which makes 
it possible to bring compute to data.  Data locality is a 
significant advantage of data parallel systems over traditional 
HPC systems. Good data locality reduces cross-switch network 
traffic - one of the bottlenecks in data-intensive computing.  In 
this paper, we investigate data locality in depth.  Firstly, we 
build a mathematical model of scheduling in MapReduce and 
theoretically analyze the impact on data locality of 
configuration factors, such as the numbers of nodes and tasks.  
Secondly, we find the default Hadoop scheduling is non-
optimal and propose an algorithm that schedules multiple 
tasks simultaneously rather than one by one to give optimal 
data locality.  Thirdly, we run extensive tests to quantify 
performance improvement of our proposed algorithms, 
measure how different factors impact data locality, and 
investigate how data locality influences job execution time in 
both single-cluster and cross-cluster environments.   

Keywords: MapReduce, Hadoop, scheduling, data locality 

I.  INTRODUCTION 

Data-intensive computing brings more challenges to 
process the ever-growing amount of data collected by 
modern instruments such as Large Hadron Collider and next-
generation gene sequencers.  Under the new circumstance, 
some assumptions that were made in prior distributed 
computing research need to be revised.  One important 
aspect is the overall architectures of distributed systems.   

In grid systems, compute nodes and storage nodes are 
separated and interconnected with high speed network links.  
A three-level data hierarchy with typically temporary data 
stored on cluster nodes, a shared set of files and a backend 
archival storage system is adopted. The shared files are either 
managed by computers in hosted storage or as dedicated 
(SAN/NAS/etc.) storage. Parallel file systems such as Lustre 
and GPFS have been developed to support high-performance 
scientific computing. This architecture has been used for 
both data and simulation intensive work with good success. 
There are many attractive features of this architecture 
including separation of concerns - storage and its backup are 
managed separately from the possibly large number of 

clusters supported; computers and storage can be separately 
upgraded; and a single storage system can be mounted to 
multiple computing venues. There is an obvious problem in 
data intensive applications that the bandwidth between the 
compute and data system components may be too small. 
Note clusters typically have bisection bandwidths that scale 
up with system size. The link between storage and compute 
subsections are typically provisioned with static number of 
interconnects (perhaps some number of Gigabit or 10Gigabit 
Ethernet connections). Even simulation systems see the same 
issues [1,2,3] at the largest scales when programs output data 
(for visualization) at volumes that overwhelm the connection 
to shared storage. 

An alternative architecture addresses these issues by 
using Data Parallel Systems such as Google File System 
(MapReduce)[4], Hadoop Distributed File Systems 
(Hadoop)[5], Cosmos (Dryad)[6,7] and Sector(Sphere) [8] 
with compute-data affinity optimized for data processing.  
The same set of nodes is used for both computation and 
storage. Data parallel systems bring more flexibility to 
scheduling.  For instance, the scheduler can bring data to 
compute, bring data close to compute or bring compute to 
data.  In other words, data locality can be explored to 
improve performance, which was impossible in traditional 
grid systems.  To move data around imposes significant load 
on both storage and network. Large supercomputers and 
clusters have millions of cores, and concurrent data 
movement from all tasks can result in severe bandwidth 
contention.  So we believe that data parallel systems are 
more suitable for data-intensive computing.  Among existing 
data parallel systems, Hadoop is representative which is a 
widely used implementation of GFS/MapReduce and has 
been deployed to multi-thousand node production clusters. 

The rest of this paper is organized as follows.  Section II 
surveys related work.  In section III, we build a model to 
theoretically deduce the relationship between system factors 
and data locality.  In addition, we analyze the drawbacks of 
state-of-the-art scheduling algorithms in Hadoop and 
propose an optimal scheduling algorithm. We have also 
studied fairness in detail with good results for our approach, 
which will be described elsewhere. In section IV, 
experiments are conducted to demonstrate the effectiveness 
of our proposed algorithm, evaluate the influence of various 
factors on data locality and measure how network 
heterogeneity impacts the performance.  Both simulation and 
real Hadoop systems are used in our tests.  We conclude in 
section V.  



II. RELATED WORK 

Computation scheduling and data replication in data grids 
are investigated in [9], which shows it is beneficial to 
incorporate data location into job scheduling and 
automatically create new replicas for popular data sets across 
sites.  Their proposed mechanisms outperform traditional 
HPC approaches for data-intensive computing. The 
minimization of the loss of data locality is studied in [10] 
with the assumption that the number of splits of an item is 
inversely proportional to the data locality.  They found it is 
NP-hard to find optimal solutions and a polynomial-time 
approach is proposed to give near-optimal solutions.  But 
their runtime model is different from MapReduce in that the 
whole data set needs to be staged in before a job can run.  
Close-to-Files strategy for processor and data co-allocation is 
proposed and evaluated for multi-cluster grid environments 
in [11] with the assumption that a single file has to be 
transferred to all job components prior to execution. A 
reservation-like scheduling mechanism is adopted.  These 
are not valid in the system we will investigate.   

