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Abstract:

We present a study of three important kernels that occur frequently in iterative
statistical applications: Multi-Dimensional Scaling (MDS), PageRank, and K-Means. We
implemented each kernel using OpenCL and evaluated their performance on NVIDIA
Tesla and NVIDIA Fermi GPGPU cards using dedicated hardware, and in the case
of Fermi, also on the Amazon EC2 cloud-computing environment. By examining the
underlying algorithms and empirically measuring the performance of various components
of the kernels we explored the optimization of these kernels by four main techniques:
(1) caching invariant data in GPU memory across iterations, (2) selectively placing data
in different memory levels, (3) rearranging data in memory, and (4) dividing the work
between the GPU and the CPU. We also implemented a novel algorithm for MDS and
a novel data layout scheme for PageRank. Our optimizations resulted in performance
improvements of up to 5X to 6X, compared to näıve OpenCL implementations and up to
100X improvement over single-core CPU. We believe that these categories of optimizations
are also applicable to other similar kernels. Finally, we draw several lessons that would be
useful in not only implementing other similar kernels with OpenCL, but also in devising
code generation strategies in compilers that target GPGPUs through OpenCL.
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1 Introduction

Iterative algorithms are at the core of the vast majority
of scientific applications, which have traditionally
been parallelized and optimized for large multi-
processors, either based on shared memory or clusters of
interconnected nodes. As GPUs have gained popularity
for scientific applications, computational kernels used
in those applications need to be performance-tuned for

GPUs in order to utilize the hardware as effectively as
possible.

Often, when iterative scientific applications
are parallelized they are naturally expressed in
a bulk synchronous parallel (BSP) style, where
local computation steps alternate with collective
communication steps [27]. An important class of such
iterative applications are statistical applications that
process large amounts of data. A crucial aspect of large
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data processing applications is that they can often
be fruitfully run in large-scale distributed computing
environments, such as clouds.

In this paper, we study three important algorithms,
which we refer to as kernels, that find use in such
iterative statistical applications. (a) Multi-Dimensional
Scaling (MDS), (b) PageRank and (c) K-Means
Clustering. MDS is a statistical technique used for
visualizing and exploring large data sets in high-
dimensional spaces by mapping them in to lower
dimensional spaces. In this paper, we implement
the Scaling by MAjorizing a COmplicated Function
(SMACOF) [7] MDS algorithm using OpenCL by
utilizing the parallelization methods described by Bae et
al [1]. Our OpenCL SMACOF MDS implementation was
able to perform up to 180 times faster than a sequential
implementation on an Intel Core i7 (3 Ghz) CPU.

PageRank [6] is an iterative link analysis algorithm
that analyzes linkage information of a set of linked
documents, such as web pages, to measure the relative
importance of each document within the set. Core
computation of PageRank relies on a sparse matrix-
vector multiplication, where the sparse-matrix can often
be very unstructured with the number of non-zero
elements in rows observing distributions such as Power
Law, which makes these computations very challenging
to perform in GPUs. In this paper we explore several
traditional mechanisms and then introduce a novel
data storage format optimized for processing power-
law distributed sparse matrix-vector multiplications.
Our new format requires only minimal pre-processing
to generate and the associated algorithm performed
several times faster than the traditional methods
and the sequential versions. K-Means Clustering is a
clustering algorithm used in many machine learning
applications. K-Means Clustering is one of the most
popular and well-known kernels in the iterative scientific
applications category, which we use as an important
representative to guide GPGPU optimizations for this
class of applications.

These kernels are characterized by high ratio
of memory accesses to floating point operations,
thus necessitating careful latency hiding and memory
hierarchy optimizations to achieve high performance.
We conducted our study in the context of OpenCL,
which would let us extend our results across hardware
platforms. We studied each kernel for its potential for
optimization by:

1. Caching invariant data in GPU memory to be used
across kernel invocations (i.e., algorithm iterations);

2. Utilizing OpenCL local memory, by software-
controlled caching of selected data;

3. Reorganizing data in memory, to encourage hardware-
driven memory access coalescing or to avoid bank
conflicts; and

4. Dividing the computation between CPUs and GPUs,
to establish a software pipeline across iterations.

The intended environment to run these applications
is loosely-connected and distributed, which could be
leveraged using a cloud computing framework, such as
MapReduce. In this paper, we focus on characterizing
and optimizing the kernel performance on a single GPU
node. We compare the performance of these applications
on two generations of NVIDIA GPGPU processors and
on Amazon EC2 GPU compute instances for both single
precision as well as double precision computations. We
show that cloud GPU instances provide performance
comparable to non-cloud GPU nodes for almost all of our
kernels—except for single-precision K-Means Clustering,
which showed a 20% performance degradation in the
cloud environment—making GPUs in the cloud a
viable choice for these kernels. The speedup of GPU
computations over the corresponding sequential CPU
computations is usually much better in cloud.

We present detailed experimental evaluation for
each kernel by varying different algorithmic parameters.
Finally, we draw some lessons linking algorithm
characteristics to the optimizations that are most
likely to result in performance improvements. This has
important implications not only for kernel developers,
but also for compiler developers who wish to leverage
GPUs within a higher level language by compiling it to
OpenCL.

The contributions of the paper include: (1) Extensive
experimental evaluation of three popular statistical
computing kernels on two generations of NVIDIA GPUs
in a dedicated as well as cloud-computing environment;
(2) First GPU implementation of the relatively more
accurate SMACOF algorithm for multi-dimensional
scaling; (3) A novel data layout scheme to improve the
performance of matrix-vector product on GPUs, which
does not rely on inverse power-law distribution of matrix
row lengths (hence, is more broadly applicable); and
(4) A systemic study of the three kernels for memory
hierarchy optimizations on the two GPU cards.

2 Background

Boosted by the growing demand for gaming power, the
traditional fixed function graphics pipeline of GPUs
have evolved into a full-fledged programmable hardware
chain [15].

2.1 OpenCL

It is the general purpose relatively higher level
programming interfaces, such as OpenCL, that have
paved the way for leveraging GPUs for general
purpose computing. OpenCL is a cross-platform,
vendor-neutral, open programming standard that
supports parallel programming in heterogeneous
computational environments, including multi-core
CPUs and GPUs [10]. It provides efficient parallel
programming capabilities on both data parallel and task
parallel architectures.
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Figure 1 OpenCL memory hierarchy. In the current
NVIDIA OpenCL implementation, private
memory is physically located in global memory.

A compute kernel is the basic execution unit in
OpenCL. Kernels are queued up for execution and
OpenCL API provides a set of events to handle the
queued up kernels. The data parallel execution of a
kernel is defined by a multi-dimensional domain and
each individual execution unit of the domain is referred
to as a work item, which may be grouped together
into several work-groups, executing in parallel. Work
items in a group can communicate with each other and
synchronize execution. The task parallel compute kernels
are executed as single work items.

OpenCL defines a multi-level memory model with
four memory spaces: private, local, constant. and global
as depicted in Figure 1. Private memory can only be
used by single compute units, while global memory can
be used by all the compute units on the device. Local
memory (called shared memory in CUDA) is accessible
in all the work items in a work group. Constant memory
may be used by all the compute units to store read-only
data.

