
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/49513694

Scale-Out RDF Molecule Store for Efficient, Scalable Data Integration and

Querying

Article · July 2010

DOI: 10.1201/EBK1439803158-c14 · Source: OAI

CITATIONS

0
READS

227

3 authors:

Some of the authors of this publication are also working on these related projects:

Video Understanding View project

3D Water Atlas View project

Yuan-Fang Li

Monash University (Australia)

101 PUBLICATIONS 792 CITATIONS

SEE PROFILE

Andrew Newman

The University of Queensland

14 PUBLICATIONS 154 CITATIONS

SEE PROFILE

Jane Hunter

The University of Queensland

205 PUBLICATIONS 2,963 CITATIONS

SEE PROFILE

All content following this page was uploaded by Yuan-Fang Li on 22 May 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/49513694_Scale-Out_RDF_Molecule_Store_for_Efficient_Scalable_Data_Integration_and_Querying?enrichId=rgreq-cb268135e22278ad602f266fe891d160-XXX&enrichSource=Y292ZXJQYWdlOzQ5NTEzNjk0O0FTOjk5NTg2MDcyOTA3NzgxQDE0MDA3NTQ1Nzg1NTE%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/49513694_Scale-Out_RDF_Molecule_Store_for_Efficient_Scalable_Data_Integration_and_Querying?enrichId=rgreq-cb268135e22278ad602f266fe891d160-XXX&enrichSource=Y292ZXJQYWdlOzQ5NTEzNjk0O0FTOjk5NTg2MDcyOTA3NzgxQDE0MDA3NTQ1Nzg1NTE%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Video-Understanding-2?enrichId=rgreq-cb268135e22278ad602f266fe891d160-XXX&enrichSource=Y292ZXJQYWdlOzQ5NTEzNjk0O0FTOjk5NTg2MDcyOTA3NzgxQDE0MDA3NTQ1Nzg1NTE%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/3D-Water-Atlas?enrichId=rgreq-cb268135e22278ad602f266fe891d160-XXX&enrichSource=Y292ZXJQYWdlOzQ5NTEzNjk0O0FTOjk5NTg2MDcyOTA3NzgxQDE0MDA3NTQ1Nzg1NTE%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-cb268135e22278ad602f266fe891d160-XXX&enrichSource=Y292ZXJQYWdlOzQ5NTEzNjk0O0FTOjk5NTg2MDcyOTA3NzgxQDE0MDA3NTQ1Nzg1NTE%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yuan-Fang_Li2?enrichId=rgreq-cb268135e22278ad602f266fe891d160-XXX&enrichSource=Y292ZXJQYWdlOzQ5NTEzNjk0O0FTOjk5NTg2MDcyOTA3NzgxQDE0MDA3NTQ1Nzg1NTE%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yuan-Fang_Li2?enrichId=rgreq-cb268135e22278ad602f266fe891d160-XXX&enrichSource=Y292ZXJQYWdlOzQ5NTEzNjk0O0FTOjk5NTg2MDcyOTA3NzgxQDE0MDA3NTQ1Nzg1NTE%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Monash_University_Australia?enrichId=rgreq-cb268135e22278ad602f266fe891d160-XXX&enrichSource=Y292ZXJQYWdlOzQ5NTEzNjk0O0FTOjk5NTg2MDcyOTA3NzgxQDE0MDA3NTQ1Nzg1NTE%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yuan-Fang_Li2?enrichId=rgreq-cb268135e22278ad602f266fe891d160-XXX&enrichSource=Y292ZXJQYWdlOzQ5NTEzNjk0O0FTOjk5NTg2MDcyOTA3NzgxQDE0MDA3NTQ1Nzg1NTE%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrew_Newman3?enrichId=rgreq-cb268135e22278ad602f266fe891d160-XXX&enrichSource=Y292ZXJQYWdlOzQ5NTEzNjk0O0FTOjk5NTg2MDcyOTA3NzgxQDE0MDA3NTQ1Nzg1NTE%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrew_Newman3?enrichId=rgreq-cb268135e22278ad602f266fe891d160-XXX&enrichSource=Y292ZXJQYWdlOzQ5NTEzNjk0O0FTOjk5NTg2MDcyOTA3NzgxQDE0MDA3NTQ1Nzg1NTE%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/The_University_of_Queensland?enrichId=rgreq-cb268135e22278ad602f266fe891d160-XXX&enrichSource=Y292ZXJQYWdlOzQ5NTEzNjk0O0FTOjk5NTg2MDcyOTA3NzgxQDE0MDA3NTQ1Nzg1NTE%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrew_Newman3?enrichId=rgreq-cb268135e22278ad602f266fe891d160-XXX&enrichSource=Y292ZXJQYWdlOzQ5NTEzNjk0O0FTOjk5NTg2MDcyOTA3NzgxQDE0MDA3NTQ1Nzg1NTE%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jane_Hunter?enrichId=rgreq-cb268135e22278ad602f266fe891d160-XXX&enrichSource=Y292ZXJQYWdlOzQ5NTEzNjk0O0FTOjk5NTg2MDcyOTA3NzgxQDE0MDA3NTQ1Nzg1NTE%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jane_Hunter?enrichId=rgreq-cb268135e22278ad602f266fe891d160-XXX&enrichSource=Y292ZXJQYWdlOzQ5NTEzNjk0O0FTOjk5NTg2MDcyOTA3NzgxQDE0MDA3NTQ1Nzg1NTE%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/The_University_of_Queensland?enrichId=rgreq-cb268135e22278ad602f266fe891d160-XXX&enrichSource=Y292ZXJQYWdlOzQ5NTEzNjk0O0FTOjk5NTg2MDcyOTA3NzgxQDE0MDA3NTQ1Nzg1NTE%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jane_Hunter?enrichId=rgreq-cb268135e22278ad602f266fe891d160-XXX&enrichSource=Y292ZXJQYWdlOzQ5NTEzNjk0O0FTOjk5NTg2MDcyOTA3NzgxQDE0MDA3NTQ1Nzg1NTE%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yuan-Fang_Li2?enrichId=rgreq-cb268135e22278ad602f266fe891d160-XXX&enrichSource=Y292ZXJQYWdlOzQ5NTEzNjk0O0FTOjk5NTg2MDcyOTA3NzgxQDE0MDA3NTQ1Nzg1NTE%3D&el=1_x_10&_esc=publicationCoverPdf

Cloud Computing and
Software Services

Theory and Techniques

Cloud Computing and
Software Services

Theory and Techniques

Edited by

Syed A. Ahson • Mohammad Ilyas

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2011 by Taylor and Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number-13: 978-1-4398-0316-5 (Ebook-PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

v

Contents

Preface..vii
Editor..ix
Contributors..xi

  1  Understanding.the.Cloud.Computing.Landscape...................................1
Lamia.YoUsEff,.DiLma.m..Da.siLva,.maria.BUtriCo,.anD.
Jonathan.aPPavoo

  2  science.Gateways:.harnessing.Clouds.and.software.services.for.
science...17
nanCY.WiLkins-DiEhr,.Chaitan.BarU,.DEnnis.Gannon,.
katE.kEahEY,.John.mCGEE,.marLon.PiErCE,.riCh.WoLski,.
anD.WEnJUn.WU

  3  Enterprise.knowledge.Clouds:.next.Generation.knowledge.
management.systems?...47
JEff.riLEY.anD.kEmaL.DELiC

  4  real.Cases.and.applications.of.Cloud.Computing...............................61
JinzY.zhU

  5  Large-scale.Data.Processing...89
hUan.LiU

  6  toward.a.reliable.Cloud.Computing.service.....................................139
thomas.J..haCkEr

  7  abstractions.for.Cloud.Computing.with.Condor...............................153
DoUGLas.thain.anD.ChristoPhEr.morEtti

  8  Exploiting.the.Cloud.of.Computing.Environments:.an.
application’s.Perspective...173
raPhaEL.BoLzE.anD.EWa.DEELman

vi  ◾  Contents

  9  Granules:.a.Lightweight.runtime.for.scalable.Computing.
with.support.for.map-reduce...201
shriDEEP.PaLLiCkara,.JaLiYa.EkanaYakE,.anD.GEoffrEY.fox

10  Dynamic.and.adaptive.rule-Based.Workflow.Engine.for.
scientific.Problems.in.Distributed.Environments...............................227
marC.frinCU.anD.CiPrian.CraCiUn

11  transparent.Cross-Platform.access.to.software.services.Using.
Gridsolve.and.GridrPC..253
kEith.sEYmoUr,.asim.Yarkhan,.anD.JaCk.DonGarra

12  high-Performance.Parallel.Computing.with.Cloud.and.Cloud.
technologies..275
JaLiYa.EkanaYakE,.xiaohonG.QiU,.thiLina.GUnarathnE,.
sCott.BEason,.anD.GEoffrEY.fox

13  BiovLaB:.Bioinformatics.Data.analysis.Using.Cloud.
Computing.and.Graphical.Workflow.Composers...............................309
YoUnGik.YanG,.JonG.YoUL.Choi,.ChathUra.hErath,.
sUrEsh.marrU,.anD.sUn.kim

14  scale-out.rDf.molecule.store.for.Efficient,.scalable.Data.
integration.and.Querying...329
YUan-fanG.Li,.anDrEW.nEWman,.anD.JanE.hUntEr

15  Enabling.xmL.Capability.for.hadoop.and.its.applications.in.
healthcare...355
JianfEnG.Yan,.Jin.zhanG,.YinG.Yan,.anD.WEn-sYan.Li

16  toward.a.Qos-focused.saas.Evaluation.model..................................389
xian.ChEn,.aBhishEk.srivastava,.anD.PaUL.sorEnson

17  risk.Evaluation-based.selection.approach.for.transactional.
services.Composition... 409
hai.LiU,.kaiJUn.rEn,.WEimin.zhanG,.anD.JinJUn.ChEn

index..431

vii

Preface

Cloud computing has gained significant traction in recent years. The proliferation of
networked devices, Internet services, and simulations has resulted in large volumes
of data being produced. This, in turn, has fueled the need to process and store vast
amounts of data. These data volumes cannot be processed by a single computer or a
small cluster of computers. Furthermore, in most cases, these data can be processed
in a pleasingly parallel fashion. The result has been the aggregation of a large number
of commodity hardware components in vast data centers. Among the forces that
have driven the need for cloud computing are falling hardware costs and burgeon-
ing data volumes. The ability to procure cheaper, more powerful CPUs coupled
with improvements in the quality and capacity of networks have made it possible to
assemble clusters at increasingly attractive prices. By facilitating access to an elastic
(meaning the available resource pool that can expand or contract over time) set
of resources, cloud computing has demonstrable applicability to a wide range of
problems in several domains. Among the many applications that benefit from cloud
computing and cloud technologies, the data/compute-intensive applications are the
most important. The deluge of data and the highly compute-intensive applications
found in many domains, such as particle physics, biology, chemistry, finance, and
information retrieval, mandate the use of large computing infrastructures and par-
allel processing to achieve considerable performance gains in analyzing data. The
addition of cloud technologies creates new trends in performing parallel computing.

The introduction of commercial cloud infrastructure services has allowed users
to provision compute clusters fairly easily and quickly by paying a monetary value for
the duration of their usages of the resources. The provisioning of resources happens
in minutes, as opposed to hours and days required in the case of traditional queue-
based job-scheduling systems. In addition, the use of such virtualized resources
allows the user to completely customize the virtual machine images and use them
with administrative privileges, another feature that is hard to achieve with tradi-
tional infrastructures. Appealing features within cloud computing include access
to a vast number of computational resources and inherent resilience to failures.
The latter feature arises because in cloud computing the focus of execution is not
a specific, well-known resource but rather the best available one. The availability

viii  ◾  Preface

of open-source cloud infrastructure software and open-source virtualization soft-
ware stacks allows organizations to build private clouds to improve the resource
utilization of the available computation facilities. The possibility of dynamically
provisioning additional resources by leasing from commercial cloud infrastructures
makes the use of private clouds more promising. Another characteristic of a lot of
programs that have been written for cloud computing is that they tend to be state-
less. Thus, when failures do take place, the appropriate computations are simply
relaunched with the corresponding datasets.

This book provides technical information about all aspects of cloud computing,
from basic concepts to research grade material including future directions. It cap-
tures the current state of cloud computing and serves as a comprehensive source of
reference material on this subject. It consists of 17 chapters authored by 50 experts
from around the world. The targeted audience include designers and/or planners
for cloud computing systems, researchers (faculty members and graduate students),
and those who would like to learn about this field.

The book is expected to have the following specific salient features:

 ◾ To serve as a single comprehensive source of information and as reference
material on cloud computing

 ◾ To deal with an important and timely topic of emerging technology of today,
tomorrow, and beyond

 ◾ To present accurate, up-to-date information on a broad range of topics related
to cloud computing

 ◾ To present the material authored by the experts in the field
 ◾ To present the information in an organized and well-structured manner

Although, technically, the book is not a textbook, it can certainly be used as a
textbook for graduate courses and research-oriented courses that deal with cloud
computing. Any comments from the readers will be highly appreciated.

Many people have contributed to this book in their own unique ways. First and
foremost, we would like to express our immense gratitude to the group of highly
talented and skilled researchers who have contributed 17 chapters to this book. All
of them have been extremely cooperative and professional. It has also been a plea-
sure to work with Rich O’Hanley and Jessica Vakili of CRC Press; we are extremely
grateful to them for their support and professionalism. Special thanks are also due
to our families who have extended their unconditional love and support through-
out this project.

syed.ahson
Seattle, Washington

mohammad.ilyas
Boca Raton, Florida

ix

Editors

syed.ahson is a senior software design engineer at Microsoft. As part of the Mobile
Voice and Partner Services group, he is currently engaged in research on new end-
to-end mobile services and applications. Before joining Microsoft, Syed was a senior
staff software engineer at Motorola, where he contributed significantly in leading
roles toward the creation of several iDEN, CDMA, and GSM cellular phones. He
has extensive experience with wireless data protocols, wireless data applications,
and cellular telephony protocols. Before joining Motorola, Syed worked as a senior
software design engineer at NetSpeak Corporation (now part of Net2Phone), a
pioneer in VoIP telephony software.

Syed has published more than 10 books on emerging technologies such as
Cloud Computing, Mobile Web 2.0, and Service Delivery Platforms. His recent books
include Cloud Computing and Software Services: Theory and Techniques and Mobile
Web 2.0: Developing and Delivering Services to Mobile Phones. He has authored
several research articles and teaches computer engineering courses as adjunct fac-
ulty at Florida Atlantic University, Boca Raton, where he introduced a course on
Smartphone technology and applications. Syed received his MS in computer engi-
neering from Florida Atlantic University in July 1998, and his BSc in electrical
engineering from Aligarh University, India, in 1995.

Dr. Mohammad Ilyas is an associate dean for research and industry relations and
professor of computer science and engineering in the College of Engineering and
Computer Science at Florida Atlantic University, Boca Raton, Florida. He is also
currently serving as interim chair of the Department of Mechanical and Ocean
Engineering. He received his BSc in electrical engineering from the University
of Engineering and Technology, Lahore, Pakistan, in 1976. From March 1977
to September 1978, he worked for the Water and Power Development Authority,
Lahore, Pakistan. In 1978, he was awarded a scholarship for his graduate studies
and he received his MS in electrical and electronic engineering in June 1980 from
Shiraz University, Shiraz, Iran. In September 1980, he joined the doctoral pro-
gram at Queen’s University in Kingston, Ontario, Canada. He completed his PhD
in 1983. His doctoral research was about switching and flow control techniques

x  ◾  Editors

in computer communication networks. Since September 1983, he has been with
the College of Engineering and Computer Science at Florida Atlantic University.
From 1994 to 2000, he was chair of the Department of Computer Science and
Engineering. From July 2004 to September 2005, he served as interim associate
vice president for research and graduate studies. During the 1993–1994 academic
year, he was on sabbatical leave with the Department of Computer Engineering,
King Saud University, Riyadh, Saudi Arabia.

Dr. Ilyas has conducted successful research in various areas, including traf-
fic management and congestion control in broadband/high-speed communication
networks, traffic characterization, wireless communication networks, performance
modeling, and simulation. He has published 1 book, 16 handbooks, and over 160
research articles. He has also supervised 11 PhD dissertations and more than 38
MS theses to completion. He has been a consultant to several national and inter-
national organizations. Dr. Ilyas is an active participant in several IEEE technical
committees and activities and is a senior member of IEEE and a member of ASEE.

xi

Contributors

Jonathan.appavoo
Department of Computer Science
Boston University
Boston, Massachusetts

and

IBM Thomas J. Watson Research
Center

Yorktown Heights, New York

Chaitan.Baru
San Diego Supercomputer Center
University of California at San Diego
La Jolla, California

scott.Beason
Community Grids Laboratory
Pervasive Technology Institute
Indiana University
Bloomington, Indiana

raphael.Bolze
Information Sciences Institute
University of Southern California
Marina del Rey, California

maria.Butrico
IBM Thomas J. Watson Research

Center
Yorktown Heights, New York

Jinjun.Chen
Centre for Complex Software Systems

and Services
Faculty of Information and

Communication Technologies
Swinburne University of Technology
Melbourne, Victoria, Australia

xian.Chen
Department of Computing Science
University of Alberta
Edmonton, Alberta, Canada

Jong.Youl.Choi
School of Informatics and Computing
Indiana University
Bloomington, Indiana

Ciprian.Craciun
Computer Science Department
West University of Timisoara

and

Research Institute e-Austria Timisoara
Timisoara, Romania

Dilma.m..Da.silva
IBM Thomas J. Watson Research

Center
Yorktown Heights, New York

xii  ◾  Contributors

Ewa.Deelman
Information Sciences Institute
University of Southern California
Marina del Rey, California

kemal.Delic
Institut d’Administration des

Entreprises
Université Pierre-Mendès-France
Grenoble, France

Jack.Dongarra
Department of Electrical Engineering

and Computer Science
University of Tennessee
Knoxville, Tennessee

and

Computer Science and Mathematics
Division

Oak Ridge National Laboratory
Oak Ridge, Tennessee

Jaliya.Ekanayake
Community Grids Laboratory
Pervasive Technology Institute
Indiana University

and

School of Informatics and Computing
Indiana University
Bloomington, Indiana

Geoffrey.fox
Community Grids Laboratory
Pervasive Technology Institute
Indiana University

and

School of Informatics and Computing
Indiana University
Bloomington, Indiana

marc.frincu
Computer Science Department
West University of Timisoara

and

Research Institute e-Austria Timisoara
Timisoara, Romania

Dennis.Gannon
Date Center Futures
Microsoft Research
Redmond, Washington

Thilina.Gunarathne
Community Grids Laboratory
Pervasive Technology Institute
Indiana University

and

School of Informatics and Computing
Indiana University
Bloomington, Indiana

Thomas.J..hacker
Computer and Information

Technology
Discovery Park Cyber Center
Purdue University
West Lafayette, Indiana

Chathura.herath
School of Informatics and Computing
Indiana University
Bloomington, Indiana

Jane.hunter
School of Information Technology &

Electrical Engineering
The University of Queensland
Brisbane, Queensland, Australia

Contributors  ◾  xiii

kate.keahey
Computation Institute
University of Chicago
Chicago, Illinois

and

Argonne National Laboratory
Argonne, Illinois

sun.kim
School of Informatics and Computing
Indiana University
Bloomington, Indiana

Wen-syan.Li
SAP Research China
Shanghai, People’s Republic of China

Yuan-fang.Li
School of Information Technology &

Electrical Engineering
The University of Queensland
Brisbane, Queensland, Australia

hai.Liu
College of Computer
National University of Defense

Technology
Changsha, People’s Republic of China

huan.Liu
Accenture Technology Labs
San Jose, California

suresh.marru
School of Informatics and Computing
Indiana University
Bloomington, Indiana

John.mcGee
Renaissance Computing Institute
University of North Carolina
Chapel Hill, North Carolina

Christopher.moretti
Department of Computer Science and

Engineering
University of Notre Dame
Notre Dame, Indiana

andrew.newman
School of Information Technology &

Electrical Engineering
The University of Queensland
Brisbane, Queensland, Australia

shrideep.Pallickara
Department of Computer Science
Colorado State University
Fort Collins, Colorado

marlon.Pierce
Community Grids Laboratory
Pervasive Technology Institute
Indiana University
Bloomington, Indiana

xiaohong.Qiu
Community Grids Laboratory
Pervasive Technology Institute
Indiana University
Bloomington, Indiana

kaijun.ren
College of Computer
National University of Defense

Technology
Changsha, People’s Republic of China

Jeff.riley
School of Computer Science and

Information Technology
RMIT University
Melbourne, Victoria, Australia

xiv  ◾  Contributors

keith.seymour
Department of Electrical Engineering

and Computer Science
University of Tennessee
Knoxville, Tennessee

Paul.sorenson
Department of Computing Science
University of Alberta
Edmonton, Alberta, Canada

abhishek.srivastava
Department of Computing Science
University of Alberta
Edmonton, Alberta, Canada

Douglas.Thain
Department of Computer Science and

Engineering
University of Notre Dame
Notre Dame, Indiana

nancy.Wilkins-Diehr
San Diego Supercomputer Center
University of California at San Diego
La Jolla, California

rich.Wolski
Eucalyptus Systems
University of California at Santa

Barbara
Santa Barbara, California

Wenjun.Wu
Computation Institute
University of Chicago
Chicago, Illinois

Jianfeng.Yan
SAP Research China
Shanghai, People’s Republic of China

Ying.Yan
SAP Research China
Shanghai, People’s Republic of China

Youngik.Yang
School of Informatics and Computing
Indiana University
Bloomington, Indiana

asim.Yarkhan
Department of Electrical Engineering

and Computer Science
University of Tennessee
Knoxville, Tennessee

Lamia.Youseff
Department of Computer Science
University of California, Santa Barbara
Santa Barbara, California

Jin.zhang
SAP Research China
Shanghai, People’s Republic of China

Weimin.zhang
College of Computer
National University of Defense

Technology
Changsha, People’s Republic of China

Jinzy.zhu
IBM Cloud Computing Labs &

HiPODS
IBM Software Group/Enterprise

Initiatives
Beijing, People’s Republic of China

1

Chapter 1

Understanding the Cloud 
Computing Landscape

Lamia Youseff, Dilma M. Da Silva,
Maria Butrico, and Jonathan Appavoo

Contents
1.1 Introduction ...2
1.2 Cloud Systems Classifications ..2
1.3 SPI Cloud Classification ...2

1.3.1 Cloud Software Systems ...3
1.3.2 Cloud Platform Systems ..3
1.3.3 Cloud Infrastructure Systems ...4

1.4 UCSB-IBM Cloud Ontology ...4
1.4.1 Applications (SaaS) ...5
1.4.2 Cloud Software Environment (PaaS) ..7
1.4.3 Cloud Software Infrastructure ..8
1.4.4 Software Kernel Layer ...9
1.4.5 Cloud Hardware/Firmware ...9

1.5 Jackson’s Expansion on the UCSB-IBM Ontology10
1.6 Hoff’s Cloud Model ...11
1.7 Discussion ..13
References ...14

2  ◾  Cloud Computing and Software Services

1.1  Introduction
The goal of this chapter is to present an overview of three different structured
views of the cloud computing landscape. These three views are the SPI cloud clas-
sification, the UCSB-IBM cloud ontology, and Hoff’s cloud model. Each one of
these three cloud models strives to present a comprehension of the interdependency
between the different cloud systems as well as to show their potential and limita-
tions. Furthermore, these models vary in the degree of simplicity and comprehen-
siveness in describing the cloud computing landscape. We find that these models
are complementary and that by studying the three structured views, we get a gen-
eral overview of the landscape of this evolving computing field.

1.2  Cloud Systems Classifications
The three cloud classification models present different levels of details of the cloud
computing landscape, since they emerged in different times of evolution of this
computing field. Although they have different objectives—some are for academic
understanding of the novel research area, while others target identifying and ana-
lyzing commercial and market opportunities—they collectively expedite compre-
hending some of the interrelations between cloud computing systems. Although
we present them in this chapter in a chronological order of their emergence—
which also happens to reflect the degree of details of each model—this order does
not reflect the relative importance or acceptance of one model over the other. On
the other hand, the three models and their extensions are complementary, reflect-
ing different views of the cloud. We first present the SPI model in Section 1.2,
which is the oldest of the three models. The second classification is the UCSB-
IBM ontology, which we detail in Section 1.3. We also present a discussion of a
recent extension to this ontology in Section 1.4. The third classification is Hoff ’s
cloud model, which we present in Section 1.5. We discuss the importance of these
classifications and their potential impact on this emerging computing field in
Section 1.6.

1.3  SPI Cloud Classification
As the area of cloud computing was emerging, the systems developed for the cloud
were quickly stratified into three main subsets of systems: Software as a Service
(SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS). Early
on, these three subsets of the cloud were discussed by several cloud computing
experts, such as in [24,30,31]. Based on this general classification of cloud systems,
the SPI model was formed and denotes the Software, Platform, and Infrastructure
systems of the cloud, respectively.

Understanding the Cloud Computing Landscape  ◾  3

1.3.1 Cloud Software Systems
This subset of cloud systems represents applications built for and deployed for the
cloud on the Internet, which are commonly referred to as Software as a Service
(SaaS). The target user of this subset of systems is the end user. These applications,
which we shall refer to as cloud applications, are normally browser based with pre-
defined functionality and scope, and they are accessed, sometimes, for a fee per a
particular usage metric predefined by the cloud SaaS provider. Some examples of
SaaS are salesforce customer relationships management (CRM) system [33], and
Google Apps [20] like Google Docs and Google SpreadSheets.

SaaS is considered by end users to be an attractive alternative to desktop applica-
tions for several reasons. For example, having the application deployed at the pro-
vider’s data center lessens the hardware and maintenance requirements on the users’
side. Moreover, it simplifies the software maintenance process, as it enables the soft-
ware developers to apply subsequent frequent upgrades and fixes to their applications
as they retain access to their software service deployed at the provider’s data center.

1.3.2 Cloud Platform Systems
The second subset of this classification features the cloud platform systems. In this
class of systems, denoted as Platform as a Service (PaaS), the provider supplies a
platform of software environments and application programming interfaces (APIs)
that can be utilized in developing cloud applications. Naturally, the users of this
class of systems are developers who use specific APIs to build, test, deploy, and tune
their applications on the cloud platform. One example of systems in this category is
Google’s App Engine [19], which provides Python and Java runtime environments
and APIs for applications to interact with Google’s runtime environment. Arguably,
Microsoft Azure [26] can also be considered a platform service that provides an API
and allows developers to run their application in the Microsoft Azure environment.

Developing an application for a cloud platform is analogous to some extent to
developing a web application for the old web servers model, in the sense that devel-
opers write codes and deploy them in a remote server. For end users, the final result is
a browser-based application. However, the PaaS model is different in that it can pro-
vide additional services to simplify application development, deployment, and exe-
cution, such as automatic scalability, monitoring, and load balancing. Furthermore,
the application developers can integrate other services provided by the PaaS sys-
tem to their application, such as authentication services, e-mail services, and user
interface components. All that is provided through a set of APIs is supplied by the
platform. As a result, the PaaS class is generally regarded to accelerate the software
development and deployment time. In turn, the cloud software built for the cloud
platform normally has a shorter time-to-market. Some academic projects have also
emerged to support a more thorough understanding of PaaS, such as AppScale [5].

4  ◾  Cloud Computing and Software Services

Another feature that typifies PaaS services is the provision of APIs for meter-
ing and billing information. Metering and billing permits application developers
to more readily develop a consumption-based business model around their appli-
cation. Such a support helps integrate and enforce the relationships between end
users, developers, PaaS, and any lower-level providers, while enabling the economic
value of the developers and providers.

1.3.3 Cloud Infrastructure Systems
The third class of systems, according to the SPI classification model, provides infra-
structure resources, such as compute, storage, and communication services, in a
flexible manner. These systems are denoted as Infrastructure as a Service (IaaS).
Amazon’s Elastic Compute Cloud (EC2 [8]) and Enomalism elastic computing
infrastructure [10] are arguably the two most popular examples of commercial sys-
tems available in this cloud category.

Recent advances in operating system (OS) Virtualization have facilitated the
implementation of IaaS and made it plausible on existing hardware. In this regard,
OS Virtualization technology enables a level of indirection with respect to direct
hardware usage. It allows direct computer usage to be encapsulated and isolated in
the container of a virtual machine (VM) instance. As a result, OS Virtualization
enables all software and associated resource usage of an individual hardware user
to be treated as a schedulable entity that is agnostic to the underlying physical
resources that it is scheduled to use. Therefore, OS Virtualization allows IaaS
providers to control and manage efficient utilization of the physical resources by
enabling the exploitation of both time division and statistical multiplexing, while
maintaining the familiar and flexible interface of individual standard hardware
computers and networks for the construction of services using existing practices
and software. This approach is particularly attractive to IaaS providers given the
underutilization of the energy-hungry, high-speed processors that constitute the
infrastructure of data centers. Amazon’s infrastructure service, EC2, is one exam-
ple of IaaS systems, where users can rent computing power on their infrastructure
by the hour. In this space, there are also several academic open-source cloud proj-
ects, such as Eucalyptus [14] and Virtual Workspaces [38].

1.4  UCSB-IBM Cloud Ontology
The UCSB-IBM cloud ontology emerged through a collaboration effort between
academia (University of California, Santa Barbara) and industry (IBM T.J. Watson
Research Center) in an attempt to understand the cloud computing landscape. The
end goal of this effort was to facilitate the exploration of the cloud computing area
as well as to advance the educational efforts in teaching and adopting the cloud
computing area.

Understanding the Cloud Computing Landscape  ◾  5

In this classification, the authors used the principle of composability from a
Service-Oriented Architecture (SOA) to classify the different layers of the cloud.
Composability in SOA is the ability to coordinate and assemble a collection of ser-
vices to form composite services. In this sense, cloud services can also be composed
of one or more of other cloud services.

By the principle of composability, the UCSB-IBM model classified the cloud
in five layers. Each layer encompasses one or more cloud services. Cloud services
belong to the same layer if they have an equivalent level of abstraction, as evident
by their targeted users. For example, all cloud software environments (also known
cloud platforms) target programmers, while cloud applications target end users.
Therefore, cloud software environments would be classified in a different layer than
cloud applications. In the UCSB-IBM model, the five layers compose a cloud stack,
where one cloud layer is considered higher in the cloud stack if the services it pro-
vides can be composed from the services that belong to the underlying layer. The
UCSB-IBM cloud model is depicted in Figure 1.1.

The first three layers of the UCSB-IBM cloud are similar to the SPI classifica-
tion, except that the authors break the infrastructure layer into three components.
The three components that compose the UCSB-IBM infrastructure layer are com-
putational resources, storage, and communications. In the rest of this section, we
explain in more detail this ontology’s components.

1.4.1 Applications (SaaS)
Similar to the SPI model, the first layer is the cloud application layer. The cloud
application layer is the most visible layer to the end users of the cloud. Normally,
users access the services provided by this layer through the browser via web

Cloud applications
(e.g., SaaS)

Cloud software environments
(e.g., PaaS)

Cloud software infrastructures

Computational
resources (IaaS)

Storage
(DaaS)

Communications
(CaaS)

Software kernels & middleware

Firmware/hardware (HaaS)

Figure 1.1  UCSB-IBM Cloud Computing Classification Model depicted as five 
layers, with three constituents to the cloud infrastructure layer.

6  ◾  Cloud Computing and Software Services

portals, and are sometimes required to pay fees to use them. This model has been
recently proven to be attractive to many users, as it alleviates the burden of soft-
ware maintenance and the ongoing operation and support costs. Furthermore,
it exports the computational work from the users’ terminal to the data centers
where the cloud applications are deployed. This in turn lessens the hardware
requirements needed at the users’ end, and allows them to obtain superb perfor-
mance for some of their CPU-intensive and memory-intensive workloads with-
out necessitating large capital investments in their local machines. Arguably,
the cloud application layer has enabled the growth of a new class of end-user
devices in the form of “netbook” computers, which are less expensive end-user
devices that rely on network connectivity and cloud applications for functional-
ity. Netbook computers often have limited processing capability with little or
no disk drive-based storage, relying on cloud applications to meet the needs for
both.

As for the providers of cloud applications, this model simplifies their work with
respect to upgrading and testing the code, while protecting their intellectual prop-
erty. Since a cloud application is deployed at the provider’s computing infrastruc-
ture (rather than at the users’ desktop machines), the developers of the application
are able to roll smaller patches to the system and add new features without disturb-
ing the users with requests to install updates or service packs. The configuration
and testing of the application in this model is arguably less complicated, since the
deployment environment, i.e., the provider’s data center becomes restricted. Even
with respect to the provider’s profit margin, this model supplies the software pro-
vider with a continuous flow of revenue, which might be even more profitable on
the long run. This SaaS model conveys several favorable benefits for the users and
providers of the cloud application. The body of research on SOA has numerous
studies on composable IT services, which have a direct application to providing
and composing SaaS.

The UCSB-IBM ontology illustrates that the cloud applications can be devel-
oped on the cloud software environments or infrastructure components (as
discussed in Sections 1.3.2 and 1.3.3). In addition, cloud applications can be com-
posed as a service from other services, using the concepts of SOA. For example, a
payroll application might use another accounting system’s SaaS to calculate the
tax deductibles for each employee in its system without having to implement this
service within the payroll software. In this respect, the cloud applications targeted
for higher layers in the stack are simpler to develop and have a shorter time-to-
market. Furthermore, they become less error prone, since all their interactions with
the cloud are through pretested APIs. However, being developed for a higher stack
layer limits the flexibility of the application and restricts the developers’ ability to
optimize its performance.

Despite all the advantageous benefits of this model, several deployment issues
hinder its wide adoption. Specifically, the security and availability of the cloud

Understanding the Cloud Computing Landscape  ◾  7

applications are two of the major issues in this model, and they are currently
addressed by the use of lenient service-level agreements (SLAs). Furthermore, cop-
ing with outages is a realm that users and providers of SaaS have to tackle, especially
with possible network outage and system failures. Additionally, the integration of
legacy applications and the migration of the users’ data to the cloud are slowing the
adoption of SaaS. Before they can persuade users to migrate from desktop applica-
tions to cloud applications, cloud applications’ providers need to address end-users’
concerns about security and safety of storing confidential data on the cloud, users’
authentication and authorization, uptime and performance, as well as data backup
and disaster recovery.

1.4.2 Cloud Software Environment (PaaS)
The second layer in the UCSB-IBM cloud ontology is the cloud software envi-
ronment layer (also dubbed the software platform layer). The users of this layer
are cloud applications’ developers, implementing their applications and deploy-
ing them on the cloud. The providers of the cloud software environments supply
the developers with a programming-language-level environment of well-defined
APIs to facilitate the interaction between the environments and the cloud applica-
tions, as well as to accelerate the deployment and support the scalability needed
by cloud applications. The service provided by cloud systems in this layer is com-
monly referred to as Platform as a Service (PaaS). Section 1.2 mentioned Google’s
App Engine and Microsoft Azure as examples of this category. Another example is
SalesForce’s Apex language [2] that allows the developers of the cloud applications
to design, along with their applications’ logic, their page layout, workflow, and
customer reports.

Developers reap several benefits from developing their cloud application for a
cloud programming environment, including automatic scaling and load balanc-
ing, as well as integration with other services (e.g., authentication services, e-mail
services, and user interface) supplied to them by the PaaS provider. In such a way,
much of the overhead of developing cloud applications is alleviated and is handled
at the environment level. Furthermore, developers have the ability to integrate other
services to their applications on demand. This makes the development of cloud
applications a less complicated task, accelerates the deployment time, and mini-
mizes the logic faults in the application. In this respect, a Hadoop [21] deployment
on the cloud would be considered a cloud software environment, as it provides
its applications’ developers with a programming environment, namely, the Map
Reduce [7] framework for the cloud. Yahoo Research’s Pig [28] project, a high-
level language to enable processing of very large files in the Hadoop environment,
may be viewed as an open-source implementation of the cloud platform layer. As
such, cloud software environments facilitate the development process of cloud
applications.