Delay scheduling has been proposed to improve data 
locality in MapReduce [12].  For a system in which most of 
jobs are short, if a task cannot be scheduled to a node where 
its input data reside, to delay its scheduling by a small 
amount of time can greatly improve data locality.  In 
Purlieus, MapReduce clusters in clouds are provisioned in a 
locality-aware manner so that data transfer overhead among 
tasks is minimized [13].  MapReduce jobs are categorized 
into three classes: map-input heavy, map-and-reduce-input 
heavy and reduce-input heavy, for each of which different 
data and VM placement techniques are proposed.  Task 
splitting and consolidation proposed in [14] can be used to 
dynamically adjust the granularity of tasks to give better load 
balancing. However, only CPU-intensive jobs are 
investigated for which data locality is not critical.  In [15], 
scattered grid clusters controlled by different domains are 
unified to form a MapReduce cluster by using a Hierarchical 
MapReduce framework.  But they assumed data are fed in 
dynamically and staged to local MapReduce clusters on 
demand. 

To improve speculative execution in Hadoop in 
heterogeneous environments, LATE is proposed that uses the 
estimated remaining execution time of tasks as the guideline 
to select tasks to speculate, and avoids assigning speculative 
tasks to slow nodes [16].  It has been incorporated into 
Hadoop 0.21.0 [17] which is used in our tests.  Our work 
shows that LATE is not sufficient to cope with the drastic 
heterogeneity of network.   

III. ANALYSIS OF DATA LOCALITY  

A. Background of GFS/HDFS and MapReduce 

In GFS/HDFS, files are split into equally-sized blocks 
which are placed across nodes.  In Hadoop implementation 
of MapReduce, each node has a configurable number of map 
and reduce slots, which limit the maximum number of map 
and reduce tasks that can concurrently run on the node.  
When a task starts to execute, it occupies one slot; and when 

it completes, the slot is released so that other tasks can take 
it.  Each slot can only have one task assigned at most at any 
time. There is a single central master node where Job 
Tracker runs.  Job Tracker manages all slave/worker nodes 
and embraces a scheduler that assigns tasks to idle slots.   

Data locality is defined as how close compute and input 
data are, and it has different levels – node-level, rack-level, 
etc.  In our work, we only focus on the node-level data 
locality which means compute and data are co-located on the 
same node.  Data locality is one of the most important factors 
considered by schedulers in data parallel systems.  Please 
note that here data locality means the data locality of input 
data.  Map tasks may generate intermediate data, but they are 
stored locally (not uploaded to HDFS) so that data locality is 
naturally gained.  We define goodness of data locality as the 
percent of map tasks that gain node-level data locality.     

In this paper, the default scheduling algorithm in Hadoop 
is denoted by dl-sched.  In Hadoop, when a slave node sends 
a heartbeat message and says it has available map slots, the 
master node first tries to find a map task whose input data are 
stored on that slave node.  If such a task can be found, it is 
scheduled to the node and node-level data locality is gained.  
Otherwise, Hadoop tries to find a task that can achieve rack-
level data locality – input data and task execution are on the 
same rack. If it still fails, a task is randomly picked and 
dispatched.  So dl-sched favors data locality and does not 
consider other factors such as system load and fairness.   

B. Goodness of Data Locality 

Firstly, we develop a set of mathematical symbols to 
characterize HDFS/MapReduce which are shown in Table I.  
Data replicas are randomly placed across all nodes.  And idle 
slots are randomly chosen from all slots.  This assumption is 
reasonable for modestly utilized clusters that run lots of jobs 
with diverse workload from multiple users.  In such a 
complicated system, it is difficult, if not impossible, to know 
which slots will be released and when. In addition, we 
assume that I is constant within a specific time frame and 
may vary across time frames.  This assumption implies that 
new tasks come into the system at the same rate that running 
tasks complete. So the system is in a dynamic equilibrium 
state for small time frames.  Time is divided into time frames 
each of which is associated with a corresponding I.   