2.2 NVIDIA Tesla GPGPU’s

In this paper we use NVIDIA Tesla C1060, Tesla
“Fermi” M2050 and Tesla “Fermi” C2070 GPGPUs for
our experiments. Tesla C1060 consists of 240 processor
cores and 4GB GPU global memory with 102 GB/sec
peak memory bandwidth. It has a theoretical peak
performance of 622 GFLOPS (933 GFLOPS for special
operations) for single precision computations and 78
GFLOPS for double precision computations.

NVIDIA M2050 and C2070 are based on the
“Fermi” architecture with better support for double
precision computations than the Tesla C1060. These
GPGPUs also feature L1 and L2 caches and ECC
memory error protection. Tesla M2050 and C2070
contain 448 processor cores resulting in a theoretical
peak performance of 1030 GFLOPS (1288 GFLOPS
for special operations) for single precision computations
and 515 GFLOPS for double precision computations.
Tesla M2050 and C2070 have 3 GB and 6 GB GPU

global memory, respectively, with 148.4 GB/sec and
144 GB/sec peak memory bandwidths.

2.3 Amazon EC2 Cluster GPU instances

Amazon Web Services pioneered the commercial cloud
service offerings and currently provide a rich set of
on demand compute, storage and data communication
services including but not limited to Amazon Elastic
Compute Cloud (EC2), Simple Storage Service (S3) and
Elastic Map Reduce (EMR). Amazon EC2 provides the
users with the ability to dynamically provision hourly
built virtual instances with a variety of configurations
and environments, giving the users the ability to
obtain a dynamically re-sizable virtual cluster in a
matter of minutes. EC2 instance types of interest
to high performance computing include the Cluster
Compute and Cluster GPU instances, which provide
high CPU and network performance required for the
HPC applications.

The single EC2 Cluster GPU instance contains
two NVIDIA Tesla “Fermi” M2050 GPGPUs with
3 GB GPU memory in each GPGPU, two Intel
Xeon X5570 quad-core “Nehalem” processors and
22 GB of RAM. Two GPGPUs in the Cluster GPU
instance offer a combined theoretical maximum double
precision performance of 1030 GFLOPS and more than
2060 GFLOPS theoretical single precision performance.
The current hourly price of an on-demand cluster GPU
instance is $2.10. However, Amazon EC2 also provides
spot instances, which allow the users to bid on unused
Amazon EC2 capacity and run those instances for as long
as the bid exceeds the current spot price. Throughout
our testing for this paper we used EC2 cluster GPU spot
instances at the rate of $0.65 per hour, which converts
to $0.65 per hour of one TFLOPS of double precision
performance (or ≈$0.33 per hour of one TFLOPS of
single precision performance) from the GPGPUs.

2.4 Performance Testing

In this paper we analyzed and compared the
performance of OpenCL application implementations in
the environments given in Table 1. We used OpenCL 1.1
and the NVIDIA driver version 290.10 in all the
environments. We used the OpenCL event API to obtain
the kernel execution time for applications and used it for
the calculation of GFLOPS. Total run time, including
the time for initial data copy from CPU memory to GPU
memory and the time to copy results back, was used for
all the other graphs.

3 Iterative Statistical Applications

Many important scientific applications and algorithms
can be implemented as iterative computation and
communication steps, where computations inside an
iteration are independent and are synchronized at the
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Table 1 GPGPU environments used in this paper

Name GPU GPU Memory Peak Performance GPU-Mem CPU RAM
(GFLOPS) Bandwidth

Mac Pro NVIDIA
Tesla C1060

4GB 77 (DP) 622(SP) 102 GB/sec Intel Xeon X5365
(3.00GHz)

8GB

Fermi NVIDIA
Tesla C2070

6GB 515 (DP) 1030 (SP) 144 GB/sec Intel Core i7-950
(3.07GHz)

8GB

EC2 Fermi
(VM)

NVIDIA
Tesla M2050

3GB 515 (DP) 1030 (SP) 148 GB/sec Intel Xeon X5570
(2.93GHz)

22GB

end of each iteration through reduce and communication
steps. Often, each iteration is also amenable to
parallelization. Many statistical applications fall in this
category. Examples include clustering algorithms, data
mining applications, machine learning algorithms, data
visualization algorithms, and most of the expectation
maximization algorithms. The growth of such iterative
statistical applications, in importance and number, is
driven partly by the need to process massive amounts of
data, for which scientists rely on clustering, mining, and
dimension-reduction to interpret the data. Emergence
of computational fields, such as bioinformatics, and
machine learning, have also contributed to an increased
interest in this class of applications.

Advanced frameworks, such as Twister [9] and
Twister4Azure [11], can support optimized execution of
iterative MapReduce applications, making them well-
suited to support iterative applications in a large scale
distributed environment, such as clouds. Within such
frameworks, GPGPUs can be utilized for execution
of single steps or single computational components.
This gives the applications the best of both worlds by
utilizing the GPGPU computing power and supporting
large amounts of data. One goal of our current study
is to evaluate the feasibility of GPGPUs for this
class of applications and to determine the potential of
combining GPGPU computing together with distributed
cloud-computing frameworks. Some cloud-computing
providers, such as Amazon EC2, are already moving to
provide GPGPU resources for their users. Frameworks
that combine GPGPU computing with the distributed
cloud programming would be good candidates for
implementing such environments.

Two main types of data can be identified in these
statistical iterative applications, the loop-invariant input
data and the loop-variant delta values. Most of the time,
the loop-invariant input data, which remains unchanged
across the iterations, are orders of magnitude larger
than the loop-variant delta values. These loop-invariant
data can be partitioned to process independently by
different worker threads. These loop-invariant data can
be copied from CPU memory to GPU global memory
at the beginning of the computation and can be reused
from the GPU global memory across iterations, giving
significant advantages in terms of the CPU to GPU
data transfer cost. To this end, we restrict ourselves to
scenarios where the loop-invariant computational data

fit within the GPU memory, which are likely to be
the common case in large-scale distributed execution
environments consisting of a large number of GPU nodes.
Loop-variant delta values typically capture the result of
a single iteration and will be used in processing of the
next iteration by all the threads, hence necessitating a
broadcast type operation of loop-variant delta values to
all the worker threads at the beginning of each iteration.
Currently we use global memory for this broadcast.
Even though constant memory could potentially result
in better performance, it is often too small to hold the
loop-variant delta for the MDS and PageRank kernels
we studied.

It is possible to use software pipelining for exploiting
parallelism across iterations. Assuming that only one
kernel can execute on the GPU at one time, Figure 2
shows a scheme for exploiting loop-level parallelism. This
assumes that there are no dependencies across iterations.
However, if the loop-carried dependence pattern is
dynamic, i.e., it may or may not exist based on specific
iterations or input data, then it is still possible to use
a software pipelining approach to speculatively execute
subsequent iterations concurrently and quashing the
results if the dependencies are detected. Clearly, this
sacrifices some parallel efficiency. Another scenario where
such pipelining may be useful is when the loop-carried
dependence is caused by a convergence test. In such
a case, software pipelining would end up executing
portions of iterations that were not going to be executed
in the original program. However, that would have no
impact on the converged result.

time

CPU1 iter. 1 CPU1 iter. 2 CPU1 iter. 3

GPU iter. 1 GPU iter. 2

CPU2 iter. 1

Figure 2 Software pipelining to leverage GPUs for
loop-level parallelism.
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Note that if multiple kernels can be executed
concurrently and efficiently on the GPU then the
pipelining can be replicated to leverage that capability.