8  ◾  Cloud Computing and Software Services

1.4.3 Cloud Software Infrastructure
The third layer in the USCB-IBM ontology is the cloud software infrastructure
layer. It is here that this ontology more distinctly departs from the SPI ontology.
The USCB-IBM ontology takes a finer-grain approach to distinguishing the roles
and components that provide the infrastructure to support SPI ontology’s PaaS
layer. Specifically, it breaks the infrastructure layer down into a software layer that
is composed of three distinct parts and places these on top of two additional layers.
The three components, computational resources, storage, and communications, com-
posing the cloud software infrastructure layer are described below.

 a. Computational resources: VMs are the most common form for providing
computational resources to cloud users at this layer. OS Virtualization is the
enabler technology for this cloud component, which allows the users unprec-
edented flexibility in configuring their settings while protecting the physical
infrastructure of the provider’s data center. The users get a higher degree of
flexibility since they normally get super-user access to their VMs that they
can use to customize the software stack on their VM for performance and
efficiency. Often, such services are dubbed IaaS.

 b. Storage: The second infrastructure resource is data storage, which allows users
to store their data at remote disks and access them anytime from any place.
This service is commonly known as Data-Storage as a Service (DaaS), and it
facilitates cloud applications to scale beyond their limited servers. Examples
of commercial cloud DaaS systems are Amazon’s S3 [32] and EMC Storage
Managed Service [9].

 c. Communication: As the need for guaranteed quality of service (QoS) for net-
work communication grows for cloud systems, communication becomes a
vital component of the cloud infrastructure. Consequently, cloud systems are
obliged to provide some communication capability that is service oriented,
configurable, schedulable, predictable, and reliable. Toward this goal, the con-
cept of Communication as a Service (CaaS) emerged to support such require-
ments, as well as network security, dynamic provisioning of virtual overlays
for traffic isolation or dedicated bandwidth, guaranteed message delay limits,
communication encryption, and network monitoring. Although this model
is currently the least discussed and adopted cloud service in the commercial
cloud systems, several research papers and articles [1,11,13] have investigated
the various architectural design decisions, protocols, and solutions needed to
provide QoS communication as a service. One recent example of systems that
belong to CaaS is the Microsoft Connected Service Framework (CSF) [25].
Voice over IP (VoIP) telephone systems, audio and video conferencing, as
well as instant messaging are candidate cloud applications that can be com-
posed of CaaS and can in turn provide composable cloud solutions to other
common applications.

Understanding the Cloud Computing Landscape  ◾  9

In addition to the three main layers of the cloud, the UCSB-IBM model includes
two more layers: the software kernel and the firmware/hardware layer.

1.4.4 Software Kernel Layer
It provides the basic software management for the physical servers that compose
the cloud. Unlike the SPI ontology, the UCSB-IBM ontology explicitly identifies
the software used to manage the hardware resources and its existing choices instead
of focusing solely on VM instances and how they are used. Here, a software kernel
layer is used to identify the systems software that can be used to construct, man-
age, and schedule the virtual containers onto the hardware resources. At this level, a
software kernel can be implemented as an OS kernel, hypervisor, VM monitor, and/
or clustering middleware. Customarily, grid computing applications were deployed
and run on this layer on several interconnected clusters of machines. However, due
to the absence of a virtualization abstraction in grid computing, jobs were closely
tied to the actual hardware infrastructure, and providing migration, check-pointing,
and load balancing to the applications at this level was always a complicated task.

The two most successful grid middleware systems that harness the physical
resources to provide a successful deployment environment for grid applications are,
arguably, Globus [15] and Condor [36]. The body of research in grid computing
is large, and several grid-developed concepts are realized today in cloud comput-
ing. However, additional grid computing research can potentially be integrated to
cloud research efforts. For example, grid computing microeconomics models [12]
are possible initial models to study the issues of pricing, metering, and supply–
demand equilibrium of the computing resources in the realm of cloud computing.
The scientific community has also addressed the quest of building grid portals and
gateways for grid environments through several approaches [4,6,16,17,34,35]. Such
approaches and portal design experiences may be very useful to the development
of usable portals and interfaces for the cloud at different software layers. In this
respect, cloud computing can benefit from the different research directions that
the grid community has embarked for almost a decade of grid computing research.

1.4.5 Cloud Hardware/Firmware
The bottom layer of the cloud stack in the UCSB-IBM ontology is the actual physi-
cal hardware and switches that form the backbone of the cloud. In this regard, users
of this cloud layer are normally big enterprises with large IT requirements in need
of subleasing Hardware as a Service (HaaS). For this, the HaaS provider operates,
manages, and upgrades the hardware on behalf of its consumers for the lifetime of
the sublease. This model is advantageous to the enterprise users, since often they
do not need to invest in building and managing data centers. Meanwhile, HaaS
providers have the technical expertise as well as the cost-effective infrastructure
to host the systems. One of the early HaaS examples is Morgan Stanley’s sublease

10  ◾  Cloud Computing and Software Services

contract with IBM in 2004 [27]. SLAs in this model are stricter, since enterprise
users have predefined business workloads with strict performance requirements.
The margin benefit for HaaS providers materializes from the economy of scale of
building data-centers with huge floor space, power, cooling costs, as well as opera-
tion and management expertise.

HaaS providers have to address a number of technical challenges in operating
their services. Some major challenges for such large-scale systems are efficiency,
ease, and speed of provisioning. Remote, scriptable boot loaders is one solution
to remotely boot and deploy a complete software stack on the data centers. PXE
[29] and UBoot [37] are examples of remote bootstrap execution environments
that allow the system administrator to stream a binary image to multiple remote
machines at boot time. Other examples of challenges that arise at this cloud layer
include data center management, scheduling, and power and cooling optimiza-
tion. IBM Kittyhawk [3] is an example of a research project that targets the hard-
ware cloud layer. This project exploits novel integrated scalable hardware to address
the challenges of cloud computing at the hardware level. Furthermore, the project
attempts to support many of the software infrastructure features at the hardware
layer, thus permitting a more direct service model of the hardware. Specifically, it
provides an environment in which external users can obtain exclusive access to raw
metered hardware nodes in an on-demand fashion, similar to obtaining VMs from
an IaaS provider. The system allows the software to be loaded and network con-
nectivity to be under user control. Additionally, the prototype Kittyhawk system
provides users with UBoot access, allowing them to script the boot sequence of the
potentially thousands of Blue Gene/P nodes they may have allocated.

1.5  Jackson’s Expansion on the UCSB-IBM Ontology
The UCSB-IBM model was adapted by several computing experts to facilitate the
discussions and conversations about other aspects of the cloud. One of these aspects
was the cloud security. With a focus on supporting cloud computing for govern-
mental agencies, Jackson [23] adapted the original UCSB-IBM model and extended
on it with the goal of supporting a more detailed view of the security aspects of the
cloud computing field. By adding several additional layers to support cloud access
management, workflow orchestration, application security, service management,
and an explicit connectivity layer, Jackson highlighted several particulars of the
security challenges for this emerging computing field. Specifically, he modified the
original ontology to add the following three sets of layers:

 1. Access management layer: This new layer is added above the cloud application
layer and is intended to provide access management to the cloud applications
implementing SaaS. In the form of different authentication techniques, this
layer can provide a simplified and unified, yet efficient, form of protection. In

Understanding the Cloud Computing Landscape  ◾  11

turn, this can simplify the development and usage of the SaaS applications
while addressing the security concerns for these systems. In this way, one of
the security risks in the cloud could simply be contained and addressed in one
high-level layer, thereby confining one of the main risk factors in the cloud
applications.

 2. Explicit SOA-related layers: This set of layers offers several SOA features in
a more explicit form that simplifies their utilization. Jackson added this set
of layers between the application (Saas) and platform (Paas) layers in the
original UCSB-IBM ontology. For example, one of the layers in this set is
the workflow orchestration layer, which provides services for managing and
orchestrating business-workflow applications in the cloud. Another layer in
this set is the service discovery layer, which also facilitates the discovery of
services available to an application and potentially simplifies its operation and
composition of other services.

 3. Explicit connectivity Layers: The third set of layers in this extension was mainly
added to support explicit networking capability in the cloud. Realizing that
network connectivity in the cloud is an important factor in addressing the
security of data, Jackson extended the model by adding extra network secu-
rity layers. These additional layers were placed between the cloud software
infrastructure layers and their components. By analyzing the security of the
“data in motion” and “data at rest,” Jackson’s model covered the security
aspects of the data in the cloud at the network level as well.

1.6  Hoff’s Cloud Model
Inspired by the SPI model and the UCSB-IBM cloud ontology, Christofer Hoff [22]
organized an online collaboration and discussion between several cloud computing
experts to build an ontology upon the earlier models. Hoff’s Model, as shown in
Figure 1.2, presented a new cloud ontology in more detail.

This model focused on analyzing the three main cloud services: IaaS, PaaS,
and SaaS. The model dissects the IaaS layer to several other components. Data
center facilities, which include power and space, is the first component. Hardware
is the second component in the IaaS layer, which consists of compute node, data
storage, and network subcomponents. Abstraction is the next component, which
abridges the hardware through systems like VM monitors, grid, and cluster utili-
ties. The next component is the core connectivity and delivery, which provides the
various services supporting the systems utilizing the IaaS layer, such as authenti-
cation services and DNS services. In this model, the abstraction component and
the connectivity and delivery component are interleaving, since they are closely
interdependent on each other’s services. The API component presents the manage-
ment services as well as a simplified interface to the next layer in the cloud. One
system, for example, that implements this API sub-layer is the GoGrid CloudCenter

12  ◾  Cloud Computing and Software Services

API [18]. This next layer in Hoff’s model, which is the PaaS, is composed of one
sub-layer that provides the integration services in the cloud. This sub-layer provides
several services, such as authentication, database, and querying services.

The SaaS layer in Hoff’s model is also further broken down into several sub-
layers and components. The cloud application data sub-layer is shown to consist of
the actual data, the metadata describing the real data, and its content, which can
be in a structured or unstructured form. The application component in the SaaS
layer is categorized into three categories: native applications, web applications,
and embedded applications. A native application can be a desktop application
that uses a cloud service. A web application is a cloud application that is accessed
via the web browser. Finally, an embedded application is a cloud application that
is embedded into another application. The final two sub-layers in the SaaS layer
in Hoff’s model are the applications’ API and the presentation sub-layers. Hoff’s
model further decomposed the presentation sub-layers into data presentation,
video presentation, and voice presentation, recognizing the different forms of
cloud data presentations.

Network

Security

Auth.

Embedded

Voice

Space

Storage

Grid utility

Auth.

Querying

Unstructured

Web

VideoData

Native

Structured

DB

Mgnt

DNS

VMM

Compute

Power

Sa
aS

Pa
aS

Ia
aS

Facilities

Hardware

Abstraction

Core connectivity
and delivery

API

Integration and middleware

Data Metadata Content

Applications

API

Presentation
modality

Presentation
platform

Re
so

ur
ce

s
In

fra
st

ru
ct

ur
e

G
ov

er
na

nc
e,

pr
ov

isi
on

in
g,

 o
rc

he
st

ra
tio

n,
 au

to
no

m
ic

s,
se

cu
rit

y c
om

pl
ia

nc
e

m
on

ito
rin

g,
 S

LA
 m

an
ag

em
en

t,
an

d
bi

lli
ng

Figure  1.2  Hoff’s  cloud  ontology,  which  emerged  as  an  online  collaboration 
and discussion between different cloud computing experts to further analyze the 
cloud components.

Understanding the Cloud Computing Landscape  ◾  13

As portrayed in Figure 1.2, Hoff’s model addresses more details of the compo-
sition of the cloud. The increased detail reveals additional aspects and challenges
to cloud computing; however, it comes at the cost of simplicity. Nevertheless, the
three cloud models presented in this chapter are regarded complementary and rep-
resent different viewpoints of the new emerging cloud computing field.

1.7  Discussion
As the cloud computing technology continues to emerge, more cloud systems are
developed and new concepts are introduced. In this respect, a fundamental under-
standing of the extent to which cloud computing inherits its concepts from various
computing areas and models is important to understand the landscape of this novel
computing field and to define its potentials and limitations. Such comprehension
will facilitate further maturation of the area by enabling novel systems to be put
in context and evaluated in the light of existing systems. Particularly, an ontologi-
cal, model-based approach encourages new systems to be compared and contrasted
with existing ones, thus identifying more effectively their novel aspects. We con-
tend that this approach will lead to more creative and effective cloud systems and
novel usage scenarios of the cloud. With this in mind, our approach has been to
determine the different layers and components that constitute the cloud, and study
their characteristics in light of their dependency on other computing fields and
models.

An ontology of cloud computing allows better understanding of the interrela-
tions between the different cloud components, enabling the composition of new
systems from existing components and further recomposition of current systems
from other cloud components for desirable features like extensibility, flexibility,
availability, or merely optimization and better cost efficiency. We as well postulate
that understanding the different components of the cloud allows system engineers
and researchers to deal with hard technological challenges. For example, compre-
hending the relationship between different cloud systems can accentuate opportu-
nities to design interoperable systems between different cloud offerings that provide
higher-availability guarantees. Although high availability is one of the fundamental
design features of every cloud offering, failures are not uncommon. Highly avail-
able cloud applications can be constructed, for example, by deploying them on two
competitive cloud offerings, e.g., Google’s App Engine [19] and Amazon’s EC2 [8].
Even in the case that one of the two clouds fails, the other cloud will continue to
support the availability of the applications. In brief, understanding the cloud com-
ponents may enable creative solutions to common cloud system problems, such as
availability, application migration between cloud offerings, and system resilience.
Furthermore, it will convey the potential of meeting higher-level implementation
concepts through interoperability between different systems. For example, the
high-availability requirement may be met by formulating an inter-cloud protocol,

14  ◾  Cloud Computing and Software Services

which enables migration and load balancing between cloud systems. Resilience in
the cloud, for example, can also be met through concepts of self-healing and auto-
nomic computing. The broad objective of this classification is to attain a better
understanding of cloud computing and define key issues in current systems as well
as accentuate some of the research topics that need to be addressed in such systems.

Not only can an ontology impact the research community, but it also can sim-
plify the educational efforts in teaching cloud computing concepts to students and
new cloud applications’ developers. Understanding the implications of developing
cloud applications against one cloud layer versus another will equip developers with
the knowledge to make informed decisions about their applications’ expected time-
to-market, programming productivity, scaling flexibility, as well as performance
bottlenecks. In this regard, an ontology can facilitate the adoption of cloud com-
puting and its evolution. Toward the end goal of a thorough comprehension of the
field of cloud computing, we have introduced in this chapter three contemporary
cloud computing classifications that present cloud systems and their organization
at different levels of detail.

References
 1. J. Hofstader. Communications as a service. http://msdn.microsoft.com/en-us/library/

bb896003.aspx
 2. Apex: Salesforce on-demand programming language and framework. http://developer.

force.com/
 3. J. Appavoo, V. Uhlig, and A. Waterland. Project kittyhawk: Building a global-scale

computer: Blue Gene/P as a generic computing platform. SIGOPS Oper. Syst. Rev.,
42(1):77–84, 2008.

 4. M. Chau, Z. Huang, J. Qin, Y. Zhou, and H. Chen. Building a scientific knowledge
web portal: The nanoport experience. Decis. Support Syst., 42(2):1216–1238, 2006.

 5. N. Chohan, C. Bunch, S. Pang, C. Krintz, N. Mostafa, S. Soman, and R. Wolski.
AppScale: Scalable and Open AppEngine application development and deployment.
Technical Report TR-2009-02, University of California, Santa Barbara, CA, 2009.

 6. M. Christie and S. Marru. The LEAD portal: A teragrid gateway and application
service architecture: Research articles. Concurr. Comput. Pract. Exp., 19(6):767–781,
2007.

 7. J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters.
Proceedings of the Sixth Symposium on Operating System Design and Implementation
(OSDI), San Francisco, CA, pp. 137–150, 2004.

 8. Amazon Elastic Compute Cloud. http://aws.amazon.com/ec2/
 9. EMC Managed Storage Service. http://www.emc.com/
 10. Enomalism elastic computing infrastructure. http://www.enomaly.com
 11. A. Hanemann et al. PerfSONAR: A service oriented architecture for multi-domain

network monitoring. In B. Benatallah et al., editors, ICSOC, Amsterdam, the
Netherlands, Lecture Notes in Computer Science, vol. 3826, pp. 241–254. Springer,
Berlin, Germany, 2005.

Understanding the Cloud Computing Landscape  ◾  15

 12. R. Wolski et al. Grid resource allocation and control using computational econo-
mies. In F. Berman, G. Fox, and A. J. G. Hey, editors, Grid Computing: Making the
Global Infrastructure a Reality, pp. 747–772. John Wiley & Sons, Chichester, U.K.,
2003.

 13. W. Johnston et al. Network communication as a service-oriented capability. In
L. Grandinetti, editor, High Performance Computing and Grids in Action, Advances in
Parallel Computing, vol. 16, IOS Press, Amsterdam, the Netherlands, March 2008.

 14. Eucalyptus. http://eucalyptus.cs.ucsb.edu/
 15. I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. Int. J.

Supercomput. Appl., 11(2):115–128, 1997.
 16. D. Gannon et al. Building grid portal applications from a web-service component

architecture. Proc. IEEE (Special Issue on Grid Computing), 93(3):551–563, March
2005.

 17. D. Gannon, B. Plale, M. Christie, Y. Huang, S. Jensen, N. Liu, S. Marru, S. Pallickara,
S. Perera, and S. Shirasuna. Building grid portals for e-science: A service oriented archi-
tecture. High Performance Computing and Grids in Action. IOS Press, Amsterdam, the
Netherlands, 2007.

 18. GoGrid Cloud Center API. http://www.gogrid.com/how-it-works/gogrid-API.php
 19. Google App Engine. http://code.google.com/appengine
 20. Google Apps. http://www.google.com/apps/business/index.html
 21. Hadoop. http://hadoop.apache.org/
 22. C. Hoff. Christofer hoff blog: Rational survivability. http://rationalsecurity.typepad.

com/blog/
 23. K. L. Jackson. An ontology for tactical cloud computing. http://kevinljackson.

blogspot.com/
 24. M. Crandell. Defogging cloud computing: A taxonomy, June 16, 2008. http://refresh.

gigaom.com/2008/06/16/defogging-cloud-computing-a-taxonomy/
 25. Microsoft Connected Service Framework. http://www.microsoft.com/serviceprovid-

ers/solutions/connectedservicesframework.mspx
 26. Microsoft Azure. http://www.microsoft.com/azure
 27. M. Stanley. IBM ink utility computing deal. http://news.cnet.com/2100-7339-

5200970.html
 28. C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig latin: A not-so-

foreign language for data processing. In SIGMOD ’08: Proceedings of the 2008 ACM
SIGMOD International Conference on Management of Data, Vancouver, Canada, pp.
1099–1110, 2008. ACM, New York.

 29. Preboot Execution Environment (PXE) Specifications, Intel Technical Report,
September 1999.

 30. R. W. Anderson. Cloud services continuum, July 3; 2008. http://et.cairenenet/
2008/07/03/cloud-services-continuum/

 31. R. W. Anderson. The cloud services stack and infrastructure, July 28, 2008. http://
et.cairene.net/2008/07/28/the-cloud-services-stack-infrastructure/

 32. Amazon Simple Storage Service. http://aws.amazon.com/s3/
 33. Salesforce Customer Relationships Management (CRM) system. http://www.

salesforce.com/
 34. T. Severiens. Physics portals basing on distributed databases. In IuK, Trier, Germany,

2001.

16  ◾  Cloud Computing and Software Services

 35. P. Smr and V. Novek. Ontology acquisition for automatic building of scientific portals.
In J. Wiedermann, G. Tel, J. Pokorný, M. Bieliková, and J. Stuller, editors, SOFSEM
2006: Theory and Practice of Computer Science: 32nd Conference on Current Trends
in Theory and Practice of Computer Science, pp. 493–500. Springer Verlag, Berlin/
Heidelberg, Germany, 2006.

 36. D. Thain, T. Tannenbaum, and M. Livny. Distributed Computing in Practice:
The Condor Experience. Concurrency and Computation: Practice and Experience,
17(2–4):323–356, 2005.

 37. Das U-Boot: The universal boot loader. http://www.denx.de/wiki/U-Boot/WebHome
 38. Virtual Workspaces Science Clouds. http://workspace.globus.org/clouds/

17

Chapter 2

Science Gateways: 
Harnessing Clouds 
and Software Services 
for Science

Nancy Wilkins-Diehr, Chaitan Baru,
Dennis Gannon, Kate Keahey, John McGee,
Marlon Pierce, Rich Wolski, and Wenjun Wu

Contents
2.1 Science Gateways—Background and Motivation18
2.2 Clouds and Software Services...20
2.3 Science Clouds, Public and Private ...22

2.3.1 Eucalyptus—Open-Source IaaS ...23
2.3.2 Engineering Challenge..24
2.3.3 Eucalyptus Architecture..24
2.3.4 User Experience ..26
2.3.5 Notes from the Private Cloud ...26
2.3.6 Leveraging the Ecosystem ...27
2.3.7 Future Growth ..28

18  ◾  Cloud Computing and Software Services

2.1  Science Gateways—Background and Motivation
Nancy Wilkins-Diehr

The pursuit of science has evolved over hundreds of years from the development of
the scientific method to the use of empirical methods. This evolution continues today
at an increasingly rapid pace. Scientific pursuit has always been marked by advances
in technology. Increasingly powerful microscopes and telescopes have led to new
discoveries and theories; access to sensor data improves the ability to analyze and
monitor events and understand complex phenomena, such as climate change, and
advances in sequencing technologies will very soon result in personalized medicine.

The evolution of science with technology continues today as well. The 1970s and
1980s saw the significant development of computational power. Computer simula-
tions were considered a third pillar of science in addition to theory and experiment.

One of the biggest impacts in modern times has been the release of the Mosaic
browser in 1992. This ushered in the modern information age and an explosion of
knowledge sharing not seen since the invention of the printing press. The impact on
science has been tremendous, but we contend that the extent of this impact is just
beginning. The availability of digital data continues to grow and access and sharing
mechanisms continue to evolve very quickly. Early Web 3.0 ideas are outlining how
we move from information sharing on social Web sites and wikis to programmatic
data sharing via standards (Resource Description Framework) and database queries
(SPARQL query language) [1].

In the 1990s, scientists were beginning to develop and rely heavily on the
Internet and communication technologies. The National Center for Biotechnology
Information’s BLAST server provided scientists with an early sequence alignment
tool that made use of remote computing capabilities [2]. Queries and results were
exchanged via e-mail. This service was later made available on the Web and contin-
ues to operate today.

2.4 Cloud Computing for Science ..28
2.4.1 Nimbus Goals and Architecture ...29
2.4.2 Science Clouds Applications ...30

2.4.2.1 Nimbus Helps Meet STAR Production Demands31
2.4.2.2 Building a Cloud Computing Ecosystem with CernVM ...32
2.4.2.3 CloudBLAST: Creating a Distributed Cloud Platform33

2.5 Gadgets and OpenSocial Containers ..33
2.6 Architecture of an SaaS Science Gateway ...36
2.7 Dynamic Provisioning of Large-Scale Scientific Datasets38

2.7.1 Science Gateways for Data ..39
2.7.2 Cloud Computing and Data ...39

2.8 Future Directions ...41
References ...43

Science Gateways  ◾  19

In 1995, the headline was “International Protein Data Bank Enhanced by
Computer Browser” [3]. The Protein Data Bank (PDB), first established in 1971, is
the worldwide repository for three-dimensional structure data of biological macro-
molecules. Over time, technology developments have changed many aspects of the
PDB. Structures are determined by different methods and much more quickly, the
number of new structures per year has increased nearly three orders of magnitude
from 1976 to 2008. The expectations of the community have changed as well. Text
files including structure descriptions were originally available for download via ftp.
Today the PDB features sophisticated data mining and visualization capabilities, as
well as references to PubMed articles and structure reports [4].

A report from a 1998 workshop entitled Impact of Advances in Computing and
Communications Technologies on Chemical Science and Technology [5] takes an early
look at the impact of computing and communications technology on science. The
authors point out that before the advent of the Internet, the practice of chemis-
try research had remained largely unchanged. They saw the Internet improving
access to scarce instruments and removing the constraints of time and distance
previously imposed on potential collaborators. They believed these advances would
fundamentally change both the types of scientific problems that can be tackled
(the best minds can be brought to bear on the most challenging problems) and
the very way in which these problems are addressed. They were accurate in their
assessment.

Against this backdrop, the TeraGrid Science Gateway program was initiated in
2003. Previously, supercomputers were accessed by a small number of users who
were members of elite research groups. TeraGrid architects recognized that the
impact of high-end resources could be greatly increased if they could be coupled
onto the back end of existing web portals being developed prolifically by scientists.

Today, gateways span disciplines and provide very diverse capabilities to
researchers. The Social Informatics Data Grid (SIDGrid) provides access to mul-
timodal data (voice, video, images, text, numerical) collected at multiple times-
cales. SIDGrid users are able to explore, annotate, share, and mine expensive data
sets with specialized analysis tools. Computationally intensive tasks include media
transcoding, pitch analysis of audio tracks, and fMRI image analysis. Researchers
utilize SIDGrid, but are unaware of the computational power performing these
calculations behind the scenes for them. PolarGrid provides access to and analy-
sis of ice sheet measurement data collected in Antarctica. Linked Environments
for Atmospheric Discovery (LEAD) will allow researchers to launch tornado
simulations on demand if incoming radar data display certain characteristics. The
Asteroseismic Modeling Portal is ingesting data from NASA’s Kepler satellite mis-
sion, which was launched in March 2009. The portal allows researchers to deter-
mine the size, position, and age of a star by doing intensive simulations using the
observed oscillation modes from satellite data as input. In all of these examples,
the gateway interfaces allow scientists to focus on their work while providing the
required computing power behind the scenes.

20  ◾  Cloud Computing and Software Services

Technology continues to evolve with increasing rapidity. In 2009, cloud com-
puting and “Software as a Service” (SaaS) were examples of virtualized access to
high-end resources that enable science. This chapter highlights several activities in
these areas, with a focus on the scientific application of the technologies. First, an
overview of cloud computing and SaaS are presented. Next, two approaches to cloud
deployment (Eucalyptus and NIMBUS) are described in some detail. Examples of
scientific applications using virtualized services are provided throughout.

Finally, several detailed science examples are featured. Scientists can run
sequence alignment codes from an iGoogle web page via gadgets provided by the
Open Life Sciences Gateway. They have 120 different bioinformatics packages at
their fingertips through the RENCI science portal. In both examples, software is
offered truly as a service. The back-end high performance and high throughput
computing, which makes the most rigorous computations possible, is completely
hidden from the scientist. The final project looks at data subsetting and database
distribution using clouds with high resolution topographic data as a driver. Future
directions in all areas are summarized at the conclusion of the chapter.

2.2  Clouds and Software Services
Dennis Gannon

The term “cloud computing” means using a remote data center to manage scalable,
reliable, on-demand access to applications. The concept has its origins in the early
transformation of the World Wide Web from a loose network of simple web servers
into a searchable collection of over 100 million Web sites and 25 billion pages of
text. The challenge was to build such a searchable index of the Web and to make
it usable and completely reliable for tens of thousands of concurrent users. This
required massive parallelism to handle user requests and massive parallelism to sort
through all that data. It also required both data and computational redundancy
to assure the level of reliability demanded by users. To solve this problem, the web
search industry had to build a grid of data centers that today have more comput-
ing power than our largest supercomputers. The scientists and engineers who were
working on improving search relevance algorithms or mining the Web for criti-
cal data needed to use these same massively parallel data centers because that is
where the data was stored. The most common algorithms they used often followed
the “MapReduce” [6] parallel programming pattern. They shared algorithms and
designs for distributed, replicated data structures and developed technology that
made it simple for any engineer to define a MapReduce application and “upload it
to the cloud” to run. Google was the first to use this expression and publicize the
idea. Yahoo later released an open-source version of a similar MapReduce frame-
work called Hadoop [7]. Microsoft has a more general technology based on the
same concepts called Dryad/LINQ.

Science Gateways  ◾  21

A programming model has evolved that allows a developer to design an applica-
tion on a desktop and then push it to a data center for deployment and execution.
Google had released AppEngine, which allows a programmer to build a Python
program that accesses the Google distributed cloud storage when pushed to the
cloud. Microsoft has introduced Azure, which allows developers to build highly
scalable parallel cloud web services. Together these software frameworks for build-
ing applications are referred to as Platform as a Service (PaaS) models for cloud
computing.

If we take a closer look at the data center system architecture that lies at the
heart of systems like Azure, we see another model of cloud computing based on
the use of machine virtualization technology. The most transparent example of
this is the Amazon EC2 [8] and S3 [9] clouds. The idea here is very simple. The
application developer is given a machine OS image to load with applications and
data. The developer hands this loaded image back to EC2 and it is run in a virtual
machine (VM) in the Amazon data center. The critical point is that the image may
be replicated across multiple VMs so that the application it contains may scale
with user demand. The developer is only charged for the resources actually used.
In this chapter, we describe several significant variations on this “Infrastructure as
a Service” (IaaS) concept.

While IaaS and PaaS form the foundation of the cloud technologies, what the
majority of users see is the application on their desktop or phone. The client appli-
cation may be a web browser or an application that is connected to a set of services
running in the cloud. Together, the application and the associated cloud services
are often referred to as SaaS. There are many examples. Social networks provide
both web and phone clients for their SaaS cloud application. Collaboration and
virtual reality is provided in the cloud by second life. Photo sharing tools that allow
users to upload, store, and tag images are now common features shipped with new
phones and cameras. Microsoft’s LifeMesh is a cloud-based software service that
allows the files and applications on your PC, laptop, and Mac to be synchronized.

Science gateways are tools that allow scientists to conduct data analysis and
simulation studies by using the resources of a remote supercomputer rather than a
remote data center. They share many of the same scalability and reliability require-
ments of SaaS tools but they have the additional requirement that the back-end
services need to be able to conduct substantial computational analysis that require
the architectural features not supported by large data centers.

Supercomputers and data centers are very similar in many respects: they are
both built from large racks of servers connected by a network. The primary differ-
ence is that the network of a supercomputer is designed for extremely low latency
messaging to support the peak utilization of each central processing unit (CPU).
Data centers are designed to maximize application bandwidth to remote users and
are seldom run at peak processor utilization so that they can accommodate surges
in demand. Data center applications are also designed to be continuously running
services that never fail and always deliver the same fast response no matter how large

22  ◾  Cloud Computing and Software Services

the load. But failure is constant in large systems, so data center applications tend
to be as stateless as possible and highly redundant. Supercomputer applications are
design for peak performance, but they fail frequently. In these cases, checkpointing
and restart is the only failure recovery mechanism.

The challenge for science gateways is to meet the requirements of both SaaS
cloud applications for reliability and scalability and the high performance require-
ments of their scientific analysis components. The ideal architecture for science
gateways would be a hybrid of the externally facing, data-rich data center with a
supercomputing capability in the back end. An alternative would be a data cen-
ter architecture where server nodes could be dynamically clustered into small but
highly powerful computational clusters that could operate as a small supercom-
puter for short periods of time. This is an area of research that is currently underway
in several locations.

2.3  Science Clouds, Public and Private
Rich Wolski

Cloud computing [10,11] has emerged as a new paradigm for providing program-
matic access to scalable Internet service venues.* While significant debates continue
with regard to the “optimal” level of abstraction that such programmatic interfaces
should support (cf., SaaS versus PaaS versus IaaS [12–14]), the general goal is to
provide users or “clients” with the ability to program resources within a very-large-
scale resource “cloud” so that they can take advantage of the potential performance,
cost, and reliability benefits that access to scale makes possible.

Notice that from a technology perspective, the way in which users account
for their usage is independent of the cloud computing model itself (although it is
by no means independent of the usage models employed by those users). That is,
users may be able to use a “pay-as-you-go” billing methodology or alternatively
one where quota-limited and/or time-limited access is enforced by the cloud sys-
tem. Thus “billing” (or more properly user accounting) is one way to differentiate
between public and private clouds. A public cloud is one in which a fee is charged
to each user account by the cloud provider, either for recorded usage or by quota-
controlled subscription. In a private cloud, typically, a quota of usage (possibly time
limited) is assigned by the administrative organization (to which both the cloud
provider and the users belong) to each user account or to groups of user accounts.
Technologically however, the systems otherwise present the same interface to their
users.

* The term “cloud computing” is considered by some to be synonymous with the terms “elastic
computing,” “utility computing,” and occasionally “grid computing.” For the purposes of this
chapter, we will use the term “cloud computing” to refer to cloud, elastic, or utility computing
but not to grid computing.

Science Gateways  ◾  23

In a cloud providing IaaS, this interface is as follows:

 ◾ Self-service—Users are granted resources allocations from the cloud (or
denied an allocation) automatically without human intervention. In addi-
tion, users can choose pre-fabricated configurations that have been previously
published within the cloud and can also generate and save their own custom-
ized configurations, again without intervention by a human administrator or
programmer.

 ◾ Quality-of-service aware—Users are able to specify a quality of service (QoS)
to be associated with each allocation request. The QoS level associated with
each granted request adjusts the “charge” (either in terms of cost or quota
depletion) assigned to the user account.

Perhaps the best known example of an IaaS-style cloud is Amazon.com’s AWS [15].
Through either a simple command-line interface or through a “RESTful” program-
matic one, users can request rental of computing capacity (EC2) and storage capac-
ity (S3 and EBS [16]). The interface is self-service, and a fixed number of discrete
QoS levels are supported.

2.3.1 Eucalyptus—Open-Source IaaS
Eucalyptus (Elastic Utility Computing Architecture Linking Your Programs to
Useful Systems) [17–19] is an open-source infrastructure developed in the Computer
Science Department of the University of California, Santa Barbara that implements
IaaS-style cloud computing using local machine and cluster resources. The software
components that make up a Eucalyptus cloud are based on web services (SOAP,
WSDL, etc.) and are implemented using only freely available software packages,
many of which are part of the common Linux distributions.

In addition, while the infrastructure itself is modularized so that a variety
of interfaces can be supported, we have included an initial interface module to
Eucalyptus that conforms to the Amazon AWS interface specification. Thus, once
installed and running, a Eucalyptus cloud supports the same programmatic and
user interfaces that AWS does with respect to IaaS provisioning.

We chose AWS as an initial interface for several reasons. First, Eucalyptus is
the product of a research effort in which we, the researchers, were interested in
the viability of AWS as a scientific computing platform. Thus, as a local cloud
infrastructure compatible with AWS, Eucalyptus is designed to function as an
instrumentable development platform that provides transparent and controlled
experimentation prior to AWS deployment. Second, the AWS compatibil-
ity allows scientists to leverage the rich ecosystem of tools and services that is
emerging from the AWS community (e.g., the RightScale [20] and CohesiveFT
[21] management platforms, rPath [22] compatibility, etc.). Third, Eucalyptus is
designed to foster greater usage of cloud computing in general, and AWS (as the

24  ◾  Cloud Computing and Software Services

de facto standard) in particular, as a way of stimulating and accelerating the
development of the paradigm. Open-source projects such as AppScale [23,24]
and dotCloud [25] use it as a high-performance cloud platform, both for their
own development and for application support. Thus, AWS interface compatibil-
ity has proved essential to promoting greater AWS usage and thus greater cloud
computing uptake.

2.3.2 Engineering Challenge
In designing Eucalyptus, we had to ensure that it would be able to deploy and execute
in hardware and software environments specified not by us, but by the installer and/
or maintainer of the cloud. This requirement is distinct from public cloud offerings
in which the software can be written only to exploit the specific features engineered
into the hardware platform that has been procured. Put another way, the designers
of public cloud software need only consider the hardware that they know their orga-
nization has procured (or will procure) and not any hardware platform that might
become available. In a scientific computing setting, the software platform typically
cannot dictate the hardware configuration. Rather, each cluster or machine set-
ting is unique making it necessary for the cloud platform to be able to conform to
the local infrastructure. Because IaaS requires fairly low-level control of hardware
resources, this need for portability strongly influences the design of Eucalyptus.

To make Eucalyptus available as open-source software with the smallest possi-
ble engineering effort, we leverage existing open-source software components to the
greatest extent possible. We tried to identify the most commonly used package or
system for each constituent functionality Eucalyptus requires as a way of selecting
the most robust and reliable “building blocks” to use as a foundation. Nonetheless,
there is considerable variation among the non-Eucalyptus software components
upon which Eucalyptus depends. Much of the engineering effort has focused on
developing a high-quality, reliable, and predictable cloud computing platform that
depends, in part, upon community-contributed, freely available software.

In the same vein, we wish to encourage greater adoption of open-source soft-
ware in production computing settings. While software quality is certainly a fac-
tor we took seriously, we have also focused on developing an internal architecture
that enables customization and tuning. In particular, we have chosen a modularity
and service decomposition that admits the replacement or modification of internal
components, the addition of new services and different interfaces, and the possibil-
ity for considerable (but potentially nonportable) performance tuning.

2.3.3 Eucalyptus Architecture
Eucalyptus is designed to function as a collection of cooperating web services that
can be deployed in environments where network connectivity is not necessarily
symmetric. Academic research groups (who must be supported by Eucalyptus)

Science Gateways  ◾  25

have access to small clusters, pools of workstations, and various server/desktop
machines. Public IP addresses, however, are usually scarce and the security rami-
fications of allowing complete access from the public Internet can be daunting so
system administrators commonly deploy clusters as pools of “worker” machines
on private, unroutable networks with a single “head node” responsible for routing
traffic between the worker pool and a public network. Although this configuration
provides security while using a minimum of publicly routable addresses, it also
means that worker machines can initiate connections to external hosts but external
hosts cannot typically connect to worker machines running within each cluster.
Thus, Eucalyptus adopts a hierarchical design (Figure 2.1). Logically, there are four
service components within a functioning Eucalyptus installation: the client API
translator, the cloud controller, one or more cluster controllers, and one or more
node controllers. The interfaces between these components are described by indi-
vidual WSDL specifications so that any functional component may be replaced or
modified. Client requests are translated to a canonical Eucalyptus-internal protocol
before they are passed to the cloud controller. The cluster controllers act as message
proxies between the publically routed networks to which each head node is attached
and the internal private networks that worker nodes can access. Cluster controllers

Eucalyptus architecture

Client-side API
translator

Cloud controller

Cluster controllers

Worker
nodes

Node controllers

Head
nodes

Figure 2.1  The service architecture within a Eucalyptus installation is hierarchi-
cal to cope with multiple clusters and asymmetric network connectivity.