Our goal is to study the relationship between the 
goodness of data locality and significant system factors.  
Obviously, it depends upon scheduling algorithms.  Default 
Hadoop scheduling algorithm dl-sched is the target of our 
analysis here. To simplify mathematical deduction, we 
assume replication factor C and the number of slots per node 
S are both 1.  Firstly we need to calculate p(k, T) (the 
probability that k out of T total tasks can achieve data 
locality).  Each task can be scheduled to any of the N nodes, 
so the total number of cases is NT.  Because both the data 
placement and idle slot distribution are random, we can fix 
the distribution of idle slots without affecting the correctness 
of analysis.  We simply assume that the first IS slots among 
all slots are idle.  To guarantee that k tasks have data locality, 
we first choose k idle slots from total IS idle slots to which 



unscheduled tasks will be assigned, which gives IS
kC  cases 

(shown as step ○1  in Fig. 1).  Then we divide all unscheduled 
tasks into two groups: g1 and g2.  For group g1, the input data 
of all its tasks are located on the nodes that have idle slots.  
For group g2, the input data of all its tasks are located on the 
nodes that have no idle slots.  The input data of the tasks in 
group g1 need to be stored on k idle nodes so that exact k 
tasks can achieve data locality (note if the input data of 
multiple tasks are stored on the same node with only one idle 
slot, only one task can be scheduled to the node and other 
tasks will not achieve data locality).  Assume group g1 has i 
tasks, the number of ways to choose these tasks from total T 
tasks is T

iC , and the number of ways to distribute their input 
data onto k nodes is S(i, k) (stirling numbers of the second 
kind) (shown as step ○2  in Fig. 1).  The number of tasks in 
group g2 is T-i and each of them can choose among N-IS 
busy nodes to store input data, which gives (N-IS)T-i

 cases 
((shown as step ○3  in Fig. 1).  Combining all above steps, we 
deduce (2) to calculate p(k, T).  Then the expectation E can 
be calculated using (3) and the goodness of data locality R 
can be calculated using (4).   

TABLE I.  DEFINITIONS 

Symbols Description 
N the number of nodes 
S the number of map slots on each node 
I the ratio of idle slots 
T the number of tasks to be executed 
C replication factor 
IS the number of idle map slots (N * S * I) 

p(k, T) the possibility that k out of T tasks can gain data locality 
goodness of 
data locality 

the percent of map tasks that gain node-level data locality
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So the goodness of data locality can be accurately 

calculated.  For cases where C and S are larger than one, the 
mathematical deduction is much more complicated and we 
are working on it.  In our experiments below we take the 

approach of simulation instead of accurate numerical 
calculation for two reasons: a) calculating (2) involves 
factorial and exponential operations requiring enormous 
computation if operands are large; b) we have not deduced 
closed-form formulas for the cases where C and S are not 1.   

C. Optimality of Scheduling In Terms of Data Locality 

Here the term optimality means the maximization of the 
goodness of data locality.  Given a set of tasks to schedule 
and a set of idle slots, if a scheduling algorithm achieves the 
best data locality, we call it is optimal.  We will show that 
scheduling multiple tasks all at once outperforms the task-
by-task approach taken by dl-sched. 

1) Non-optimality of dl-sched  Fig. 2 demonstrates dl-
sched is not optimal.  Fig. 2(a) shows an instantaneous state 
of a system.  There are three tasks (T1, T2 and T3) to 
schedule, and three nodes (A, B and C) that have idle map 
slots.  Each data block has multiple replicas and each node 
has three map slots among which those marked as black are 
not idle.  If a data block B is marked with the same color 
and pattern as a task T, it means B is the input data of T.  
Only the nodes that have idle slots are shown.  From the 
graph, we can see the input data of task T1 are stored on 
nodes A, B, and C; the input data of task T2 are stored on 
nodes A and B; and the input data of task T3 are stored on 
node A.  Fig. 2(b) shows an example of dl-sched 
scheduling.  Node A has one idle map slot and it hosts the 
input data of task T1, so T1 is scheduled to A.  Node B has 
one idle map slot and hosts the input data of task T2, so T2 is 
scheduled to B.  Now the only node that has idle map slots 
is C and task T3 must be scheduled there.  However, node C 
does not host the input data of task T3.  To summarize, tasks 
T1 and T2 gain data locality while task T3 loses data locality.  
But, we can easily find another way to schedule the three 
tasks to make all of them achieve data locality, which is 
shown in Fig. 2(c).  The reason that dl-sched and its variants 
(e.g. fair scheduling, delay scheduling) are not optimal is 
that tasks are scheduled one by one and each task is 
scheduled without considering its impact on other tasks.  To 
achieve a global optimum, all unscheduled tasks and idle 
slots at hand must be considered at once to make global 
scheduling decisions.   