A characteristic feature of data processing iterative
statistical applications is their high ratio of memory
accesses to floating point operations, making them
memory-bound. As a result, achieving high performance,
measured in GFLOPS, is challenging. However,
software-controlled memory hierarchy and the relatively
high memory bandwidth of GPGPUs also offer an
opportunity to optimize such applications. In the rest of
the paper, we describe and study the optimization on
GPUs of three representative kernels that are heavily
used in iterative statistical applications. It should be
noted that even though software pipelining served as a
motivating factor in designing our algorithms, we did
not use software pipelining for the kernels used in this
study.

4 MDS

Multi-dimensional scaling (MDS) is a widely used
statistical mechanism used to map a data set in high-
dimensional space to a user-defined lower dimensional
space with respect to pairwise proximity of the data
points [17, 5]. Multi-dimensional scaling is used mainly
to explore large data sets in high-dimensional spaces
by visualizing them by mapping them to two or three
dimensional space. MDS has been used to visualize
data in diverse domains, including, but not limited
to, bio-informatics, geology, information sciences, and
marketing.

One of the popular algorithms to perform MDS
is Scaling by MAjorizing a COmplicated Function
(SMACOF) [7]. SMACOF is an iterative majorization
algorithm to solve MDS problem with STRESS criterion,
which is similar to expectation-maximization. In this
paper, we implement the parallel SMACOF algorithm
described by Bae et al [1]. To the best of our knowledge,
this is the first GPU implementation of the parallel
SMACOF algorithm. The pairwise proximity data input
for MDS is an N×N matrix of pairwise dissimilarity
(or similarity) values, where N is the number of data
points in the high-dimensional space. The resultant lower
dimensional mapping in the target (D) dimension, called
the X values, is an N×D matrix, in which each row
represent the data points in the lower dimensional space.
The core of the SMACOF MDS algorithm consists of
iteratively calculating new X values and the performing
the stress value calculation.

For the purposes of this paper, we performed an
unweighted (weight=1) mapping resulting in two main
steps in the algorithm: (a) calculating new X values
(BCCalc), and (b) calculating the stress of the new
X values. A global barrier exists between the above
two steps as stress value calculation requires all of
the new X values. From inside a kernel, OpenCL

1 #pragma OPENCL EXTENSION c l k h r f p 6 4 : enab le
2

3 k e r n e l MDSBCCalc (double∗ data ,
4 double∗ x , double∗ newX) {
5 gid = g e t g l o b a l i d ( 0 ) ;
6 l i d = g e t l o c a l i d ( 0 ) ;
7

8 // copying some x to shared l o c a l mem
9 l o c a l lX [ l i d ] [ ] = x [ g id ] [ ] ;

10 b a r r i e r (CLK LOCALMEM FENCE) ;
11

12 for ( int j = 0 ; j < WIDTH ; j++)
13 {
14 d i s t an c e = eu c d i s t ( lX [ l i d ] [ ] , x [ j ] [ ] ) ;
15 bofZ = k ∗ ( data [ g id ] [ j ] / d i s t an c e ) ;
16 rowSum += bofZ ;
17 privX [ ] += bofZ ∗ x [ j ] [ ] ;
18 }
19

20 privX [ g id ] [ ] += k ∗ rowSum ∗ lX [ l i d ] [ ] ;
21 newX [ gid ] [ ] = privX [ g id ] [ ] /WIDTH;
22 }
23

24 k e r n e l MDSStressCalc (double∗ data ,
25 double∗ x , double∗ newX) {
26 for ( int j = 0 ; j < WIDTH; j++)
27 {
28 d i s t an c e = d i s t (newX [ gid ] [ ] , newX [ j ] [ ] )
29 sigma += ( data [ g id ] [ j ]− d i s t an c e ) ˆ2 ;
30 }
31

32 s t r e s s = h i e r a ch i c a lR educ t i on ( sigma ) ;
33 }

Figure 3 Outline of MDS in OpenCL.

APIs only supports synchronization within a work-
group and requires the computations to be broken
into separate kernels to achieve global synchronization.
Hence, we implemented OpenCL MDS implementation
using separate kernels for BCCalc and StressCalc as
shown in pseudo-code in Figure 3. These two kernels are
iteratively scheduled one after another till the STRESS
value criterion is reached for the computation.

The number of floating pointer operations in MDS,
F , per iteration per thread is given by F = (8DN +
7N + 3D + 1), resulting in a total of F×N×I floating
point operations per calculation, where I is the number
of iterations, N is the number of data points, and D is
the dimensionality of the lower dimensional space.

4.1 Optimizations

4.1.1 Caching Invariant Data

MDS has loop-invariant data that can fit in available
global memory and that can be reused across iterations.
Figure 4 summarizes the benefits of doing that for MDS.
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Figure 4 Performance improvement in MDS due to
caching of invariant data in GPU memory.

4.1.2 Leveraging Local Memory

In a näıve implementation all the data points (X
values) and result (new X values) are stored in global
memory. Parallel SMACOF MDS algorithm by Bae et
al. [1] uses a significant number of temporary matrices
for intermediate data storage. We restructured the
algorithm to eliminate the larger temporary matrices, as
they proved to be very costly in terms of space as well
as performance. The kernel was redesigned to process a
single data row at a time.

X[k] values for each thread data point k were
copied to local memory before the computation. X values
belonging to the row that is being processed by the
thread get accessed many more times compared to the

other X values. Hence, copying these X values to local
memory turns out to be worthwhile. “X(k) in shared
mem” curve of Figure 5(a) quantifies the gains.

4.1.3 Optimizing Memory Access

All data points belonging to the data row that a thread
is processing are iterated through twice inside the kernel.
We encourage hardware coalescing of these accesses by
storing the data in global memory in column-major
format, which causes contiguous memory access from
threads inside a local work group. Figure 5(a) shows that
data placement to encourage hardware coalescing results
in a significant performance improvement.

We also experimented with storing the X values
in column-major format, but it resulted in a slight
performance degradation. The access pattern for the X

values is different from that for the data points. All the
threads in a local work group access the same X value at
a given step. As we noted in Section 6.2.2, we observe a
similar behavior with the K-Means clustering algorithm.

Performance improvements resulting from each of
the above optimizations are summarized in Figure 5(a).
Unfortunately, we do not yet understand why the
performance drops suddenly after a certain large number
of data points (peaks at 900 MB data size and drops
at 1225 MB data size) and then begins to improve
again. Possible explanations could include increased data
bus contention, or memory bank conflicts. However, we

(a) MDS performance with the different optimizations steps.

(b) MDS: varying number of iterations. (c) MDS per iteration: varying number of iterations.

Figure 5 MDS with varying algorithmic parameters.
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Figure 6 Overheads in OpenCL MDS.

would need more investigation to determine the exact
cause. Figures 5(b) and 5(c) show performance numbers
with varying number of iterations, which show similar
trends.

4.1.4 Sharing Work between CPU and GPU

In the case of MDS, there is not a good case for dividing
the work between CPU and GPU. In our experiments,
the entire computation was done on the GPU. On the
other hand, as the measured overheads show below,
certain problem sizes might be better done on the CPU.