26  ◾  Cloud Computing and Software Services

also implement a scalable scheduling protocol for VM assignment although this
scheduling module can be replaced as a plug in. Finally, each machine within a
cloud that is expected to contribute resources (CPU, memory, or disk) to user allo-
cations must run a node controller.

2.3.4 User Experience
In addition to making the software available for download, we maintain a small,
publically available persistent cloud at the University of California, Santa Barbara
called the Eucalyptus Public Cloud (EPC) [26]. The purpose of the EPC is three-
fold. First, it permits users to preview the quality of the Eucalyptus software by
experimenting with a “live” installation. Second, it provides a test facility for fea-
tures and/or engineering upgrades that will ultimately be packaged into a future
Eucalyptus release. Finally, it permits us to observe the performance and stability
of the cloud under a controlled user load.

The EPC is a small system that is vastly under-provisioned for the load it will
support: the SLA scheduler installed on the EPC will schedule as many as four
VMs per processor. In this way, user load “stresses” the internal Eucalyptus subsys-
tems so that we can observe worst-case performance scenarios. Table 2.1 shows a
comparison of the average instance start times in seconds for the same small image
in both AWS and the EPC.

In addition to the average start time, we also show the 95% confidence bound
on the average. The first column compares a one instance start, and the second col-
umn compares the time to start eight instances in a single user request. Notice that
on average Eucalyptus is faster, but also experiences more variation (i.e., the confi-
dence bounds are wider). From a user perspective, then, an EPC user experiences
similar instance start-up performance to that provided by AWS. It is important to
realize, however, that AWS is able to achieve this level of performance at a massive
scale, while the EPC is (by design) a small, under-powered system. That is, while
Eucalyptus provides a similar user experience to AWS at a much smaller scale, it
complements rather than replaces AWS.

2.3.5 Notes from the Private Cloud
While a great deal has been written and discussed with respect to public clouds,
comparatively little discussion of private clouds and their usage has yet emerged.

Table 2.1  Small Instance Start Time

One Instance Eight Instances

AWS 18.6 s (±6.5 s) 23.4 s (±5.14 s)

EPC 11.4 s (±7.6 s) 17.9 s (±10.8 s)

Science Gateways  ◾  27

The Eucalyptus project maintains a public discussion board and a set of e-mail
reflectors as a way of engaging community contributions, and from time to time
contributors discuss their usage scenarios. While these anecdotes are far from defin-
itive, we believe that they provide insight into how private clouds are being used.

In the science community, one common use for Eucalyptus appears to be as
an application development platform in advance of a public cloud deployment.
Eucalyptus is transparent in that while it is running a cloud application, that appli-
cation can be interrogated and monitored both from inside and outside the cloud
that implements it. Often, familiarity with local hardware and software configura-
tion characteristics is an invaluable debugging aid. By knowing how the application
functions outside the cloud on local hardware, it is possible to isolate problems that
arise strictly because of cloud deployment.

A second usage scenario that we have observed is one in which Eucalyptus
serves as a locally controllable and protected execution platform for application
software that is also executing in a public cloud. Cloud applications, once debugged
and tuned, tend to be quite robust and scalable. It is often advantageous to be able
to leverage the engineering investment that has gone into a successful public cloud
application deployment within the confines of a local data center where physical
security permits these applications to access more sensitive data.

Notice that these private cloud scenarios are, in fact, hybrid cloud scenarios
in which the private cloud augments the capabilities offered by a public cloud.
Eucalyptus makes this hybridization with AWS possible through its interface com-
patibility. We believe that the trend will be toward greater use of the public clouds,
and that this trend is greatly accelerated by the ability to use private and public
clouds as a hybrid. In the same vein, it is our view that this hybrid cloud model is
how enterprise cloud computing will be implemented in the future. While public
clouds make it possible to outsource some aspects of enterprise IT, doing so makes
it possible to use local infrastructure more cost effectively and efficiently.

2.3.6 Leveraging the Ecosystem
Because Eucalyptus supports the AWS interface, commercial and open-source tools
designed for use with the AWS public cloud also work with Eucalyptus in scientific
computing settings. This “ecosystem” allows scientists to leverage the considerable
investment in public cloud technologies for their own applications on-premise and
in the public clouds.

One such example is the free cloud management services offered by RightScale.
RightScale is a company that provides cloud users with a management dashboard
for developing, deploying, and controlling their applications and machine images.
Originally developed for Amazon. AWS, it now supports the RackSpace, GoGrid,
and FlexiScale public cloud platforms and Eucalyptus as a private cloud. In an
analogy to free software, RightScale offers users a basic management capability
as a “free service.” When installed, a Eucalyptus cloud administrator can choose

28  ◾  Cloud Computing and Software Services

to register his or her cloud with the RightScale service venue that is hosted in
Amazon’s AWS. Users of the Eucalyptus cloud can then use the RightScale dash-
board offering to manage their private cloud allocations. Notice that the RightScale
dashboard operates as SaaS and not downloadable open-source code. However,
combining RightScale’s free SaaS with open-source Eucalyptus clouds creates a
new and powerful tool combination for science cloud users.

Eucalyptus also enables other open-source cloud platforms to coexist with its
interface. AppScale [18,19] implements a scalable, on-premise version of the Google
AppEngine [27] PaaS using either AWS or Eucalyptus as a lower-level cloud plat-
form. Thus, by installing AppEngine, a scientist can leverage the AppEngine or
AWS APIs on his or her local machines and also execute the applications in both
the Amazon and Google public clouds without changing the application code
modification. Thus, for science, these open-source platforms provide a new applica-
tion development environment that allows a single application to combine multiple
public clouds using only standard APIs.

2.3.7 Future Growth
We anticipate that the open-source cloud ecosystem will continue to grow as
new platforms and new free SaaS offerings become available. In our view, the
utility computing model implemented by the public clouds will continue to
reduce the cost of IT. We also believe that local infrastructure will continue
to be necessary, but to amplify the cost savings offered by the public clouds,
open-source cloud platforms like Eucalyptus and free SaaS will become critical
technologies.

2.4  Cloud Computing for Science
Kate Keahey

The access to remote resources offers many benefits to scientific applications: it
“democratizes” computing for many communities, allowing them to leverage
economies of scale as well as use remote resources in times of increased demand.
While grid computing pioneered remote resource usage on a large scale, two chal-
lenges—(1) the inability to control the configuration of environments provided on
remote resources and (2) the inability to negotiate flexible modes of access to those
resources—provided a significant barrier to many applications.

The first challenge reflects the fact that many scientific applications are complex
and hard to port across different environments. Even minor differences in operat-
ing system support, libraries, and tools may cause these applications to fail. More
importantly, even if the applications do run, the same minor differences in the
environment can cause them to produce results that are inconsistent across runs
executed on different sites or even at different times on the same site. Resolving

Science Gateways  ◾  29

these dependencies on a remote platform can take weeks or months of work.
Furthermore, this work has to be repeated for multiple remote sites and over time
as systems on these sites are upgraded.

Once obtained, the access to the remote sites is often of limited use. Access
to grid resources is typically provided via remote interfaces to batch schedulers
(e.g., by using such mechanisms as GRAM [28]) that run jobs according to
implicit and often nonnegotiable site priorities. A job may languish in a sched-
uler queue for many hours or days making this mode of resource provisioning
unsuitable for communities where resource need is dynamic e.g., the processing
needs of experiments. In addition, in many instances, scientists simply need
access to a resource (e.g., to log in and debug an application) rather than just
running a job.

Our work on overcoming these challenges gave rise to the development of the
Nimbus toolkit and contributed toward a computing paradigm that we call IaaS
cloud computing.

2.4.1 Nimbus Goals and Architecture
The challenges described above led us to define the abstraction of a “workspace”:
a user-defined environment that can be dynamically overlaid on remote resources
with specific availability constraints. Our first attempts to implement this abstrac-
tion focused on the management and configuration of physical resources [29]
before we focused on virtualization [30,31] in 2003. The Workspace Service, first
released in September 2005, allowed users to deploy and terminate VMs on remote
resources, providing functionality similar to Amazon’s Elastic Compute Cloud
(EC2) [6] released in August 2006. Over the years, our work with the scientific
communities motivated many revisions of the Workspace Service as well as the
development of additional services such as the Context Broker [32] and an IaaS
protocol adapter. In mid-2008, we started using the name “Nimbus Toolkit” to
describe the growing collection of cloud services.

Today, Nimbus is an extensible, open-source toolkit built around the following
three goals:

 1. Allow providers to build compute clouds. This functionality continues to
be provided by the Workspace Service [33] component of Nimbus, which
orchestrates VM deployment on a cluster based on remote requests. The
Workspace Service provides two sets of interfaces: one based on the Web
Service Resource Framework (WSRF) [34] set of protocols and another based
on Amazon’s EC2. The deployment request processed by these interfaces can
be combined with a choice of two Nimbus back-end implementations: (a) the
workspace resource manager, which provides EC2-style VM deployment but
requires the “ownership” of a cluster or (b) the “workspace pilot” [35] that
extends popular schedulers to deploy VMs as a glidein. The workspace pilot

30  ◾  Cloud Computing and Software Services

does not require a special cluster configuration and allows jobs and VMs
to coexist, but provides weaker deployment semantics (VMs are deployed
batch-style). The Workspace Service has been deployed by several academic
institutions forming the Science Clouds test bed [36].

 2. Provide tools allowing users to use clouds. IaaS providers, such as EC2 or the
Science Clouds, allow users to deploy groups of unconnected VMs, whereas
scientists typically need a ready-to-use “turnkey” cluster whose nodes share
a common configuration and security context. The Nimbus Context Broker
[28] bridges this gap by securely orchestrating an exchange of deployment-time
information for groups of deployed VMs, potentially among VMs deployed
across different clouds. Examples of Context Broker applications are described
in Section 2.4.2. Another service geared toward the end-user is the Nimbus
gateway, which serves as both a protocol adapter allowing users to move between
clouds and provides account management for the use of commercial clouds.

 3. Allow researchers and developers to extend and experiment with Nimbus. Nimbus
is designed as a set of APIs that allow developers to extend it for research
and development purposes. For example, a group of scientists at the Vienna
University of Technology implemented research extensions to Nimbus to pro-
vide functionality that would ensure data privacy for the biomedical commu-
nities [37]. An example of production extensions are monitoring components
provided by the high-energy physics group at the University of Victoria.

These three goals are reflected in Nimbus production services and implementation,
Nimbus documentation, research projects ranging from efficient VM deployment
and service levels [38–40] to configuration management [28], and projects with the
various application communities. This set of goals allows us to address the full set of
challenges from workspace deployment to its eventual use and gives us the flexibility
to adapt our infrastructure across the stack as new requirements become understood.

2.4.2 Science Clouds Applications
The Science Clouds test bed [32] comprises multiple small clouds in the academic
space with access granted to science-related projects on a voluntary basis. All
clouds are configured with the EC2-compatible Nimbus, making it possible to
easily move or replicate environments between clouds including EC2 resources
as needed for large-scale deployments. At the same time, each cloud may pro-
vide slightly different service levels to the user. Thus, apart from providing a
platform on which scientific applications explore cloud computing, the Science
Cloud test bed is a laboratory in which different IaaS providers use compatible
technologies to provide different service offerings allowing us to experiment with
interoperability.

This section presents three Science Clouds applications that have been selected
to illustrate different ways in which cloud resources were provided to the application

Science Gateways  ◾  31

and different scenarios in which they were used. The first application describes a
simple but impactful integration that consists of extending the application test bed
by a dynamically provisioned virtual cluster. The second application goes one step
further and describes an ecosystem around the provisioned resources that allows the
user to leverage them through existing mechanisms. The third application exploits
the fact that cloud computing changes our assumptions about remote resources to
create a distributed site.

2.4.2.1 Nimbus Helps Meet STAR Production Demands

STAR is a nuclear physics experiment associated with the Relativistic Heavy Ion
Collider (RHIC) at the Brookhaven National Laboratory that studies nuclear mat-
ter under unique conditions of extremely high energy densities and temperature.
Such conditions, which existed only shortly after the big bang, allow us to study
fundamental properties of nuclear matter.

STAR computations rely on a complex software stack that can take months
to configure on remote resources. This motivated STAR scientists to turn to vir-
tualization: VM images can be configured and validated for STAR production
runs and then deployed on many different resources. To implement this vision,
STAR started collaborating with the Nimbus team contributing requirements for
the development of the Workspace as well as the Context Broker Services. The lat-
ter allows them to dynamically and repeatably combine deployed VMs into fully
configured virtual Open Science Grid (OSG) clusters with one command. Once
such an OSG cluster is deployed, the STAR job scheduler can simply submit jobs
to it, elastically extending the test bed available to STAR.

The STAR team started out by using a small Nimbus cloud at the University
of Chicago. However, since STAR production runs require hundreds of nodes, the
collaborating teams soon started moving those clusters to Amazon’s EC2, which
hosted the first STAR production run in September 2007. In March 2009, the
advantages and potential of cloud computing for the community were dramatically
illustrated [41] with a late-coming request to produce simulation results needed for
Quark Matter, a major physics conference. Normally, this would not have been
possible to do: there was roughly 1 week to produce the results and all the available
computational resources—both local and distributed—were either committed to
other tasks or did not support the environment needed for STAR. However, by this
time, the STAR scientists had developed validated VM images and trusted Nimbus
to deploy them. The deployed images—300 virtual nodes at a time—were used to
elastically extend the resources available to STAR. As the simulation progressed,
the images were upgraded to more powerful EC2 instances to speed the calcula-
tions and ensure meeting the deadline.

This deployment marks the very first time cloud computing has been used in
nuclear physics for significant scientific production work with full confidence in
the results. It also illustrates that cloud computing can be used not only to provide

32  ◾  Cloud Computing and Software Services

a consistent environment for computations to run but also successfully provide
an environment for time-critical simulations. At the same time, the experiments
demonstrated a need for a wider “ecosystem” needed to support the use of cloud
computing: to be efficient and reliable, image development needs to be a part of the
application production process to ensure seamless migration from local to resource
elastically provisioned in the cloud.

2.4.2.2 Building a Cloud Computing Ecosystem with CernVM

A Large Ion Collider Experiment (ALICE) is one of the four experiments associ-
ated with the Large Hydron Collider (LHC) device at CERN whose focus is on
heavy ion simulations. The scientists wanted to explore dynamically provisioning
cloud resources and integrating them into the global pool of resources available to
ALICE—managed by ALICE’s AliEn scheduler [42]—to provide for the time-
varying needs of their applications. The important objectives of this integration
were to (1) make the process transparent to the end-user so that they do not need
to change the ways in which they use the system and (2) make the integration so
that no changes are required to the existing components of the infrastructure (e.g.,
the AliEn scheduler). This required the development of an ecosystem that not only
supplied the images, but estimated the need for additional resources and automated
provisioning them without the user’s involvement.

Like the STAR scientists, LHC is working with applications requiring com-
plex and consistent environment configurations and investigated virtualization
as a potential solution. This resulted in the development of the CernVM project
[43], which provides production environments supporting all four LHC experi-
ments in VM images of various formats. The CernVM technology was originally
started with the intent of supplying portable environments that scientists could eas-
ily deploy on their laptops and desktops for development work. However, flexible
technology choices ensured support for a variety of VM formats, including the Xen
images used by the Amazon EC2 as well as Science Clouds; the developed produc-
tion images were also available for cloud computing.

The remaining challenge was to find a way to deploy these images so that they
would dynamically and securely register with the AliEn scheduler and thus join the
ALICE resource pool. This was achieved using the Nimbus Context Broker, which
allows a user to securely provide context-specific information to a VM deployed on
remote resources and vice versa. The resulting system [44] first dynamically deploys
CernVM virtual machines on the Nimbus cloud at the University of Chicago. The
deployed VMs then join the pool of resources available to AliEN as orchestrated by
the Context Broker. Finding a new available resource, the AliEn scheduler sched-
ules jobs on it. With the addition of a queue sensor that deploys and terminates
VMs based on demand (as evidenced by the presence of jobs in the queue), the
researchers can experiment with ways to balance the cost of the additional resources
against the need for them.

Science Gateways  ◾  33

The integration succeeded in achieving its objective of leveraging cloud
resources while retaining a job management interface familiar to the end-user and
using unmodified middleware. In this specific integration example, virtual nodes
provisioned in the cloud are treated as remote resources requiring a grid scheduler
(AlieEN) to manage. But these resources are different from the usual grid resource
in that they now have a configuration that can be trusted—a feature that could
potentially be leveraged to produce a simpler system.

2.4.2.3 CloudBLAST: Creating a Distributed Cloud Platform

To date, users have typically treated resources available in the distributed environ-
ment as untrusted and developed special ways of interacting with them. Cloud
computing introduces an important innovation in that it allows users to fully con-
figure remote resources (contained in VMs) so that their configuration can now be
trusted. If we also manage to secure the network traffic between sites, we can create
a platform where a collection of distributed resources can have the same level of
trust a site has.

To build such a platform, we combined Nimbus with the ViNE overlay [45],
an efficient network overlay implementation developed at the University of Florida.
The resulting platform allows the user to select IaaS allocations from a few differ-
ent cloud providers, potentially offering different service levels. We built a secure
environment on top of those allocations using a provider-independent network
overlay and the Context Broker for configuration exchange. The advantage of this
approach is that it creates an environment with site-level trust, so that applications
can be ported to it directly for ease of experimentation and use.

The Distributed Cloud Platform has been used for computer science experi-
ments with latency-sensitive tools such as the Hadoop [6] implementation of
MapReduce [6] and the Message Passing Interface [46] conducted across
resources provisioned in multiple, widely distributed clouds [47]. They have
shown that distributed cloud resources can provide a viable platform for appli-
cations using those tools (in the investigated case: the bioinformatics BLAST
application).

2.5  Gadgets and OpenSocial Containers
Wenjun Wu and Marlon Pierce

One way science gateways and others are providing SaaS is through the use of
portlets or gadgets. Both portlets and gadgets are web components that can be
used to aggregate dynamic web contents. But the design concepts of portlets
and gadgets are very different. Portlet frameworks achieve web content aggrega-
tion on the server side, while gadget frameworks enable client-side aggregation
following the Web 2.0 paradigm. A gadget can be regarded as a miniature web

34  ◾  Cloud Computing and Software Services

application and can define its content and control logic in client-side JavaScript
and HTML. In this way, it has less dependence on its container than a portlet.
Many science gateways projects have already built their web portals based on the
JSR-168 portlet framework. Currently, Google gadgets are becoming an increas-
ingly popular way of delivering customized web content and accessing cloud
computing services. This new approach can leverage science gateway portals in
terms of rich user interface and social network capability, which will promote the
adoption of science gateways for advanced education and the next generation of
young scientists.

A standardized gadget framework is necessary for the development and deploy-
ment of gadgets. The Google-led OpenSocial [48] consortium defines a framework
that standardizes the practices of gadget and social-networking sites, enabling web
developers to write gadgets that can run in any OpenSocial compliant container.
Many social networking sites have adopted the OpenSocial framework and have
opened their containers to developers. For example, an OpenSocial gadget can be
easily added into the iGoogle sandbox [49]. Moreover, the Apache Shindig [50]
incubator project provides a reference implementation of the OpenSocial container
for PHP and Java. It can be used as a platform for gateway developers to understand
the internals of the OpenSocial framework and test their gadgets before deploying
the gadgets to commercial social networking sites.

The Open Grid Computing Environments (OGCE) project has undertaken
a pilot project to test the feasibility of using the Open Social framework for sci-
ence gateways. We have developed a set of gadgets for both Open Life Science
Gateway (OLSG) [51] and the SIDGrid [52]. OLSG is a computational por-
tal that integrates a group of bioinformatics applications and data collections.
SIDGrid provides a cyber-infrastructure to help social and behavioral scientists
collect and annotate data, collaborate and share data, and analyze and mine large
data repositories.

The OLSG includes three gadgets (Figure 2.2): ClustalW, BLAST, and
JobHistory, which can be loaded in iGoogle or any compatible container. Both
BLAST and ClustalW are very commonly used sequence alignment tools in
bioinformatics. Through these two gadgets, users can post DNA or protein
sequences and run the OLSG’s alignment services. The JobHistory gadget allows
users to check the status of their computing tasks and retrieve the result reports
from the finished tasks. We also built a SIDGrid Preview Gadget (Figure 2.3)
that can visualize social experiment data including video, audio, and annotation
in a synchronized way.

OpenSocial gadgets are associated with OAuth [53], an emerging standard for
Web security. To support OAuth in our gadgets, we have developed an OAuth
provider that consists of a group of Java Servlets. By using OAuth tokens, an
OpenSocial container and our science gateway build up their mutual trust so
that the science gateway can authorize requests from the container to access the
restricted data and services.

Science Gateways  ◾  35

Based on our initial experiments, we conclude that OpenSocial and related
standards like OAuth are a suitable platform for building science gateways. Code
originally developed for the OLSG and SIDGrid have been contributed back to the
OGCE, and we are examining ways to generalize these contributions for new gate-
ways. The current research in OpenSocial gadgets will eventually lead to a “social

Figure 2.2  Three OLSGW Gadgets running on the iGoogle page.

Figure  2.3  SIDGrid  Flash  Preview  Gadget  running  on  the  Orkut  social  net-
working site.

36  ◾  Cloud Computing and Software Services

cloud” that can support collaborative computing and data analysis through world
wide OpenSocial platforms and cloud computing infrastructure. In this “social
cloud,” cross-domain researchers will be able to easily build up their communities
based on their existing social connections in the science domains and share their
computational workflows, analysis data results, and even cloud computing cycles in
a secured and collaborative environment.

2.6  Architecture of an SaaS Science Gateway
John McGee

The RENCI science gateway [54] is one example of providing scientific SaaS with
a supercomputing capability on the back end. The vision for this gateway is to pro-
vide multiple means of access to a large and growing number of scientific applica-
tions that will run on high performance (HPC) and/or high throughput (HTC)
compute systems. To achieve this vision, we have developed a highly scalable pro-
cess for creating, deploying, and hosting services that are backed by national scale
HPC/HTC resources.

A variety of different access mechanisms for the software services is desirable
to accommodate different usage models with varying levels of capability and cor-
related ease of use. The gateway provides synchronous services for simpler scenarios
where the service client can be expected to maintain a connection to the gateway
for the lifetime of the service interaction. This is a simple way for an SaaS client to
test or probe the functions of the scientific software systems on the other side of the
service interface. It is not, however, useful in a case where the service invocation
results in a large amount of compute activity that will be scheduled on an HPC
resource or distributed among a large number of systems in an HTC solution. In
this case, an asynchronous service interface will be required to handle the long run-
ning job(s) and the programming of the client to interact with the service is slightly
more complicated. Having both of these interfaces for each scientific application on
the back end enables the gateway to support a broad range of cases, such as calling
the service on a range of cells in an Excel spreadsheet or running BLAST against
100,000 DNA sequences.

Providing and maintaining a large number of applications via multiple service
interfaces can be challenging from a management and maintenance perspective.
The RENCI Science Portal currently has 120 such scientific applications available.
In addition to the interfaces themselves, additional components must be main-
tained for each application, for example documentation, a portlet, information
for web service registries, and information needed to launch these applications
into the HPC/HTC systems. To achieve the desired scale, we have implemented
a process where all of the required information per application is collected in
the form of metadata for that application. From the metadata for a given science
application, we then generate all of the service interfaces and other components

Science Gateways  ◾  37

described above. Another benefit to this approach is that we can more easily add
entirely new access mechanisms (e.g., Google Gadgets or other Web 2.0 client
technologies) across all science applications, simply by adding new modules to
the generator.

By definition, the science gateway is a value layer in between the large HPC/
HTC national resources and the researchers using the software services. Figure 2.4
shows the architecture of this value layer for the RENCI science gateway. The back-
end computational and data analysis capabilities are scalable due to the use of a local
Condor pool to cache, manage, and match the jobs with HPC/HTC resources.

RENCI science desktops
Life

sci
ences

RENCI re
sea

rch
 apps

Natural la
nguage

proc
ess

ing

BlastM
aste

r

And ot
hers

...

Java
web start

deployment

Any
web service

client

Taverna

Portal glide-in factory

OSG
Match maker

G
lide-in

G
lide-in

G
lide-in

Java
message
service

Portlets

Portal

AuthNZ

JobMgmt

Accounting

Management
web services Phone home

Compute
resource

Compute
resource

Compute
resource

Compute
resource

Asynchronous
web services

Synchronous
web services

BioMoby WS
synchronous only

Figure  2.4  Architecture  of  the  RENCI  Science  Gateway,  providing  Scientific 
SaaS.

38  ◾  Cloud Computing and Software Services

Jobs known to have a short runtime are easily directed to local resources avoiding
queue wait time on the in-demand national resources, and a submission of a very
large number of jobs can be spread across many back-end HPC/HTC resources.
Additional back-end engines such as Amazon EC2 or Microsoft Azure could also
be added based on demand.

The hosting infrastructure for this SaaS solution is scalable in terms of sup-
porting high volumes of simultaneous access via the deployment architecture as a
result of using enterprise class features and industry standard technologies, such as
message queuing (Java Message Service), enterprise middleware (JBoss), web ser-
vice framework (Apache Axis2), application framework (Spring), and distributed
computing (Condor). The core components of this architecture can be deployed
on separate dedicated hardware systems or VMs and support clustering for load
balancing and failover.

2.7   Dynamic Provisioning of Large-Scale 
Scientific Datasets

Chaitan Baru

Scientific data management systems are faced with a deluge of data from a vari-
ety of sources, from large-scale simulations to data from various instruments and
observing platforms [55]. These systems need to be capable of managing very large
data volumes and serving them in useful ways to a community of users. Thus far,
resource constraints and assumptions from previous generations of technology have
constrained these systems to adopt a relatively static, “one size fits all” approach to
managing data, even as they serve communities of users with a wide and varying
range of access and processing requirements. New approaches are required to effec-
tively and efficiently serve these data to end users and applications. Given advances
in sensor, processor, storage, and networking technologies, the data deluge can only
be expected to increase with time.

A number of new factors have now come to the fore and provide opportunities
to rethink the approaches to storage, including the following:

 ◾ Availability of very large clusters with fault resilient software environments.
Systems like Apache Hadoop, which was inspired by Google’s MapReduce
and the Google File System (GFS) [56], now make it easier to manage and
process large data sets using large clusters.

 ◾ Increasing awareness of the total cost of acquisition and ownership, with
emphasis being placed not only on the acquisition cost, but also on personnel
costs for programming applications and for system management, as well as
ownership costs, including in terms of power consumption. Data manage-
ment solutions ought to keep all these costs in mind.

Science Gateways  ◾  39

 ◾ Changing software environments. Service-oriented architectures (SOA) pro-
vide more opportunities to observe user access patterns and workloads and
correspondingly optimize the system for better performance. Traditionally,
providers have made data available as files—sized typically according to what
may have been convenient for the data acquirer or provider—to be shipped on
media or downloaded via ftp. Users download data and work with them on
their own systems, thus missing the opportunity for the data center to opti-
mize data management based on the community’s use of the data. Common
data repositories and portal-based environments not only help amortize
costs, but also provide the opportunity for observing and optimizing user
access patterns. Furthermore, workflow-based systems also make it possible
to more easily provide alternative, or customized, processing strategies.

2.7.1 Science Gateways for Data
Science gateways for data provide users with easy, online access to very large data
sets with the ability to perform basic queries and subsetting operations on the data
as well as invoke processing and visualization operations. An example of such a
gateway is the OpenTopography.org portal that provides Web-based access to high-
resolution LiDAR topographic data, allowing users to process these data to generate
custom digital elevation models (DEMs) or access pre-computed, “derived” data
products [57,58]. The OpenTopography portal allows users to subset remote sens-
ing data (stored as “point cloud” data sets), process it using different algorithms,
and visualize the output. About 5 TB (∼13.5 billion points) of data are hosted by
the system using IBM’s DB2 database system implemented on an eight-node clus-
ter with extensions to support spatial data. In the LiDAR data collection, different
data sets are of different sizes. The smaller datasets are distributed (declustered)
across fewer nodes (three nodes) while the larger datasets are declustered across
all nodes. Implementing the system using DB2 provides powerful capabilities for
spatial indexing of the data as well as for subsetting the data using SQL.

2.7.2 Cloud Computing and Data
For very large scientific data archives, there is the opportunity to provision the data
differently based on the frequency and nature of access to data. A “provisioning
strategy” is a resource allocation strategy that a system employs in order to provide
the best possible qualities of service, such as response times, quality of data, and the
range of available capabilities. Resources may include the number of nodes, number
of processors, number of disks, disk layout, and software used. Cloud computing
is predicated on the ability to dynamically allocate resources to a given computa-
tional problem. In the case of large data sets, this requires the ability to dynamically
and efficiently load data sets into the system and to serve the data to the user or
application. Large Hadoop clusters provide one possible solution for serving such

40  ◾  Cloud Computing and Software Services

data. For example, Amazon has introduced the Elastic MapReduce service, which
allows data sets to be dynamically loaded into a system and processed using the
MapReduce-style processing [59].

A number of storage abstractions and models are being proposed in the context
of cloud computing. Microsoft Azure, for example, provides abstractions such as
Table, Blob, and Queue. Amazon provides the Simple Storage Service [7], Elastic
Block Storage [15], and a key/blob store [60]. MapReduce itself depends on the
Google File System [56] and the corresponding Hadoop implementation uses the
Hadoop Distributed File System [61]. Several database abstractions have been
developed for MapReduce and Hadoop, such as HIVE [62], CloudBase [63], and
BigTable [64]. HIVE is a data warehouse infrastructure built on top of Hadoop that
provides tools to enable easy data summarization, ad hoc querying, and analysis of
large datasets data stored in Hadoop files. It provides a mechanism to put structure
on this data and it also provides a simple query language called QL, which is based
on SQL and enables users familiar with SQL to query this data. At the same time,
this language also allows traditional map/reduce programmers to be able to plug in
their custom mappers and reducers to do more sophisticated analysis, which may
not be supported by the built in capabilities of the language. CloudBase is also built
on top of the MapReduce architecture and provides the ability to query flat log files
using an implementation of ANSI SQL. BigTable is also a distributed storage sys-
tem built on GFS that is designed to scale to very large databases. The data model is
a sparse, distributed, persistent, multidimensional sorted map indexed by row and
column keys and a time stamp.

Amazon’s Elastic MapReduce supports processing of vast amounts of data utiliz-
ing a hosted Hadoop framework running on the web-scale infrastructure of Amazon
EC2 and S3. Using Elastic MapReduce, one can provision as much or as little capac-
ity as needed to perform data-intensive tasks. Elastic MapReduce automatically
spins up a Hadoop implementation of the MapReduce framework on Amazon EC2
instances, subdividing the data in a job flow into smaller chunks so that they can
be processed (the “map” function) in parallel and eventually recombining the pro-
cessed data into the final solution (the “reduce” function). Amazon S3 serves as the
source for the data being analyzed and as the output destination for the end results.

The CloudStor Project [65] at the San Diego Supercomputer Center is studying
trade-offs between parallel database systems, such as DB2 and Oracle in a cluster,
versus Hadoop and Hadoop-based storage systems, for dynamically provisioning
data-intensive applications. Standard database implementations can provide high
performance access to the data using spatial indexes and supports rich functionality
using SQL and spatial extensions to SQL. To do so, the data must be loaded into a
database system and indexed for efficient access. Optimizing data load times is an
important consideration since we are interested in dynamic data serving strategies
where only a part of the data may be loaded into the database, based either on user
request or by observing workload patterns. Load times can be improved by parti-
tioning the set of input data files into distinct table partitions and then loading each

Science Gateways  ◾  41

partition in parallel across all nodes of the clustered database. In some cases, data-
base systems are also designed to directly access data in external files without going
through a load phase. The various alternatives need to be evaluated for performance.

The DB2 architecture is well suited for clusters since it is able to exploit cluster
(shared-nothing) parallelism by partitioning databases across the nodes of a cluster.
The optimal number of nodes for a database depends on the database size and the
specified workload. The speeds of data loading, indexing, and query processing
are important considerations in supporting the capability to create databases on-
demand. Such databases will have a “residence time” that is determined by the
user or by the system, after which time they may be deleted or dropped from the
system. The time to create a database should be much shorter than the residence
time of the database, e.g., 1 day to create/load a database versus 2 months of resi-
dence time. The output of a SQL query in a clustered database can be generated in
parallel so that each node of the cluster outputs its part of the result as a separate
file. Thus, a particular user request could generate parallel output, represented by
a set of files. This is useful in cases where the output is then processed by another
parallel program.

The database performance can be compared with the performance of “pure”
Hadoop-based solutions where the data are kept in flat files in GFS or HDFS,
and the data subset operation is performed using MapReduce. The MapReduce
implementations can be tuned in many ways. By default, MapReduce automati-
cally splits the input files into M pieces for the map phase and the intermediate files
into R partitions for the reduce phase. Both M and R can be controlled via optional
parameters. One can optimize the values of M and R for the data sizes and compute
cycles available on the cluster. Furthermore, the default partitioning function may
not always be the best option. Custom splitting routines that take the nature of
data and the type of applications into account may perform better. For example, a
range partitioning scheme based on certain key values may result in better overall
performance than a random, hash-based partitioning.

Cloud computing is promising as an approach for the dynamic provisioning
of data-intensive applications. However, rigorous performance testing is needed to
determine the best implementation for a given application and for tuning of system
parameters. The CloudStor Project at SDSC is engaged in such performance stud-
ies using a variety of cloud computing platforms, including the Google-IBM CluE
cluster and the newly acquired Triton Shared Resource Cluster at UC San Diego.

2.8  Future Directions
The pursuit of science will continue to be shaped by technology developments in
new and important ways. Our ability to gain insights from the increasingly numeri-
cal scientific world of environmental sensors, particle accelerators, individualized
DNA sequencing, and the like depends on our ability to intelligently interpret

42  ◾  Cloud Computing and Software Services

these data. Cloud computing and SaaS provide the type of flexible, demand-driven
technologies that can help with such analysis.

Some scientific computing algorithms, traditionally run on tightly coupled
supercomputers, require access to thousands of processors simultaneously and
depend on low latency network connections and an environment where all pro-
cessors stay up for the length of a run. These seem less suited to a cloud architec-
ture than applications that require millions of single processor jobs. However, new
trends in very high processor count supercomputer systems are driving algorithmic
development, which may in fact improve the ability of some scientific algorithms to
run effectively in a cloud environment.

Cloud computing can be a time saver for scientists in several regards. Wolski
notes that “Cloud applications, once debugged and tuned, tend to be quite robust
and scalable.” This could significantly reduce the time spent on software mainte-
nance for scientists, though as hardware developments continue, software should
still be occasionally tuned so as not to miss significant performance benefits.
Reproducible results should be much easier to achieve using clouds as well. Wolski
also notes that IT investments can be significantly reduced through the use of
clouds. This can make the ability to analyze all that incoming data more realistic
for small science teams and can reduce the dependence on graduate students for
system administrator duties within a research group.

The Nimbus environment is designed as a set of APIs and as such will be well
suited to the many directions scientists may want to explore with this technology.
Early extensions to Nimbus include data privacy and monitoring components for
the biomedical and high-energy physics communities, respectively. Nimbus has
also been used successfully under deadlines to produce results for a major confer-
ence. Experiences such as these will continue to increase confidence in the technol-
ogy and reduce the perception that “I need my own cluster to meet my deadlines.”
We see tremendous growth in this area.

SaaS also holds great promise for science. The analysis required for the increas-
ingly digital nature of science will be carried out by software on computers. The
ability to abstract both the software and the computing will clearly benefit scien-
tists. The ability to fit these capabilities into a young scientist’s lifestyle will benefit
science even further. Seventy-five percent of 18 to 24 year olds have social network-
ing Web sites [66].

Work with the OLSG and the SIDGrid indicates that some science applications
can be adapted to the social networking environment. This exponentially increases
the potential for collaboration—both within and between disciplines—on the
most challenging science problems. All of today’s social networking infrastructures
can be leveraged to connect scientists doing similar work. Computational work-
flows, data, and even cloud computing cycles will be shared in a secured and col-
laborative environment.

For groups wanting to deploy very large numbers of software packages as
a service, an automated approach such as that outlined by the RENCI team is

Science Gateways  ◾  43

absolutely essential. Coupling this level of organization with the availability of flex-
ible cloud computing resources delivers valuable capabilities to biologists who rely
on many different software packages. Through the use of such a framework, soft-
ware interfaces can easily be adapted to changing technologies—from web services
to OpenSocial interfaces.