2) Optimal scheduling We reformulate the problem into 
a formal definition using symbols defined in section III (B).  
The assignment of maps tasks to idle slots is defined as 
function φ.  Given task i, φ(i) is the slot to which it is 
assigned.  Function φ needs to be injective to guarantee that 
multiple tasks are not assigned to the same idle slot.  We 
associate an assignment cost to each task-to-slot 
assignment. Low assignment cost means good data locality 
and high assignment cost means bad data locality.  Cij 
represents the assignment cost to assign task i to slot j, and 
is defined in (5).  If a task is scheduled to a node which 
stores its input data, its assignment cost is 0.   Otherwise, 
the cost is 1.  Basically the cost matrix C measures the data 

 
Figure 1.  The deduction sketch for given i and k 



locality of assigned tasks.  So it is good for IO intensive 
jobs and needs to be enhanced for other types of jobs.  
Given φ, the total assignment cost is the summation of the 
assignment cost of all scheduled tasks, which is formulated 
in (6).  The goal function is shown in (7), which tries to find 
a φ that minimizes the total assignment cost.  As we 
showed, the function φ given by dl-sched is not optimal, and 
therefore not a solution to (7).  
1 ;   1

0 if the input data of task  and slot  collocate
  

1 otherwiseij
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We found that this problem can be converted to the well-
known Linear Sum Assignment Problem[18] (LSAP) briefly 
described below.  The difference is that LSAP requires that 
the cost matrix be square.  In our case, if T and IS are equal, 
matrix C is square and we can directly apply LSAP.  
Otherwise, LSAP cannot be directly applied and we figure 
out how to convert the problem to LSAP by manipulating 
matrix C. 

 
If T is less than IS, we make up IS-T extra dummy tasks 

whose assignment cost is 1 no matter which slots they are 
scheduled to.  Fig. 3(a) shows an example in which ti and sj 
represent tasks and idle slots respectively.  The first T rows 
are from the original cost matrix.  The last IS-T rows are for 
the dummy tasks we make up and filled with constant 1.  
Now we get a IS x IS square cost matrix and can apply LSAP 
algorithms to find an optimal solution. LASP algorithms will 
give us an optimal assignment for all IS tasks. Among them 
we just pick those that are not dummy tasks, and we get a 
specific φ (termed φ-lsap) for the original problem.  Now let 

us prove that φ-lsap is a solution to (7) by using 
contradiction.   

Proof: The assignment cost given by φ-lsap is Csum(φ-
lsap) (see (6)).  As a result, the total assignment cost given 
by LSAP algorithms for the expanded square matrix is 
Csum(φ-lsap) + (IS-T).  The key point is that the total 
assignment cost of dummy tasks is IS-T no matter where 
they are assigned.  Assume that φ-lsap is not a solution to 
(7), and another function φ-opt gives smaller assignment 
cost.  It implies Csum(φ-opt) is less than Csum(φ-lsap).  We use 
the same mechanism to create dummy tasks and extend the 
cost matrix.  We extend function φ-opt to include those 
dummy tasks and arbitrarily map them to the remaining IS-T 
idle slots.  So the total assignment cost for the expanded 
square matrix is Csum(φ-opt) + (IS-T).  Because Csum(φ-opt) is 
less than Csum(φ-lsap), we can deduce that Csum(φ-opt) + (IS-
T) is less than Csum(φ-lsap) + (IS-T).  That means the solution 
given by LSAP algorithm is not optimal.  This contradicts 
with the fact that LSAP algorithms give optimal solutions.  � 

Constant 1 has been used as the assignment cost for 
dummy tasks.  It turns out that we can choose any constant 
without violating optimality.  The reason is the total 
assignment cost of all dummy tasks is a constant as well so 
that all task assignments perform equally well for dummy 
tasks.  So what matters is the assignment of the T real tasks.  
It can be proved formally with the same method as above.   

s1 … sIS-1 sIS

t1 1 1 0 0
… … … … …
tT 0 1 1 0
tT+1 1 1 1 1
… 1 1 1 1
tIS 1 1 1 1

 s1 ... sIS sIS+1 ... sT

t1 1 … 1 1 1 1
t2 0 … 0 1 1 1
t3 1 … 1 1 1 1
t4 1 … 1 1 1 1
… 1 … 1 1 1 1
tT 1 … 1 1 1 1

 

(a) T < IS (b) T > IS

Figure 3.  Expand cost matrix to make it square.   
For (a), last IS-T rows are for dummy tasks we make up and all filled with 1.   
For (b), last T-IS columns are for dummy slots we make up and filled with 1. 