4.2 Overhead Estimation

We used a simple performance model in order to isolate
the overheads caused by data communication and kernel
scheduling. Suppose that cs is the time to perform MDS
computation and os is the total overheads (including
data transfer to and from GPU and thread scheduling),
for s data points. Then, the total running time of the
algorithm, Ts is given by:

Ts = cs + os (1)

Suppose that we double the computation that each
kernel thread performs. Since the overheads remain more
or less unchanged, the total running time, T ′

s, with
double the computation is given by:

T ′

s = 2·cs + os (2)

By empirically measuring Ts and T ′

s and using
Equations 1 and 2, we can estimate the overheads.
Figure 6 shows T ′

s (“double compute”), Ts (“regular”), c
(“compute only”) and o (“overhead”). The running times
are in seconds (left vertical axis) and overhead is plotted
as a percentage of the compute time, c (right vertical
axis). We note that the overheads change with the input
data size. However, there are two useful cutoffs, one for
small data sizes and another for large data sizes—on
either ends overheads become high and the computation
might achieve higher performance on the CPU if the data
have to be transferred from the CPU memory, which is
what we have assumed in the overhead computations.

4.3 Performance across different environments

We compared the performance of OpenCL MDS
implementation in three environments (Table 1):
(a) Tesla C1060, (b) Tesla “Fermi” M2070, and
(c) EC2 cloud GPGPU Tesla “Fermi” M2050. We also
analyzed the performance of double precision MDS in
the two Tesla “Fermi” environments and compared
with the single precision performance as presented
in Figure 7. Single precision performance of MDS in
Tesla “Fermi” M2070 was approximately 20% better
than the EC2 cloud “Fermi” M2050. Tesla C1060
single precision performance was significantly lesser
than both the “Fermi” GPGPUs. Both the “Fermi”
GPGPUs performed similarly for the double precision
MDS computations, with EC2 slightly outperforming
“Fermi” M2070 at times. Double precision performance
of “Fermi” M2070 for MDS was slightly above 1/3
of the single precision performance of “Fermi” M2070.
The speedup of double precision OpenCL MDS over
sequential MDS on CPU was better on EC2 than on
bare metal “Fermi” nodes. This can be attributed to
the fact that CPUs suffer from virtualization overheads
in cloud computing environment, while GPUs do not,
leading to better speedups of GPUs over CPUs in a cloud
computing environment.

5 PageRank

PageRank algorithm, developed by Page and Brin [6],
analyzes linkage information of a set of linked documents
to measure the relative importance of each document
within the set. PageRank of a certain document depends
on the number and the PageRank of other documents
linked to it.

PR(pi) =
1− d

N
+ d

∑

pj∈M(pi)

PR(pj)

L(pj)
(3)

Equation 3 defines PageRank, where {p1, . . ., pN} is
the set of documents, M(pi) is the set of documents
that link to pi, L(pj) is the number of outbound links
on pj , and N is the total number of pages. PageRank
calculation can be performed using an iterative power
method, resulting in the multiplication of a sparse matrix
and a vector. The linkage graph for the web is very sparse
and follows a power law distribution [2], which creates
a challenge in optimizing PageRank on GPUs. Efficient
sparse matrix-vector multiplication is challenging on
GPUs even for uniformly distributed sparse matrices [4].

There have been several efforts to improve the
performance of PageRank calculations on GPUs, which
require significant amount of pre-processing on the input
sparse matrix [29, 30]. As noticed by the others, the
storage format of sparse matrices plays a significant role
in terms of the computation efficiency and the memory
usage of the PageRank calculation.
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5.1 Hybrid CSR-ELLPACK Storage-based
PageRank

We first experimented by using a modified compressed
sparse row (CSR) [4] format and a modified ELLPACK
format [4] to store the matrix representing the link
graph. Typically the sparse matrix used for PageRank
stores 1/L(pj) in an additional data array.We eliminated
the data array by storing the intermediate page rank
values as PR(pj)/L(pj), significantly reducing memory
usage and accesses. We made a similar modification
to ELLPACK format. Using CSR alone in a näıve
manner results in poor performance due to imperfect
load balancing of the rows. The ELLPACK format
works best for uniformly distributed sparse matrices with
similar length rows. Hence we implemented a hybrid
approach where we used a preprocessing step to partition
the rows into two or more sets of those containing a
small number of elements and the remainder containing
higher number of elements. The more dense rows could
be computed either on the CPU or the GPU using the
CSR format directly. The rows with smaller number of
non-zero elements are reformatted into the ELLPACK
format and computed on the GPU. We evaluated several
partitioning alternatives, shown in Figure 10 for the
Stanford-Web data set [26]. More details about this
experiment is given in subsection 5.3.3.

5.2 Balanced CSR Sparse Matrix Storage
Format-based PageRank

In this implementation we propose a novel sparse matrix
storage format optimized for irregularly distributed
sparse matrix-vector multiplication computations on
GPGPUs. This new format, which we call BSR
(Balanced CSR), requires a fraction of more space than
CSR and takes much lesser space than many other sparse
matrix storage formats such as COO [4] or ELLPACK.
BSR format can be constructed in a straightforward
manner from CSR or other formats incurring only a
small pre-processing overhead. This format is currently
optimized for web-link matrices by eliminating the data
array of the sparse web-link matrix, following the similar

optimization to CSR and ELLPACK described in the
previous section. However, the BSR format can be easily
extended to support general purpose sparse matrices.

5.2.1 Constructing BSR Format Matrices

BSR format has a fixed width for the rows of the
resultant dense matrix. It stores the row pointer followed
by the column indices for the non-zero elements of the
original matrix rows and lays the rows of input matrix
continuously, even across row boundaries. This can result
in partial rows of the original sparse matrix getting
stored across multiple rows in the BSR dense matrix.
BSR format and the corresponding PageRank algorithm
supports the handling of partial rows. It uses three
special characters: (a) α to mark the beginning of a new
row in the original sparse matrix, (b) β to mark the
beginning of a new partial row in the original matrix,
and (c) ǫ to mark empty spaces. The construction of the
new format uses the following steps, where A stands for
the input sparse matrix and BSR stands for the output
dense matrix.

foreach row R in A

if space remaining(currentRow of BSR) <= 2

ǫ fill bsrRow

bsrRow ⇐ newRow(BSR)

if (freespace(bsrRow)+2) ≥ length(R)

store α
store Row pointer of R

store the column pointers of R

else // length(R) > (freespace(bsrRow)+2)

store β
store Row pointer of R

store column pointers of R

while(moreColumnPointers in R)

bsrRow = newRow(BSR)

store β
store Row pointer of R

store column pointers of R

Figure 7 Performance comparison of MDS in different environments
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A =













0 1 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 0 1 1
0 0 1 0 0 0 0 1 0 0 0 0 0 0
0 1 1 0 1 1 0 0 0 0 0 0 0 1













BSR =













α 1 2 3 α 2 1 ǫ
β 3 1 2 3 4 5 6
β 3 7 8 9 10 11 13
β 3 14 α 4 3 8 ǫ
α 5 2 3 5 6 14 ǫ













P =













ǫ ǫ ǫ ǫ
3 x ǫ ǫ
3 x ǫ ǫ
3 x ǫ ǫ
ǫ ǫ ǫ ǫ













Figure 9 BSR example. A: input web link sparse matrix. BSR: output matrix. P: partial PageRank matrix template.

An example of this representation is shown in
Figure 9.

Space overhead of this format over CSR is inversely
proportional to the width of the BSR. However, using
a wider matrix for BSR results in fewer rows, leading
to underutilization of the GPU. At the same time the
number of partial rows is inversely proportional to the
width of BSR.