Finally, in the data-intensive world of today’s science, the ability of clouds to
effectively handle data provisioning is key to their relevance to the scientific com-
munity. Science and engineering applications are often data intensive and the abil-
ity to adapt data delivery and analysis methods to this new infrastructure are very
promising. Commercial enterprises can dynamically and efficiently load data sets
into the system to serve the data to the user or application. A variety of database
strategies in particular have been developed. The CloudStor Project at the San Diego
Supercomputer Center is studying the trade-offs between parallel database systems,
such as DB2 and Oracle in a cluster versus Hadoop and Hadoop-based storage sys-
tems, for dynamically provisioning data-intensive applications. Provisioning data
via clouds and sharing it programmatically with others via Web 3.0 are some very
exciting directions for science.

References
 1. Hendler, J. Web 3.0 emerging. IEEE Computer, 42(1): 111–113, January 2009.
 2. Tao, T. NCBI Blast, 2006. http://www.ncbi.nlm.nih.gov/staff/tao/URLAPI/blastall/

blastall_node2.html [Retrieved: April 22, 2009, from National Center for Technology
Information].

 3. Azgad, Y. International Protein Data Bank enhanced by computer browser. Interface,
November 2, 1995.

 4. http://www.rcsb.org
 5. Dunning, T.R.B. Impact of Advances in Computing and Communications Technologies

on Chemical Science and Technology: Report of a Workshop. Chemical Sciences
Roundtable, Board on Chemical Sciences and Technology, Commission on Physical
Sciences, Mathematics, and Applications. Washington, DC: National Academy Press,
1999.

 6. Dean, J. and S. Ghemawat. MapReduce: Simplified data processing on large clusters.
In OSDI’04: Sixth Symposium on Operating System Design and Implementation, San
Francisco, CA, 2004.

 7. Hadoop. http://hadoop.apache.org/
 8. Amazon Elastic Compute Cloud (Amazon EC2). http://www.amazon.com/ec2
 9. Amazon Simple Storage Service. Available from: http://aws.amazon.com/s3/ [Accessed:

May 12, 2009].
 10. Buyya, R., C.S. Yeo, and S. Venugopal. Market-oriented cloud computing: Vision,

hype, and reality for delivering IT services as computing utilities. In 10th IEEE
International Conference on High Performance Computing and Communications, Dalian,
China, 2008.

 11. Skillicorn, D.B. The case for datacentric grids. In Parallel and Distributed Processing
Symposium (IPDPS), Fort Lauderdale, FL, 2002.

44  ◾  Cloud Computing and Software Services

 12. Chang, M., J. He, and E. Castro-Leon. Service-orientation in the computing infra-
structure. In SOSE’06: Second IEEE International Symposium on Service-Oriented
System Engineering, Shanghai, China, 2006.

 13. Greschler, D. and T. Mangan. Networking lessons in delivering “software as a service”:
Part I. Int. J. Netw. Manag., 12(5): 317–321, 2002.

 14. Laplante, P.A., J. Zhang, and J. Voas. What’s in a name? Distinguishing between SaaS
and SOA. IT Professional, 10(3): 46–50, 2008.

 15. Amazon Web Services home page. http://aws.amazon.com/
 16. Amazon Elastic Block Store. Available from: http://aws.amazon.com/ebs/ [Accessed:

May 12, 2009].
 17. Nurmi, D., R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and

D. Zagorodnov. The eucalyptus open-source cloud-computing system. In Proceedings
of the ACM/IEEE International Symposium on Cluster Computing and the Grid (CCGrid
2009), Shanghai, China, 2009.

 18. Nurmi, D., R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and
D. Zagorodnov. Eucalyptus: A technical report on an elastic utility computing architecture
linking your programs to useful systems. In UCSB Technical Report ID: 2008-10, 2008.

 19. The eucalyptus project page. http://eucalyptus.cs.ucsb.edu/
 20. RightScale home page. http://www.rightscale.com/
 21. CohesiveFT. http://www.cohesiveft.com
 22. rPath. http://www.rpath.com
 23. Chohan, R., C. Bunch, S. Pang, C. Krintz, N. Mostafa, S. Soman, and R. Wolski.

Appscale design and implementation. In UCSB Technical Report ID: 2009-02, 2009.
 24. The AppScale project page. http://appscale.cs.ucsb.edu/
 25. dotCloud. http://www.dotcloud.org.
 26. The Eucalyptus Public Cloud. http://eucalyptus.cs.ucsb.edu/wiki/EucalyptusPublicCloud
 27. Google App Engine. http://code.google.com/appengine/
 28. Czajkowski, K., I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, and

S. Tuecke. A resource management architecture for metacomputing systems. In Fourth
Workshop on Job Scheduling Strategies for Parallel Processing, Orlando, FL, Springer-
Verlag, Heidelberg, Germany, 1998, pp. 62–82.

 29. Keahey, K. and K. Doering. From sandbox to playground: Dynamic virtual environ-
ments in the grid. ANL/MCS-P1141-0304, 2003.

 30. Keahey, K., K. Doering, and I. Foster. From sandbox to playground: Dynamic vir-
tual environments in the grid. In Fifth International Workshop in Grid Computing,
Pittsburgh, PA, 2004.

 31. Keahey, K., I. Foster, T. Freeman, X. Zhang, and D. Galron. Virtual Workspaces in the
Grid. In EuroPar, Lisbon, Portugal, 2005.

 32. Keahey, K. and T. Freeman. Contextualization: Providing one-click virtual clusters. In
eScience, Indianapolis, IN, 2008.

 33. Keahey, K., I. Foster, T. Freeman, and X. Zhang. Virtual workspaces: Achieving quality
of service and quality of life in the grid. Sci. Programming J., 13(5):265–275, 2005.

 34. Foster, I.C., K. Czajkowski, D.F. Ferguson, J. Frey, S. Graham, T. Maguire, D. Snelling,
and S. Tuecke. Modeling and managing state in distributed systems: The role of OGSI
and WSRF. Proc. IEEE, 93(3): 604–612, 2005.

 35. Freeman, T. and K. Keahey. Flying low: Simple leases with workspace pilot. In EuroPar
2008, Las Palmas de Gran Canaria, Spain, 2008.

 36. Science Clouds. http://workspace.globus.org/clouds/

Science Gateways  ◾  45

 37. Descher, M., P. Masser, T. Feilhauer, A.M. Tjoa, and D. Huemer. Retaining data con-
trol to the client in infrastructure clouds. In ARES, Fukuoka, Japan, 2009.

 38. Freeman, T., K. Keahey, I. Foster, A. Rana, B. Sotomayor, and F. Wuerthwein. Division of
labor: Tools for growth and scalability of the Grids. In ICSOC 2006, Chicago, IL, 2006.

 39. Sotomayor, B., K. Keahey, and I. Foster. Overhead matters: A model for virtual
resource management. In First International Workshop on Virtualization Technology in
Distributed Computing (VTDC), Tampa, FL, 2006.

 40. Sotomayor, B., K. Keahey, and I. Foster. Combining batch execution and leasing using
virtual machines. In HPDC 2008, Boston, MA. 2008.

 41. Heavey, A. Clouds make way for STAR to shine. http://www.isgtw.org/?pid=1001735
 42. AliEn. http://alien.cern.ch/twiki/bin/view/AliEn/Home
 43. CernVM. http://cernvm.cern.ch/cernvm/
 44. Harutyunyan, A. and P. Buncic. Dynamic virtual clusters for AliEn. In CHEP09,

Prague, Czech Republic, 2009.
 45. Tsugawa, M. and J. Fortes. A virtual network (ViNe) architecture for grid computing.

In IPDPS, Rhodes Island, Greece, 2006.
 46. Snir, M. and W. Gropp. MPI The Complete Reference. Cambridge, MA: MlT Press, 1994.
 47. Matsunaga, A., M. Tsugawa, and J. Fortes. CloudBLAST: Combining MapReduce

and virtualization on distributed resources for bioinformatics applications. eScience
2008, Indianapolis, IN, 2008.

 48. OpenSocial Specification. http://www.opensocial.org/
 49. iGoogle sandbox. http://code.google.com/apis/igoogle/docs/igoogledevguide.html
 50. Shindig. http://incubator.apache.org/shindig/
 51. Wu, W., R. Edwards, I.R. Judson, M.E. Papka, M. Thomas, and R. Steves. TeraGrid

Open Life Science Gateway. In TeraGrid 2008 Conference, Las Vegas, NV, June 9–13,
2008. http://archive.teragrid.org/events/teragrid08/Papers/papers/24.pdf

 52. Bertenthal, B., R. Grossman, D. Hanley, M. Hereld, S. Kenny, L. Gina-Anne, M.E.
Papka et al. Social informatics data grid. In E-Social Science 2007 Conference, Ann
Arbor, MI, October 7–9, 2007. http://ess.si.umich.edu/papers/paper184.pdf

 53. OAuth. http://oauth.net/core/1.0
 54. http://portal.renci.org
 55. Anderson, C. The end of theory: The data deluge makes the scientific method obsolete.

Wired Magazine. Available from: http://www.wired.com/science/discoveries/maga-
zine/16-07/pb_theory [Accessed: May 12, 2009].

 56. Ghemawat, S., H. Gobioff, and S.T. Leung. The Google file system. In Proceedings
of the 19th ACM Symposium on Operating Systems Principles, Lake George, NY, pp.
20–43, 2003.

 57. Crosby, C.J., J.L. Blair, V. Nandigam, A. Memon, C. Baru, and J.R. Arrowsmith.
KML-based access and visualization of high resolution LiDAR topography. Eos Trans,
AGU, Fall Meet Suppl., Abstract IN41B-1149, 2008

 58. Jaeger-Frank, E., C.J. Crosby, A. Memon, V. Nandigam, J.R. Arrowsmith, J.
Conner, I. Altintas, and C. Baru. A three tier architecture for LiDAR interpolation
and analysis. In Lecture Notes in Computer Science, 3993, April 2006, pp. 920–927,
DOI:10.1007/11758532_123.

 59. Amazon Elastic MapReduce. Available from: http://aws.amazon.com/elasticmapre-
duce/ [Accessed: May 12, 2009].

 60. Amazon SimpleDB. Available from: http://aws.amazon.com/simpledb/ [Accessed:
May 12, 2009].

46  ◾  Cloud Computing and Software Services

 61. HDFS Architecture. Available from: http://hadoop.apache.org/core/docs/current/
hdfs_design.html [Accessed: May 12, 2009].

 62. HIVE. Available from: http://hadoop.apache.org/hive/ [Accessed: May 12, 2009].
 63. CloudBase. Available from: http://sourceforge.net/projects/cloudbase/ [Accessed: May

12, 2009].
 64. Chang, F., J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M. Burrows, T. Chandra,

A. Fikes, and R. Gruber. Bigtable. A distributed storage system for structured data. In
OSDI’06: Seventh Symposium on Operating System Design and Implementation, Seattle,
WA, November, 2006.

 65. http://cloudstor.sdsc.edu
 66. http://pewresearch.org/pubs/1079/social-networks-grow

47

Chapter 3

Enterprise Knowledge 
Clouds: Next 
Generation Knowledge 
Management Systems?

Jeff Riley and Kemal Delic

Contents
3.1 Introduction ...48

3.1.1 Emerging Cloud Computing Infrastructures48
3.1.2 Collective Intelligence ...49
3.1.3 Intelligent Enterprise ..50

3.2 Enterprise Knowledge Management: Architecture and Technologies51
3.2.1 Enterprise Knowledge Management Infrastructure54
3.2.2 Enterprise Knowledge Management Applications55
3.2.3 Enterprise Knowledge Management Content55
3.2.4 Enterprise Knowledge Management Users55

3.3 Enterprise Knowledge Cloud ..55
3.4 The Next 5 to 15 Years ...57
References ...58

48  ◾  Cloud Computing and Software Services

3.1  Introduction
The field of knowledge management (KM) has been through several cycles of hype
and disappointment and has created important disputes along the lines of “knowl-
edge” being the philosophical discourse and science and “management” being the
empirical and experiential teaching. In reality, it has created a booming business for
technologists, consultants, and a wide variety of technology vendors. Seen today,
after a few decades, it still seems that the term “knowledge management” remains
undefined, fuzzy, and disputed. Indeed, the very definition of “knowledge” and the
distinction between data, information, and knowledge is poorly defined and still
not well understood by many. Still, we are all aware of the rudimentary elements
of “knowledge reuse” in a wide variety of business operations. Some will even hint
that the contemporary Internet is a type of “knowledge bazaar” where individuals
and corporations can shop for all manner of “knowledge consumables.” In this
chapter, we discuss the possibility that the treatment of knowledge management
systems (KMS), which represent an intricate part of many business enterprises, has
yet another chance of reappearing in totally new technological, market, and social
circumstances.

In Section 3.2, we sketch the context in which we see the emergence of massive,
globally dependable infrastructure(s) used by several hundreds of millions of users
across the globe. We position business aims and interest in this subject and narrow
those into enterprise needs for knowledge to operate. We then outline a generic
knowledge management architecture within contemporary business enterprises,
which typically appears in the form of the enterprise stack application, hosted in
data centers.

After observing the current deficiencies and projecting future developments, we
depict a high-level architecture for the Enterprise Knowledge Cloud (EKC) as a col-
laborative, cooperating, competing mega-structure providing computing, network-
ing, and storage services to various “knowledge producers and consumers”—such
as devices, people, and applications. Some architectural and design landscapes are
provided for illustration. We conclude with a no-nonsense list of things we expect to
observe happening as a sign of the mega-shift from the industrial to post-industrial
world of the twenty-first century. We believe that EKCs are potential breakthrough
applications marking an enterprise technology transition all the way from main-
frame computers to networked PCs, to grids and emerging computing clouds.

3.1.1 Emerging Cloud Computing Infrastructures
The U.S. National Institute of Standards and Technology (NIST) draft definition
of cloud computing is as follows:

Cloud computing is a model for enabling convenient, on-demand
network access to a shared pool of configurable computing resources

Enterprise Knowledge Clouds  ◾  49

(e.g., networks, servers, storage, applications, and services) that can be
rapidly provisioned and released with minimal management effort or
service provider interaction. (Mell and Grance 2009)

Based on this definition, it can immediately be seen that cloud computing encom-
passes infrastructure, which to some extent at least already exists today in the form
of the World Wide Web (“the Web”) providing a wide variety of information tech-
nology (IT) services that can be purchased on-demand (computing cycles, storage,
and network) in a highly simplified procedure. Over time, just as “the Internet” has
evolved into “the Web,” the Web will evolve into “the cloud” (Figure 3.1).

We predict future growth in which we will see a huge number of common
devices interconnected and totally new applications emerging. It will most likely
emerge as a hugely re-scaled version of today’s Internet. This growth will likely be
stimulated via innovative applications starting to proliferate: a well-known social
network has provided a platform for 4,000 applications written by 80,000 devel-
opers in just 6 months; the Amazon Elastic Compute Cloud (Amazon EC2) has
330,000 registered application developers.

We observe that the cloud infrastructure is global, highly dependable, and sup-
ports innovative business models and new types of social phenomena such as blogs,
MySpace, Facebook, YouTube, and Twitter, not to mention the myriad multiplayer,
role-playing games and virtual reality sites.

3.1.2 Collective Intelligence
Collective intelligence is a phenomenon that emerges from the interaction—either
collaboration or competition—of many individuals. By some estimates, today there

1960 20202000

Internet
Connectivity

Web
Information
e-commerce

Cloud
Services

Figure 3.1  The Internet evolving into the cloud. (Adapted from Delic, K.A. and 
Walker, M.A., ACM Ubiquity, 9, 31, 2009.)

50  ◾  Cloud Computing and Software Services

are 80 million people worldwide writing weblogs (“blogs”). The blogs are typically
topic-oriented and some attract important readership. Authors range from large
company CEOs to housewives and young children. When taken together, the cloud
computing infrastructure that hosts blogospheres looks like a big social agglomera-
tion providing a kind of “collective intelligence.” But it is not just blogs that form
the collective intelligence—the phenomenon of collective intelligence is nurtured
and enhanced by the social and participatory culture of the Internet, so all content
developed and shared on the Internet becomes part of the collective intelligence.
The Internet then, and the content available there, appears as an omnipresent, omni-
scient, cloud-like giant infrastructure—as a new form of “knowledge management.”
Today this represents a massive collaboration of mostly people only, but very soon in
the future we may envisage intelligent virtual objects and devices collaborating with
people—this is already beginning to happen to some extent with Internet-attached
devices starting to proliferate. Thus, rescaling from the actual ∼1.2 billion users to
tens or hundreds of billions of real-world objects having a data representation in the
virtual world is probably realistic. A real danger, and a real problem to be solved by
knowledge management practitioners, is how to sort the wheat from the chaff—or
the knowledge from the data and information—in an environment where the sheer
amount of data and information could be overwhelming.

3.1.3 Intelligent Enterprise
Business enterprises today use the existing Internet infrastructure to execute vari-
ous business operations and provide a wide variety of services. As we see the shift of
all nonphysical operations versus the Internet, we observe a new type of enterprise
emerging: we call it the Intelligent Enterprise (Delic and Dayal 2002).

The Intelligent Enterprise is able to interact with its environment and change
its behavior, structure, and strategy—behaving actually as an intelligent entity.
It is able to adapt to rapid changing market circumstances, gradually change its
business model, and survive into the next market cycle. The Intelligent Enterprise
as we see it is characterized by its ability to learn from and adapt to changes in
its environment and reinvent itself, sometimes with surprising results. In order to
keep up with the rapidly changing demands of doing business, most enterprises
implement increasingly complex IT solutions. Although implemented to make
the enterprise more efficient, coupled with the organizational complexity of such
large enterprise business, the technical complexity introduced by the many and
varied IT solutions helps create pockets of inefficiencies within the organization.
We see future Intelligent Enterprises deriving efficiencies through the automation
of their core business processes and the exploitation of knowledge inherent in their
organization. Their ability to respond quickly to changes will improve significantly
as the knowledge base and “intelligence density” within the enterprise grows and
problem-solving capabilities improve dramatically. Intelligent Enterprises will form
dynamic partnerships with other enterprises to create dynamic business ecosystems,

Enterprise Knowledge Clouds  ◾  51

which will be self-managed, self-configured, and self-optimized. In short, future
enterprises will become smarter—more intelligent—and by doing so will evolve
automatically into organizations more suited to their changing environment.

We postulate that the emergence of collective intelligence in the cloud comput-
ing infrastructure will influence markets and established businesses, allowing—
even encouraging—Intelligent Enterprises to emerge and reshape the contemporary
approach to enterprise knowledge management (EKM). Next, we describe the cur-
rent state of EKM.

3.2   Enterprise Knowledge Management: 
Architecture and Technologies

Constantly evolving markets exercise pressure on business enterprises to continu-
ally evolve and improve. One of the most widely used business paradigms is about
EKM—as a means to capture and express tacit human knowledge into an explicit
form (externalized knowledge or content) that could be later (hopefully) reused.
Various schools of thought were proposed, several assistive technologies were devel-
oped, and an important number of successful EKM stories were reported. From
our experience, the best domain for EKM is in the enterprise IT domain (Delic and
Dayal 2000, Noël and Delic 2002, Delic and Douillet 2004)—as it is a domain
under huge cost pressure, but one which is essential for strategic development.

From a highly abstracted view, the EKM IT domain consists of problem solv-
ing, monitoring, tuning and automation, business intelligence reporting, and
decision-making tasks (Figure 3.2).

Enterprise knowledge management
IT deployment domains

Problem
solving

Decision
making

Monitoring
tuning

automation

Business
intelligence
reporting

Knowledge

Figure 3.2  EKM: IT deployment domains. (Adapted from Delic, K.A. and Riley, 
J.A.,  Enterprise  knowledge  clouds:  Next  generation  KM  systems?  Proceedings
of the 2009 International Conference on Information, Process, and Knowledge
Management (eKnow 2009), Cancun, Mexico, February 2009.)

52  ◾  Cloud Computing and Software Services

Problem solving, especially in the EKM IT domain, is the task for which knowl-
edge management techniques and systems are most commonly deployed. The pro-
liferation of knowledge management systems for problem analysis and solving is
many and varied, spanning the gamut from knowledge capture, representation,
and transformation through to recognition, extraction, and reuse. Knowledge from
all sources, including human expertise, in the form of plain text, models, visual
artifacts, executable modules, etc. is used by intelligent knowledge management
systems to enable users to solve problems without reference to scarce, and often
expensive, human experts.

In recent years, a wide variety of artificial intelligence (AI) techniques and
heuristics have been deployed in knowledge management systems in an effort to
make the systems smarter and more responsive. These smarter knowledge manage-
ment systems are particularly well suited to automation and self-management tasks,
where the goal is to provide automated monitoring of system use and predictive
tuning of system parameters to achieve automatic system scale out.

Business intelligence (BI) refers to a range of methodologies, technologies,
skills, competencies, and applications businesses implement and utilize in order
to better understand their commercial context. Typically business intelligence sys-
tems are knowledge management systems that provide current and predictive views
of the business based on historical and current data relating to the business itself
and the commercial environment in which it exists. Business intelligence report-
ing is more than the simple reporting of data gathered—it uses a wide range of AI
techniques to extract relevant knowledge from incoming data streams and reposi-
tories and provides observations, hints, and suggestions about trends and possible
futures.

Decision making is most often done by humans after understanding the results
of the business intelligence reporting, but with the volume of business intelligence
available to analysts increasing almost exponentially, it is becoming more and more
difficult for humans to make sensible, rational, and timely decisions, so this task is
increasingly becoming the responsibility of AI systems tuned to the environment
of their deployment.

The tasks of problem solving, monitoring, tuning and automation, business
intelligence reporting, and decision making are the most promising areas for the
future deployment of EKCs. These areas will have a special flavor for the develop-
ment of a slew of new technologies addressing the problems that previous comput-
ing facilities could not resolve.

Currently, the majority of the indicated IT tasks include people, while we sug-
gest that this balance will be changed in the future through automation, ultimately
leading to self-managing enterprise IT systems (Delic et al. 2007). When mapped
into a more precise form, this conceptual drawing (Figure 3.2) will evolve into the
enterprise-scale knowledge management application stack (Figure 3.3).

All knowledge management applications today can be layered into three essen-
tial subsystems:

Enterprise Knowledge Clouds  ◾  53

 ◾ Front-end portals that manage interactions with internal users, partner’s
agents, and external users while rendering various “knowledge services.”
Different classes of users—e.g., internal vs. external—are often presented
with slightly different portals allowing access to different types of knowledge
and services.

 ◾ A core layer that provides the knowledge base and access/navigation/guid-
ance/management services to knowledge portals and other enterprise appli-
cations. The core layer provides the Knowledge Base Management System
(KBMS), the knowledge feeds—the means by which knowledge is added to
the knowledge base or exchanged with other knowledge management sys-
tems or users—as well as the mechanism to distribute and inject appropriate
knowledge into business processes throughout the enterprise.

Enterprise knowledge management
architecture abstracted

KBMS

Knowledge
base

Knowledge
feeds Workflow

Front end

KM core

Back end

Enterprise knowledge management stack

Users
Companies
Clients

Internet

Partner DMZ

Intranet

Authors

Groups/forums

Automatic

1

2

3

4

Portals

Core KM
Search

Content management
system

Workflow
management

system

Suppliers
Partners
Exchange

Figure  3.3  EKM:  Architectural  view.  (Adapted  from  Delic,  K.A.  and  Riley, 
J.A.,  Enterprise  knowledge  clouds:  Next  generation  KM  systems?  Proceedings
of the 2009 International Conference on Information, Process, and Knowledge
Management (eKnow 2009), Cancun, Mexico, February 2009.)

54  ◾  Cloud Computing and Software Services

 ◾ The back-end that supplies “knowledge content” and the content manage-
ment system from various sources, authors, and communities that enables a
refresh of the knowledge base.

The Enterprise Workflow System captures interactions with users and provides nec-
essary context for the EKM system. Various feeds enable the flow and exchange of
knowledge with partners and suppliers. Today these feeds are mainly proprietary,
while we expect that they will evolve into standards-based solutions for large-scale
content flows (RESTful services, RSS, ATOM, SFTP, JSON, etc.). To indicate the
scale and size of the typical corporate knowledge management system, we presume
that the knowledge base contains several million knowledge items, and users num-
ber in the hundreds of thousands. EKM is considered a high-end, mission-critical
corporate application, which resides in the corporate data center. High availability
and dependability are necessary engineering features for such global, always-on,
always-available systems.

Thus, EKM is typically a three-tier enterprise application probably spread over
several geographically dispersed data centers and typically interconnected or inte-
grated with enterprise portals, content, and workflow management systems. In
essence, EKM consists of the enterprise knowledge base (KB) with appropriate
knowledge management routines (add/remove/modify KB), whose content is usu-
ally accessed via search access routines.

The ultimate result is that we are witnessing emerging social phenomena (writ-
ing blogs, participating in social networks, collaborating in wikis) enabled by an
always-available, globally accessible, and secure infrastructure that can be used for
free, or at a very low-cost, and running a mushrooming number of user-created
applications. Some major companies are already announcing their intention to
enter, drive, and dominate this field (The Economist 2008).

3.2.1 Enterprise Knowledge Management Infrastructure
Enterprise data centers are the key computational, storage, and network resources
arranged around an efficient corporate network as the backbone of the enterprise
IT infrastructure. Consequently, they are designed in such a way that the enter-
prise applications are categorized according to their criticality and provided with
adequate infrastructural support. Thus, if many millions of users are critically
dependent on an application, it would be categorized as a mission-critical, nonstop
application and would be supported 24 × 7 and be always available. Some less criti-
cal applications will have yet another label, be supported 24 × 5, will not be consid-
ered nonstop, and would be something less than always available.

Thus, for EKM, if the risk of monetary and/or reputation loss is high, we will
provide the infrastructure (clusters or high-end servers with some distinctive disas-
ter recovery capabilities) and support, which will fulfill expectations and fit into
dependability requirements—with appropriate trade-offs between cost and features.

Enterprise Knowledge Clouds  ◾  55

3.2.2 Enterprise Knowledge Management Applications
Once we have categorized our EKM needs and provided the appropriate infrastruc-
ture, we should architect, design, and engineer EKM applications so that they fit
into the entire EKM criticality. Thus, if the infrastructure is mission-critical, then
EKM should have all the necessary features of a mission-critical application. It is
out of the scope of this chapter to discuss this in more depth, but one should be well
aware of this requirement as it will have implications for the software architecture,
choice of operating system, platform, and programming environment: they should
all respect the criticality label of the EKM system.

3.2.3 Enterprise Knowledge Management Content
Having briefly described the EKM infrastructure and applications, we should con-
sider how enterprise knowledge will be represented, captured, processed, and deliv-
ered. Problem solving documents (Problem Description-Problem Solution) are the
most simple and widely used way of capturing problem solving tasks. Some early
EKM systems used a rule-based representation of knowledge; executable models
(decision trees, case-based reasoning systems, neural networks) are more recent
knowledge capturing paradigms. We believe that multimedia content will become
dominant in the future and that new methods for knowledge capture and render-
ing will be devised.

3.2.4 Enterprise Knowledge Management Users
The evolution of technology in consumer and corporate domains has created a new
type of user who will be very different from contemporary users. While sketching
the architecture of future EKM systems, one should seriously analyze and consider
several aspects and dimensions of future users. The best way would be to look at our
children: they seem to have developed a way to quickly exchange information snip-
pets, being either very short text messages or particular multimedia content. Also,
it seems that they have a much better ability to multitask naturally while not losing
or intermixing communication threads. This is the natural consequence of their
exposure to gaming and new work and living styles. The so-called Millennium
Generation will be the model for future users of EKM systems.

3.3  Enterprise Knowledge Cloud
Following social developments in the Internet world, it will be in the interest of
business enterprises to deploy some of these new paradigms (social networks,
blogging, open source) within their environments and with business intentions.
Extrapolating what’s going on in the open Internet, we project that enterprises will
create several clouds for various purposes.

56  ◾  Cloud Computing and Software Services

An abstracted business enterprise architecture is shown in Figure 3.4. This
architecture interconnects business partners and suppliers to company customers
and consumers and uses future cloud technologies to harvest, process, and use
internal knowledge (corporate nets, wikis, blogs). Furthermore, similar partner/
supplier clouds will be developed to harvest, enrich, and deploy yet another knowl-
edge cloud. Finally, the largest enterprise cloud will cover clients and consumers,
which could be used for a wide variety of purposes.

Each of the clouds shown in Figure 3.4 is an autonomous entity, existing for
its own purpose and capable of collecting, warehousing, managing, and serving
knowledge to its own group of users. However, while the clouds discussed are
independent, they should be capable of interconnection, overlap, and knowledge-
sharing with appropriate rules and safeguards, so that, for example, customers and
consumers might have access to appropriate internal enterprise knowledge or even
partner/supplier knowledge through the cloud.

The emergence of these clouds (Private, Partner, Public) and their coalescence
into the EKC allows, indeed encourages, the collective intelligences formed within

Enterprise knowledge cloud
architecture abstracted

EAI

EII

Business

Business

xxx call agents
x calls/hour

xxx users
x accesses/day

xxx partner companies
x accesses/day

Revenues $xxxB/year

xxx000’s employees xxx terabytes
xxxM accesses/day

Social nets
wikis
blogs

 Partner nets
Share wikis
Share blogs

SuppliersPartners

Consumers
customers

Companies
clients

Corp nets
Corp wikis
Corp blogs

xxxM documents/day

Massive participation
Massive infrastructure

Figure  3.4  EKC:  Architectural  view.  (Adapted  from  Delic,  K.A.  and  Riley, 
J.A.,  Enterprise  knowledge  clouds:  Next  generation  KM  systems?  Proceedings
of the 2009 International Conference on Information, Process, and Knowledge
Management (eKnow 2009), Cancun, Mexico, February 2009.)

Enterprise Knowledge Clouds  ◾  57

each cloud to emerge and cooperate with each other, thus becoming the driving
force for the true Intelligent Enterprise. As an example, internal IT operations will
use Private Clouds, Sales, and Marketing and would operate on Public Clouds,
while the Outsourcing business may reside on the Partner Clouds—each having
different types of users and customers. The interaction and cooperation of the user
groups, their knowledge, and the collective intelligences across the three clouds
shown in Figure 3.4 provides the infrastructure for behavioral, structural, and stra-
tegic adaptation in response to changes in the respective (business) environment.

To see this happening in the future, we would expect to see the development
of some major cloud computing technologies and adoption of common standards.
This will enable yet another type of mega-application—Knowledge Exchange,
for example, enabling the trade, exchange, and monetizing of knowledge assets.
However, one should not underestimate the huge obstacles in the security, privacy,
performance, and dependability of those clouds as the clear precondition for real-
world deployments. One intricate problem to address will be the interoperability of
clouds, leading to enabling technical standards but also aiming to establish mon-
etary/value ground (accounting and billing systems) for the exchange of various
cloud contents. All this is in a very early stage, but one should sense that develop-
ments may go in this direction.

3.4  The Next 5 to 15 Years
Today’s enterprise applications are developed by IT departments, but for the future
we predict a shift towards user-developed applications: mash-ups written in high-
level mash-up languages. Content today is mainly text-based, but for the future we
see an evolution towards multimedia context and active content (later).

Users today are either fixed or mobile—tomorrow we expect they will be virtual
and later will take personalities of “avatars” to protect privacy and integrity.

Standards will evolve with the current Web 2.0 and will eventually evolve into
something like Web 3.0—which we assume to be cloud computing.

Current EKM systems are enterprise applications in data centers, while we
expect them to evolve into “enterprise grids” on which others envisage the develop-
ment of “KM grids” (Cannataro and Talia 2003). Once the technology is stable and
markets grow, we predict the development of clouds as the super-structure of enter-
prise grids, interconnecting enterprise data centers providing various functionalities.

Thus, while the architecture of today’s EKM systems is built around the enter-
prise stack, tomorrow’s EKM architecture will be distributed and loosely coupled
and later will move to decoupled, completely pluggable, intelligent knowledge
management appliances capable of adapting to interface with EKCs as required
(Table 3.1).

We are in the midst of important social, technological, and market changes
where we see some major companies announcing their intention to enter, drive,

58  ◾  Cloud Computing and Software Services

and dominate the field of cloud computing (Weiss 2007, Forrester Research 2008,
Hayes 2008). We see this as a precondition for the emergence of the intelligent,
adaptive enterprise that was announced in the previous century, but can be created
only in the right technological circumstances.

We believe that enterprise intelligence will draw its capacities from the EKCs
embedded in the global, dependable fabrics consisting of subjects, objects, and
devices. Cloud computing will enable massive and rapid rescaling of the content
production, consumption, and participation of the various groups of cloud users at
an unprecedented scale. This may yet evolve into a “social computing” paradigm as
the likely advanced form of future society.

Massive collaboration (on content tagging, for example) followed by the emer-
gence of ontologies based on the Semantic Web, and adjusted by the folksonomies
developed as user-oriented Web 2.0 applications, will embody “collective intelli-
gence” as the new source of knowledge. To see this happen, we postulate the neces-
sity of massive, global, mega-scale infrastructure in the form of “cloud computing”
(interconnected grids and data centers). We are at the very beginning of important
new developments where we expect that the field of EKM will be rescaled by an
order of magnitude and will spawn the creation of “a new kind of EKM system.”
We expect that the monetary value of the enterprise knowledge exchanges will
largely surpass the cost of the use of the cloud infrastructure based on commodity
components. This will fulfill an old predicament of the “content as the king” of
commerce.

References
Cannataro, M. and Talia, D. 2003. The knowledge grid. Communications of the ACM 46(1):

89–93, January 2003.
Delic, K.A. and Dayal, U. 2000. Knowledge-based support services: Monitoring and adapta-

tion. DEXA Workshops 2000, London, U.K., pp. 1097–1101.

Table 3.1  Evolution of EKM Systems

EKM Systems Today Tomorrow Beyond

Architecture Enterprise stack Distributed Decoupled/pluggable

Infrastructure Datacenter Grid Cloud

Application IT controlled User produced On demand

Content Mainly text Multimedia Active

Users Fixed/mobile Virtual Avatars

Standards 3W.org Web 2.0 Web 3.0

Enterprise Knowledge Clouds  ◾  59

Delic, K.A. and Dayal, U. 2002. The rise of the intelligent enterprise. ACM Ubiquity,
2002(45) (December 1–31, 2002) (accessed August 1, 2009).

Delic, K.A. and Douillet, L. 2004. Corporate IT knowledge workbench: Case study. DEXA
Workshops 2004, Zaragoza, Spain, pp. 494–497.

Delic, K.A. and Riley, J.A. 2009. Enterprise knowledge clouds: Next generation KM systems?
Proceedings of the 2009 International Conference on Information, Process, and Knowledge
Management (eKnow 2009), Cancun, Mexico, February 2009.

Delic, K.A. and Walker, M.A. 2009. Emergence of the academic computing cloud. ACM
Ubiquity, 9(31) (August 5–11, 2008) (accessed August 1, 2009).

Delic, K.A., Riley, J., and Faihe, Y. 2007. Architecting principles for self-managing enter-
prise IT systems. Proceedings of the Third International Conference on Autonomic and
Autonomous Systems, Athens, Greece, August 2007.

Forrester Research. 2008. Is cloud computing ready for the enterprise? Forrester Research,
March 7, 2008.

Hayes, B. 2008. Cloud computing. Communications of the ACM, 51(7): 9–11, July 2008.
Mell, P. and Grance, T. 2009. Draft NIST working definition of cloud computing. http://

csrc.nist.gov/groups/SNS/cloud-computing/index.html (accessed August 1, 2009).
Noël, F. and Delic, K.A. 2002. Knowledge-based self-support system for corporate users.

DEXA Workshops 2002, Aix-en-Provence, France, pp 149–156.
The Economist. 2008. When clouds collide, February 7, 2008.
Weiss, A. 2007. Computing in the clouds. netWorker, 11(4): 16–25, December 2007.

61

Chapter 4

Real Cases and 
Applications of Cloud 
Computing

Jinzy Zhu

Contents
4.1 Cloud Computing: IT as a Service ...62
4.2 Cloud Computing Security ..64
4.3 Cloud Computing Model Application Methodology67

4.3.1 Cloud Computing Strategy Planning Phase67
4.3.2 Cloud Computing Tactics Planning Phase69
4.3.3 Cloud Computing Deployment Phase ..70

4.4 Cloud Computing in Development/Test ..70
4.4.1 Reducing the Cost ..71
4.4.2 Providing an Environment for New Projects71
4.4.3 Reusing Equipment ..72
4.4.4 Ensuring Project Information Security ...72

4.5 Cloud-Based High Performance Computing Clusters73
4.5.1 Virtualized Computing Resources ..74
4.5.2 Combination with Traditional Management Technology74

62  ◾  Cloud Computing and Software Services

4.1  Cloud Computing: IT as a Service
As an evolutionary computing model, cloud computing has been in the making for
a long time—it embodies the development and aggregation of existing computing
styles such as grid computing and utility computing. Some traces of grid comput-
ing and utility computing can be found in cloud computing use cases. However,
cloud computing distinguishes itself from previous technology with its combina-
tion of the latest in technical developments and emerging business models, creating
remarkable commercial value in new use scenarios.