For the case where T is larger than IS, we can use the 
same technique developed above to add extra T-IS columns 
representing dummy slots and fill them with 1, and therefore 
convert the original cost matrix to a square matrix.  Fig. 3(b) 
shows an example.  Then we can apply LSAP algorithms.  
After that, because dummy slots do not exist in reality, we 
remove those tasks that are assigned to dummy slots from 
the task assignment given by LSAP algorithms and get the 
final task assignment.  We can prove its optimality ditto.  
Again, any constant can be used to fill the columns of 
dummy slots. 

We integrate LSAP into our proposed optimal scheduling 
algorithm lsap-sched shown below.  It naturally follows our 
prior discussion.  Function co-locate(T, S) checks whether 
slot S and the input data of task T are collocated on the same 
node.  Function expandToSquare(C, value) expands matrix C 
to the closest square matrix by adding extra rows or columns 
filled with value.  Function lsap(C) uses an existing LSAP 
algorithm to calculate the optimal assignment for cost matrix 
C.  Function filterDummy(R) removes assignments for 
dummy tasks or dummy slots and returns the valid optimal 

Linear Sum Assignment Problem: Given n items and n 
workers, the assignment of an item to a worker incurs a 
known cost. Each item is assigned to one worker and each 
worker only has one item assigned.  Find the assignment 
that minimizes the sum of cost.   

Figure 2.  An example showing Hadoop scheduling is not optimal. 



task assignment. 

Algorithm skeleton of lsap-sched 

Input: instant system state 
Output: assignment of tasks to idle map slots 
Algorithm: 
  TS  the set of unscheduled tasks 
ISS  the set of idle map slots 
C  empty |TS| x |ISS| matrix 
for i = 0; i < |TS|; ++i 
  for j = 0; j < |ISS|; ++j 
    if co-locate(TS[i], ISS[j]) 
 C[i][j] = 0 
    else 
      C[i][j] = 1 
if C is not square: expandToSquare(C, 1) 
R = lsap(C) 
R = filterDummy(R) 
return R  

Now we investigate when lsap-sched can be applied.  
Generally, the more idle slots and tasks there are, the more 
lsap-sched outperforms dl-sched. For the extreme case where 
there is only one idle slot, dl-sched and lsap-sched perform 
equally well.  For lightly used Hadoop clusters, a large 
portion of slots are idle. At the start of a new job, the 
scheduler has multiple tasks to schedule and multiple idle 
slots at disposal so that lsap-sched performs much better. For 
heavily used clusters, only a small number of slots are idle 
and the superiority of lsap-sched is not fully demonstrated if 
new tasks are scheduled immediately.  Instead, scheduling 
can be delayed by a small amount of time before lsap-sched 
is applied so that “enough” idle slots are gathered. Tradeoffs 
between data locality and scheduling latency need to be 
made. It is our future work to decide scheduling latency 
adaptively and dynamically.   

IV. EXPERIMENT  

A. How Optimal is Default Hadoop Scheduling 

We have shown the default Hadoop scheduling algorithm 
dl-sched is not optimal.  However, we are not clear yet about 
how non-optimal it is.  In this experiment, we ran 
simulations to measure how close dl-sched is to the 
optimum.  The reasons why we run simulations rather than 
use closed-form formulas have been explained in section III.   

We consider the case where the number of tasks to 
schedule is no greater than the number of idle slots.  In the 
simulated system, the number of nodes was 100; the number 
of slots per node was 1; the number of idle slots was 50 (half 
of all slots were idle); and replication factor was 5.  We 
varied the number of tasks from 1 to 50 and calculated the 
improvement of our proposed lsap-sched over dl-shed.  We 
ran each test 10000 times and calculated the mean.  Results 
are shown in Fig. 4(a).  It clearly shows that as the number of 
tasks is increased, lsap-sched increasingly improves data 
locality over dl-sched.  The goodness of data locality is 
improved by 14% at most when the system has equal number 
of unscheduled tasks and idle slots.   

Secondly, we varied replication factor between 1 and 19.  
The basic setup was the same as above except that the 
number of tasks was fixed to 50.  Fig. 4(b) shows the results.  
The curve has a clear trend.  As replication factor increases 

from small values, the improvement of lsap-sched 
scheduling is increased drastically.  At some point, the best 
improvement is reached.  As replication factor increases 
further, the improvement decreases gradually.  Theoretically, 
if each node has 1 slot, dl-sched is optimal for the extreme 
cases where replication factor is 1 or equals the number of 
nodes N.  For those cases, it performs as well as lsap-sched.  
When replication factor falls between 1 and N, lsap-sched 
performs better.  And there is a replication factor that makes 
lsap-sched outperform dl-sched most.  In Hadoop, default 
replication factor is 3 and obviously lsap-sched scheduling is 
more efficient.   

