
Special Issue on Java Technologies for Real-Time and Embedded Systems JTRES2013

Geoffrey Fox, School of Informatics and Computing, Indiana University, Bloomington, IN, 47401

This editorial describes a special issue of papers from the 2013 workshop on Java Technologies for Real-
Time and Embedded Systems [1]. There are 2 papers in this special issue.

The first paper [2] discusses software locking mechanisms that commonly protect shared resources for
multi-threaded applications. This mechanism can, especially in chip-multiprocessor systems, result in a
large synchronization overhead. For real-time systems in particular, this overhead increases the worst-
case execution time and may void a task set's schedulability. This paper presents two hardware locking
mechanisms to reduce the worst-case time required to acquire and release synchronization locks. These
solutions are implemented for the chip-multiprocessor version of the Java Optimized Processor. The two
hardware locking mechanisms are compared with a software locking solution as well as the original
locking system of the processor. The hardware cost and performance are evaluated for all presented
locking mechanisms. The performance of the better performing hardware locks is comparable to the
original single global lock when contending for the same lock. When several non-contending locks are
used, the hardware locks enable true concurrency for critical sections. Benchmarks show that using the
hardware locks yields performance ranging from no worse than the original locks to more than twice their
best performance. This improvement can allow a larger number of real-time tasks to be reliably scheduled
on a multiprocessor real-time platform.

Safety Critical Java (SCJ) is a profile of the Real-Time Specification for Java that brings to the safety-
critical industry the possibility of using Java. SCJ defines three compliance levels: Level 0, Level 1 and
Level 2. The SCJ specification is clear on what constitutes a Level 2 application in terms of its use of the
defined API, but not the occasions on which it should be used. The second paper [3] broadly classifies the
features that are only available at Level 2 into three groups: nested mission sequencers, managed threads,
and global scheduling across multiple processors. It then explores the first two groups to elicit
programming requirements that they support. The paper identifies several areas where the SCJ
specification needs modifications to support these requirements fully; these include: support for
terminating managed threads, the ability to set a deadline on the transition between missions, and
augmentation of the mission sequencer concept to support composability of timing constraints. We also
propose simplifications to the termination protocol of missions and their mission sequencers. To illustrate
the benefit of our changes, we present excerpts from a formal model of SCJ Level 2 written in Circus, a
state-rich process algebra for refinement.

We thank Kelvin Nilsen and Fridtjof Siebert for their work on this special issue.

References

1. The 11th International Workshop on Java Technologies for Real-Time and Embedded Systems
JTRES 2013, October 9-10, Karlsruhe, Germany

2. Torur Biskopstø Strøm, Wolfgang Puffitsch, and Martin Schoeberl, “Hardware Locks for a Real-
Time Java Chip-Multiprocessor”, Concurrency and Computation: Practice and Experience [this
issue].

3. Matt Luckcuck, Andy Wellings and Ana Cavalcanti, “Safety-Critical Java: Level 2 in Practice”,
Concurrency and Computation: Practice and Experience [this issue].