In a nutshell, the existing Internet provides us with content in the form of
videos, e-mails, and information served on web pages. With cloud computing,
the next generation of the Internet will allow us to “buy” IT services from a web
portal, drastically expanding the types of merchandise available beyond those
on e-commerce sites such as eBay and Taobao. We would be able to rent from
a virtual storefront the basic necessities needed to build a virtual data center,
such as a CPU, memory, and storage and add on top of that the middleware
necessary, such as web application servers, databases, enterprise server bus, etc.,
as the platform(s) to support the applications we would like to either rent from
an Independent Software Vendor (ISV) or develop ourselves. Together this is
what we call IT as a Service (ITaaS) bundled to us the end users as a virtual data
center.

4.6 Use Cases of Cloud Computing ...75
4.6.1 Case Study: Cloud as Infrastructure for an Internet

Data Center .. 75
4.6.1.1 Bottleneck on IDC Development75
4.6.1.2 Cloud Computing Provides IDC with a New

Infrastructure Solution ...76
4.6.1.3 Value of Cloud Computing for IDC Service Providers 77
4.6.1.4 Value Brought by Cloud Computing for IDC Users...... 78
4.6.1.5 Cloud Computing Can Make Fixed Costs Variable79
4.6.1.6 IDC Cloud Example ...79
4.6.1.7 Influence of Cloud Computing in 3G Era80

4.6.2 Case Study—Cloud Computing for Software Parks81
4.6.2.1 Cloud Computing Architecture ..83
4.6.2.2 Outsourcing Software Research and Development

Platform ... 84
4.6.3 Case Study—An Enterprise with Multiple Data Centers85

4.6.3.1 Overall Design of the Cloud Computing
Platform in an Enterprise ..86

4.6.4 Case Study: Cloud Computing Supporting SaaS87
4.7 Conclusion ...88

Real Cases and Applications of Cloud Computing  ◾  63

Within ITaaS, there are three layers starting with Infrastructure as a Service
(IaaS) comprised of the physical assets we can see and touch: servers, storage, and
networking switches. At the IaaS level, what cloud computing service providers can
offer is basic computing and storage capability, such as the cloud computing center
founded by IBM in Wuxi Software Park and Amazon EC2. Taking computing
power provision as an example, the basic unit provided is the server, including the
CPU, memory, storage, operating system, and system monitoring software.

In order to allow users to customize their own server environment, server tem-
plate technology is used, which means binding certain server configurations and
the operating system and software together and providing customized functions as
required at the same time.

Using virtualization technology, we could provide as little as 0.1 CPU in a vir-
tual machine to the end user, therefore drastically increasing the utilization poten-
tial of a physical server to multiple users.

With virtualization increasing the number of machines to manage, service pro-
vision becomes crucial since it directly affects service management and the IaaS
maintenance and operation efficiency. Automation, the next core technology, can
make resources available for users through self-service without getting the service
providers involved. A stable and powerful automation management program can
reduce the marginal cost to zero, which in turn can promote the scale effect of
cloud computing.

On the basis of automation, dynamic orchestration of resources can be realized.
The dynamic orchestration of resources aims to meet the requirements of service
levels. For example, the IaaS platform will add new servers or storage spaces for
users automatically according to the CPU utilization of the server, so as to fulfill
the terms of service levels made with users beforehand. The intelligence and reli-
ability of the dynamic orchestration of resource technology is a key point here.
Additionally, virtualization is another key technology. It can maximize resource
utilization efficiency and reduce the cost of an IaaS platform and user usage by
promoting physical resource sharing. The dynamic migration function of virtu-
alization technology can dramatically improve the service availability and this is
attractive for many users.

The next layer within ITaaS is Platform as a Service (PaaS). At the PaaS level,
what the service providers offer is packaged IT capability, or some logical resources,
such as databases, file systems, and application operating environment. Currently,
actual cases in the industry include Rational Developer Cloud of IBM, Azure
of Microsoft, and AppEngine of Google. At this level, two core technologies are
involved. The first is software development, testing, and running based on cloud.
The PaaS service is software developer–oriented. It used to be a huge difficulty for
developers to write programs via networks in a distributed computing environ-
ment, and now due to the improvement of network bandwidth, two technologies
can solve this problem. The first type of technology is online development tools.
Developers can directly complete remote development and application through

64  ◾  Cloud Computing and Software Services

browser and remote console (development tools run in the console) technologies
without the local installation of development tools. The second type of technol-
ogy is the integration technology of local development tools and cloud computing,
which means deploying the developed application directly into the cloud comput-
ing environment through local development tools. The second core technology is
the large-scale distributed application operating environment. It refers to scalable
application middleware, databases, and file systems built with a large amount of
servers. This application operating environment enables the application to make
full use of abundant computing and storage resources in the cloud computing cen-
ter to achieve full extension, go beyond the resource limitation of single physical
hardware, and meet the access requirements of millions of Internet users.

The top of the ITaaS is what most non-IT users will see and consume: Software
as a Service (SaaS). At the SaaS level, service providers offer consumer or industrial
applications directly to individual users and enterprise users. At this level, the fol-
lowing technologies are involved: Web 2.0, Mashup, service-oriented architectures
(SOA), and multi-tenancy.

The development of the AJAX technology of Web 2.0 makes web applications
easier to use and brings the user experience of desktop applications to web users,
which in turn makes people adapt to the transfer from desktop applications to web
applications easily. The Mashup technology provides the capability of assembling
contents on the Web, which can allow users to customize Web sites freely and
aggregate contents from different Web sites, and enables developers to build appli-
cations quickly.

Similarly, SOA provides combination and integration function as well, but it
provides the function in the background of the Web. Multi-tenancy is a technology
that supports multi-tenancies and customers in the same operating environment. It
can significantly reduce resource consumptions and cost for every customer.

Table 4.1 shows the different technologies used in different cloud computing
service types.

Transforming any IT capability into a service may be an appealing idea, but to
realize it, integration of the IT stack needs to happen. To sum up, key technologies
used in cloud computing are: automation, virtualization, dynamic orchestration,
online development, large-scale distributed application operating environment, Web
2.0, Mashup, SOA, multi-tenancy, etc. Most of these technologies have matured in
recent years to enable the emergence of cloud computing in real applications.

4.2  Cloud Computing Security
One of the biggest user concerns about cloud computing is its security, as is nat-
ural with any emerging Internet technology. In the enterprise data centers and
Internet Data Centers (IDC), service providers offer racks and networks only, and
the remaining devices have to be prepared by users themselves, including servers,

Real Cases and Applications of Cloud Computing  ◾  65

Ta
bl

e 
4.

1 
Ia

aS
, P

aa
S,

 a
nd

 S
aa

S

Se
rv

ic
e

Ty
p

e
Ia

aS
Pa

aS
Sa

aS

Se
rv

ic
e

ca
te

go
ry

V
M

 r
en

ta
l,

O
n

lin
e

st
o

ra
ge

O
n

lin
e

o
p

er
at

in
g

En
vi

ro
n

m
en

t,
O

n
lin

e
d

at
ab

as
e,

 O
n

lin
e

m
es

sa
ge

Q

u
eu

e

A
p

p
lic

at
io

n
 a

n
d

 s
o

ft
w

ar
e

re
n

ta
l

Se
rv

ic
e

cu
st

o
m

iz
at

io
n

Se
rv

er
 te

m
p

la
te

Lo
gi

c
re

so
u

rc
e

te
m

p
la

te
A

p
p

lic
at

io
n

 te
m

p
la

te

Se
rv

ic
e

p
ro

vi
si

o
n

in
g

A
u

to
m

at
io

n
A

u
to

m
at

io
n

A
u

to
m

at
io

n

Se
rv

ic
e

ac
ce

ss
in

g
an

d

u
si

n
g

R
em

o
te

 C
o

n
so

le
, W

eb
 2

.0
O

n
lin

e
d

ev
el

o
p

m
en

t a
n

d
 d

eb
u

gg
in

g,

In
te

gr
at

io
n

 o
f o

ffl
in

e
D

ev
el

o
p

m
en

t
to

o
ls

 a
n

d
 c

lo
u

d

W
eb

 2
.0

Se
rv

ic
e

m
o

n
it

o
ri

n
g

Ph
ys

ic
al

 r
es

o
u

rc
e

m
o

n
it

o
ri

n
g

Lo
gi

c
re

so
u

rc
e

m
o

n
it

o
ri

n
g

A
p

p
lic

at
io

n
 m

o
n

it
o

ri
n

g

h
Se

rv
ic

e
le

ve
l

m
an

ag
em

en
t

D
yn

am
ic

 o
rc

h
es

tr
at

io
n

 o
f

p
h

ys
ic

al
 r

es
o

u
rc

es
D

yn
am

ic
 o

rc
h

es
tr

at
io

n
 o

f l
o

gi
c

re
so

u
rc

es
D

yn
am

ic
 o

rc
h

es
tr

at
io

n
 o

f
ap

p
lic

at
io

n

Se
rv

ic
e

re
so

u
rc

e
o

p
ti

m
iz

at
io

n
N

et
w

o
rk

 v
ir

tu
al

iz
at

io
n

, S
er

ve
r

vi
rt

u
al

iz
at

io
n

, S
to

ra
ge

vi

rt
u

al
iz

at
io

n

La
rg

e-
sc

al
e

d
is

tr
ib

u
te

d
 fi

le
 s

ys
te

m
,

D
at

ab
as

e,
 m

id
d

le
w

ar
e,

 e
tc

.
M

u
lt

i-
te

n
an

cy

Se
rv

ic
e

m
ea

su
re

m
en

t
Ph

ys
ic

al
 r

es
o

u
rc

e
m

et
er

in
g

Lo
gi

c
re

so
u

rc
e

u
sa

ge
 m

et
er

in
g

B
u

si
n

es
s

re
so

u
rc

e
u

sa
ge

 m
et

er
in

g

Se
rv

ic
e

in
te

gr
at

io
n

an

d
 c

o
m

b
in

at
io

n
Lo

ad
 b

al
an

ce
SO

A
SO

A
, M

as
h

u

Se
rv

ic
e

se
cu

ri
ty

St
o

ra
ge

 e
n

cr
yp

ti
o

n
 a

n
d

is

o
la

ti
o

n
, V

M
 is

o
la

ti
o

n
, V

LA
N

,
SS

L/
SS

H

D
at

a
is

o
la

ti
o

n
, O

p
er

at
in

g
en

vi
ro

n
m

en
t i

so
la

ti
o

n
, S

SL
D

at
a

is
o

la
ti

o
n

, O
p

er
at

in
g

en
vi

ro
n

m
en

t i
so

la
ti

o
n

, S
SL

, W
eb

au

th
en

ti
ca

ti
o

n
 a

n
d

 a
u

th
o

ri
za

ti
o

n

66  ◾  Cloud Computing and Software Services

firewalls, software, storage devices, etc. While a complex task for the end user,
he does have a clear overview of the architecture and the system, thus placing
the design of data security under his control. Some users use physical isolation
(such as iron cages) to protect their servers. Under cloud computing, the backend
resource and management architecture of the service is invisible for users (thus the
word “cloud” to describe an entity far removed from our physical reach). Without
physical control and access, the users would naturally question the security of the
system.

A comparable analogy to data security in a cloud is in financial institutions
where a customer deposits his cash bills into an account with a bank and thus no
longer has a physical asset in his possession. He will rely on the technology and
financial integrity of the bank to protect his now virtual asset. Similarly, we will
expect to see a progression in the acceptance of placing data in physical locations
out of our reach but with a trusted provider.

To establish that trust with the end users of clouds, the architects of cloud
computing solutions do indeed design rationally to protect data security among end
users and between end users and service providers.

From the point of view of the technology, the security of user data can be
reflected in the following rules.of.implementation:

 1. The privacy of user storage data. User storage data cannot be viewed or
changed by other people (including the operator).

 2. The user data privacy at runtime. User data cannot be viewed or changed by
other people at runtime (loaded to system memory).

Table 4.2  Recommendations to Operators and Users on Cloud Security

To Other Users To Operators

The privacy of user
storage data

SAN network zoning,
Mapping Clean up disks
after callback

File system authentication

Bare device
encryption, File
system encryption

The privacy of user data
at runtime

VM isolation, OS isolation OS isolation

The privacy when
transferring user data
through network

SSL, VLAN, VPN SSL, VPN

Authentication and
authorization needed for
users to access their data

Firewall, VPN
authentication, OS
authentication

VPN authentication,
OS authentication

Real Cases and Applications of Cloud Computing  ◾  67

 3. Privacy when transferring user data through the network. It includes the
security of transferring data in cloud computing center Intranet and Internet.
It cannot be viewed or changed by other people.

 4. Authentication and authorization needed for users to access their data. Users
can access their data through the right way and can authorize other users to
access.

To ensure security, the cloud computing services can use the corresponding tech-
nologies shown in Table 4.2.

In addition to the technology solutions, business and legal guidelines can be
employed to enforce data security, with terms and conditions to ensure user rights
to financial compensation in case of breached security.

4.3   Cloud Computing Model 
Application Methodology

Cloud computing is a new model for providing business and IT services. The service
delivery model is based on future development considerations while meeting cur-
rent development requirements. The three levels of cloud computing service (IaaS,
PaaS, and SaaS) cover a huge range of services. Besides computing and the ser-
vice delivery model of storage infrastructure, various models such as data, software
application, programming model, etc. can also be applicable to cloud computing.
More importantly, the cloud computing model involves all aspects of enterprise
transformation in its evolution, so technology architecture is only a part of it and
multi-aspect development, such as organization, processes, and different busi-
ness models should also be under consideration. Based on standard architecture
methodology with best practices of cloud computing, a Cloud Model Application
Methodology can be used to guide industry customer analysis and solve poten-
tial problems and risks that emerge during the evolution from current computing
model to cloud computing model. This methodology can also be used to instruct
the investment and decision making analysis of the cloud computing model and
determine the process, standard, interface, and public service of IT assets deploy-
ment and management to promote business development. Figure 4.1 shows the
overall status of this methodology.

4.3.1 Cloud Computing Strategy Planning Phase
Cloud strategy contains two steps to ensure a comprehensive analysis of the strategy
problems that customers might face when applying cloud computing mode. Based
on the Cloud Computing Value Analysis, these two steps will analyze the model
condition needed to achieve the customers’ target and then will establish a strategy
to function as the guideline.

68  ◾  Cloud Computing and Software Services

 1. Cloud computing value proposition
 The target of this step is to analyze the specific business value and pos-

sible combination point between the cloud computing mode and specific
users by leveraging the analysis of the cloud computing users’ requirement
model and considering the best practices of the cloud computing industry.
Analyze the key factors that might influence customers to apply the cloud
computing mode and make suggestions on the best customer application
methods. In this analysis, we need to identify the main target for cus-
tomers to apply the cloud computing mode and the key problems they
wish to solve. Take some common targets as examples: IT management
simplification, operation, and maintenance cost reduction; business mode
innovation; low-cost outsourcing hosting; high service quality outsourcing
hosting, etc.

The analysis results will be provided to support decision-making levels to
make condition assessments and strategy for future development and to pre-
pare for the strategy establishment and organization of the following cloud
computing.

 2. Cloud computing strategy planning
 This step is the most important part of the strategy phase. Strategy establish-

ment is based on the analysis result of the value step and aims to establish
the strategy documentation according to a good understanding of various
conditions that customers might face when applying the cloud computing
mode to plan for future vision and perspective. A professional analysis made
by the method above typically involves broad customer business model
research, organization structure analysis, and operation process identifica-
tion; also, there are some non-functional requirements and limitations in

IBM cloud computing blueprint model

Strategy phase
Deployment phase

Cloud industries best practicesCloud industries best practices

Governance, QoS, change managementGovernance, QoS, change management

Cloud value
proposition

Cloud
strategy

Quality of
service

IT
architecture

MA

Business
architecture

Transformation
planning

Cloud
provider/enabler

chosen

Planning phase

Figure 4.1  Cloud computing methodology overview.

Real Cases and Applications of Cloud Computing  ◾  69

the plan, such as the concern for security standards, reliability requirements,
and rules and regulations.

4.3.2 Cloud Computing Tactics Planning Phase
At the phase of cloud planning, it is necessary to make a detailed investigation on
the customer’s position and to analyze the problems and risks in the cloud applica-
tion both at present and in the future. After that, concrete approaches and plans
can be drawn to ensure that customers can use cloud computing successfully to
reach their business goals. This phase includes some practicable planning steps in
multiple orders listed as follows:

 1. Business architecture development: While capturing the organizational struc-
tures of enterprises, the business models also get information on business
process support. As various business processes and relative networks in
enterprise architecture are being set down one after another, gains and losses
brought by relative paths in the business development process will also come
into people’s understanding. We categorize these as business interests and
possible risks brought on by the cloud computing application from a busi-
ness perspective.

 2. IT architecture development: It is necessary to identify the major applications
needed to support enterprises business processes and the key technologies
needed to support enterprise applications and data systems. Besides, cloud
computing maturity models should be introduced and the analysis of tech-
nological reference models should be made, so as to provide help, advice, and
a strategy guide for the design and realization of the cloud computing mode
in the enterprise architecture.

 3. Requirements on quality of service development: Compared with other comput-
ing modes, the most distinguishing feature of the cloud computing mode is
that the requirements on quality of service (also called non-functional needs)
should be rigorously defined beforehand, for example, the performance, reli-
ability, security, disaster recovery, etc. This requirement is a key factor in
deciding whether a cloud computing mode application is successful or not
and whether the business goal is reached; it is also an important standard
in measuring the quality of cloud computing service or the competence in
establishing a cloud computing center.

 4. Transformation plan development: It is necessary to formulate all kinds of
plans needed in the transformation from current business systems to the
cloud computing modes, including the general steps, scheduling, quality
guarantee, etc. Usually, an infrastructure service cloud covers different items,
such as an infrastructure consolidation plan report, operation and mainte-
nance management system plan, management process plan, application sys-
tem transformation plan, etc.

70  ◾  Cloud Computing and Software Services

4.3.3 Cloud Computing Deployment Phase
The deployment phase focuses mainly on the programming of both the strat-
egy realization phase and the planning phases. Two steps are emphasized in this
phase:

 1. Cloud computing provider or enabler chosen: According to the past analysis and
programming, customers may have to choose a cloud computing provider or
an enabler. It is most important to know that the requirement for a service
level agreement (SLA) is still a deciding factor for providers in winning a
project.

 2. Maintenance and technical service: As for maintenance and technical ser-
vice, different levels of standards are adopted; these standards are defined
by the requirements on quality of services made beforehand. Cloud com-
puting providers or builders have to ensure the quality of services, for
example, the security of customers in service operation and the reliability
of services.

4.4  Cloud Computing in Development/Test
Economic crises can bring with it enterprise unprecedented business challenges and
more competitions for the same markets. To address these challenges, enterprises
have to optimize and update their business operations. At this critical moment,
only by offering agile operating systems to end users can enterprises turn the crises
into opportunities and promote better development.

Years of IT development has closely linked IT with the business systems, opera-
tion systems, and maintenance systems of enterprises. To a large extent, the opti-
mization and updating of business is indeed that of the IT system, which requires
enterprises to keep innovating in the business system. As a result, developing new
IT systems quickly while doing rigorous tests to provide stable and trustworthy ser-
vices for customers has become the key to enterprise development. Thus, the devel-
opment testing centers have become the engines of enterprises growth and keeping
the engines operating in a quick and effective way has become a major concern for
enterprise Chief Information Officers (CIOs).

As the importance of development centers in companies grows, there will be
more and more projects, equipment, and staff in these centers. Establishing a smart
development center has become many people’s concern. As the latest IT break-
through, how will cloud computing help to transform development test centers
and bring competitive advantages to enterprises? We want to illustrate this problem
through the following case.

Director A is the manager of an information center and he is now in charge of all
development projects. Recently, he has been thinking about how to best optimize

Real Cases and Applications of Cloud Computing  ◾  71

his development and testing environment. After investigation, he concludes that
the requirements of the new test center are as follows:

 1. Reducing the investment on hardware
 2. Providing an environment quickly for new development testing projects
 3. Reusing equipment
 4. Ensuring project information security

Based on A’s requirement analysis, he can use cloud computing solutions to estab-
lish a cloud computing–based test development center for his company.

4.4.1 Reducing the Cost
In traditional test development systems, companies would set up an environment
for each test and development project. Different test systems may have different
functions, performances, or stabilities and thus software and hardware configura-
tions will vary accordingly. However, in a cloud test development platform, all the
servers, memories, and networks needed in test development are pooling-managed;
and through the technology of virtualization, each test or development project is
provided with a logical hardware platform.

The virtual hardware platforms of multiple projects can share the same set of
hardware resources, thus through integrating the development test project, the
hardware investment will be greatly reduced.

4.4.2 Providing an Environment for New Projects
A cloud can automatically provide end users with IT resources, which include com-
puting resources, operating system platforms, and application software. All of these
are realized through the automation module of the cloud.

Automation of computing resources: In the cloud service interface, when end
users input the computing resources (processor, storage, and memory) needed
according to the requirements of the application system, the cloud platform will
dynamically pick out the resources in the corresponding resource pool and prepare
for the installation of the system platform.

Automation of system platforms: When the computing resources allocation is
finished, the automation of system platforms will help you to install the system
with the computing resources on the base of the chosen system platform (Windows,
Linux, AIX, etc.) dynamically and automatically. It can concurrently install opera-
tion system platforms for all computers in need and it can customize an operation
system with customization parameters and system service for customers. Moreover,
the users, networks, and systems can all be set automatically.

Automation of application software: The software of enterprises would be
controlled completely. The software distribution module can help you to deploy

72  ◾  Cloud Computing and Software Services

complex mission-critical applications from one center spot to multiple places
quickly and effectively.

Through automation, clouds can provide environments for new development
test projects and can accelerate the process of development tests.

4.4.3 Reusing Equipment
Cloud has provided a resource management process based on a development lifecy-
cles test. The process covers many operations such as computing resource establish-
ment, modification, release, and reservation. When the test development projects
are suspended or completed, the cloud platform can make a back-up of the existing
test environment and release the computing resources, thereby realizing the reuse
of computing resources.

4.4.4 Ensuring Project Information Security
The cloud computing platform has provided a perfect means of ensuring the secu-
rity and isolation of each project. There are two ways for users to access the system:
accessing the web management interface or accessing the project virtual machine.
To access a web interface, one needs a user ID and a password. To control virtual
machine access, the following methods can be adopted:

 1. User authentication is conducted through the VPN equipment in the exter-
nal interface of the system.

 2. Each project has only one virtual local area network (VLAN), and the virtual
machine of each project is located inside the VLAN. The switches and the
hypervisors in the hosts can guarantee the isolation of the VLAN.

 3. The isolation of the virtual machine is guaranteed by the virtual engine.
 4. Besides, user authentication of the operation systems can also protect user

information.

A VLAN is created dynamically along with the establishment of the project. Unicast
or broadcast messages can be sent among project virtual machines or between the
virtual machine and the workstation of the project members. Virtual machines of
different projects are isolated from each other, thereby guaranteeing the security of
project data. A user can get involved in several projects and meanwhile visit several
virtual machines of different projects.

The new generation of intelligent development test platforms needs the sup-
port of intelligent IT infrastructure platforms. By establishing intelligent develop-
ment test platforms through cloud computing, a new IT resource supply mode
can be formed. Under this mode, the test development center can automatically
manage and dynamically distribute, deploy, configure, reconfigure, and recycle IT
resources based on the requirements of different projects; besides, it can also install

Real Cases and Applications of Cloud Computing  ◾  73

software and application systems automatically. When projects are over, the test
development center can recycle the resources automatically, thereby making the
best use of the computing capabilities.

4.5   Cloud-Based High Performance 
Computing Clusters

In the development history of information science from the last half a century,
high performance computing (HPC) has always been a leading technology. It has
become a major tool for future innovations of both theoretical and research sci-
ence. As new cross-disciplines combining traditional subjects and HPC emerge in
the areas of computational chemistry, computational physics, and bioinformatics,
computing technology needs to take a leap forward as well to meet the demands of
these new research topics.

With the current financial crisis, providing higher computing performance
with less resource input has become a big challenge for the HPC centers. In the
construction of a new generation of computing centers with high performance, we
should not only pay attention to the choice of software and hardware, but also take
a full account of the center operation, utilization efficiency, technological innova-
tion cooperation, and other factors. The rationality of the general framework and
the effectiveness of resource management should also be fully considered. Only by
doing this can the center gain long-term high-performance capacity in computing
research and supply.

In other words, the new generation of a high-performance computing center
does not provide traditional high-performance computing, nor is it only a high-
performance equipment solution. The management of resources, users, and virtu-
alization and the dynamic resource generation and recycling should also be taken
into account. In this way, the high-performance computing based on cloud com-
puting technology was born.

The cloud computing-based high-performance computing center aims to solve
the following problems:

 1. A high-performance computing platform generated dynamically
 2. Virtualized computing resources
 3. High-performance computer management technology combined with tradi-

tional ones
 4. High-performance computing platform generated dynamically

In traditional high-performance computing environments, physical equipment
is configured to meet the demands of customers; for example, Beowulf Linux
and WCCS Architecture are chosen to satisfy the customers’ requirements on

74  ◾  Cloud Computing and Software Services

computing resources. All of the operation systems and parallel environments are
set beforehand, and cluster management software is used to manage the comput-
ing environment. However, as high-performance computing develops, there are
more and more end users and application software; thus, the requirements on
the computing platform become more diverse. Different end users and applica-
tion software may require different operation systems and parallel environments.
High-performance computing requires a new way of resource supply in which the
platform should be dynamically generated according to the needs of every end user
and application software; the platform can be open, including Linux, Windows,
or UNIX.

4.5.1 Virtualized Computing Resources
Since few virtualized architectures are used in traditional high-performance com-
puting, this kind of platform cannot manage virtualized resources. However, as
high-performance computing develops, in many cases we need to attain more
virtualized resources through virtualization, for example, the development and
debugging of parallel software and the support for more customer applications, etc.

In the cloud computing–based high-performance computing center, the virtu-
alization of physical resources can be realized through the cloud platform; more-
over, virtualized resources can be used to establish high-performance computing
platforms and generate high-performance computing environments whose scale is
larger than that of the actual physical resource so as to meet the requirements of
customers.

4.5.2 Combination with Traditional Management Technology
The cloud computing–based high-performance computing platform can not only
manage computers through virtualization and dynamic generation technology, but
can also work together with traditional cluster and operation management software
to enable users to manage the virtualized high-performance computers in a tradi-
tional way and submit their own work.

A new IT resources provision model can be attained by the adoption of cloud
computing infrastructure and high-performance computing center construction.
In this model, the computing center can automatically manage and dynamically
distribute, deploy, configure, reconfigure, and recycle the resources. The automatic
installation of software and application can be realized, too. By the use of the
model, the high-performance computing resources can be distributed efficiently
and dynamically. When the project is finished, the computing center can auto-
matically recycle the resources to make full use of the computing power. Taking
advantage of cloud computing, the high-performance computing center can not
only provide high calculating power for scientific research institutions, but can also
expand the service content of the computing center. In other words, it can serve as

Real Cases and Applications of Cloud Computing  ◾  75

a data center to support other applications and promote higher utilization efficiency
of entire resources.

4.6  Use Cases of Cloud Computing
4.6.1 Case Study: Cloud as Infrastructure

for an Internet Data Center
In the 1990s, Internet portals made huge amounts of investment to attract eyeballs.
Rather than profits and losses, their market valuation was based on the number
of unique “hits” or visitors. This strategy proved to work out well as these portals
begin to offer advertisement opportunities targeting their installed user base, as
well as new paid services to the end user, thereby increasing revenue per capita in a
theoretically infinite growth curve.

Similarly, IDCs have become a strategic initiative for cloud service providers
to attract users. With a critical mass of users consuming computing resources and
applications, an IDC would become a portal attracting more applications and more
users in a positive cycle.

The development of the next generation of IDC hinges on two key factors. The
first factor is the growth of the Internet. By the end of June 2008, for example,
Internet users in China totaled 253 million and the annual growth rate was as high
as 56.2%.* As a result, the requirement on Internet storage and traffic capacity
grows, which means Internet operators have to provide more storage and servers to
meet users’ needs. The second factor is the development of mobile communication.
By the end of 2008, the number of mobile phone users in China has amounted to 4
billion. The development of mobile communication drives server-based computing
and storage, which enables users to access the data and computing services needed
via the Internet through lightweight clients.

In the time of dramatic Internet and mobile communication expansion, how
can we build new IDCs with core competency? Cloud computing provides an
innovative business model for data centers, and thereby can help telecom operators
to promote business innovation and higher service capabilities against the backdrop
of the whole business integration of fixed and mobile networks.

4.6.1.1 Bottleneck on IDC Development

Products and services offered by a traditional IDC are highly homogenized. In
almost all of the IDCs, basic co-location services account for a majority of the rev-
enue, while value-added services add only a small part of it. For example, in one of
the IDCs of a telecom operator, the hosting service claims 90% of its revenue, while

* Source: CCIDConsulting, 2008–2009 China IDC market research annual report.

76  ◾  Cloud Computing and Software Services

value-added service takes only 10%. This makes it impossible to meet customers’
requirements on load balance, disaster recovery, data flow analysis, resource utiliza-
tion analysis, etc.

The energy utilization is low, but the operation costs are very high. According to
CCID research statistics, the energy costs of IDC enterprises make up about 50%
of their operating costs and more servers will lead to an exponential increase in the
corresponding power consumption (see footnote on page 75). With the increase of
the number of Internet users and enterprise IT transformation, IDC enterprises
will have to face a sharp increase in power consumption as their businesses grow.
If effective solutions are not taken immediately, the high costs will undermine the
sustained development of these enterprises.

Besides, as online games and Web 2.0 sites become increasingly popular, all
types of content including audio, videos, images, and games will need massive stor-
age and relevant servers to support transmission. This will result in a steady increase
in enterprise requirements for IDC services and higher standards on the utilization
efficiency of resources in data centers as well as the service level.

Under the full service operation model that emerged after the restructuring
of telecom operators, the market competition became more and more fierce. The
consolidation of fixed network and mobile services imposes higher requirements
on telecom IDC operators as they have to introduce new services to meet market
demands in time.

4.6.1.2 Cloud Computing Provides IDC with
a New Infrastructure Solution

Cloud computing provides IDCs with a solution that takes into consideration
both future development strategies and the current requirements for development.
Cloud computing builds up a resource service management system in which phys-
ical resources are on the input and the output is the virtual resources at the right
time with the right volume and the right quality. Thanks to the virtualization
technology, the resources of IDCs including servers, storage, and networks are put
into a huge resource pool by cloud computing. With cloud computing manage-
ment platforms, administrators are able to dynamically monitor, schedule, and
deploy all the resources in the pool and provide them for the users via a network.
A unified resource management platform can lead to higher efficiency of IDC
operation and schedule the efficiency and utilization of the resources in the center
and lower management complexity. The automatic resource deployment and soft-
ware installation help to guarantee the timely introduction of new services and
can lower the time-to-market. Customers can use the resources in data centers by
renting based on their business needs. Besides, as required by business develop-
ment needs, they are allowed to adjust the resources that they rent and pay fees
according to resource usage. This kind of flexible charging mode makes IDCs

Real Cases and Applications of Cloud Computing  ◾  77

more appealing. The management through a unified platform is also helpful to
IDC expansion. When an IDC operator needs to add resources, new resources can
be added to the existing cloud computing management platform to be managed
and deployed uniformly.

Cloud computing will make it an unceasing process to upgrade software and
add new functions and services, which can be done through intelligent monitoring
and automatic installation programs instead of manual operation.

According to the Long Tail theory, cloud computing builds infrastructures
based on the scale of market head and provides marginal management costs that
are nearly zero in market tail as well as a plug-and-play technological infrastruc-
ture. It manages to meet diversified requirements with variable costs. In this way,
the effect of the Long Tail theory is realized to keep a small-volume production of
various items and by the use of innovative IT technology, and it sets up a market
economy model, which is open to competition and favorable to the survival of the
fittest.

4.6.1.3 Value of Cloud Computing for IDC Service Providers

First of all, based on cloud computing technology, IDC is flexible and scalable and
can realize the effect of the Long Tail theory at a relatively low cost. The cloud com-
puting platform is able to develop and launch new products at a low marginal cost
of management. Therefore, startup costs of new businesses can be reduced to nearly
zero, and the resources would not be limited to a single kind of product or service.
So under a specified investment scope, the operators can greatly expand product
lines and meet the needs of different services through the automatic scheduling of
resources, thereby making the best use of the Long Tail theory.

Secondly, the cloud computing dynamic infrastructure is able to deploy
resources in a flexible way to meet business needs at peak times. For example,
during the Olympics, the Web sites related to the competitions are flooded with
visitors. To address this problem, the cloud computing technology would deploy
other idle resources provisionally to support the requirements of resources at peak
hours. The United States Olympic Committee has applied the cloud comput-
ing technologies provided by AT&T to support competition viewing during the
Olympics. Besides, SMS and telephone calls on holidays, as well as the application
and inquiry days for examinations also witness the requirements for resources at
the peak.

Thirdly, cloud computing improves the return on investment for IDC service
providers. By improving the utilization and management efficiency of resources,
cloud computing technologies can reduce computing resources, power consump-
tion, and human resource costs. Additionally, it can lead to shorter time-to-
market for a new service, thereby helping IDC service providers to occupy the
market.

78  ◾  Cloud Computing and Software Services

Cloud computing also provides an innovative charging mode. IDC service pro-
viders charge users based on the resource renting conditions and users only have to
pay for what they use. This makes the payment charging more transparent and can
attract more customers (Table 4.3).

4.6.1.4 Value Brought by Cloud Computing for IDC Users

First, initial investments and operating costs can be lowered and risks can be
reduced. There is no need for IDC users to make initial investments in hardware
and expensive software licenses. Instead, users only have to rent necessary hardware
and software resources based on their actual needs and pay according to usage
conditions. In the era of enterprise informatization, more and more subject mat-
ter experts have begun to establish their own Web sites and information systems.
Cloud computing can help these enterprises to realize informatization with rela-
tively less investment and fewer IT professionals.

Secondly, an automatic, streamlined, and unified service management platform
can rapidly meet customers’ increased requirements for resources and can enable
them to acquire the resources in time. In this way, customers can become more
responsive to market requirements and enhance business innovation.

Thirdly, IDC users are able to access more value-added services and achieve
faster requirement responses. Through the IDC cloud computing unified service

Table 4.3  Value Comparison on Co-Location, Physical Server Renting, and 
IaaS for Providers

Co-Location
Physical

Server Renting
IaaS with Cloud

Computing

Profit margin Low. Intense
competition

Low. Intense
competition

High. Cost saving by
resource sharing

Value add service Very few Few Rich, such as IT service
management,
Software renting, etc.

Operation Manual
operation.
Complex

Manual
operation.
Complex

Automatic and
integrated operation.
End-to-end request
management

Response to
customer request

Manual
action. Slow

Manual
action. Slow

Automatic process.
Fast

Power
consumption

Normal Normal Reduce power by
server consolidation
and sharing.
Scheduled power off

Real Cases and Applications of Cloud Computing  ◾  79

delivery platform, the customers are allowed to put forward personalized require-
ments and enjoy various kinds of value-added services. And their requirements
would get a quick response, too (Table 4.4).

4.6.1.5 Cloud Computing Can Make Fixed Costs Variable

An IDC can provide 24 × 7 hosting services for individuals and businesses. Besides
traditional hosting services, these clients also need the cloud to provide more appli-
cations and services. In so doing, enterprises are able to gain absolute control on
their own computing environment. Furthermore, when necessary, they can also
purchase online the applications and services that are needed quickly at any time,
as well as adjust the rental scale in a timely way.

4.6.1.6 IDC Cloud Example

In one example, an IDC in Europe serves industry customers in four neighboring
countries, which cover sports, government, finance, automobiles, and healthcare.

Table 4.4  Value Comparison on Co-Location, Physical Server Renting, and 
IaaS for Users

Co-Location
Physical Server

Renting IAAS Using Cloud

Performance Depend on
hardware

Depend on
hardware

Guaranteed
performance

Price Server investment
plus bandwidth
and space fee

Bandwidth and
server renting fee

CPU, memory,
storage, bandwidth
fee. Pay per use

Availability Depend on single
hardware

Depend on single
hardware

High available by
hardware failover

Scalability Manual scale out Manual scale out Automated scale out

System
management

Manual hardware
setup and
configuration.
Complex

Manual hardware
setup and
configuration.
Complex

Automated OS and
software installation.
Remote monitoring
and control. Simple

Staff High labor cost
and skill
requirement

High labor cost
and skill
requirement

Low labor cost and
skill requirement

Usability Need on site
operation

Need on site
operation

All work is done
through Web UI.
Quick action

80  ◾  Cloud Computing and Software Services

This IDC attaches great importance to cloud computing technology in the
hope of establishing a data center that is flexible, demand-driven, and responsive.
It has decided to work with cloud computing technology to establish several cross-
Europe cloud centers. The first five data centers are connected by virtual SAN and
the latest MPLS technology. Moreover, the center complies with the ISO27001
security standards and other security functions that are needed by the banks and
government organizations, including auditing functions provided by certified part-
ners, are also realized (Figure 4.2).