5.2.2 Comparison With COO Approach

The closest related work for the BSR approach is the
COO kernel presented by Yang et al. [30], which they
consider as one of the top performing kernels for power-
law matrices. In their implementation, they divide the 3
arrays of COO in to equal parts to equally distribute the
workload to warps. However, they do not consider the
case of a row crossing the boundary of an interval. Each
warp perform the multiplication of each element in the
interval with the PageRank vector, and a shared memory
reduction performed sum reduction as the next step in
the warp. According to the authors, this shared memory
reduction can lead to low-thread level parallelism in case
an interval contains several rows of the input matrix. The
BSR storage format we propose uses much less storage
space than COO. Also their approach cannot handle
partial rows in an interval, which would lead to load
unbalances as some intervals can have less amount of
work than others. Also they’ll have to perform special
preprocessing and padding of the COO matrix to ensure
no rows will be crossing the interval boundaries. This
would also make the length of the largest row the
lower limit for interval size, which can result in very
large intervals reducing the thread level parallelism as
power-law matrices have few rows which are orders of
magnitude longer than others. Our approach handles
partial rows and ensures much better load balancing.
Our approach requires sum reductions only for the
partial rows and even in that case, the sum reduction
is performed in a much higher granularity (per element
in COO vs per partial row in our approach) in a highly
parallel manner incuring very minimal overhead.

5.2.3 Sparse Matrix-Vector Multiplication Using
BSR

Each row of the BSR matrix is processed by a single GPU
thread. Fixed row widths result in evenly balanced load
among the work items. Moreover, fixed row widths allow
column-major storage, encouraging coalesced memory

Table 2 Web data sets

Data Set Nodes (Pages) Edges (links)

BerkStan-Web 685,230 7,600,595
Google-Web 875,713 5,105,039

Stanford-Web 281,903 2,312,497

access by the threads in a work group and leading to
significant performance improvement.

PageRank of each full row of input matrix A stored
in a row of BSR will get calculated and stored by a
single thread. However, with this format each row of
the resultant matrix BSR can contain a maximum of
two partial rows of A. Partial rows require aggregation
across the worker items. We use the matrix P shown in
Figure 9 to store the partial page ranks that result from
the partial rows of A stored in the rows of BSR. P is an
N×4 matrix, where N is the number of rows in BSR.
Each row of P stores the page index and the values of the
row-partial page rank for the corresponding row in BSR.
We have a second kernel that performs the aggregation of
these partial values to generate the final page rank value
for these rows. This aggregation is peformed in parallel
as shown in the PartialRankSum kernel in Figure 8. This
reduction incurs only a small overhead compared to the
overall computation. The overhead ranged from 1% to
2.5% of the total computation time for the data sets
we considered. Our approach ensures high-thread level
parallelism for all reasonable interval lengths.

There is room for improvement to optimize the
random lookups of the PageRank vector by utilizing
constant and texture memories. For any non-trivial web-
graph the PageRank vector will be much larger than
the size of constant and texture memories of the GPU.
Hence, optimizing this would require more preprocessing
to identify localities.

Performance of the BSR PageRank for the Stanford-
Web data set compared against the above-mentioned
hybrid version and CSR PageRank in CPU is shown in
Figure 10. Figure 11 depicts the performance of BSR for
three web data sets from Stanford large network data
set [26] given in Table 2, and the speedup of BSR over
single core CPU running BSR PageRank. According to
Figure 11, BSR PageRank performs better with larger
number of edges to number of pages ratios, specially on
Fermi. Note that these results make it evident that BSR
is not a suitable layout scheme for CPU execution.
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Figure 10 Performance of PageRank implementations for web-Stanford data set.

Figure 11 PageRank BSR implementation performance for different data sets. Speedups are over one CPU core.

5.3 Optimizations

5.3.1 Leveraging Local Memory

We were not able to utilize local memory to store all
the data in the GPU kernel due to the variable sizes of
matrix rows and the large size of the PageRank vector.
However, we used local memory for data points in the
ELLPACK kernel.

5.3.2 Optimizing Memory Access

We store the BSR matrix in column-major format
enabling coalesced memory access from the threads in
a warp. This resulted in significant speedups of the
computation. The index array in the ELLPACK format
is stored in appropriate order to enable contiguous
memory accesses.

5.3.3 Sharing Work between CPU and GPU

Due to the power law distribution of non-zero elements,
a small number of rows contain a large number of
elements, but a large number of rows are very sparse.
In a preprocessing step, the rows are partitioned into
two or more sets of those containing a small number of

elements and the remainder containing higher number of
elements. The more dense rows could be computed either
on the CPU or the GPU using the CSR format directly.
The rows with smaller number of non-zero elements are
reformatted into the ELLPACK format and computed on
the GPU. We evaluated several partitioning alternatives,
shown in Figure 10.

The leftmost bars represent the running times on
CPU. The next three bars represents computing all rows
with greater than or equal to k elements on the CPU,
where k is 4, 7, and 16, respectively. The rows with
fewer than k elements are transformed into ELLPACK
format and computed on the GPU. Moreover, when k =
7, two distinct GPU kernels are used, one for computing
rows with up to 3 elements and another for computing
rows with 4 to 7 elements. Similarly, for k = 16, an
additional third kernel is used to process rows with 8
to 15 elements. Splitting the kernels not only improves
the GPU occupancy, but also allows those kernels to be
executed concurrently.

In Figure 10 we do not include the overheads
of the linear time preprocessing step and of host-
device data transfers, both of which are relatively easy
to estimate. However, we also do not assume any
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1 k e r n e l FixedWidthSparseRow ( int∗ data ,
2 int∗ outLinks , f l oat ∗ ranks ,
3 f l oat ∗ newRanks , f l oat ∗ p a r t i a l s )
4 {
5 blockNum = g e t g l o b a l i d ( 0 ) ;
6 i n i t P a r t i a l s ( gid , p a r t i a l s ) ;
7 newRank = 0 ;
8 multiPage = 0 ;
9

10 s t a tu s = data [ blockNum ] [ 0 ] ;
11 page = data [ blockNum ] [ 1 ] ;
12 for ( int i =2; i < BSRROWWIDTH; i++){
13 value = data [ blockNum ] [ i ] ;
14

15 // Value i s an inLink
16 i f ( value>=0) newRank += ranks [ va lue ] ;
17

18 // Value i s a row end f i l l e r
19 else i f ( value==−3) break ;
20

21 // Beginning o f a new page record
22 else{
23 Update (newRank , page , status , 0 ) ;
24 i++;
25 s t a tu s = value ;
26 page = data [ blockNum ] [ i ] ;
27 newRank = 0 ;
28 multiPage = 1 ;
29 }
30 }
31

32 Update (newRank , page , status , ( 2∗ multiPage ) ) ;
33 }
34

35 void Update (newRank , page , status , pIndex )
36 {
37 newRank =(((1−D)/NUMPAGES) + (D∗newRank ) ) ;
38 i f ( s t a t u s == −2) {
39 p a r t i a l s [ blockNum ] [ pIndex ] = page ;
40 p a r t i a l s [ blockNum ] [ pIndex+1] = newRank ;
41 } else {
42 newRanks [ page ] = newRank/outLinks [ page ] ;
43 }
44 }
45

46 k e r n e l void PartialRankSum
47 ( f l oat∗ newRanks , f l oat ∗ p a r t i a l s )
48 {
49 blockNum = g e t g l o b a l i d ( 0 ) ;
50 index = p a r t i a l s [ blockNum ] [ 2 ] ;
51 i f ( index > −1) {
52 f l oat rank = pa r t i a l s [ blockNum ] [ 3 ] ;
53 block++;
54 while ( p a r t i a l s [ blockNum][0]== index ){
55 rank += pa r t i a l s [ blockNum ] [ 1 ] ;
56 block++;
57 }
58 newRanks [ index ] = rank ;
59 }
60 }

Figure 8 Outline of BSR based PageRank algorithm in
OpenCL.

parallelism between the multiple kernels processing the
rows in ELLPACK format. Our main observation from
these experiments is that sharing work between CPU
and GPU for sparse matrix-vector multiplication is a
fruitful strategy. Moreover, unlike previous attempts
recommending hybrid matrix representation that used
a single kernel for the part of the matrix in ELLPACK
format [4], our experiments indicate that it is beneficial
to use multiple kernels to handle rows with different
numbers of non-zero elements. The problem of deciding
the exact partitioning and the exact number of kernels
is outside the scope of this paper and we leave that as
part of future work.