Lastly, we varied the number of nodes between 10 and 
200 with step size 10.  Meanwhile, the number of tasks was 
changed accordingly to make it equal the number of idle 
slots so that all idle slots would be utilized (note the ratio of 
idle slots was fixed).  The result is shown in Fig. 4(c).  We 
observe that the improvement oscillates.  We conjecture that 
it is caused by the fact that our simulation only covers a 
portion of all possible data placements and idle slot 
distributions.  When there are 100 nodes and 50 tasks, the 
input data of each task can be placed onto any of the 100 
nodes and the number of all possible placements is 10050.  
That number does not even take into consideration how idle 
slots are distributed across all slots.  So it is impossible to 
enumerate all possible cases and calculate result for each.   

 
(a)Data locality impr. vs. Num. of tasks(b)Data locality impr. vs. Rep. factor  

 
(c) Data locality impr. vs. Num. of nodes 

Figure 4.  Data locality improvement of lsap-sched over dl-sched 

B. Impact of Various Factors on Data Locality 

In this set of tests, we evaluate how different factors 
impact the goodness of data locality.  The investigated 
factors include the number of tasks, the number of map slots 
per node, replication factor, the number of nodes and the 
ratio of idle map slots.  The configuration is shown in table 
II.  For each test, we varied one factor while fixing all others.  
All results are shown in Fig. 5.   

Fig. 5(a) shows how the goodness of data locality 
changes with the number of tasks. We observe that the 
goodness of data locality decreases as the number of tasks is 
increased initially.  When the number of tasks becomes 27 
(128), data locality is the worst.  As the number of tasks is 



 
             (a) Vary the number of tasks              (b) Vary the number of slots per node         (c) Vary replication factor                   (d) Vary the ratio of idle slots 

        (e) Vary the number of nodes     (f) Redraw (a) and (e) using different x-axes       (g) Real trace copied from [4]            (h) Sim. result with similar config 

Figure 5.  Impact of various factors on the goodness of data locality and Comparison of real trace and simulation result 

increased further beyond 27, the ratio of data locality 
increases quickly.  The degree of increment is decreased as 
there are more and more tasks.  

TABLE II.  SYSTEM CONFIGURATION 

Parameter 
Default 
value 

Range (used when a 
factor is tested) 

Env. in Delay 
Sched. Paper

num. of nodes 1000 [300, 5000]; step 100 1500 

slots per node 2 [1, 32]; step 1 2 

num. of tasks 300 (20, 21, …, 213) (24, …, 213) 

ratio of idle slots 0.1 [0.01, 1]; step  0.02 0.01 

replication factor 3 [1, 20]; step 1 3 

Increasing the number of slots per node results in more 
idle slots, as the ratio of idle slots is fixed.  Its impact on data 
locality is shown in Fig. 5(b).  The data locality improves 
drastically as the number of slots per node increases initially.  
5, 8 and 10 slots per node give the goodness of data locality 
50%, 80% and 90% respectively.  Considering the reality 
that modern server nodes have multiple cores and multi 
processors, it is reasonable to allow 5-10 tasks to run 
concurrently on each node. So to specify more slots per node 
improves not only the resource utilization ratio but also the 
data locality. Prior research investigated the impact of 
concurrently running tasks on resource usage, but has not 
explored its impact on data locality. Our result quantifies the 
relationship and serves as guidance for users to tune the 
system.   

The impact of replication factor is shown in Fig. 5(c).  As 
we expect, replication factor has positive impact, which 
means the increase of replication factor gives better data 
locality.  However, the relationship between replication 
factor and data locality is not linear.  The degree of 
improvement decreases with increasing replication factor.  
Obviously, more storage space is required as replication 
factor is increased and that relationship is linear.   Fig. 5(c) 

can help system administrators choose the best replication 
factor that balances storage usage and data locality, because 
it tells how much data locality is lost/gained when replication 
factor is decreased/increased. As replication factor gets 
larger and larger, the benefit becomes more and more 
marginal.  Based on how scarce storage space is, the sweet 
spot of replication factor can be carefully chosen according 
to Fig. 5(c) to achieve the best possible data locality, 
compared with the case where replication factor is arbitrarily 
chosen.   

Fig. 5(d) shows the impact of varying the ratio of idle 
slots.  When the ratio of idle slots is around 40% and 
therefore the utilization ratio is 60%, the goodness of data 
locality is over 90%.  This means the utilization ratio of all 
slots need not be very low to get a reasonably good data 
locality, which is a little counter-intuitive.  Even if most of 
the slots are busy, the goodness of data locality can still 
reach around 30% given that many tasks are to be scheduled, 
because the scheduler can choose the tasks that can achieve 
the best data locality among all unscheduled tasks at hand.   