The IDC uses the main data center to serve customers at its sister sites. The
new cloud computing center will enable this IDC to pay for fixed or usage-based
changeable services according to a credit card bill. In the future, the management
scope of this hosting center can expand to even more data centers in Europe.

4.6.1.7 Influence of Cloud Computing in 3G Era

Ever since the 3G services were launched by the major communication operators,
the simple voice and information service can no longer meet the growing require-
ments of users. The 3G data services have become the focus of competition among
operators. Many operators have introduced some specialized services. And with
the growth of 3G clients and the expansion and improvement of 3G networks,
operators have to provide more diversified 3G services to survive in the fierce mar-
ket competition. Cloud can be used as a platform to provide such value added
services.

Server Network Storage
Consolidated IDC fabric

Virtual infrastructure

StorageNetwork

Server

ISV and development communityEnterprise customer

Extend enterprise data center

Isolation

Easy access to resource

Virtual infrastructure

StorageNetwork

Server

Cloud computing

Software Software

Figure 4.2  IDC cloud.

Real Cases and Applications of Cloud Computing  ◾  81

In this 3G era, mobile TV, mobile securities, and data backup will all become
critical businesses. Huge amounts of videos, images, and documents are to be stored
in data centers so that users can download and view them at any time, and they
can promote interaction. Cloud computing can effectively support these kinds of
business requirements and can get maximal storage with limited resources. Besides,
it can also search and promptly provide the resources that are needed for users to
meet their needs.

After the restructuring of operators, the businesses of leading service provid-
ers will all cover fixed network and mobile services, and they may have to face up
to fierce competition in the 3G market. Cloud computing can support unified
monitoring and dynamic deployment of resources. So, during the business con-
solidation of the operators, the cloud computing platform can deploy the necessary
resources in time to support business development, and can respond quickly to
market requirements to help operators gain a larger market share.

The 3G-enabled high bandwidth makes it easier and quicker to surf the Internet
through mobile phones and it has become a critical application of 3G technologies.
Cloud computing makes it compatible among different equipment, software, and
networks, so that the customers can access the resources in the cloud through any
kind of clients.

4.6.2 Case Study—Cloud Computing for Software Parks
The traditional manufacturing industry has helped to maintain economic growth
in previous generations, but it has also brought along a host of problems such as
labor market deterioration, huge consumption of energy resources, environmental
pollution, and a higher drive toward lower cost. As emerging economies begin their
social transformation, software outsourcing has gained an edge compared with the
traditional manufacturing industry: on one hand, it can attract and develop top-
level talent to enhance the technical level and competitive power of a nation; on the
other hand, it can also prompt the smooth structural transformation to a sustain-
able and green service industry, thereby ensuring continuous prosperity and endur-
ance even in difficult times.

As such, software outsourcing has become a main business line for many emerg-
ing economies to ramp up their service economy, based on economies of scale and
affordable costs. To reach this goal, software firms in these emerging economies
need to conform their products and services to international standards and absorb
experiences from developed nations to enhance the quality of their outsourcing
services. More importantly, good policy support from the government and nec-
essary infrastructures are critical components in the durability of these software
outsourcing firms.

The IT infrastructure is surely indispensable for software outsourcing and
software businesses. To ensure the success of software outsourcing, there are two
prerequisites: a certification standard of software management, which is of an

82  ◾  Cloud Computing and Software Services

international level (such as CMM Level 5), and an advanced software designing,
programming, and testing pipeline, namely the software development platform of a
data center. The traditional data center only puts together all the hardware devices
of the enterprise, leading to the monopolization of some devices by a certain project
or business unit. This would create a huge disparity within the system and can’t
guarantee the quality of applications and development. Besides, it would result in
an increase in cost and unnecessary spending and in the long term will undermine
the enterprise’s competitive power in the international market of software outsourc-
ing. Furthermore, when a new project is put on the agenda, it would take a long
time to prepare for and address the bottleneck of the project caused by traditional
IT equipment.

To pull the software enterprises out of this dilemma, IBM first developed a
brand-new management mode for the software developing environment: the man-
agement and development platform of cloud computing. The platform was con-
structed with the aid of the accumulated experience of IBM itself in the field of
software outsourcing service and data center management. The valuable experience
from the long-term cooperation with other software outsourcing powers is also
taken into consideration. This platform is a new generation of data center man-
agement. Compared with traditional data centers, it has outstanding technical
advantages.

Figure 4.3 is the schematic diagram of the relationship between the cloud com-
puting platform and software outsourcing ecosystems.

First, the platform can directly serve as a data service center for software out-
sourcing companies in the Software Park and neighboring enterprises. As soon
as a software outsourcing order is accepted, the company can turn to the man-
agement and development platform of cloud computing to look for IT resources
suitable for use, the process of which is as simple and convenient as booking a
hotel via the Internet. Besides, by relying on IBM’s advanced technology, the
cloud computing platform is able to promote unified administrative standards to
ensure the confidentiality, security, stability, and expandability of the platform.
That is to say, thanks to its brand effect, the platform developed by the soft-
ware demonstration plot is up to international advanced levels and could thereby

Telco
Financial
services
sector

Public
sector

Virtualized cloud infrastructure

Software development
and test platform

Digital
M&E

Figure 4.3  Cloud computing platform and software outsourcing ecosystems.

Real Cases and Applications of Cloud Computing  ◾  83

enhance the service level of software outsourcing in the entire park. The final
aim is to measure up to international standards and meet the needs of interna-
tional and Chinese enterprises. Meanwhile, a platform of unified standards can
lower IT maintenance costs and raise the response speed for requirements, mak-
ing possible the sustainable development of the Software Park. Lastly, the man-
agement and development platform of cloud computing can directly support all
kinds of applications and provide enterprise users with various services including
outsourcing and commercial services as well as services related to academic and
scientific researches.

The following are the benefits brought to the outsourcing services companies
and outsourcing demonstration plot of the Wuxi government by the management
and development platform of cloud computing:

 1. For outsourcing service companies that apply a cloud computing platform:
 a. An advanced platform with unified standards is provided and the quality

is guaranteed.
 b. IT management becomes easier and the costs of developing products is

greatly lowered.
 c. Response speed for business demand is enhanced and expandability is

ensured.
 d. Existing applications and newly emerging data-intensive applications are

supported.
 e. Miscellaneous functions for expediting the speed of innovation are also

provided for outsourcing service companies, colleges and universities,
and research institutes.

 2. Below are the advantages brought to the outsourcing demonstration plot of
the Wuxi government through the application of a cloud computing platform:

 a. The government can transform from a supervision mode to a service
mode, which is in favor of attracting investments

 b. It is conducive to environmental protection and the build-up of a harmo-
nious society

 c. It can support the development of innovative enterprises and venture
companies

Detailed information about the major functions and technical architectures of
the management and development platform of cloud computing is introduced
below.

4.6.2.1 Cloud Computing Architecture

The management and development platform of cloud computing is mainly com-
posed of two functional sub-platforms: the outsourcing software research and
development platform and the operation management platform.

84  ◾  Cloud Computing and Software Services

 1. Outsourcing software research and development platform: an end-to-end
software development platform is provided for the outsourcing service com-
panies in the park. In terms of functions, the platform generally covers the
entire software developing lifecycle including requirement, designing, devel-
oping, and testing of the software. It helps the outsourcing service compa-
nies in establishing a software developing procedure that is effective and
operable.

 2. Operation management platform: according to the outsourcing service com-
pany’s actual demand in building the research and development platform,
as well as the practical situation of the software and hardware resource dis-
tribution in the data center, the platform provides automatic provisioning
services on demand for software and hardware resources. Also, management
on resources distribution is based on different processes, posts, and roles and
resource utilization reports will also be provided.

Through the cooperative effect of the two platforms mentioned above, the man-
agement and development platform of cloud computing could fully exert its
advantage. The construction of outsourcing software research and development
platform can be customized according to different project needs (e.g., games
development platform, e-business development platform, etc.), which can show
the best practices of IBM’s outsourcing software development services. And the
operation management platform can provide supporting functions such as man-
agement on the prior platform, as well as operation and maintenance, and rapid
configuration. It is also significant in that it can reduce the workload and costs of
operation and management. Unlike the handmade software research and develop-
ment platform, it is both time-saving and labor-saving, and it is not that easy to
make mistakes in it.

4.6.2.2 Outsourcing Software Research
and Development Platform

The outsourcing software research and development at the enterprise level have to
put an emphasis on the cooperation and speed of software development. It manages
to combine software implantation with verification, so as to ensure the high quality
of the software and shorten the period of development. The program is targeted at
and suitable for different types of outsourcing research and development companies
with a demand for code development cooperation and document management. The
detailed designing of the program varies according to different enterprise needs
(Figure 4.4).

As can be seen in the chart, the primary construction of the outsourcing
software research and development platform consists of the construction of four
sub-platforms:

Real Cases and Applications of Cloud Computing  ◾  85

 1. Requirement architecture management platform
 2. Quality assurance management platform
 3. Quality assurance management supporting platform
 4. Configuration and changes management platform

The integrated construction and operation of these four sub-platforms covers the
entire developing lifecycle of the requirements, designing, developing, and testing
of the software. They are customer-oriented and are featured by high quality and
good awareness of quality prevention. With the help of these four sub-platforms,
the outsourcing service companies can manage to establish a software development
process with high efficiency and operability.

4.6.3 Case Study—An Enterprise with
Multiple Data Centers

Along with China’s rapid economic growth, the business of one state-owned
enterprise is also gearing up for fast expansion. Correspondingly, the group has
an increasingly higher demand for the supporting IT environment. How can the
group achieve maximum return on its IT investment? For the IT department, on
one hand is the repetitive and time-consuming work of system operation and man-
agement; while there is an increasingly higher demand from the managers to sup-
port the company’s business, raise its competitive power, and promote business
transformation. Faced with this problem, this enterprise is now searching for solu-
tions in cloud computing.

DB2

Utilizes

WebSphere

Quality assurance
management

supporting platform

Run performance test
White-box test for code

runtime test

Quality assurance
management platform

Configuration and changes
management platform

Requirement architecture
management platform

Code management
Concurrently development
Collaboration

Team modeling development

Trace requirement changes
and development tasks

Trace requirement
and test association

Create and
run test scripts

Trace code and
development tasks

(UCM)

Submit BUG

Submit BUG

ClearQuest
TestManager

ClearQuest

ClearQuest

ClearCase

Software
architect

Functional
tester

ITCAM

Performance
tester

PurifyPlus

Influence of
requirement
changes over

the model

Figure 4.4  Software outsourcing services platform.

86  ◾  Cloud Computing and Software Services

The Enterprise Resources Plan (ERP) plays an important role in supporting
the entire business in the company. The existing EAR system is not able to apply
automatic technology. Repeated, manual work accounts for a majority of the sys-
tem maintenance operation, which leads to lower efficiency and higher pressure on
the IT system maintenance operation. Meanwhile, on the technical level, it lacks
a technology platform to perform the distribution, deployment, as well as state
control and recycle of system resources. As a result, the corresponding information
resources management is performed through traditional manual work, which is in
contradiction with the entire information strategy of the company. The specifics
are listed below:

 1. The contradiction between the increasing IT resources and limited human
resources

 2. The contradiction between automatic technology and traditional manual
work

 3. The effectiveness and persistence of resources information (including con-
figuration information)

The company has invested a lot in information technology. It has not only con-
structed the ERP system for the management and control of enterprise production,
but it has also upgraded the platform, updated the host computer, and improved IT
management in infrastructure. In a word, the SAP system is of great significance in
the IT system of the Sinochem Group.

The implementation of the cloud computing platform has helped to solve the
problems faced by the IT department in this company.

4.6.3.1 Overall Design of the Cloud Computing
Platform in an Enterprise

The cloud computing platform is mainly related to three discrete environments
of the company’s data centers: the training, development/test, and the disaster
recovery environment. These systems involved in cloud computing are respectively
located in data center A, data center B, and the disaster center in data center C.
It shows the benefits of cloud computing virtualization crossing physical sites (See
Figure 4.5).

Combined with the technical characteristics of the cloud computing platform
and the application characteristics of the ERP system in the company, the con-
struction project has provided the following functions:

 1. The installation and deployment of the five production systems of ERP
 2. The automatic deployment of hardware: logical partition and distribution of

hardware resources

Real Cases and Applications of Cloud Computing  ◾  87

 3. The installation and recovery of the centralized AIX operating system
 4. The display of system resource usage: CPU/memory/disk usage

4.6.4 Case Study: Cloud Computing Supporting SaaS
By adopting cloud computing solutions, a telco can address the IT challenges
faced by SMEs. Thanks to the services provided by the Blue Cloud system, VNTT
has provided the customers with IBM Lotus Foundation and WebSphere Portal
Express business OA service based on Redhat, CentOS, and Windows platforms.
Besides, VNTT also provides customers with e-mail services, file sharing, and web
servers that are always ready for use. For better internal and external communica-
tion, these enterprises need only one portal to rent the portal server based on IBM
WebSphere Portal (Figure 4.6).

By applying cloud computing as the underlying infrastructure, a telecommu-
nications company can provide its customers with a larger scale of IT services,
including infrastructure hosting, collaborative platform, applications, process and
information service; meanwhile, it can also ensure data security, convenience of
access and the easy management of the environment. In this instance, clouds will
provide strong technical infrastructure support as well as an effective combination
with business model innovation.

Data
A Data

B

Data
C

Provision development

Reclaim resources
Provision testing

Managing servers

Storage Storage

ERP

Figure 4.5  Coverage of cloud computing in Sinochem Group.

88  ◾  Cloud Computing and Software Services

4.7  Conclusion
With cloud computing as a new way to consume IT services, we can be much more
flexible and productive in utilizing dynamically allocated resources to create and
to operate.

Clouds will continue to evolve as the foundation for the future Internet where
we will be interconnected in a web of content and services.

Monitoring
(Tivoli monitoring)

Provisioning
(Tivoli provisioning

manager)

Execute
Pl

an
Monitor

Servers Network Storage

Physical and virtual resources

Business users IT admins

Self-service portal

Backup
(Tivoli storage manager)

Collaboration
software

An
aly

ze

softwareLotus.

Figure 4.6  SaaS cloud.

89

Chapter 5

Large-Scale Data 
Processing

Huan Liu

Contents
5.1 Introduction ...90
5.2 MapReduce ..93

5.2.1 Programming Model ..93
5.2.2 Implementation Sketch ...94
5.2.3 Failure Handling ..95
5.2.4 Optimizations ...96
5.2.5 Related Work ..97

5.3 GridBatch ..97
5.3.1 DFS Extension ..98
5.3.2 GridBatch Operators ..99

5.3.2.1 Map Operator ...100
5.3.2.2 Distribute Operator ..100
5.3.2.3 Join Operator ..101
5.3.2.4 Cartesian Operator ...103
5.3.2.5 Recurse Operator ..103
5.3.2.6 Neighbor Operator ...105
5.3.2.7 Block-Level Operator ..106

90  ◾  Cloud Computing and Software Services

5.1  Introduction
An infrastructure cloud, such as Amazon’s Web Services offerings, is posed to fun-
damentally change the IT infrastructure. It provides infrastructure capacity, such
as server and storage, on demand from remote locations on the network, fully real-
izing the vision of utility computing. In addition to Amazon’s Web Services, sev-
eral other commercial cloud providers, such as FlexiScale, Rackspace, GoGrid, and
3Tera, also have similar offerings.

An infrastructure cloud is innovative in several regards. First, it is on demand.
In the past, IT had to purchase new hardware for a new or upgraded system. It
not only requires high capital investment up front, but the procurement could
also take months in an enterprise, significantly slowing down projects. Although
hosting providers provide capabilities to rent hardware, they typically require an
up-front contract and long-term commitments. In contrast, anyone with a credit

5.3.3 Sample Application: Computing Median107
5.3.3.1 Traditional Enterprise Approach108
5.3.3.2 Algorithm for Finding Medians110
5.3.3.3 MapReduce Approach ..111
5.3.3.4 GridBatch Approach ...112
5.3.3.5 Comparing MapReduce and GridBatch Approaches113

5.4 MapReduce Implementation on a Cloud OS ...114
5.4.1 What Is a Cloud OS? ..115

5.4.1.1 Advantages Offered by a Cloud OS.................................116
5.4.1.2 Challenges Posed by a Cloud OS116

5.4.2 Advantages of Cloud MapReduce ...117
5.4.3 Cloud MapReduce Architecture and Implementation118

5.4.3.1 Architecture ..119
5.4.3.2 Cloud Challenges and Our General Solution

Approaches ...121
5.4.3.3 Status Tracking ...123
5.4.3.4 Failure Detection/Recovery and Conflict Resolution124
5.4.3.5 Working with SQS ...125

5.4.4 Map and Reduce Interfaces ...126
5.4.5 Why Cloud MapReduce Is Better ...128

5.4.5.1 Why Cloud MapReduce Is Simpler129
5.4.5.2 Why Cloud MapReduce Is Faster131

5.4.6 Experimental Evaluation ...134
5.4.6.1 Scalability Evaluation ..134
5.4.6.2 Performance Evaluation ..134

5.5 Higher-Level Programming Languages ...136
References ...136

Large-Scale Data Processing  ◾  91

card can sign up for Amazon’s Elastic Computing Cloud (EC2) offerings and start
provisioning virtual servers right away.

Second, it is pay-per-use. For example, Amazon EC2 meter’s usage on an
hourly basis, and the users pay $10 per hour for the actual hours used. This is in
sharp contrast to the traditional hosting model, where the users are billed monthly
at best.

Third, an infrastructure cloud provides a virtualized container interface that is
easy to use. In particular, Amazon provides a virtual machine (VM) interface that
fully emulates an ×86 server. From the customers’ standpoint, they cannot tell the
difference from a real physical ×86 server. Such a familiar interface not only encour-
ages wide adoption, but also enables easy application migration.

Because of its on-demand and pay-per-use nature, an infrastructure cloud, such
as Amazon EC2, is ideal for applications with widely varying computation demand.
Primary examples are large-scale data analysis jobs, such as monthly reporting of
large data warehouse applications, nightly reconciliation of bank transactions, or
end-of-day access log analysis. Their computation profile is as shown in Figure 5.1.
Because of business constraints, these jobs have to finish before a deadline. In the
past, we typically provisioned dedicated server capacity up front; hence, the server
capacity would be idle most of the time when the jobs were not run, wasting valu-
able computation resources.

Although these large-scale data analysis jobs could benefit greatly from an
infrastructure cloud, it is not straightforward to port these applications over. There
are challenges both in the programming model and in the underlying infrastruc-
ture to analyze the data in the cloud.

From the programming model perspective, parallel programming is both time
consuming and error prone. The large-scale analytics applications, as well as a
large class of batch applications have obvious parallelism at the data level. It is

Computing power

Business constraint

Provisioned in-house computation
capacity, idle most of the time

Time

Figure 5.1  Computation profile of large-scale data analysis jobs. Large computa-
tion capacity is required for a short period of time. If dedicated computing power 
is provisioned, it will be idle most of the time.

92  ◾  Cloud Computing and Software Services

straightforward to partition the job into many independent parts and process them
in parallel. However, it is in general not straightforward to implement a parallel
application for several reasons. First, some forms of communication, coordination,
and synchronization are required between the machines, but they are not trivial
to implement correctly. Second, the inherent asynchronous nature of parallel pro-
grams makes it hard for the programmers to reason about the interactions between
all machines. Compared to sequential programs, there are many more scenarios
that need to be examined, making it hard to guarantee program correctness in all
cases. Last, there is still not an effective debugging tool. Because of the complex
interactions, many bugs are transient in nature, which are hard to reproduce. In
addition, it is hard to step through some code when there are many threads run-
ning on many machines. The difficulty in implementation translates into higher
development cost and longer development cycle. Worse yet, the same programming
effort often has to be repeated for each new project.

From the infrastructure perspective, a cloud presents additional challenges.
Because of the business model, a cloud is based on commodity hardware in order
to lower the cost of computing. First, commodity hardware only has limited com-
puting power per machine. For example, Amazon only offers ×86 servers, and the
largest one is equivalent to a 4 core 2 GHz opteron processor with 16 GB memory.
Second, commodity hardware is less reliable. Even though a cloud provider’s data
centers are unlikely to fail because of the various backup mechanisms, individual
commodity hardware does fail often due to component failures. This is part of the
reason why Amazon only has a 99.9% SLA on S3 (Simple Storage Service) data
storage and none yet on the EC2 servers (although it has one on EC2 regions). In
comparison, a traditional infrastructure employs high-end servers and they rely
on hardware to achieve both scaling and high reliability. For example, the SUN
E25K server, a widely used platform in enterprises, has up to 72 processors and
1 TB memory.

To take advantage of a cloud infrastructure, an application must employs
horizontal scaling. To overcome the hardware reliability problem, applications
should be architected to tolerate hardware failures, i.e., treat hardware failures as
a normal event and recover gracefully instead of treating them as a catastrophe.
This not only means that data should be replicated, but also means that the appli-
cations should be able to restart computations when the underlying hardware
fails.

To overcome these challenges, novel programming models, languages, and par-
adigms have emerged in recent years. This chapter describes some key work around
Google’s MapReduce programming model. We also point out related works in this
space, give a high-level overview of them, and provide references so that interested
readers can learn more. A common theme of these works is that they do not attempt
to help the programmers find parallelism in their applications. Instead, they assume
that the programmers understand their applications well and are fully aware of the
parallelization potentials. Further, the programmers have thought through on how

Large-Scale Data Processing  ◾  93

to break down the application into smaller tasks and how to partition the data in
order to achieve the highest performance. But, instead of asking the programmers
to implement the plan in detail, they provide a high-level construct. Their associ-
ated implementation not only hides the details of parallel programming, but also
alleviates the programmers from much of the pain, such as implementing the syn-
chronization and communication mechanisms or debugging transient behaviors of
distributed programs.

5.2  MapReduce
Google is one of the first few companies who encountered an explosion in the
amount of data. Because they have to index and process billions of web pages,
they have to find a scalable way to process the data efficiently. The solution is the
MapReduce [6,7] system. MapReduce is a programming model and an associated
implementation. Four years after its introduction, more than ten thousand distinct
MapReduce programs have been implemented at Google, and on an average, one
hundred thousand MapReduce jobs are executed on Google’s clusters, processing
more than 20 PB of data every day.

5.2.1 Programming Model
The MapReduce programming model takes a set of key-value pairs as inputs and
produces a set of key-value pairs as outputs. A MapReduce programmer expresses
his or her computation as two user-defined functions: map and reduce. The user-
defined map function takes an input key-value pair and produces a set of inter-
mediate key-value pairs. The MapReduce framework groups together all values
associated with the same intermediate key and passes them to the user-defined
reduce function. The user-defined reduce function takes an intermediate key and a
set of values associated with the key, and it merges these values together to form a
potentially smaller set of values. The user-defined reduce function may just output
zero or one output value for each key. The intermediate values are supplied to the
user-defined reduce function through an iterator.

Let us consider a simple example—the word count application—to illustrate
how MapReduce works. The work count application counts the number of occur-
rences of each word in a large collection of documents. A user would write the user-
defined map function similar to the following.

mapFunc(String key, String value):
 key: document name
 value: document contents
 for each word w in value:
 EmitIntermediate (w, 1);

94  ◾  Cloud Computing and Software Services

A user would write the corresponding user-defined reduce function similar to
the following.

reduceFunc(String key, Iterator values):
 key: a word
 values: a list of counts
 int result=0;
 for each v in values:
 result += ParseInt(v);
 EmitResult (key, result);

This map function emits each word and an associated count of occurrences
(i.e., 1). The reduce function simply sums up all counts and then outputs the final
value.

In a typical implementation, the user-defined map and reduce functions are
linked with the MapReduce library. To launch a MapReduce job, the users specify
a set of parameters, such as the input and output files, and tuning parameters, and
then invoke the MapReduce function.

5.2.2 Implementation Sketch
Besides the Google implementation, there are many other different implementa-
tions of MapReduce. Hadoop [16] is an open-source implementation written in
Java that is designed for the shared-nothing cluster environment, the kind of envi-
ronment the original Google implementation is designed for. Phoenix [29] is an
implementation for the shared-memory multicore processor environment.

In this section, we describe the Hadoop implementation, which is based on the
master/slave architecture. Since the Hadoop is modeled closely after the Google
implementation, the description below applies equally to the Google implementa-
tion. In Section 5.4, we will describe an alternative implementation, which is based
on a cloud Operating System (OS). By utilizing a cloud OS, we show that it could
be implemented in a fully distributed fashion, and it can be faster, more scalable,
and simpler.

The Hadoop implementation consists of two pieces of related software compo-
nents: the distributed file system (DFS) and the job scheduler.

DFS is closely modeled after the Google File System (GFS) [10]. DFS is respon-
sible for managing files and storing them across all nodes in the system. A large file
is typically broken down into many smaller chunks, and each chunk may be stored
on a separate node. Among all nodes in the system, one node serves as the name
node, and all other nodes serve as data nodes.

The name node holds the name space for the file system. It maintains the map-
ping from a DFS file to the list of chunks, including which data node a chunk
resides on and the location on the data node. It also responds to queries from DFS
clients asking to create a new DFS file, as well as allocates new chunks for existing

Large-Scale Data Processing  ◾  95

files or returns chunk locations when DFS clients ask to open an existing DFS
file. A data node holds chunks of a large file. It responds to DFS client requests for
reading from and writing to the chunks that it is responsible for. A DFS client first
contacts the name node to obtain a list of chunk locations for a file; then it contacts
the data nodes directly to read/write the data.

The job scheduling system includes a master node and many slave nodes. The
slave node is responsible for running a task assigned by the master node. The master
node is responsible for breaking down a job into many smaller tasks as expressed in
the user program. It distributes the tasks across all slave nodes in the system, and it
monitors the tasks to make sure all of them complete successfully.

In general, a slave node is often a data node. Thus, when the master schedules
a task, it could schedule the task on the node that holds the chunk of data to
be processed. By processing data on the local node, we save on precious network
bandwidth.

A MapReduce job consists of a map phase and a reduce phase. The map phase is
distributed across multiple nodes by automatically partitioning the input data into
a set of M splits. Each input split is processed by a separate map task. The map tasks
can be processed in parallel by different machines. The reduce phase his distributed
by partitioning the intermediate key space into R pieces using a partitioning func-
tion. Each partition is processed by a separate reduce task. The number of parti-
tions, R, and the partitioning function are specified by the user.

The master node is responsible for coordinating the job. It assigns map tasks and
reduce tasks to the slave nodes. A map task reads the contents of the corresponding
input split. It parses key-value pairs out of the input data and passes each pair to the
user-defined map function. The intermediate key-value pairs produced by the map
function are first buffered in memory, and then periodically written to local files on
the local disk, partitioned into R regions by the partition function. The locations of
these files are passed to the master, who will in turn inform the reduce tasks.

When a reduce task starts, it copies the map tasks’ buffered data to the local
disk. It sorts the data by the intermediate keys so that all occurrences of the same
key are grouped together. The reduce task iterates over the sorted intermediate
data, and for each unique intermediate key encountered, it passes the key and the
corresponding set of values to the user-defined reduce function. The final key-
value outputs produced by the reduce functions are then appended to the final
output file.

5.2.3 Failure Handling
One of the contributions of MapReduce is its ability to handle failure automati-
cally, alleviating the users from having to handle it themselves.

The master pings the workers periodically. If no response is received from a
worker for a certain time, the master marks the worker as failed. Any map tasks
either completed by or being processed by the failed node are rescheduled to

96  ◾  Cloud Computing and Software Services

other slave nodes. Completed map tasks are re-executed because their outputs are
still stored on the failed node. However, completed reduce tasks do not need to
be re-executed because their outputs are stored in the DFS.

MapReduce relies on re-execution as the primary mechanism to handle fail-
ure. When the user-defined map and reduce functions are deterministic func-
tions of their inputs, the re-execution would produce the same output as would
have been produced by a sequential execution of the entire program. When the
map or the reduce function is nondeterministic, MapReduce provides weaker
semantics and the programmer has to handle the potential inconsistency in the
application.

MapReduce relies on atomic commits for the map and reduce tasks to guaran-
tee that failures are handled properly. The map task sends a message to the master
node with the locations of the R temporary files when it completes. This message
serves as the atomic commit mechanism. The reduce task writes outputs to a tem-
porary file first, and then relies on the atomic rename capability provided by DFS
as the commit mechanism.

5.2.4 Optimizations
A MapReduce implementation employs several optimizations to make the system
robust.

One optimization is to conserve network bandwidth usage through locality
optimization. Locality optimization takes advantage of the fact that DFS stores
the input data on the local disks of the machines in the cluster. DFS breaks up
each file into 64 MB chunks and stores several copies of each chunk on different
nodes. The master takes the input files locality information into account when it
schedules the tasks on the different nodes, and it tries to place tasks on the nodes
that hold one replica of the input data.

Another optimization is running backup tasks. One of the common problems
is that a straggler takes a significantly longer time, thus slowing down the overall
process. Stragglers could arise for a variety of reasons, e.g., a machine may have a
bad disk, or other jobs on the same machine may be taking up a significant amount
of CPU cycle. To combat this problem, the master may speculatively schedule a
task to run on a different node, and takes the result if either the primary or the
backup finishes. The MapReduce paper [6] shows that a 44% reduction in the com-
putation time is possible with speculation. Recent improvements in the scheduling
algorithm [34] can cut down the processing time further.

Combiner is another optimization that can reduce the amount of data trans-
ferred between map and reduce. Some applications have a significant repetition in
the intermediate keys produced by each map task, and the user-defined function
is commutative and associative. For example, the word count application would
produce a lot of “the, 1” key-value pairs, since the key “the” appears frequently in
English documents. All these key-value pairs have to be transferred to the reduce

Large-Scale Data Processing  ◾  97

task, where it is combined into a single number. A combiner can perform a partial
merging on the map node before the data is sent. Typically, the combiner function
is the same as the reduce function. The only difference is in how the MapReduce
framework handles the output of the function.

5.2.5 Related Work
MapReduce is only one of the many new programming models that have emerged
in recent years.

Dryad [18] is another programming model, which is developed by Microsoft
Research. Dryad takes a much more generic approach, where it models a compu-
tation as a set of vertices and a Direct Acyclic Graph (DAG), which describes the
communications among the vertices. Each vertex is a separate program that runs
on a single computing node. However, different vertices may run on different
computing nodes, and communications between them could go through TCP.
Dryad could be used as a building block to build other programming models.
For example, MapReduce is just a special case that can be easily expressed in
Dryad.

MapReduce-Merge [4] is another programming model, which extends
MapReduce with a third stage of merging, which could merge results from two
different MapReduce jobs.

5.3  GridBatch
GridBatch [21,22] is a system we developed at Accenture Technology Labs. It
extends the MapReduce programming model and allows programmers to easily
convert a high-level design into the actual parallel implementation. The design
goal is not to help the programmers find parallelism in their applications. Instead,
we assume that the programmers understand their applications well and are fully
aware of their parallelization potentials. Further, the programmers have thought
through on how to break down the application into smaller tasks and how to
partition the data in order to achieve the highest performance. But, instead of
asking the programmers to implement the plan in detail, we provide a library of
commonly used “operators” (a primitive for data set manipulation) as the build-
ing blocks. All the complexity associated with parallel programming is hidden
within the library, and the programmers only need to think about how to apply
the operators in sequence to correctly implement the application. GridBatch is
specifically targeted at analytics applications, whose unique characteristics require
special operators. Analytics applications are often interested in collecting statistics
from the large data set, such as how often a particular event happens. They often
involve correlating data from two or more different data sets (i.e., table joins in
database terms).

98  ◾  Cloud Computing and Software Services

5.3.1 DFS Extension
To facilitate locality optimization for the various operators, we introduce new DFS
capabilities.

There are two fundamental data types in GridBatch: a table and an indexed
table (borrowed from database terminology). A table contains a set of records (rows)
that are independent of each other. All records in a table follow the same schema,
and each record may contain several fields (columns). An indexed table is similar to
a table except that each record also has an associated index, where the index could
simply be one of the fields or other data provided by the user.

A table is analogous to the vector concept in a vector or SIMD (Single Instruction
Multiple Data) machine or the stream concept in stream processors [19] in Computer
Architecture. A table (or a vector/stream) implies that all records within it are inde-
pendent of each other, and hence, they can be processed in parallel. A vector/stream
allows a computer architect to design specialized hardware that takes one instruction,
but applies it to all records in a vector/stream. Similarly, a table allows us to design
a software system that can process the records in parallel across many machines in
the cloud.

For an indexed table, we introduce another type of files: fixed-num-of-chunk
files, where each file has a fixed number of chunks (denoted as C, defined by the
user) and each chunk could have an arbitrarily large size. When a DFS client asks
for a new file to be created, the name node allocates all C chunks at the same time
and returns them all to the DFS client. Although the user can choose C to be any
value, we recommend a C should be chosen such that the expected chunk size
(expected file size divided by C) is small enough for efficient processing, e.g., less
than 64 MB each.

Each fixed-num-of-chunk file has an associated partition function, which
defines how data should be partitioned across chunks. The DFS client submits the
user-defined partition function (along with the parameter C) when it creates the
file, which is then stored by the name node. When another DFS client asks to open
the file later, the partition function is returned to the DFS client, along with the
chunk locations.

When a new data record needs to be written, the DFS client calls the partition
function to determine the chunk number(s); then it appends the record to the end
of the chunk(s).

The user-defined partition function takes the form

int [] partitionFunc(Index x)

where x is the index for the record to be written. The partition function applies a
hash function to convert the index into one or more integers in the range of 1 to C,
which indicates which particular chunk(s) the record should be stored at. In most
cases, one integer is returned. However, if the user desires to make the data locally
available to more nodes, the partitionFunc could return an array of integers. For

Large-Scale Data Processing  ◾  99

example, the user may desire to have a local copy of the data on all C chunks; then
the user can design the partition function to return a list of all integers from 1 to C.

Typically, C is set to be much larger than N, the number of machines in the
system. The mapping from C to N is fixed (i.e., data corresponding to a particular
chunk number for all indexed tables are on the same machine), and it is prescribed
by a system-level lookup table, which is maintained at the name node. Such trans-
lation is necessary in order to support dynamic change of the cluster size. When
old machines leave (possibly because of failures) and when new machines join,
GridBatch can automatically rebalance the storage and workload.

We introduce the fixed-num-of-chunk file type because analytics applications
that we are targeting are different from web applications. Web applications (word
count, reverse web link, etc.) have a large amount of unstructured data, which
work well with fixed-chunk-size files. In contrast, large analytics applications, such
as data warehousing, have a large amount of structured data. For efficient process-
ing, data partitioning is commonly used to segment data into smaller pieces (e.g.,
database partitioning in any modern database systems). If fixed-chunk-size files are
used for analytics applications, constant data shuffling is required whenever a new
analytics application starts.

Similar to GFS, all data chunks are replicated several times across the nodes in
the system. When a machine fails, no data is lost and the system will adjust itself to
rebalance the storage and workload. In GFS, the backup chunk is stored on a ran-
domly chosen node, and the same backup chunk for the same chunk (e.g., the first
backup chunk for chunk 1) for two different files could be stored on two different
nodes. For fixed-chunk-size files, we maintain the same backup scheme. However,
for fixed-num-of-chunk files, we fix the mapping from backup chunks to nodes,
e.g., the first backup chunks for chunk i for two different files are always stored on
the same node. When a node fails, we can simply change the system-wide mapping
table so that chunk i is pointing to the backup node and locality will be preserved.

5.3.2 GridBatch Operators
GridBatch does not attempt to help a programmer reason the best approach to pro-
gram an application. Instead, it aims to provide a set of commonly used primitives,
called operators, which the programmer can use to save on programming effort.
The operators handle the details of distributing the work to multiple machines;
hence, the user should not need to worry about parallel programming. Instead, the
user just needs to apply a set of operators sequentially, just as if writing a traditional
sequential program.

GridBatch extends the capabilities of Google’s MapReduce system. MapReduce
could be considered as two separate operators: Map and Reduce. The Map operator
is applied to all records in a file independent of each other; hence, it can be easily
parallelized. The operator produces a set of key-value pairs to be used in the Reduce
operator. The Reduce operator takes all values associated with a particular key and

100  ◾  Cloud Computing and Software Services

applies a user-defined reduce function. Since all values associated with a particular
key have to be moved to a single location where the Reduce operator is applied, the
Reduce operator is inherently sequential.

GridBatch breaks down MapReduce into elementary operators, and, in addi-
tion, introduces additional operators. GridBatch currently consists of the following
operators: Map, Distribute, Recurse, Join, Cartesian, and Neighbor.

5.3.2.1 Map Operator

The Map operator applies a user-defined function over all records of a table. A
sample pseudo-code for the user-defined function is as follows:

mapFunc(Record x):
 // Apply necessary processing on Record
 // x to generate Record y

 EmitResult (Table Y, record y)

Record x is one of the records in Table X to which the Map operator is applied.
Within the user-defined map function, the user can do any custom processing
over record x. At the end, the user-defined function could generate one or more
records for one or more tables. In the example, we generated one new record y for
Table Y.