Instead of computing the matrix partition with
denser rows on the CPU, it could also be computed on
the GPU. We also implemented a sparse matrix-vector
product algorithm using CSR representation on the GPU
(not shown in the figure). Our experiments indicate that
GPU can take an order of magnitude more time for that
computation than CPU, underlining the role of CPU for
certain algorithm classes.

We do not share work with CPU for the BSR
computation.

5.4 Performance Across Different Environments

All three environments mentioned in Table 1 perform
similarly for the Google-Web and the Stanford-Web
data sets. For the BerkStan-Web dataset, the Fermi
GPGPUs performed better than the Tesla GPGPU. The
better performance of Fermi GPGPUs can be attributed
to the hardware-managed caches that can improve the
performance of random PageRank vector lookups.

6 K-Means Clustering

Clustering is the process of partitioning a given data
set into disjoint clusters. Use of clustering and other
data mining techniques to interpret very large data
sets has become increasingly popular with petabytes of
data becoming commonplace. Each partitioned cluster
includes a set of data points that are similar by
some clustering metric and differ from the set of data
points in another cluster. K-Means clustering algorithm
has been widely used in many scientific as well as
industrial application areas due to its simplicity and the
applicability to large data sets [21].

K-Means clustering algorithm works by defining k
centroids, i.e., cluster means, one for each cluster, and
associating the data points to the nearest centroid.
It is often implemented using an iterative refinement
technique, where each iteration performs two main steps:

1. In the cluster assignment step, each data point is
assigned to the nearest centroid. The distance to the
centroid is often calculated as Euclidean distance.
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Figure 13 K-Means performance with the different optimizations steps, using 2D data points and 300 centroids.

1 k e r n e l KMeans(double∗ matrix ,
2 double∗ cen t ro id s , int∗ assignment , ){
3

4 gid = g e t g l o b a l i d ( 0 ) ;
5 l i d = g e t l o c a l i d ( 0 ) ;
6 l z = g e t l o c a l s i z e ( 0 ) ;
7

8 // Copying c en t ro i d s to shared memory
9 i f ( l i d < cen te r sHe igh t ){

10 for ( int i =0; i < WIDTH ; i++){
11 l o c a lPo i n t s [ ( l i d ∗WIDTH)+ i ] =
12 c en t r o i d s [ ( l i d ∗WIDTH)+ i ] ;
13 }
14 }
15

16 // Copying data po i n t s to shared memory
17 for ( int i =0; i < WIDTH ; i++){
18 l o ca lData [ l i d +( l z ∗ i ) ] =
19 matrix [ ( g id )+( i ∗ he igh t ) ] ;
20 }
21 b a r r i e r (LOCAL MEM) ;
22

23 for ( int j = 0 ; j < cen te r sHe igh t ; j++){
24 for ( int i = 0 ; i < width ; i++){
25 d i s t an c e = ( l o c a lPo i n t s [ ( j ∗width)+ i ]
26 − l o ca lData [ l i d +( l z ∗ i ) ] ) ;
27 euDistance += d i s t an c e ∗ d i s t an c e ;
28 }
29 i f ( j == 0) {min = euDistance ;}
30 else i f ( euDistance < min) {
31 min = euDistance ; minCentroid = j ;
32 }
33 }
34 assignment [ g id ]=minCentroid ;
35 }

Figure 12 Outline of K-Means in OpenCL.

2. In the update step, new cluster centroids are
calculated based on the data points assigned to the
clusters in the previous step.

At the end of iteration n, the new centroids are compared
with the centroids in iteration n− 1. The algorithm

iterates until the difference, called the error, falls below
a predetermined threshold. Figure 12 shows an outline of
our OpenCL implementation of the K-Means algorithm.

The number of floating-point operations, F , in
OpenCL K-Means per iteration per thread is given
by F = (3DM +M), resulting in a total of F ∗N ∗ I
floating-point operations per calculation, where I is the
number of iterations, N is the number of data points, M
is the number of centers, and D is the dimensionality of
the data points.

Figure 13 summarizes the performance of our
K-Means implementation using OpenCL, showing
successive improvements with optimizations. We
describe these optimizations in detail in the remainder
of this section.

6.1 Caching Invariant Data

Figure 14 Performance improvement in K-Means due to
caching of invariant data in GPU memory.

Transferring input data from CPU memory to GPU
memory incurs major cost in performing data intensive
statistical computations on GPUs. The speedup on GPU
over CPU should be large enough to compensate for this
initial data transfer cost. However, statistical iterative
algorithms have loop-invariant data that could be
reused across iterations. Figure 14 depicts the significant
performance improvements gained by reusing of loop-
invariant data in K-Means compared with no data reuse
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(a) K-Means: varying number of centers, using 4D data points. (b) K-Means: varying number of dimensions.

(c) K-Means: varying number of iterations. (d) K-Means (per iteration): varying number of iterations.

Figure 15 K-Means with varying algorithmic parameters.

(copying the loop-invariant data from CPU to GPU in
every iteration).

6.2 Optimizations

6.2.1 Leveraging Local Memory

In the näıve implementation, both the centroid values
as well as the data points are accessed directly from the
GPU global memory, resulting in a global memory read
for each data and centroid data point access. With this
approach, we were able to achieve performance in the
range of 20 GFLOPs and speedups in the range of 13
compared to single core CPU (on a 3 GHz Intel Core
2 Duo Xeon processor, with 4 MB L2 cache and 8 GB
RAM).

The distance from a data point to each cluster
centroid gets calculated in the assignment step of K-
Means, resulting in reuse of the data point many times
within a single thread. This observation motivated us to
modify the kernel to copy the data points belonging to a
local work group to the local memory, at the beginning
of the computation. This resulted in approximately 75%
performance increase over the näıve implementation in
the Tesla c1060, as the next line, marked “B”, shows.
However, this resulted in a performance degradation in
the newer Fermi architecture GPGPU’s. We believe the
L1 cache of Fermi architecture ensures this optimization.

Each thread iterates through the centroids to
calculate the distance to the data point assigned to that
particular thread. This results in several accesses (equal
to the local work group size) to each centroid per local

work group. To avoid that, we copied the centroid point
to the local memory before the computation. Caching
of centroids values in local memory resulted in about
160% further performance increase, illustrated in the line
marked “C” in Figure 13.