A general intuition is that as more nodes are added to a 
system, the performance usually should be improved.  
However, the degree of performance improvement is not 
necessarily linear with the number of nodes.  In this test, we 
increased the number of nodes from 300 to 5000 and the 
results are shown in Fig. 5(e).  Surprisingly, the goodness of 
data locality drops as we add more nodes initially.  When 
there are around 1500 nodes, the goodness of data locality 
becomes the lowest.  Beyond 1500, the goodness of data 
locality is positively related to the number of nodes.  To 
figure out why 1500 is the stationary point, we calculated the 
ratio of the number of idle slots to the number of tasks, 
which is used as the x-axis in Fig. 5(f).  Data locality is the 
worst when there is equal number of idle slots and tasks.  We 
also redraw Fig. 5(a) using the same transformation and 
present the result in Fig. 5(f).  The two curves in Fig. 5(f) 
have the similar shapes.  From these two plots, we can see 



that data locality deteriorates sharply when there are less idle 
slots than tasks and the ratio between them increases.  Under 
these circumstances, tasks need to be scheduled in multiple 
waves for all of them to run.  For each wave, the scheduler 
can cherry-pick from remaining tasks those that can achieve 
the best data locality.  As the number of idle slots gets close 
to the number of tasks, the freedom of cherry-picking is 
decreased because in each wave more tasks need to be 
scheduled.  The freedom is totally lost when the numbers of 
tasks and idle slots are equal because all tasks need to be 
scheduled in one wave.  When there are more idle slots than 
tasks, the scheduler can cherry-pick the slots that will give 
the best data locality.  To summarize, when there are 
less/more idle slots than tasks, the scheduler can cherry-pick 
tasks/idle slots among all possible assignments to obtain the 
best locality.  The degree of cherry-picking freedom 
increases as the difference between the numbers of idle slots 
and tasks gets larger.  Another observation is that the curve is 
not symmetric with respect to the vertical line ratio=1.  The 
loss of data locality when the ratio grows towards 1 is much 
faster than the regaining of data locality when the ratio grows 
beyond 1.  When the number of tasks is 40 times that of idle 
slots, the goodness of data locality is above 90%; while it is 
only around 50% when the number of idle slots is 200 times 
that of tasks.   

Tests in Fig. 5(b), (d) and (e) all result in the change of 
idle slots with the number of tasks fixed, but they have 
different curves.  The critical difference is that in Fig. 5(e) 
the number of nodes is changed while in Fig. 5(b) and (d) the 
number of nodes is constant.  The difference of those curves 
originates from the fact that tasks are scheduled to slots 
while input data are distributed to nodes.  For Fig. 5(b) and 
(d), the distribution of data is constant and task scheduling 
varies according to the change of the number of idle slots.  
Having more nodes means the input data of a set of tasks are 
more spread out, which has a negative impact on data 
locality.  For Fig. 5(e), both data distribution and idle slot 
distribution vary.  Increasing the number of slots per node is 
not equivalent to adding more nodes in terms of data locality.   

To verify how close our simulation is to the real system 
in terms of accuracy, we compared a real trace and our 
simulation result.  In [12], the authors analyzed the trace data 
collected from Facebook production Hadoop clusters.  They 
found that the system is more than 95% full 21% of the time 
and 27.1 slots are released per second.  The total number of 
slots is 3100, so the ratio of idle slots is 27.1 / 3100 ≈1%.  
We could not find the number of slots per node in the paper.  
So we assumed the Facebook cluster uses the default Hadoop 
setting: 2. Then we can deduce that there are 3100/2 ≈ 1500 
nodes in the system.  Replication factor is not explicitly 
mentioned in the paper for the trace and we assumed the 
default Hadoop setting 3 is used.  The cluster configuration 
is summarized in the last column of table II.  The authors 
measured the relationship between percent of local map tasks 
and job size (number of map tasks).  We duplicate their plot 
in Fig. 5(g), in which both node locality and rack locality are 
shown.  We ran simulation tests with the same configuration 
and show results in Fig. 5(h).  By comparing the two plots, 
we observe that our simulation gives reasonably good 

results.  Firstly, the curves are similar and both have an “S” 
shape.  Secondly the concrete y values are also close.  So the 
assumptions we made are valid for real clusters.  As we said, 
although the ratio of idle slots in real systems is not constant 
across time, we can divide the whole time span into shorter 
periods (e.g. peak hours, off-peak hours) for each of which 
the ratio of idle slots is approximately constant and our 
simulation can be conducted. 