The user would invoke the Map operator as follows:

Map(Table X, Func mapFunc)

The first argument specifies to which table this Map operator is applied, and the
second argument specifies the user-defined function.

Many applications need to process records independently. Using MapReduce,
even with an identity reduce function, one would incur unnecessary sorting
between the map and the reduce stage. Instead, one can use the Map operator to
process these records in parallel.

5.3.2.2 Distribute Operator

The Distribute operator converts a table or an indexed table to another indexed
table with a different index. The resulting indexed table is stored as a single fixed-
num-of-chunk DFS file. This involves shuffling data from whichever chunk the
data was on previously to a new chunk as indicated by the partition function for
the new index.

The user invokes the Distribute operator as follows:

Table Y = Distribute(Table X, Field i, Func newPartitionFunc)

Large-Scale Data Processing  ◾  101

Y is the resulting table after applying the Distribute operator on X. i indicates
which field of Table X should be used as the new index. newPartitionFunc is the
new partition function for the newly generated table. It takes the following form:

int [] newPartitionFunc(Index x)

The function newPartitionFunc returns one or more integers to indicate which
chunk(s) one record should be written to. If more than one integer is returned, the
same record will be duplicated over all indicated chunks.

When the Distribute operator is invoked, the master node spawns C separate
slave tasks on the slave nodes, one for each chunk. We refer to the task responsible
for the ith chunk, “task i.” For efficient local processing, task i is spawned on the
same node that holds chunk i of Table X. The slave tasks run parallel to each other.
Each slave task generates C output files locally, one for each chunk of Table Y. Task
i goes through each record in chunk i of Table X, and for each record, it applies the
newPartitionFunc to determine the chunk number j (or a list of chunk numbers)
for Table Y, to which the record will be distributed. It then writes the record to the
output corresponding to chunk j (or to outputs corresponding to the list of chunks).

When a slave task completes, it notifies the master node about the task comple-
tion and the location of the C local output files. When the master node notes that
all slave tasks have been completed, it will spawn another set of tasks, one for each
chunk, again on the nodes that will hold the corresponding chunk for Table Y.
Again, each slave task runs in parallel. Task j receives a list of file locations (includ-
ing the host name), one for each slave task in step 2 indicating the location of Task
i’s output for chunk j of Table Y. Task j remote copies all files to the local node and
merges them into chunk j for Table Y. The Distribute operator finishes when the
master node is notified that all slave tasks have finished.

The actions performed by Map and Distribute operators are similar to part of
the actions performed by MapReduce. We extract them out as separate operators
because we feel they are fundamental operations that are needed by many applica-
tions. Extracting them out as separate operators gives the users greater flexibility
when they implement their applications through operator compositions.

Both the fixed-num-of-chunk file and the Distribute operator give users direct
control on how data is placed on the nodes. This capability allows users to optimize
local processing, thus saving precious network bandwidth. This is especially impor-
tant in a cloud or a grid consisting of geographically distributed servers across Wide
Area Networks (WANs), where the network bandwidth is much smaller than that
in a traditional enterprise infrastructure.

5.3.2.3 Join Operator

The Join operator takes two indexed tables and merges the corresponding records if
the index fields match. The GridBatch system finds the corresponding records that

102  ◾  Cloud Computing and Software Services

have a matching index, and then invokes a custom function defined by the user.
The user-defined function can simply merge the two records, like in a traditional
database join, or it can perform any special action as it desires.

The users invoke the Join operator as follows:

Join(Table X, Table Y, Func joinFunc)

where
X and Y are the two input indexed tables
joinFunc is the custom function provided by the user

A sample pseudo-code for one implementation of the joinFunc is as follows:

joinFunc(Record x, Record y)
 // Apply necessary processing on Record
 // x and y to generate Record z

 EmitResult(Table Z, record z)

where x and y are a record of Tables X and Y, respectively. When joinFunc is
invoked, it is guaranteed that the indices for record x and y match. joinFunc could
emit zero or more records for zero or more tables. The example shown only emits
one record for one table.

Before the Join operator is called, it is the user’s responsibility to make sure
that Tables X and Y are partitioned already using the same partition function (e.g.,
by using the Distribute operator) on the index field that the join is based on. The
Join operator simply performs the join locally without worrying about fetching
data from other chunks. This is consistent with our philosophy that the user is
the most knowledgeable about how to distribute data in order to achieve the best
performance.

When the Join operator is invoked, the master node spawns C tasks, one for each
chunk, on the slave node holding the corresponding chunks for Table X and Y. Task
i first sorts chunk i of Tables X and Y individually in increasing order of their indices.
Then, task i walks through Tables X and Y with the help of two pointers. Initially,
one points at the beginning of X and the other points at the beginning of Y. Let i(x)
and i(y) denote the index value of the records pointed to by the pointers for Tables
X and Y, respectively. If i(x) = i(y), joinFunc is invoked with x and y as parameters.
Otherwise, if i(x) < i(y), advance the pointer for Table X, and if i(x) > i(y), advance the
pointer for Table Y. This process continues until all records are scanned. The Join
operator finishes when the master node is notified that all slave tasks have finished.

In our client application of finding items generated by a set of sources, we first
apply the Distribute operator on the barcode table based on the source field, and
then simply perform a Join operator between the resulting barcode table and the
table holding the list of sources.

Large-Scale Data Processing  ◾  103

5.3.2.4 Cartesian Operator

Unlike the Join operator, which only matches records when their index fields
match, the Cartesian operator will match every record of Table X with every record
of Table Y, and apply a user-defined function.

In our client’s business-rule-checking application, all barcode records are stored
as one table and all business rules are stored as another table. The client wants
to check all records against all rules to make sure there is no business rule viola-
tion. This can be accomplished by simply calling the Cartesian operator. The user-
defined function only needs to check if a record violates a particular rule, and the
GridBatch system takes care of the dirty plumbing work of matching correspond-
ing records from the two tables.

A Cartesian operator can be used to implement a join. The Join operator only
works when both tables are indexed and when we desire an exact match on the
index field. When a non-exact match is desired, we have to check every record x
against every record y. The user-defined function can then determine whether x and
y should be joined together.

The users invoke the Cartesian operator as follows:

Cartesian(Table X, Table Y, Func cartesianFunc)

where X and Y are the two input tables, and cartesianFunc is the custom function
provided by the user.

A sample pseudo-code for one implementation of cartesianFunc is as follows:

cartesianFunc(Record x, Record y)
 // Apply necessary processing on Record
 // x and y to generate Record z

 EmitResult(Table Z, record z)

where x and y are records of Tables X and Y, respectively. cartesianFunc could emit
zero or more records for zero or more tables. The example shown only emits one
record for one table.

Like the Join operator, it is the user’s responsibility to first distribute the data.
The Cartesian operator simply performs the operation locally without worrying
about fetching data from other chunks. The user should duplicate one of the tables
over all chunks (e.g., using the Distribute operator) to guarantee that every record
x is matched against every record y.

The implementation of the Cartesian operator is similar to that of the Join
operator. The only difference is that no matching of indices is needed.

5.3.2.5 Recurse Operator

The Reduce part of MapReduce is inherently not parallelizable. But, if there are
many reduce operations, an application can still benefit from parallelization by

104  ◾  Cloud Computing and Software Services

spreading the reduce operations across many nodes. For web applications, it is gen-
erally true that there are many reduce operations (e.g., word count). However, this
is not necessarily true for analytics applications, where the users are only using a
few reduce operations. For example, the user may just want to sort the output for
reporting or collect a few statistics. In this case, the Reduce operator becomes a
bottleneck, limiting the scalability of the application.

Many reduce operations are commutative and associative, and hence, order
independent. For example, counting the number of occurrences of an event involves
addition, which is commutative and associative. The order of how addition happens
does not affect the end result. Similarly, sorting is order independent.

For these order-independent reduce operations, we introduce the Recurse oper-
ator. Users invoke Recurse as follows:

Recurse(Table X, Func recurseFunc)

where X is the input table, and recurseFunc is the custom function provided by the
user. The Recurse operator merges the table into a single record.

A sample pseudo-code for one implementation of recurseFunc is as follows. For
conciseness, this example shows the addition operation, but it is equally easy to
implement the merge sort algorithm:

Record recurseFunc(Record x1, Record x2)
 // Apply processing on x1 and x2
 return x = x1 + x2

where x1 and x2 are partial results from merging two subparts of Table X. recurse-
Func specifies how to merge the two partial results further, and GridBatch applies
the function recursively over all records of Table X to eventually produce the overall
sum.

Compared to the reduce operation in MapReduce, the recurse operation is more
efficient because it can parallelize the reduce operation over many nodes. In addi-
tion, the recurse operation can minimize network traffic by merging results from
close-by nodes. Since bandwidth is only consumed on local network segments,
bandwidth on other links is preserved for other tasks. Network bandwidth con-
sumption can be cut down further if only partial results are desired. For example,
if we are only interested in the top 10 records, each node would only compute the
local top 10, and send them to the neighboring node, who in turn will merge them
with the local result to produce the top 10. Since only 10 records are passed from
node to node, the traffic is much smaller than that used by MapReduce, which
would require every node sending every record to a single node where the reduce
operation is carried out.

When the Recurse operator is invoked, the master node spawns many tasks,
one for each chunk, and it is spawned on the slave node that holds that chunk
for Table X. Task i first merges all records in chunk i using recurseFunc. First, it
takes the first two records x1 and x2, and applies recurseFunc. The result is saved in

Large-Scale Data Processing  ◾  105

record s. Task i then takes the third record, x3, and applies recurseFunc on s and x3.
This process continues for all the remaining records.

We now need to merge the results from each chunk together. Half of the tasks
will send their results s to another task in the other half, where s is merged with
the local result. At the end, only half of the tasks have partial results. This process
repeats, i.e., one quarter of the tasks will send their partial results to another task
in the other quarter tasks, where results are merged. The process ends when the
final result is derived. The master node is responsible for coordinating the merging
sequence (who sends results to who else), and it will take the network topology into
account so that, most of the time, a task only sends its result to a nearby task.

5.3.2.6 Neighbor Operator

Unlike database tables, tables in GridBatch could have an implicit order semantic.
For example, the barcode table in our client application preserves the scanning
order. Some analytics functions, such as our client’s interlacing detection problem,
need to analyze the sequence to derive meaningful results.

The Neighbor operator groups neighboring records and invokes a user-defined
function to analyze the subsequence. The users invoke the Neighbor operator as
follows:

Neighbor(int k, Table X, Func neighborFunc)

where
k is a small constant that indicates how many neighboring records to group

together
X is the input table
neighborFunc is the custom function provided by the user

neighborFunc takes k records as arguments. The k arguments follow the order
in the table, i.e., the record in argument j immediately follows the record in argu-
ment j − 1 in the table. A sample neighborFunc pseudo-code for our client’s inter-
lacing detection is as follows:

neighborFunc(Record x1, Record x2)
 // report discontinuity
 if (x1.containerID ≠ x2. containerID)
 EmitResult(Table Z, record x1)

where x1 and x2 are neighboring records of Table X.
This function adds the first record to a new Table Z if the two records belong

to different containers. To detect whether there is any interlacing, it is sufficient to
count the number of occurrences of each container ID in Table Z. If any container
appears more than once in Table Z, then some items from that container have been
misplaced (note that the container ID is globally unique). Counting the number of
appearances can be accomplished by the Recurse operator.

106  ◾  Cloud Computing and Software Services

Interlacing detection using SQL is very hard to do, since databases do not pre-
serve the sequence semantic. Furthermore, it is not possible to perform interlacing
detection with MapReduce either for the same reason. Until now, the only alter-
native is to write a sequential program to scan the whole barcode table and detect
any discontinuity. However, this naive solution is very time consuming, since the
barcode table is many terabytes long. By using the Neighbor and Recurse operators,
we implemented the same logic with only a few lines of code, and yet we were able
to achieve very high performance. This demonstrates the power and capabilities of
the GridBatch system.

5.3.2.7 Block-Level Operator

In addition to exploiting parallelism at the record level (Map operator) and at the
neighbor level (Neighbor operator), the BLO operator allows us to exploit parallel-
ism at the chunk level. As an example, we will show how it can be used efficiently
to compute medians from a large data set.

The BLO operator applies a user-defined function on a chunk at a time, where
a chunk is a set of records, which are stored logically and physically in the same
location in the cluster.

The users invoke the BLO operator as follows:

BLO(Table X, Func bloFunc)

where X is the input table, and bloFunc is the custom function provided by the user.
bloFunc takes an iterator of records as an argument. When iterating through

the iterator, the records are returned in the same order as when they were written
to the chunk. A sample bloFunc pseudocode for counting the number of records in
a chunk is as follows:

bloFunc(Iterator records)
 int count=0;
 for each record x in records
 count ++
 EmitResult(Table Z, count)

This user-defined function counts the number of records in the input iterator,
and at the end, it adds the count value to a new Table Z. At the end of this BLO,
each chunk will produce a count value. To get the overall count, a MapReduce or a
Recurse operator has to be applied to sum up all values in Table Z.

Figure 5.2 shows a comparison between the Map, Neighbor, and BLO opera-
tors. The Map operator is designed to exploit parallelism among independent
records. The user-defined map function is applied to all records at the same time.
The Neighbor operator is designed to exploit parallelism among subsequences when
analyzing a sequence of records. The user-defined Neighbor function is applied to
all subsequences at the same time. The BLO operator implements another pattern

Large-Scale Data Processing  ◾  107

of parallel processing. The user-defined BLO function is applied to all chunks at the
same time; however, the processing within the chunk could be sequential.

The BLO operator works in conjunction with the FC files, where all data
that have to be processed sequentially are arranged in the same chunk already. A
chunk is guaranteed to be stored physically on the same node, and hence, it can
be efficiently processed locally without consuming network bandwidth. There are
a couple of ways to shuffle data into the correct chunks. When data are written
into DFS, the user could choose to write to an FC file with a user-defined partition
function. The user-defined partition function makes sure that the correct data are
loaded to the correct chunks. Alternatively, if the data are already stored in an FS
file, the user could invoke the Distribute operator. Again, the user would supply a
partition function, which makes sure that data are loaded correctly.

The BLO operator can be considered as the Reduce portion of the MapReduce
operator, except that it is a stand-alone operator and involves no sorting and group-
ing by key. It is implemented as a child class of the Task class, the base class for both
the MapTask and ReduceTask classes in the Hadoop implementation. We inherit
from Task instead of ReduceTask because BLO does not need the data shuffling
and sorting operations in the ReduceTask class.

Similar to the Join operator, the functionality of the BLO operator could be
implemented with MapReduce. However, as we will see in our application of com-
puting medians, using MapReduce would be very inefficient, since it would have to
invoke the identity mapper, shuffle all data around, and sort the data unnecessarily.
This is especially bad when multiple passes of MapReduce are involved, where the
work done in one MapReduce pass would have to be repeated in the next pass, since
there is no mechanism to save the intermediate data in the MapReduce framework.

5.3.3 Sample Application: Computing Median
To illustrate MapReduce and GridBatch in a real application scenario, we consider
a real enterprise application—a data warehouse application for a large financial

User-defined map function

User-defined neighbor function

Legend:
A record
User-defined
function applied
over records

User-defined BLO function

(a)

(b)

(c)

Figure 5.2  Comparison between (a) Map, (b) Neighbor, and (c) BLO operators.

108  ◾  Cloud Computing and Software Services

services firm. The company has tens of millions of customers, and they are inter-
ested in collecting and reporting high-level statistics, such as average and median,
about their customers’ account balances. They want to collect these statistics across
many different dimensions of their customer base. For example, across age groups,
what is the balance for 20–30 years old, 30–40 years old, etc.; or across industries,
what is the balance for customers in retail or hightech industries. They are also
interested in a combination of many dimensions, such as across age groups within
different industries or across job tenure length within different geographies.

We use the term “segmentation” to refer to a particular combination of the
dimensions. For example, computing medians across age group is one segmenta-
tion and computing medians across both age group and industry is another seg-
mentation. We use the term “bracket” to refer to a range within a segmentation.
For example, users that are 20–30 years old and are in the retail industry form one
bracket. We need to compute one median for each bracket, and many medians
for each segmentation, where each median corresponds to one bracket within the
segmentation. We denote the number of dimensions by D and the number of seg-
mentations by S. In the worst case, S could be as large as D!

The input to the problem is a large fact table with tens of millions of rows.
Each row holds all relevant information specific to a customer including the cus-
tomer’s account balance, birthday, industry, geography, job tenure length, educa-
tion, etc.

Computing the average is relatively easy because one can simply sum up the
total and divide it by the count, where both the total and the count are easy to
compute in parallel with MapReduce. However, computing a median is quite awk-
ward with MapReduce, because it requires sequential processing. A straightforward
implementation would first sort all data and then find the middle point. Both steps
are sequential in nature, and hence, they take a long time to complete for a large
data set. The problem gets worse in our case when there are a large number of
median computations.

We present two efficient approaches, one using MapReduce, and the other
using the BLO operator of GridBatch, to compare the two systems. In the follow-
ing, we first describe the traditional approach to compute the median and point out
the deficiencies, and then we describe our approaches using MapReduce and BLO.
As we will see, the new programming models, such as MapReduce and GridBatch,
can solve these problems much more efficiently.

5.3.3.1 Traditional Enterprise Approach

The most common solution in enterprises today for large-scale data warehousing
applications is to use a database. Once the fact table is loaded into the database,
one can simply write SQL queries to compute the 50 percentile value, or call the
median function directly if available from the SQL platform.

Large-Scale Data Processing  ◾  109

When computing medians for a segmentation, it is more efficient to write one
SQL query to compute medians for all brackets within the segmentation. This can
be achieved by a combination of the group by and case clauses. An example for the
age group segmentation is as follows:

select
 age_group,
median(balance)
from
(select
 balance,
 age_group=(case 20 < age <30: 0
 case 31 < age < 40: 1
 ...)
from account)
group by age_group

The inner select statement builds an intermediary table from the original
account table. It has a balance column directly from the account table and
an intermediary age _ group column derived from the age column. All records in
the same bracket have the same value in the age _ group column. For example, all
records whose age is between 20 and 30 have 0 in the age _ group column. Once
the intermediary table is built, the outer select statement uses the group by
clause to group all records in a bracket together and then computes the median value.

This approach suffers from several problems. First, the case statement is lengthy
and hard to maintain, especially when multiple dimensions are involved. Second,
a separate SQL query has to be written for each segmentation, which could be an
exponential function of D, the number of dimensions. Third, each SQL query has
to scan the complete data set twice, once to build the intermediary table and once
to compute the medians. Since there are S (the number of segmentations) SQL
queries, this approach would scan the data set 2S times.

An alternative approach is to use an ETL (Extract, Transform, Load) tool to
add the intermediary columns (e.g., age _ group) first. The ETL tool reads from
the fact table one record at a time, applies the necessary logic to build the interme-
diary column, then writes the result back into a staging table. Because of the higher
expressibility of ETL, the column building logic is simpler to write and maintain.
Further, this approach cuts down the number of passes needed to build the inter-
mediary columns from S to D. However, each SQL query still has to scan the data
set separately once to compute the medians. Since there are S SQL queries, we have
to scan the data set S + D times.

For a large data set, it is crucial to minimize the number of passes as reading and
writing consume most of the time. This is especially important in the traditional
enterprise architecture, since all data are stored in a network attached storage and
each pass has to consume the limited network bandwidth.

110  ◾  Cloud Computing and Software Services

5.3.3.2 Algorithm for Finding Medians

In this and the next two sections, we show our approach on how to process the
data distributedly in two passes using either MapReduce or the BLO of GridBatch.

Our approach partitions the data set based on the account balance to facili-
tate parallel processing. Partitions are determined by a set of split-points, where all
records whose balance falls in between two neighboring split-points are grouped
into the same chunk. The split-points are picked to ensure that the chunk sizes are
roughly evenly distributed to maximize parallelism. If the account balance distri-
bution is known, the split-points can be easily determined; otherwise, a prepro-
cessing MapReduce job could be run to collect a sample distribution of account
balances (sorting using MapReduce used the same sampling approach to determine
distribution [6]).

The split-points should also be picked to ensure that each chunk is small enough
to fit into the memory. The BLO operator and the reducer in MapReduce supply
the input data as an iterator to the user-defined function so that they can deal with
smaller memory by storing large data on disk. However, if the user-defined reduce
or BLO function needs to access all data, e.g., during a sort, it is highly desirable to
store them all in memory in order to avoid the complexity in the user code to swap
data to disk. Having the chunk size small enough will ensure that the reduce or the
BLO user-defined function could simply cache all data in memory.

For simplicity of description, we first explain how to compute a single median,
the overall median, and then we generalize to multiple medians. We describe the
algorithm in terms of the general approach, and in Sections 5.3.3.3 and 5.3.3.4,
we describe in more detail how to implement it using MapReduce and BLO. The
algorithm has three main steps as follows.

 ◾ Step 1: We partition the records into chunks such that all records whose bal-
ance falls between two split-points are in the same chunk. We then iterate
through all data in a chunk to count the number of records in the chunk.

 ◾ Step 2: The counts for all chunks are aggregated. Since we can easily deter-
mine the total by summing up all counts, we know the rank of the median.
Since we also know the split-points and the chunk corresponding to two
neighboring split-points, we know which chunk the median is in and its rank
within that chunk. Let us assume it is chunk p and rank r.

 ◾ Step 3: We sort all data in chunk p and then find the rth number, which will
be the median.

The above algorithm is for finding one median in a large distributed data set;
however, it is easy to extend the algorithm to find many medians, one for each
bracket of each segmentation. We keep track of one counter for each bracket. In
steps 1 and 3, the counter for a bracket is only incremented if the record belongs to
the bracket. Note that we still scan through the data only once in both step 1 and
step 3, and we also only sort the data once in step 3.

Large-Scale Data Processing  ◾  111

5.3.3.3 MapReduce Approach

In MapReduce, the data set is stored in an FS file and it is not partitioned. Hence,
in step 1, we have to count the individual records in the Map and aggregate the
count in the reduce phase.

The user-defined map function takes one record as the input, and emits one
key-value pair for each bracket to which the record belongs to, where the key is a
concatenation of the bracket name and the chunk number and the value is 1. The
bracket name uniquely identifies the segmentation and value range, and the chunk
number is specified by the partition function, which maps from the account
balance into the chunk number based on the set of split-points. For example, the
key “Age20-30IndustryRetail_5” refers to the age and industry segmentation,
which includes all records that are in age range 20–30 and in the retail industry,
and specifies that the balance in the record falls in chunk 5.

mapFunc(Key=null, Value=Record x):
 for (each bracket b)
 if (x in b)
 p = partition(x.balance)
 EmitResult(b;p, 1)

The user-defined combine and reduce functions simply sum up all 1’s associated
with one key. At the end, they emit one key-value pair, where the key is b;p, and the
value is cb,p—the total count for bracket b and chunk p.

In step 2, another MapReduce is used to determine the chunk and rank where
the median resides. The map function simply aggregates all counts, cb,p, for a
bracket, b, into the same reduce function. It returns the bracket name as the key,
and encodes both the chunk and the count as the value.

mapFunc(Key=b;p, Value=cb,p):
 EmitResult(b, p;cb,p)

The reduce function receives a list of chunk and count pairs for a particular
bracket b. Based on the ordering of the chunks, it computes the chunk pb where the
median is and its rank rb within chunk pb.

reduceFunc(Key=b, Value=list of p;cb,p):
 Compute pb and rb
 EmitResult(b, pb;rb)

In step 3, we use the pb and rb numbers returned to find the actual median
value. It involves sorting records in chunk pb based on their balance, and then
returning the rbth number in the chunk. The map function returns the record as
its value and the chunk it is in as the key, so that all records in the same chunk are
aggregated for the same reduce function.

112  ◾  Cloud Computing and Software Services

mapFunc(Key=null, Value=Record x):
 p = partition(x.balance)
 EmitResult(p, x)

The reduce function first sorts all records based on the account balance; then
for each bracket b, if the current chunk is pb, it finds the rbth number. Note that we
could have sorted only records associated with a bracket. However, there could be
multiple brackets in the same chunk, so it is more efficient to sort only once.

reduceFunc(Key=p, Value=list of Records X):
 sort X based on x.balance
 for each bracket b
 if (p == pb)
 find rbth record in bracket b
 EmitResult(b, rbth record’s balance)

Note that the reduce function reads directly from the output file from step 2,
which contains a list of pb;rb value pairs.

5.3.3.4 GridBatch Approach

The GridBatch approach leverages a combination of the BLO operator and the FC
files. The data are first stored as FC files to facilitate local processing in the follow-
ing steps. This can be achieved in two ways: either upload the data to DFS directly
as an FC file or, if the data are already stored as an FS file, use the Distribute opera-
tor to partition the data. In either case, we simply supply the same partition
function either to the DFS or to the Distribute operator. Once the data are stored
as an FC file, we can proceed to process the same three steps. However, both step 1
and step 3 not only become simpler but are also able to run more efficiently.

In step 1, the BLO user-defined function simply counts how many records are
in each bracket for the current chunk. It first computes which chunk p the records
are in. Since we know all records are in the same chunk, this computation only
needs to take place once.

bloFunc(list of records X):
 p=partition(X)
 for each x in X
 for each bracket b
 if (x in b)
 cb,p ++
 for each bracket b
 EmitResult(b;p, cb,p)

Step 2 is exactly the same as that in the MapReduce approach; hence, we omit
the description. In step 3, we invoke another BLO operator to find the actual
median value.

Large-Scale Data Processing  ◾  113

bloFunc(list of records X):
 p = partition(X)
 sort X based on x.balance
 for each bracket b
 if (p == pb)
 find rbth record in bracket b
 EmitResult(b, rbth record’s balance)

Again, we first compute the current chunk number p, which only needs to be
done once. Then the rest of the processing is identical to the reduce function in step
3 of the MapReduce approach.

5.3.3.5 Comparing MapReduce and GridBatch Approaches

Although the MapReduce approach and the GridBatch approach are quite simi-
lar, there are two key differences. First, the GridBatch approach takes advantage
of the partitioned data structure. Through a combination of moving related data
to the same node and processing data on the node where they reside, GridBatch
is able to minimize network bandwidth consumption and fully utilize the local
disk bandwidth. In comparison, MapReduce, at least the open-source Hadoop [16]
implementation, could create splits (a split is Hadoop’s terminology for a set of
data to be processed by one Map task) that span multiple chunks. Even though
Hadoop attempts to localize processing, the spanning means some data will have to
traverse the network. In addition, Hadoop has no mechanism to move related data
together. Although the users can create many HFS files with one for each partition
(a poor man’s FC file), the users have no control over where these files are placed;
so they could all be stored on a few data nodes. As a result, we either incur a sig-
nificant communication overhead or an imbalance of load among workers during
processing. As the cluster size increases, the total disk bandwidth increases; how-
ever, the network bandwidth does not (it is limited by the bottleneck link). Thus,
the GridBatch approach is more scalable.

Second, GridBatch has many operators, and each implements a parallel process-
ing pattern. The user not only has the flexibility to choose the operator that is most
appropriate for the target problem, but also has the freedom to arbitrarily combine
them. In comparison, there is only one choice in MapReduce. Compared to using
the BLO operator, using MapReduce introduces the following inefficiencies.

 1. The MapReduce pattern forces the intermediary data to be verbose. For
example, in step 1, in order to count, each record has to generate S key-
value pairs in the form of (b;p, 1), one for each segmentation. Even with
the help of the combine function, only the network bandwidth consumed is
reduced; the map function still has to write a large amount of data to the disk.
Furthermore, the combine function introduces additional overhead since it
has to read the data from the disk, sort the data, and combine the output.

114  ◾  Cloud Computing and Software Services

 2. The intermediary data between map and reduce are not saved. MapReduce
has no mechanism for saving the intermediary data and reusing it for later
processing. In step 3, we are distributing the records based on their chunk
already. Unfortunately, because we cannot save the result, we have to redis-
tribute the data or their derivatives (e.g., the count in step 1) over and
over again. This is especially inefficient when many MapReduce steps are
involved.

 3. MapReduce contains processing that may not be needed for some applica-
tions. For example, MapReduce always sorts the key-value pairs based on the
keys. In our case, the BLO avoids unnecessary sorting on keys in both step 1
and step 3.

By giving the users a family of operators, GridBatch allows the users to optimize
the processing by choosing the right operator for the right job. Experimentally, we
have shown that GridBatch is much more efficient than MapReduce, which is in
turn much more efficient than the traditional enterprise approach. We omit the
experimental results for brevity. We refer interested readers to the GridBatch paper
[22] for more details.

5.4  MapReduce Implementation on a Cloud OS
In Section 5.2.2, we described a MapReduce implementation on top of a server OS.
In this section, we describe how to leverage a cloud OS to implement MapReduce
much more efficiently. We describe Cloud MapReduce, a system we have developed
at Accenture Technology Labs. The lessons we learned from using the cloud OS
should be generic enough to be applicable to a wide range of system projects.

Like a server OS, a cloud OS is responsible for managing resources. In a server
(e.g., a PC), the OS is responsible for managing the various hardware resources,
such as CPU, memory, disks, network interfaces-everything inside a server’s chas-
sis. It hides the hardware operation details and allows these scarce resources to
be efficiently shared. A cloud OS serves the same purpose. Instead of managing a
single machine’s resources, a cloud OS is responsible for managing the cloud infra-
structure, hiding the cloud infrastructure details from the application program-
mers and coordinating the sharing of the limited resources.

But unlike a traditional OS, a cloud OS has to do everything at scale. IBM
CEO Thomas J. Watson is well known for his 1943 statement (although only
scant evidence exists): “I think there is a world market for maybe five comput-
ers.” Although it is often laughed at since the advent of Personal Computers, it is
becoming a reality again. The only difference is that we refer to these computers as
clouds. Today, only a handful of companies, such as Google, Microsoft, Amazon,
and Yahoo, need and are capable of building a cloud—a large server farm with
hundreds of thousands of servers. For example, it is reported that Google has well

Large-Scale Data Processing  ◾  115

over 1 million servers. Managing such big an infrastructure requires the OS to be
extremely scalable. It is precisely the scalability that we are leveraging for the Cloud
MapReduce implementation.

5.4.1 What Is a Cloud OS?
Even though the underlying resources it manages are different, a cloud OS is similar
to a traditional server OS in terms of the services it provides. Since our MapReduce
implementation is built on top of Amazon web services, we describe the Amazon
cloud OS in detail to illustrate what services a cloud OS could provide.

Amazon’s EC2 service manages the compute resources just like a traditional
OS would. A traditional OS provides a set of process interfaces, such as the POSIX
interface, for applications to call to instantiate new processes or terminate existing
ones. When processes are running, the OS manages the fair allocation of CPU
cycles among the various processes. Similarly, EC2 provides a set of web services
API for applications to call to instantiate new or terminate existing VMs. When
VMs are running, EC2 manages the fair allocation of compute resources among
VMs. The hypervisor schedules the various VMs on the same physical machine to
ensure that each gets its promised share of the CPU resource. Although there is no
evidence that EC2 is doing dynamic adjustments, it can potentially even change
the resource allocation by adjusting the scheduling weight in the hypervisor, or if
the underlying physical machine is overcommitted, it can move VMs to a different
physical host [5,17,25]. EC2’s web services API is designed to be scalable so that
many requests could be served at the same time. For example, the service end point
is mapped to many IP addresses at the DNS (Domain Name System) level and
each IP address can be further hardware-load-balanced to many physical servers.

Another service, Amazon’s S3, manages the storage resources just like a tradi-
tional OS would. A traditional OS provides a file interface, where an application
could call the interface functions to open, read, write, and close a file. Similarly,
S3 exposes a set of web services API, to which applications could call to put and
get objects. Like EC2, the web services API is designed to be scalable. In addition
to the API, object storage is also implemented in a scalable fashion, i.e., objects are
distributed among many servers and each object is replicated several times. As of
July 2008, S3 stores 22 billion objects—a clear demonstration of its scalability.

Amazon’s Simple Queue Service (SQS) is similar to a UNIX pipe. In a UNIX
pipe, a process can write messages at one end and another process could consume
the messages at the other end. Unlike a UNIX pipe, which is limited to processes
running on the same hardware, anyone on the Internet could write to or read from
an SQS queue.

Amazon’s SimpleDB service is most similar to the registry service in a Windows
OS. As its name suggests, it could also be thought of as a simplified database. An
application could write some data into SimpleDB, which will be persistently stored.
SimpleDB also offers the ability to run simple queries against the stored data.

116  ◾  Cloud Computing and Software Services

Similar to EC2 and S3, both SQS and SimpleDB are designed to be highly
scalable. Since all Amazon services are exposed as web services APIs, standard tech-
niques to design scalable web applications, such as DNS load balancing and IP load
balancing using hardware load balancers, could help make these services scalable.

The Microsoft cloud OS also offers similar services. Microsoft Azure workers
provide compute services. It differs from Amazon EC2 in that it provides com-
putation capacity inside a .NET container instead of an ×86 VM. Similar to S3,
Microsoft Azure blob provides storage service. Similar to SQS and Unix pipe,
Microsoft Azure queue provides messaging service. Lastly, similar to SimpleDB and
Windows registry, Microsoft Azure table provides persistent state storage service.

5.4.1.1 Advantages Offered by a Cloud OS

A cloud OS is complex to implement. There are two reasons for this complex-
ity. First, the shear scale of the cloud infrastructure pushes technology limit. Few
companies have had the experience of managing such a big infrastructure, and the
cloud providers are forced to build new solutions from the ground up. For example,
Google designed their own GFS [10] to manage files and BigTable [3] to store a large
amount of semi-structured data, and Amazon designed Dynamo [8] to manage
storage and their own management infrastructure to support their web services API.

Second, a cloud has to be robust and scalable because it is designed to be shared
by hundreds or thousands of people instead of just a few users on a PC. Just like the
computers in the 1940s, clouds are expensive to build. Both Google and Microsoft
are aggressively building out their cloud infrastructure. According to their annual
10K reports, both companies are spending close to a billion dollars a year on capital
investment. Only a handful of companies could afford such a big investment. Yet,
many companies or individuals require access to a large computation capacity once
in a while; thus, a large number of users could potentially time-share the cloud
infrastructure at the same time. It is not trivial to support such a large number of
users at the same time. As an evidence of the complexity of building a cloud OS,
even after 4 years of its introduction, we still found a bug in Amazon’s SQS through
the course of this research.

Even though a cloud OS is complex to implement, out of necessity, cloud pro-
viders have already spent a large amount of engineering effort on building a highly
scalable cloud OS that can manage a large infrastructure shared by many people.
If we leverage the existing cloud OS, we can potentially lower the application com-
plexity, yet achieve high scalability.

5.4.1.2 Challenges Posed by a Cloud OS

A cloud OS’ scalability comes at a price. It has to be traded off with other desirable
system properties. Eric Brewer, in a keynote address to the PODC (Principles of
Distributed Computing) 2000 conference [2], presented the CAP theorem. The

Large-Scale Data Processing  ◾  117

theorem states that, of the three properties of shared-data systems—data consis-
tency, system availability, and tolerance to network partition—only two can be
achieved at any given time. A more formal confirmation of the CAP theorem can
be found in [11]. Because a cloud is used by thousands of people, it has to be
highly scalable and always available; thus, the only property it can give up is data
consistency.

Indeed, the Amazon cloud OS has embraced a weaker consistency model
called “eventual consistency” [32]. Under the eventual consistency model, the
system guarantees that if no new updates are made to an object, eventually all
accesses will return the last updated value. However, during a small time win-
dow, clients may observe inconsistent states. The inconsistency window size can-
not be determined a priori because it depends on communication delays, the
load on the system, the number of replicas involved in the replication scheme,
and the extent of components failure (both the number of and the length of) if
any. The most popular system that implements eventual consistency is the DNS.
Updates to a domain name are distributed according to a configured pattern
and in combination with time-controlled caches; eventually, all clients will see
the update.

In addition to eventual consistency, a cloud also employs horizontal scaling. For
example, SimpleDB can only sustain a small write throughput per domain; but, a
user can write to multiple domains at the same time to increase the aggregate write
throughput. Although each Amazon account has 100 domains by default, one can
simply send an e-mail to request more domains. This is similar to EC2, which by
default has a 20 instances (Amazon’s term for VMs) limit, but it can be lifted by a
simple e-mail request.

Building applications on top of a cloud OS must overcome its limitations. We
describe the manifestations of the eventual consistency model that we are able to
observe, and how we architect and implement Cloud MapReduce to overcome the
eventual-consistency and horizontal-scaling limitations.