The performance curves changes at 8192 data point in
Figure 13. We believe that this is due to the GPU getting
saturated with threads at 8192 data points and above,
since we spawn one thread for each data point. For data
sizes smaller than 8192, the GPU kernel computation
took a constant amount of time, indicating that GPU
might have been underutilized for smaller data sizes.
Finally, the flattening of the curve for large data sizes is
likely because of reaching memory bandwidth limits.

6.2.2 Optimizing Memory Access

As the next step, we stored the multi-dimensional data
points in column-major format in global memory to
take advantage of the hardware coalescing of memory
accesses. However, this did not result in any measurable
performance improvement as the completely overlapped
lines “C” and “D” show, in Figure 13.

However, storing the data points in local memory
in column-major format resulted in about 140%
performance improvement, relative to the näıve
implementation, represented by the line marked “D +
shared data points . . . ” in Figure 13. We believe that this
is due to reduced bank conflicts when different threads
in a local work group access local memory concurrently.
Performing the same transformation for centroids in
local memory did not result in any significant change to
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Figure 16 Overheads in OpenCL K-Means.

the performance (not shown in the figure). We believe
this is because all the threads in a local work group
access the same centroid point at a given step of the
computation, resulting in a bank-conflict free broadcast
from the local memory. All experiments for these results
were obtained on a two-dimensional data set with 300
centroids.

Next, we characterized our most optimized K-
Means algorithm by varying the different algorithmic
parameters. Figure 15(a) presents the performance
variation with different number of centroids, as the
number of data points increases. Figure 15(b) shows the
performance variation with 2D and 4D data sets, each
plotted for 100 and 300 centroids. The measurements
indicate that K-Means is able to achieve higher
performance with higher dimensional data. Finally,
Figures 15(c) and 15(d) show that there is no measurable
change in performance with the number of iterations.

6.2.3 Sharing Work between CPU and GPU

In the OpenCL K-Means implementation, we follow
a hybrid approach where cluster assignment step is
performed in the GPU and the centroid update step is
performed in the CPU. A single kernel thread calculates
the centroid assignment for one data point. These
assignments are then transfered back to the CPU to
calculate the new centroid values. While some recent
efforts have found that performing all the computation
on the GPU can be beneficial, especially, when data sets
are large [8], that approach forgoes the opportunity to
make use of the powerful CPU cores that might also
be available in a distributed environment. Performing
partial computation on the CPU allows our approach
to implement software pipelining within iteration by
interleaving the work partitions and across several
iterations through speculation.

6.3 Overhead Estimation

Following the model that was used for MDS in
Section 4.2, we performed similar experiments for

estimating kernel scheduling and data transfer overheads
in K-Means Clustering. Clearly, for small data sets the
overheads are prohibitively high. This indicates that, in
general, a viable strategy to get the best performance
would be to offload the computation on the GPU
only when data sets are sufficiently large. Empirically
measured parameters can guide the decision process at
run time.

6.4 Performance across different environments

We compare the performance of OpenCL K-Means
Clustering implementation in the three environments
listed in Table 1. We also analyzed the performance
of double precision MDS in the two Tesla “Fermi”
environments and compared with the single precision
performance as presented in Figure 17. Fermi
and cloud-based GPGPU exhibited comparable
performance. Interestingly, single-precision and double-
precision in both the environments achieved similar
(within 10% range) performance peaking around
100 GFLOPS. However, the speedups over sequential
CPU computations were better on Amazon EC2 than
on bare metal Fermi nodes. The most likely reason
is that the virtualization overheads are high for CPU
execution, but low for GPGPUs. This indicates that a
good incentive exists to leverage cloud-based GPGPUs.
One interesting observation is the C1060 performing
better than newer Fermi architecture cards for the
single precision computations. The reasons might be the
overhead of ECC on Fermi and a possible suboptimal
usage of L1 cache in Fermi. Unfortunately current
NVIDIA OpenCL implementation do not provide a
mechanism to disable or configure the size of the L1
cache.

7 Lessons

In this study we set out to determine if we could
characterize some core data processing statistical kernels
for commonly used optimization techniques on GPUs.
We focused on three widely used kernels and four
important optimizations. We chose to use OpenCL,
since there are fewer experimental studies on OpenCL,
compared to CUDA, and the multi-platform availability
of OpenCL would allow us to extend our research to
other diverse hardware platforms. Our findings can be
summarized as follows:

1. Since parts of the algorithms tend to employ sparse
data structures or irregular memory accesses it is
useful to carry out portions of computation on the
CPU.

2. In the context of clusters of GPUs, inter-node
communication needs to go through CPU memory (as
of the writing of this paper in mid-2011). This makes
computing on the CPUs a compelling alternative on
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data received from remote nodes, when the CPU-
memory to device-memory data transfer times would
more than offset any gains to be had running the
algorithms on the GPUs.

3. Whenever possible, caching invariant data on GPU
for use across kernel invocations significantly impacts
performance.

4. While carefully optimizing the algorithms using
specialized memory is important, as past studies
have found, iterative statistical kernels cause complex
trade-offs to arise due to irregular data access
patterns (e.g., in use of texture memory) and size of
invariant data (e.g., in use of constant memory).

5. Encoding algorithms directly in OpenCL turns out
to be error-prone and difficult to debug. We believe
that OpenCL might be better suited as a compilation
target than a user programming environment.

In the rest of this section we elaborate on these findings.

Sharing work between CPU and GPU. One major issue
in sharing work between CPU and GPU is the host-
device data transfers. Clearly, this has to be balanced
against the improved parallelism across GPUs and multi-
core CPUs. Moreover, within the context of our study,
there is also the issue of how data across nodes get
transferred. If the data must move through CPUmemory
then in certain cases it might be beneficial to perform
the computation on the CPU. Through our simple
performance model and the overhead graphs the trade-
offs are apparent. These graphs could also help in
determining the cutoffs where offloading computation on
the GPU is worthwhile. Finally, in iterative algorithms,
where kernels are invoked repeatedly, offloading part of
the computation on the GPUs can also enable software
pipelining between CPU and GPU interleaving different
work partitions.

Another factor in determining the division of work is
the complexity of control flow. For instance, a reduction
operation in K-Means, or a sparse matrix-vector multiply
with relatively high density of non-zero values that might
involve a reduction operation, may be better suited
for computing on the CPU. This would be especially

attractive if there is sufficient other work to overlap with
GPU computations.

Finally, the differences in precision between CPU
and GPU can sometimes cause an iterative algorithm
to require different number of iterations on the two. A
decision strategy for scheduling an iterative algorithm
between CPU and GPU may also need to account for
these differences.

Unlike other optimizations, the value of this one is
determined largely by the nature of input data. As a
result, a dynamic mechanism to schedule computation
just-in-time based on the category of input could be a
more useful strategy than a static one.

GPU caching of loop-invariant data. There turns out
to be a significant amount of data that are invariant
and used across multiple kernel calls. Such data can be
cached in GPU memory to avoid repeated transfers from
the CPU memory in each iteration. However, in order
to harness this benefit, the loop-invariant data should
fit in the GPU global memory and should be retained
throughout the computation. When the size of loop-
invariant data is larger than the available GPU global
memory, it is more advantageous to distribute the work
across compute nodes rather than swapping the data in
and out of the GPU memory.