C. Impact of Data Locality in Single-Cluster Environments 

In this test, we evaluate how important data locality is in 
single-cluster Hadoop systems.  In other words, we want to 
know to what extent performance will degrade due to the 
deterioration in data locality.  We wrote a random scheduler 
rand-sched which by default randomly assigns tasks to idle 
slots so that data locality greatly worsens.  In addition, users 
can specify a parameter called randomness which tells rand-
sched how random the scheduling should be.  If its value is 
100%, the scheduling will be thoroughly random; if its value 
is 0%, rand-sched degenerates to dl-sched.  Other values 
give a mixture of random and default scheduling.  We 
compared the cases where rand-sched with randomness 0.3, 
0.5, 0.7 and 1 and dl-sched were applied.  An IO intensive 
application input-sink, which mainly reads data from HDFS, 
was written and used in the tests.  We calculated the 
slowdown of rand-sched relative to dl-sched and show it in 
Fig. 6.  The horizontal line y=0 is the baseline which implies 
the performance is as good as dl-sched.  We observe that 
rand-sched with randomness 1 gives the worst performance 
and the slowdown is positively related to randomness. 

D. Impact of Data Locality in Cross-Cluster Environments 

1) With high-speed interconnection among clusters:  In 
this test, we evaluate how Hadoop performs in cross-cluster 
environments.  We categorize deployments into three 
classes: single-cluster, cross-cluster and HPC-style.  For 
cross-cluster deployments, HDFS and MapReduce share the 
same set of nodes that are distributed across multiple 
physical clusters.  For HPC-style deployments, HDFS uses 
nodes in one cluster and MapReduce uses nodes in another 
cluster so that storage and compute are totally separated.  
We used clusters in FutureGrid that are equipped with high-
speed inter-cluster network.  Each node has 8 cores and 
gigabit Ethernet.  Single-cluster deployments used 10 nodes 
in cluster India; cross-cluster deployments used 5 nodes in 
India and 5 nodes in Hotel; HPC-style deployments used 10 
nodes in India for MapReduce and 10 nodes in Hotel for 
HDFS.  Again, input-sink was used as test application, and 
results are shown in Fig. 7(a).  The plot matches our 
intuitive expectation.  HPC-style deployment thoroughly 
loses data locality and performs the worst.   dl-sched in 
single-cluster deployments performs the best. However, dl-
sched in cross-cluster deployments performs better than 
rand-sched in single-cluster deployments.  The reason is 
those clusters only see light use and the interconnection 
between clusters is fast enough to match the speed of local 
network to fulfill read/write requests. 



 
Figure 6.   Single-cluster performance 

2) With drastically heterogeneous network  We set up a 
unified Hadoop cluster across multiple physical clusters by 
building a virtual network overlay with ViNe[19].  To know 
to what extent performance is impacted by the throughput of 
inter-cluster links, ViNe provided low throughput: only 1-
10Mbps.  We compared rand-sched with dl-sched and show 
results in Fig. 7(b).  The loss of data locality slows down the 
execution by thousands of times.  The results also apply to 
the case where the inter-cluster network is fast but heavily 
oversubscribed so that on average each application can only 
get a fairly small share.  This demonstrates that Hadoop is 
not optimized for fairly heterogeneous networks (e.g. Wide-
Area Network) so that Hadoop deployments over 
geographically distributed clusters with oversubscribed 
interconnection should be carefully investigated. 

 
(a) with high-speed cross-cluster net  (b) with drastically heterogeneous net 

Figure 7.   Cross-cluster Hadoop performance 

V. CONCLUSION 

The overall goal of this paper is to investigate data 
locality in depth for data parallel systems, among which 
GFS/ MapReduce is representative and therefore our main 
research target.  We have mathematically modeled the 
system and deduced the relationship between system factors 
and data locality.  Simulations were conducted to quantify 
the relationship and some insightful conclusions have been 
drawn which can help to tune Hadoop effectively.  In 
addition, non-optimality of default Hadoop scheduling has 
been discussed and an optimal scheduling algorithm based 
on LSAP has been proposed to give the best data locality.  
We ran intensive experiments to measure how our proposed 
algorithm outperforms default scheduling and demonstrate 
its performance superiority. Above research uses data 
locality as a performance metric and the target of 
optimization.  Besides that, we investigated how data locality 
impacts the user-perceived metric of system performance: 
job execution time.  Three scenarios – single-cluster, cross-

cluster and HPC-style setup, have been discussed and real 
Hadoop experiments were conducted.  It shows data locality 
is important to single-cluster deployments.  Also it shows the 
inability of Hadoop to cope with significant network 
heterogeneity and inter-cluster connection is critical to 
performance. 
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