Leveraging Local Memory. It is not surprising that
making use of faster local memory turns out to be one
of the most important optimizations within OpenCL
kernels. In many cases, decision about which data to
keep in local memory is straightforward based on reuse
pattern and data size. For example, in K-Means and
MDS it is not possible to keep the entire data set in
local memory, since it is too big. However, the centroids
in K-Means and intermediate values in MDS can be
fruitfully stored there. Interestingly, that is true even on
the Fermi architecture even though it has a hardware
managed cache. Unfortunately, in some cases, such as
portions of MDS, leveraging local memory requires
making algorithmic changes in the code, which could be
a challenge for automatic translators.

Leveraging Texture Memory. Texture memory provides
a way to improved memory access of read-only data that
has regular access pattern in a two-dimensional mapping

Figure 17 K-Means performance comparison across different environments.
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of threads when the threads access contiguous chunks
of a two-dimensional array. In the kernels we studied
we found that the best performance was achieved when
threads were mapped in one dimension, even when the
array was two-dimensional. Each thread operated on an
entire row of the array. As a result, our implementation
was not conducive to utilizing texture memory.

Leveraging Constant Memory. As the name suggests,
constant memory is useful for keeping the data that is
invariant through the lifetime of a kernel. Unfortunately,
the size of the constant memory was too small to keep the
loop-invariant data, which do not change across kernel
calls, for the kernels that we studied. However, since
the data are required to be invariant only through one
invocation of the kernel, it is possible to use constant
memory to store data that might change across kernel
calls as long as there is no change within one call of
the kernel. The potential benefit comes when such data
exhibit temporal locality, since the GPU has a hardware
cache to store values read from constant memory so that
hits in the cache are served much faster than misses. This
gives us the possibility to use constant memory for the
broadcasting of loop-variant data, which are relatively
small and do not change within a single iteration. Still
the loop-variant data for larger MDS and PageRank test
cases were larger than the constant memory size.

Optimizing Data Layout. Laying out data in memory
is a known useful technique on CPUs. On GPUs, we
observed mixed results. While data layout in local
memory turned out to be useful for K-Means and
not for MDS, layout in global memory had significant
impact on MDS and no observable impact on K-Means.
This behavior is likely a result of different memory
access patterns. In general, contiguous global memory
accesses encourage hardware coalescing, whereas on
local memory bank conflicts play a more critical role.
Thus, the two levels of memories require different layout
management strategies. However, as long as the memory
access patterns are known the benefits are predictable,
thus making this optimization amenable to automatic
translation. In the case of PageRank, data layout has a
dramatic impact on performance, since it leads to not
only improved coalescing but also higher occupancy of
the GPU cores, as an improved layout changes the way
the work is divided across threads.

OpenCL experience. OpenCL provides a flexible
programing environment and supports simple
synchronization primitives, which helps in writing
substantial kernels. However, details such as the absence
of debugging support and lack of dynamic memory
allocation still make it a challenge writing code in
OpenCL. One possible way to make OpenCL-based
GPU computing accessible to more users is to develop
compilers for higher level languages that target OpenCL.
Insights gained through targeted application studies,

such as this, could be a useful input to such compiler
developers.

Amazon EC2 GPU instances. On Amazon EC2 cloud
computing environment, GPUs have lower virtualization
overheads than CPUs. As a result, the GPU to CPU
speedup is much higher than what is achieved on
bare hardware. However, single and double precision
performance are comparable.

8 Related Work

Emergence of accessible programming interfaces and
industry standard languages has tremendously increased
the interest in using GPUs for general purpose
computing. CUDA, by NVIDIA, has been the most
popular framework for this purpose [22]. In addition
to directly studying application implementations in
CUDA [12, 24, 31], there have been recent research
projects exploring CUDA in hybrid CUDA/MPI
environment [23], and using CUDA as a target in
automatic translation [19, 18, 3].

There have been several past attempts at
implementing the K-Means clustering algorithm on
GPUs, mostly using CUDA or OpenGL [25, 13, 28, 20,
16]. Recently, Dhanasekaran et al. have used OpenCL to
implement the K-Means algorithm [8]. In contrast to the
approach of Dhanasekaran et al., who implemented the
reduction step on GPUs in order to handle very large
data sets, we chose to mirror the earlier efforts with
CUDA and perform the reduction step on the CPU.
Even though that involves transferring the reduction
data to CPU, we found that the amount of data
that needed to be transferred was relatively small. In
optimizing K-Means, we used the device shared memory
to store the map data. As a result, when dealing with
very large data sets, which motivated Dhanasekaran et
al.’s research, our optimized kernel would run out of
shared memory before the reduction data becomes too
large to become a bottleneck. Further research is needed
to determine the trade-offs of giving up the optimization
of device shared-memory and performing the reduction
on the GPU.

We implemented the MDS kernel based on an
SMACOF implementation by Bae et al. [1]. Glimmer
is another multilevel MDS implementation [14]. While
Glimmer implements multilevel MDS using OpenGL
Shading Language (GLSL) for large data sets, Bae
used an interpolated approach for large data sizes,
which has been found to be useful in certain contexts.
This allowed us to experiment with optimizing the
algorithm for realistic contexts, without worrying about
dealing with data sets that do not fit in memory.
Our MDS implementation uses the SMACOF iterative
majorization algorithm. SMACOF is expected to give
better quality results than Glimmer, even though
Glimmer can process much larger data sets than
SMACOF [14]. Since our study is in the context of GPU
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clusters, with potentially vast amounts of distributed
memory, we traded off in favor of a more accurate
algorithm.

The computationally intensive part of PageRank is
sparse matrix-vector multiplication. We followed the
guidelines from an NVIDIA study for implementing
the sparse matrix-vector multiplication [4]. The sparse
matrix in PageRank algorithm usually results from
graphs following power law. Recent efforts to optimize
PageRank include using a low-level API to optimize
sparse matrix-vector product by using the power law
characteristics of the sparse matrix [29]. More recently,
Yang et al. leveraged this property to auto-tune sparse
matrix-vector multiplication on GPUs [30]. They built
an analytical model of CUDA kernels and estimated
parameters, such as tile size, for optimal execution.

9 Conclusion and Future Work

We have presented an experimental evaluation of
three important kernels used in iterative statistical
applications for large scale data processing, using
OpenCL. We implemented the SMACOF multi-
dimensional scaling algorithm on the GPUs (the first
GPU implementation, to the best of our knowledge) and
a devised a novel data layout scheme for irregular sparse
matrices suitable for GPU-based parallelization. In the
case of PageRank, this turns out to have a significant
impact on performance. We also implemented an
optimised KMeansClustering algorithm. We evaluated
three optimization techniques for each kernel, based on
leveraging fast local memory, laying out data for faster
memory access, and dividing the work between CPU
and GPU. We conclude that leveraging local memory
is critical to performance in almost all the cases. In
general, data layout is important in certain cases, and
when it is, it has significant impact. In contrast to other
optimizations, sharing work between CPU and GPUmay
be input data dependent, as in the case of K-Means,
which points to the importance of dynamic just-in-time
scheduling decisions. We also showed that Amazon EC2
cloud GPU instances as a viable enviroment to perform
comptuations using the above kernels.

Our planned future work includes extending the
kernels to a distributed environment, which is the
context that has motivated our study. Other possible
directions include comparing the OpenCL performance
with CUDA, studying more kernels from, possibly, other
domains, and exploring more aggressive CPU/GPU
sharing on more recent hardware that has improved
memory bandwidth.
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