5.4.2 Advantages of Cloud MapReduce
We will show that we can greatly simplify the design and implementation of
MapReduce by leveraging what a cloud OS has implemented already. We com-
pare with Hadoop [16], an open-source implementation of MapReduce on top of
a traditional server OS. The current version (0.20.0) has a total of 285,387 lines of
Java code alone. There are also 46,325 lines of Unix shell scripts, which facilitate
setting up a cluster, propagating configurations, and launching new MapReduce
jobs. In contrast, our implementation has 3000 lines of Java code. Although some
of the differences could be attributed to additional features in Hadoop (such as
Streaming), we believe that we can maintain at least an order of magnitude of
advantage. We discuss the detailed reasons in Section 5.4.5 after we have described
our architecture and implementation.

118  ◾  Cloud Computing and Software Services

The simplicity means that it is easy to extend the framework beyond simply
MapReduce. Many applications do not conform to the MapReduce model. If
implemented in the MapReduce framework, the application could experience slow
performance. For example, many problems require a map stage only, i.e., these
applications only need to spread out the work to as many workers as possible. Using
MapReduce, the map output has to go through the reduce phase, which consumes
unnecessary compute resources. Using a simple implementation like ours, we can
easily change our framework to not only refine the MapReduce model, but also
implement a totally different model such as Dryad [18].

Beyond simplicity, we demonstrate that, by leveraging the cloud’s scalability,
our implementation is both faster and more scalable than Hadoop. Even though a
great deal of engineering effort has gone into making Hadoop as scalable as pos-
sible, the single master node architecture still reportedly limits its scalability to
around 2000 nodes. In Section 5.4.6, we show that Hadoop further has a scalabil-
ity limit on the number of files it can handle. We observe slow performance when
there are a large number of input files. In comparison, Cloud MapReduce has no
single point of scalability bottleneck.

Beyond the advantages, Cloud MapReduce also has several highly desirable
properties, which seem to be shared by other highly scalable systems (such as
Dynamo [8]).

Incremental scalability: Cloud MapReduce can scale incrementally in the number of
computing nodes. A user not only can launch a number of servers at the beginning,
but also can launch additional servers in the middle of a computation if the user
thinks the progress is too slow. The new servers can automatically figure out the
current job progress and poll the queues for work to process.

Symmetry and decentralization: Every computing node in Cloud MapReduce has
the same set of responsibilities as its peers. There are no master or slave nodes.
Symmetry simplifies system provisioning, configuration, and failure recovery. As
implied by symmetry, there is no single central agent (master), which makes the
system more available.

Heterogeneity: The computing nodes could have varying computation capacity. The
faster nodes would do more work than the slower nodes. In addition, the comput-
ing nodes could be distributed geographically. In the extreme, a user can even
harvest idle computing capacity from servers/desktops distributed on the Internet.

5.4.3 Cloud MapReduce Architecture and Implementation
In this section, we describe how we implement Cloud MapReduce using the
Amazon cloud OS. We start with the high-level architecture, and then delve into
detailed implementation issues we have encountered. We use the word count appli-
cation as an example to describe our implementation.

Large-Scale Data Processing  ◾  119

We use four infrastructure services that Amazon provides today. We use EC2
APIs to spawn up new VMs (also called instances) to process new MapReduce
jobs. We store our input and possibly output data in S3. By leveraging the distrib-
uted nature of S3, we can achieve higher data throughput, since data comes from
multiple servers and communications with the servers potentially all traverse dif-
ferent network paths. We also use SQS, which is a critical component that allows
us to design MapReduce in a simple way. A queue serves two purposes. First, it is a
synchronization point where workers (a process running on an instance) can coor-
dinate job assignments. Second, queue serves as a decoupling mechanism to coor-
dinate data flow between different stages. Lastly, we use SimpleDB, which serves
as the central job coordination point in our fully distributed implementation. We
keep all workers’ status here.

5.4.3.1 Architecture

Cloud MapReduce architecture is shown in Figure 5.3. There are several SQS
queues: one input queue, one master reduce queue, one output queue, and many
reduce queues.

As its name implies, the input queue holds the inputs to the MapReduce com-
putation. At the start of the computation, the user provides an input queue, which
contains a list of S input key-value pairs. Each key-value pair corresponds to a split

…….

…….

……. Output queue

Master reduce queue

Reduce queues

Input/map queue

Information flow

SimpleDB

Map workers doc1 doc2 doc3

he, “1”

“he”, 2

he, “1”
talk, “1”

talk, “1”
talk, “1”

walk, “1”
walk, “1”

walk, “1”
walk, “1”

walk, “1”

1

1 2

2 3

“talk”, 3 “walk”, 5

she, “1”

she, “1”Reduce workers

S3

Link

Figure 5.3  Cloud MapReduce architecture.

120  ◾  Cloud Computing and Software Services

of the input data that will be processed by one map task. To facilitate tracking,
each key-value pair also has a unique map ID. In the word count application, this
queue contains the document collections where the key is the document name and
the value is a pointer into S3 storage. SQS is designed for message communication;
hence, it has an 8 kB message size limitation. Because it could be too small to fit
a large document, we store a pointer to S3 instead of the data directly in SQS. In
addition to pointing to the location in S3, the pointer could also contain a range
specification, specifying a chunk of the file. Using ranges, the user could split up a
bigger file into pieces and process them separately. Similar to the input queue, the
output queue holds the results of the MapReduce computation. In the word count
application, the output holds the resulting key-value pairs.

There is only one master reduce queue, and it holds many pointers, one for each
reduce queue. As we will see, the master reduce queue is used to assign reduce tasks.
There are a large number of reduce queues. The number of them, denoted by Q, is
a configurable parameter that is set by the user. The reduce queues and the master
reduce queue, as well as the entries in the master reduce queue, are created distrib-
utedly before the start of the MapReduce job.

A set of map workers, each running as a separate thread on an EC2 instance,
poll the input queue for work. When a map worker dequeues one key-value pair, it
invokes the user-defined map function to process it. Just like in other MapReduce
implementations, the user-defined function processes the input key-value pair and
emits a set of output key-value pairs. In the word count example, the input value is
a pointer to a document stored in S3. The map function first downloads the docu-
ment from S3 to the local machine. It then parses the document, and for each word
(e.g., “talk”) it sees, it emits a key-value pair, where the key is the word (e.g., “talk”)
and the value is simply “1” to indicate that it has seen this word once.

The MapReduce framework collects the output key-value pairs from the map
function, and then writes them to the reduce queues. A reduce key maps to one of
the reduce queues through a hash function. A default hash function is provided,
but the users can also supply their own. Since the number of reduce keys could be
much bigger than Q, several keys may map to the same queue. As we will see, each
reduce queue is processed by a separate reduce worker; thus, Q should be set to at
least as large as the number of reduce workers. Preferably, Q should be much bigger
in order to maximize load balancing.

Once the map workers finish their jobs, the reduce workers start to poll work
from the master reduce queue. Once a reduce worker dequeues a message, it is
responsible for processing all data in the reduce queue indicated by the message.
It dequeues messages from the reduce queue and feeds them into the user-defined
reduce function as an iterator. After the reduce function finishes processing all data
in the reduce queue, the worker goes back to the master reduce queue to fetch the
next message to process.

Just like in other MapReduce implementations, the user-defined reduce func-
tion writes a set of key-value pairs as the outputs. The reduce workers collect the

Large-Scale Data Processing  ◾  121

outputs and write them to the output queue. The name of the output queue has
been specified before the start of the MapReduce job. It can be used either as the
final output or as the input to the next MapReduce job.

Even though we have shown two sets of workers (map workers and reduce work-
ers) in Figure 5.3, both run on the same set of EC2 instances. Cloud MapReduce
initially runs only the map workers on the EC2 instances. When the map phase
has finished (discussed below), it stops all map workers and launches new reduce
workers to continue in the reduce phase.

Besides reading from and writing to the various queues, the workers also read
from and write to SimpleDB to update their status. By communicating status with
a central scalable SimpleDB service, we not only avoid a single point bottleneck in
our architecture, but we also make our implementation fully distributable. Workers
work independent of all other workers, and they do not care how many other work-
ers are there. In addition, workers can be heterogeneous. They can be located any-
where in the world and can have a vastly different computing capacity.

In our architecture, it is easy for the job owner to get a rough sense of the job
progress. The input queue length as a percentage of S—the original input queue
length—is a good approximation of the map progress. Similarly, the master reduce
queue length as a percentage of Q—the original master reduce queue length—is
a good approximation of the reduce progress. Obtaining the approximate queue
length is a simple call to the SQS GetQueueAttributes API.

Our current implementation is written in Java. Since the interface functions are
in Java, all user-defined map and reduce functions (at least their interface part) have
to be written in Java. This limitation could be easily removed by using a mechanism
similar to the Streaming mechanism used in the Hadoop [16] implementation.

Because the nodes are symmetric, it is easy to launch a MapReduce job. Users
simply launch a certain number of VMs from our custom Amazon Machine Image
(AMI), and pass a few job-specific parameters to the VMs as the user data. There is
no complicated cluster setup and configuration, and there is no need for selecting a
master. Our AMI contains a simple script that parses the user data passed in during
launch to determine what application to run and which data set to use, and then
the script automatically starts the MapReduce job.

5.4.3.2 Cloud Challenges and Our General
Solution Approaches

Even though the architecture presented above is simple, we have to get around sev-
eral limitations posed by the cloud. We list the key challenges we encountered and
the general techniques we used to get around them. In the subsequent sections, we
get into more details on the implementation.

Long latency: Since Amazon services are accessed through the network, the latency
could be significant. In our measurement, SQS latency ranges from 20 to 100 ms

122  ◾  Cloud Computing and Software Services

even from within EC2. Hence, a significant portion of the time will be spent wait-
ing for SQS to respond if we access it synchronously. For example, a simple word
count application on 10 MB of documents takes roughly 2 h to complete on 10
nodes; whereas, the same application on a single node would have taken only a few
minutes if processed locally. We get around this limitation through two techniques:
message aggregation and multi-threading (described in Section 5.4.3.5).

Horizontal scaling: Although all Amazon cloud services are based on horizon-
tal scaling, we are only able to observe one concrete manifestation: when using
SimpleDB, each SimpleDB domain is only able to sustain a small write through-
put. In our experiments, the threshold is roughly 30–40 items per second. To get
around this problem, we spread the write workload across many domains, and we
aggregate the results from all domains when reading the status. Unlike SimpleDB,
other services, such as S3 and SQS, hide the horizontal-scaling details from the
end users.

Do not know when a queue is created for the first time: According to Amazon docu-
mentation, to know whether a worker is the first to create a queue, the worker can
call the CreateQueue SQS API with a unique visibility timeout (time for a message
to reappear after read) setting. If a queue already exists but has a different visibil-
ity timeout, Amazon returns an error message; otherwise, it returns success. In
practice, due to eventual consistency, if two workers create the queue at the same
time, both may return success. We do not encounter this problem in our current
architecture; however, it did limit our architecture design to avoid dynamic queue
creation.

Duplicate message: According to Amazon documentation, when a worker reads a
message from an SQS queue, the message disappears from the queue for a certain
amount of time (the visibility timeout). In practice, two workers (or two threads)
may read the same message twice if they read at the same time. This is another
manifestation of eventual consistency, because each read modifies the message
state—hiding it for a visibility timeout. Our solution approach depends on the
queue purpose. We use filtering for input and reduce queues, but we use conflict
resolution for the master reduce queue. Note that a duplicate message happens
rarely; so even if the recovery mechanism is expensive, it will not impact the per-
formance much.

Potential node failure: A worker may fail in the middle of processing a map or a
reduce task. We use a status update to a central place (SimpleDB) as a commit
mechanism, and we use filtering to remove uncommitted results.

Indeterministic eventual consistency windows: This problem has a different mani-
festation in SQS and SimpleDB. In SQS, we find that it frequently reports the
queue to be empty even when there are still messages in the queue, especially
when there are only a few messages left. Amazon documentation attributes this to

Large-Scale Data Processing  ◾  123

the distributed nature of the SQS implementation, where messages for the same
queue are stored on different servers. The Amazon documentation states that one
can call the dequeue API a few times and the queue would return all messages.
Unfortunately, there is neither a bound on the number of API calls nor a bound on
the time to wait. Similarly, in SimpleDB, when we read an item right after it is writ-
ten, we may not get the latest value. One solution is to wait for an arbitrarily long
time; unfortunately, it not only does not provide a guarantee, but it will also result
in a much slower performance since workers are frequently waiting idle.

Our solution strategy is to set an expectation before reading. For example, we
record the number of key-value pairs generated by each map task for each reduce
queue. Then, in the reduce phase, we know exactly how many key-value pairs to
expect, and we poll from the reduce queue until all are read. As another example,
when tallying the total key-value pairs generated for a reduce queue, we make sure
that we get S counts from SimpleDB, one reported by each map task.

5.4.3.3 Status Tracking

Due to eventual consistency, we have no reliable way of knowing whether or not a
queue is empty. To facilitate tracking, each worker updates its progress to SimpleDB.
The worker then uses the progress reports from all nodes, including his or her own
progress report, to determine whether there are more to get from a queue.

When a map worker finishes a map task, it writes two pieces of information
to SimpleDB: the worker ID and map ID i pair, and the number of reduce key-
value pairs the worker generated for each reduce queue j while processing map ID i
(denoted by Rij). Updating the status to SimpleDB serves as the commit mechanism
to signify that the input split corresponding to the map ID has been processed
successfully.

The worker ID and map ID pair information is used to determine when the
input queue is empty. When SQS indicates that there are no more key-value pairs
to process in the input queue, the map worker queries SimpleDB to get the list of
all worker ID and map ID pairs. It first removes duplicate map IDs by randomly
picking a winner. Some map IDs may have been processed by more than one map
worker, either because two map workers received the same map ID due to the even-
tual consistency problem, or because a node failed and a new map worker processed
the same map ID again. After duplicate removal, the map worker counts how many
map IDs have been processed. If it is the same as S, Cloud MapReduce proceeds to
the reduce phase; otherwise, the worker goes back to query the input queue again
for more work.

The reduce key-value pairs count (Rij) is used to determine when a reduce queue
has been processed. When a reduce worker is assigned reduce queue j (by querying
the master reduce queue), it first queries SimpleDB to sum up Rij for all i to see how
many key-value pairs are in reduce queue j. It then queries reduce queue j until all
∑iRij key-value pairs have been read.

124  ◾  Cloud Computing and Software Services

In the reduce phase, we use a simpler status-tracking mechanism. Each
reduce worker updates to SimpleDB Ck—the number of reduce queues it has
processed—after successfully processing a reduce queue. When SQS reports that
the master reduce queue is empty, the reduce worker queries SimpleDB to sum up
Ck. If ∑kCk < Q, the worker goes back to query the master reduce queue again for
more work; otherwise, it declares that the MapReduce job has finished.

To overcome the write throughput limitation of a single SimpleDB domain,
each worker randomly picks one of several domains to write the status. When que-
rying SimpleDB for results, each worker launches multiple threads to read from all
domains at the same time, and then aggregates the overall result. Even though sta-
tuses are maintained centrally, SimpleDB would not be a bottleneck, since it itself
is implemented in a distributed fashion.

5.4.3.4 Failure Detection/Recovery and Conflict Resolution

We use SQS’s visibility timeout mechanism for failure detection and recovery. After
a worker reads a message from a queue, the message disappears from the queue for
a certain period of time (the visibility timeout). Unless deleted explicitly, a message
will reappear after the visibility timeout passes.

The input queue has a visibility timeout that is longer than the time it takes to
process a map task. After a map worker has successfully processed a map task, it
removes the corresponding message from the queue to prevent other workers from
repeating the same work. Similarly, the master reduce queue has a timeout that is
longer than the time it takes to process a reduce queue, and a reduce worker only
removes the message after it has successfully processed the reduce queue.

If a worker fails while processing a map or a reduce task, the message will reap-
pear in the input or the master reduce queue, so that other workers can take over.
All status updates to SimpleDB are done before removing the message from the
queue to make sure that the result is committed fully first.

Two map workers may work on the same map task due to either node failure
or message duplication as a result of eventual consistency. In the MapReduce pro-
gramming model, it is acceptable to process the same map task twice, and so we do
not take extra steps. In Section 5.4.3.5, we discuss how to filter out duplicate map
outputs.

However, two reduce workers processing the same reduce queue could pose a
problem. If it happens, we use SimpleDB for conflict resolution. When SQS reports
that a reduce queue j is empty, but the reduce worker has not processed all key-value
pairs (fewer than ∑iRij), the reduce worker suspects that there may be a conflict,
and so it enters the conflict resolution mode. It first writes the reduce queue ID j
and worker ID pair into SimpleDB, and then it queries to see if other workers have
claimed the same reduce queue ID. If so, it invokes a deterministic resolution algo-
rithm (same for all nodes) to determine who should be in charge of processing this
reduce queue. If the worker loses, it abandons what it has processed and moves on.

Large-Scale Data Processing  ◾  125

However, if the worker wins, it goes back to query the reduce queue again. Even if
other workers have read some messages from the reduce queue, the messages will
reappear after the visibility timeout for the winning worker to finish its processing.

5.4.3.5 Working with SQS

5.4.3.5.1 Hide Access Latency

We use two techniques—message aggregation and multi-threading—to hide SQS
latency when accessing reduce queues. Message aggregation takes advantage of the
8K SQS message limit, which is typically much bigger than a key-value pair. By
aggregating, we turn multiple round trips into one, which not only saves the num-
ber of queue write requests, but also saves the number of read requests during the
reduce phase.

Note that message aggregation is different from the combiner in the MapReduce
framework. A combiner is an application-specific function that reduces the inter-
mediate result size by applying application-specific logic. In contrast, our message
aggregation is a framework implementation optimization. The optimization works
regardless of the application.

To hide latency further, we use a thread pool of multiple threads for both writ-
ing to and reading from the reduce queues. When a worker has a message to write,
it hands over the message to one of the idle threads, which in turn talks to SQS
directly. For reading from the reduce queues, we allocate a read buffer and set a read
buffer threshold. When the number of messages in the buffer falls below the thresh-
old, we ask idle threads to download additional messages. Each idle thread performs
one bulk read of 10 messages (10 is the maximum allowed by SQS API). The reduce
workers read directly from the read buffer, instead of interfacing with SQS.

Figure 5.4 shows the time for the word count application as a function of the
number of threads in the thread pool. The word count application runs on a single

0

200

400

600

800

1000

0 5 10 15 20 25
of upload threads

Ti
m

e (
s)

No combiner
With combiner

Figure  5.4  Computation  time  as  a  function  of  the  number  of  threads  in  the 
thread pool. Word count on 25 MB data on a single node.

126  ◾  Cloud Computing and Software Services

small EC2 instance and processes a 25 MB data set. We show both the case with the
combiner enabled and disabled. When the combiner is disabled, more data is shuf-
fled between the map and reduce stages. As shown, the time quickly decreases as
we add more threads, suggesting that the threads are effective at hiding the latency.
Since having more threads in the thread pool has little impact on the performance,
we initialize 100 threads in the thread pool by default in case some applications
require a large amount of data transfer.

The message aggregation and multi-threading techniques are only used on the
reduce queues, since the input queue and the master reduce queue serve a very dif-
ferent purpose. The reduce queues are intermediary staging points between the map
and reduce phases; thus, they require high throughput. In contrast, the input queue
and the master reduce queue are used for job assignments. It is better to read one at
a time to ensure a more even workload distribution.

5.4.3.5.2 Duplicate Detection

Due to eventual consistency, we may read a message twice from a queue. We use
tagging to overcome this problem for the reduce queues. When a map worker
writes an SQS message, it tags the message with three pieces of information: the
worker ID, the map ID, and a unique number. The tag is simply prepended to the
message. When a reduce worker reads an SQS message, it checks the tag to see if
it has seen the message before. If so, the reduce worker ignores the message; oth-
erwise, it stores the tag in its database to facilitate future duplicate detection, and
then processes the message.

If two map workers read a duplicate message from the input queue (or if a
worker failed in the middle of processing a map task), there will be redundant map
outputs in the reduce queues. The reduce workers filter out these redundant mes-
sages by checking the worker ID and the map ID in the message tag against the list
of committed map results (see Section 5.4.3.4 on how we get the list of committed
map results from SimpleDB). The reduce workers simply ignore the messages if they
are not generated by a committed map.

Two workers may also read a duplicate message from the master reduce queue.
As discussed in Section 5.4.3.4, we use a conflict resolution mechanism to get
around the problem.

5.4.4 Map and Reduce Interfaces
The user-defined map function must implement the following interface:

void map(String key, String value, OutputCollector output)

Just as described in [6], both the key and the value are passed to the user-defined
map function as strings. The OutputCollector is provided to the map function so
that it can emit the output key-value pairs.

Large-Scale Data Processing  ◾  127

The user-defined reduce function in the MapReduce programming model
requires an iterator interface for the list of values for each reduce key. In our archi-
tecture, we have Q fixed reduce queues; thus, it is possible to have multiple reduce
keys in the same reduce queue. Since values for different reduce keys may be min-
gled in the same reduce queue, we cannot simply feed the queue outputs to the
reduce function.

Cloud MapReduce uses a push iterator interface for the reduce function. In the
push iterator implementation, we pass to the reduce function one value at a time
as we dequeue from the reduce queue, instead of passing to it an explicit iterator.
The reduce function is called once for each new value. The push iterator interface
consists of three interface functions.

The first is the start interface:

T start(String key, OutputCollector output)

The start interface is called when we see a key for the first time while dequeuing
from the reduce queue. It is called before passing the first value to the reduce func-
tion. T is a user-defined class that holds the states that the reduce function needs
to keep track of. The key associated with this reduce function is also passed in. For
example, for the word count example, the start function initializes a count variable
in object T and sets its value to 0.

The second is the actual reduce function:

void next(String key, String value, T state, OutputCollector
output)

A new value for the reduce key is passed in every time this interface is called. As
in the Google implementation, both the key and the value are generic strings. The
reduce function parses the string to derive the correct data. T is the object that
holds the current state. The reduce function processes the current value and updates
the state as necessary. For example, in the word count example, the reduce func-
tion converts the string to a numerical value, and then adds the value to the count
variable stored in T.

The last interface is the end interface:

void complete(String key, T state, OutputCollector output)

This interface is called when there are no more values associated with the reduce
key. In the word count example, the reduce function emits a key-value pair, where
the key is the reduce key and the value is the count stored in T.

In our implementation, a reduce worker first dequeues a message from the mas-
ter reduce queue to know which reduce queue it is responsible for. Then the worker
dequeues messages from the reduce queue one by one. If it sees a reduce key for the
first time, it invokes the start interface function and keeps the state object T in a

128  ◾  Cloud Computing and Software Services

collection. For every new key-value pair, it finds the state object T associated with
the key, and then calls the next interface function. When there are no more mes-
sages in the reduce queue, it calls the complete interface function for each reduce
key it has seen. Even though we have to keep a reduce key collection and search the
key collection for each new key-value pair, this could be efficiently implemented
because the number of reduce keys in each reduce queue is expected to be small.

One drawback of the push iterator implementation is that we need to maintain a
set of states. This is not a problem for a reduce worker, since we can bound the number
of reduce keys in each reduce queue by increasing Q. However, this may be a problem
for a combiner, since a map worker may generate key-value pairs for a large number
of keys. Fortunately, a combiner does not need to combine all values for a particular
key. Cloud MapReduce currently sets a 64 MB memory limit on the total amount of
combiner state a map worker can keep. If the limit is reached, we flush the buffer by
invoking the complete interface for all reduce keys in the combiner buffer.

5.4.5 Why Cloud MapReduce Is Better?
It is obvious why Cloud MapReduce is more scalable. Unlike other MapReduce
implementations, we have adopted a fully distributed architecture and we do not
have a single master node as a bottleneck. All cloud services we use are imple-
mented in a distributed fashion; so they are not a bottleneck in our system. In our
independent tests, we have confirmed that EC2/SQS/S3 are all highly scalable:
EC2 is able to launch a large number of instances, and S3 and SQS are able to scale
to high throughput. In addition, SimpleDB can sustain a high read throughput,
and through our implementation, we have demonstrated that we can use horizontal
scaling to scale SimpleDB write throughput.

However, it is not immediately obvious why Cloud MapReduce is simpler and
faster than other implementations. The key advantages of Cloud MapReduce are
enabled by several specific aspects of the scalability offered by a cloud OS. First,
S3 presents an infinite and reliable file storage abstraction, which alleviates us from
having to design our own file system. Second, SQS presents an infinite message
store, both in terms of the number of queues one can create and the number of
messages one can hold in each queue. Such an abstraction allows us to bypass both
sorting and using the local storage as a staging area. Third, SimpleDB presents a
high-bandwidth status vault, which can sustain a high read and write (through
striping) throughput. The high read throughput, in particular, enables our distrib-
uted architecture. Instead of relying on the master to instruct the slave nodes (to
alleviate the stress on the master), we allow all workers to query the central store
for a global knowledge first, and then derive the local actions on their own. Last,
both S3 and SQS present a single point of contact that is capable of sustaining a
high throughput. We no longer need to worry about spreading the communication
among the slave nodes in order to achieve a high system throughput.

We discuss the fundamental reasons in more detail in the following.

Large-Scale Data Processing  ◾  129

5.4.5.1 Why Cloud MapReduce Is Simpler?

Cloud MapReduce currently has around 3,000 lines of Java code (including gener-
ous comments, three MapReduce applications, and our profiling code to collect
statistics), two orders of magnitude smaller than Hadoop (285,387 lines in ver-
sion 0.20.0). Although some could be attributed to additional features in Hadoop,
such as Streaming, we believe a large portion could be attributed to the complexity
introduced when interfacing with a traditional server OS. We examine two compo-
nents in more detail: the file system and the MapReduce framework.

5.4.5.1.1 File System Comparison

A server OS presents a limited storage space constrained by the hard disk capacity
on a single machine. In order to host a large number of big files, we must design an
overlay file system on top of a server OS. GFS [10], HDFS (Hadoop File System),
and Dynamo [8] are all examples of this overlay file system.

Specifically, HDFS has to implement the following logic. First, it has to store
the name space of the file system. HDFS has a separate name node that keeps track
of locations of all file chunks, interfaces with clients, and hands out chunk handles
when requested. Second, it has to present a large file abstraction. Because of a single
node’s capacity constraint and because of efficiency reasons, a large file has to be
chopped up into chunks and distributed across many nodes. Third, it has to imple-
ment file replication logic to provide reliability. Each chunk has to be replicated
on several nodes in order to protect against a single node failure. Fourth, it has to
implement load-balancing logic to rebalance the chunk to server assignment, espe-
cially when the cluster’s membership fluctuates over time.

All these functions have to be implemented by a cloud OS already. For example,
S3 transparently replicates each object in order to provide high reliability guaran-
tees. We should note that S3 currently has a 5 GB object size limitation, and so its
interface is simplified compared to what HDFS presents. However, other cloud OS,
such as Microsoft Azure Blob, can store infinitely large files.

Because of these complexities, the current HDFS in 0.20.0 has 37,196 lines
of Java code (package org.apache.hadoop.hdfs under the src/hdfs directory in the
Hadoop source distribution). In contrast, Cloud MapReduce has 172 lines of code
to interface with S3.

5.4.5.1.2 MapReduce Framework Comparison

Compared with Cloud MapReduce, Hadoop, as well as other MapReduce imple-
mentations, has to do a lot more in the MapReduce framework, including the
following.

Sorting: Sorting is required in order to group by keys. This is because a reduce
partition could be large, since we cannot bound the number of keys in each

130  ◾  Cloud Computing and Software Services

reduce partition. Although Hadoop could avoid sorting by using a large number
of reducers (like we do using the push iterator), the overhead of scheduling and
coordinating data copying on the master node will diminish, if not eliminate, the
performance gain.

We should note that there are MapReduce jobs today that rely on the MapReduce
framework to perform sorting. Although not part of the MapReduce programming
model, both the Google implementation and Hadoop have implicitly promised
that the key-value pairs will be sorted. We believe a large fraction of MapReduce
jobs do not need the sorting overhead. For those that do, they can simply imple-
ment sorting in their own user-defined functions.

Master/slave communication: The master is the central coordination point. Hadoop
must define and implement a common communication protocol such as a remote
procedure call (RPC), to facilitate task assignment, status reporting, and configura-
tion propagation. In comparison, we simply leverage the existing cloud API.

Configuration: The asymmetric nature requires the master and slaves to be con-
figured differently. The master must know about all slaves to coordinate job
assignments.

Dealing with slow nodes: Because the task size (in terms of the input data size or
processing time) has to be large in order not to overwhelm the master, a slow node
has a much bigger impact on the overall progress. Slow node detection and specula-
tive execution are required to alleviate the impact of stragglers [34]. In comparison,
Cloud MapReduce can have a much smaller task size, which is neither constrained
by the chunk size (to optimize for local processing) nor constrained by the master
node limit. A slow node can at most slow down the overall computation by the time
required to process one task, which is small in Cloud MapReduce; thus, there is no
need to explicitly detect slow nodes.

Locality optimization: Hadoop tries to place computation tasks on the node that
hosts the corresponding data chunks so that data access goes through the local hard
disk. Extra logic is needed to figure out where a data chunk is stored and how to
match it against computation tasks.

Failure handling: Hadoop must proactively detect node failures in order to resched-
ule tasks. In contrast, a cloud OS is designed with frequent failures in mind. We
simply leverage SQS’ visibility timeout mechanism to automatically handle failure
detection and task re-execution.

The current MapReduce framework in 0.20.0 has 60,367 lines of Java code
(package org.apache.hadoop.mapred and org.apache.hadoop.mapreduce under the
src/mapred directory in the Hadoop source distribution). In contrast, we have 593
lines of MapReduce framework code, 582 lines of SQS interface code, and 797
lines of SimpleDB interface code.

Large-Scale Data Processing  ◾  131

In addition, Hadoop also has 63,128 lines of Java code under src/core directory,
which deals with file caching, merge sorting, configuration, file system clients,
file system checksums, etc. Additional features that Cloud MapReduce does not
have, such as Streaming, are in a separate directory under src/contrib, which is not
counted above.

5.4.5.2 Why Cloud MapReduce Is Faster?

There are several reasons why Cloud MapReduce is fundamentally faster.

No sorting: As described above, the infinite size abstraction presented by SQS (both
in terms of the number of queues and the size of each queue) allows us to bypass
sorting. Since sorting takes O(nlog(n)), we expect Cloud MapReduce to perform
even better when the data set is large.

Parallelize processing and copying: Cloud MapReduce starts uploading reduce results
as soon as they are produced in the map phase even before a map task finishes. This
parallelizes the network transfer with CPU-intensive processing.

No disk paging: Since the number of key-value pairs in a reduce task is unbounded,
Hadoop may have to spill partial sorting results to disk multiple times in order to
fit within the main memory.

No staging: Hadoop always stores the intermediate results on disks, and then copies
over the results to the hard disks on the destination node when instructed by the
master. As a result, the data not only transits through the network once, but it also
transits twice through the local disk. In comparison, Cloud MapReduce uses SQS
as a staging area so that it can do everything in memory; therefore, the data only
transits once through the network.

Finer grain job assignment: Because a task can be small, job assignments happen
at a much finer granularity. Nodes of different capacity are automatically assigned
work proportional to their capacity. A straggler is unlikely to drag on the overall
computation for too long.

Incast problem: Hadoop and other MapReduce implementations start to shuffle data
from mappers to reducers at the end of the map stage. The simultaneous transfers of
a large amount of data could overflow the switch buffer, resulting in packet losses,
which in turn causes TCP to backoff. Current TCP implementations require a 200 ms
wait time before they retry, which significantly lowers the overall throughput. This
problem is referred to as the incast problem, and it has been observed in data centers
[13,27,31]. In contrast, Cloud MapReduce starts to transfer data as soon as it is gener-
ated. Because traffic is smoothed out, it is unlikely to trigger the incast problem. Due
to the lack of visibility into Amazon’s networking infrastructure, we unfortunately
do not know whether the incast problem is a contributing factor in our tests.

132  ◾  Cloud Computing and Software Services

Figure 5.5 shows the CPU, memory, and network usage during one run of the
word count application on a single EC2 instance processing 200 MB of data. We
disable combiner in order to stress the network. The CPU remains mostly at peak
utilization throughout the job (40% is the highest utilization on a small EC2
instance). In Figure 5.5a, at around 21:42, the map phase finishes and the worker
waits to flush out all SQS messages before starting the reduce phase. While waiting
for the SQS writes to finish, there is a slight drop in the CPU utilization. Unlike

(a)

(b)

(c)

Figure 5.5  Word count on a 200 MB data set on a small instance. (a) CPU usage, 
(b) network usage, and (c) memory usage.

Large-Scale Data Processing  ◾  133

other MapReduce implementations, there is not a distinct shuffling stage between
map and reduce because we transfer data in parallel with the map stage. Figure 5.5b
includes both downloading files from S3 and accessing SQS. The network band-
width demand is small, staying under 60 Mbps, even with the combiner disabled.
In our independent tests, an EC2 instance is able to sustain roughly an 800 Mbps
throughput; so the network interface is far from being the bottleneck. Figure 5.5c
shows the memory usage, which stays under 600 MB, much less than the 1.7 GB
available. Even for large jobs with many gigabytes to process per node, the memory
usage typically stays under 1 GB.

The Cloud MapReduce architecture uses the network exclusively for I/O,
bypassing all local storage. This is against the conventional wisdom adopted by
other MapReduce implementations, where heavy emphasis has been placed to opti-
mize data locality. Locality optimization is not necessarily beneficial in a cloud
environment for two reasons. First, due to EC2 instances’ ephemeral nature, most
users store their data in S3. When they need to analyze the data, they first launch
a Hadoop cluster in EC2 and then copy the data from S3 to HDFS. Locality
optimization in MapReduce does not bring additional benefits, since the network
transfer cost is already incurred in the copying stage. Second, local disks do not
have a bandwidth advantage. As it has been shown through independent tests
[34], a small EC2 instance can at most sustain a 496 Mbps (62 MBps) throughput,
smaller than the network interface speed. Furthermore, a small EC2 instance has
only a limited amount of storage at 160 GB. Although one can mount an EBS
(Elastic Block Storage) drive as a bigger storage, access to EBS also goes through
the network.

We focus only on small EC2 instances. Although the large and extra-large
instances have more virtual disks (two and four, respectively), so that one can use
striping to improve disk I/O performance, it is more cost effective to use more small
instances, where each comes with an 800 Mbps network I/O potential.

Beyond the network interface, the network bisection bandwidth in a cloud data
center could be a bottleneck. Typical data center network employs a tree topology.
Due to both the root router’s switching capacity limit and the high cost of a high-
end router, the network bandwidth in a cloud is typically highly oversubscribed.
The oversubscription could greatly limit the overall throughput. However, such
a problem does not occur often due to two reasons. First, EC2’s VM assignment
algorithm takes into account the traffic condition in order to launch new VMs
in less populated areas. Second, most VMs do not send traffic at their maximum
interface speed; hence, the network is not saturated most of the time.

Even though today’s data centers are oversubscribed, the next generation data
centers are likely to have a much higher bisection bandwidth. Many innovative
solutions are proposed to build a high-bisection-bandwidth cloud data center in a
cost-effective manner, including fat tree [1], Portland [24], Bcube [14], Dcell [15],
and VL2 [12].

134  ◾  Cloud Computing and Software Services

Although the above discussion only applies to the Amazon environment, we
note that the network interface on enterprise servers is getting faster. It is common
to have multiple Gigabit Ethernet interfaces on a server, and the aggregate net-
work interface bandwidth could be higher than the aggregate local disk bandwidth.
Furthermore, TCP offloading [9,20,23,30] can cheaply offload network processing
to dedicated hardware, alleviating the load on the host CPU.

5.4.6 Experimental Evaluation
We have implemented three different common MapReduce applications to evaluate
Cloud MapReduce’s performance: word count, reverse index, and string matching
(distributed grep).

5.4.6.1 Scalability Evaluation

To test out whether Cloud MapReduce will scale in practice, we run the word count
application on a 100 GB input data. The combiner is enabled by default. We vary
the cluster size up to 1000 nodes, our maximum limit in EC2. All tests reported
here were run at night to minimize disruptions to other cloud users. Figure 5.6
shows the inverse of the total computation time, which corresponds to the amount
of work completed per unit time. As shown, Cloud MapReduce scales roughly lin-
early as we increase the cluster size.

5.4.6.2 Performance Evaluation

We compare the performance between Hadoop 0.20.0 and Cloud MapReduce on a
small cluster of five small EC2 instances. To make sure that the master node is not
interfering with the slave node tasks, we put the master on a separate node (so six
nodes in total for Hadoop versus five for Cloud MapReduce).

0.006

0.005

0.004

0.003

1/
tim

e (
1/

s)

0.002

0.001

0
0 200 400

Number of nodes (all small EC2 instances)
600 800 1000

Figure 5.6  Work completed per second for different size clusters. Word count 
on 100 GB data.

Large-Scale Data Processing  ◾  135

For word count and grep, we use the examples provided by the Hadoop distri-
bution. However, for reverse index, we have to implement our own, since it is not
included in the Hadoop distribution.

We run the word count application on a text file of roughly 1 GB size. To see
the effects of larger data, we run the test with and without the combiner enabled.
To enable side-by-side comparison, we also run a version of Cloud MapReduce with
the pull iterator interface implemented with in-memory sorting. Table 5.1 shows
the time it takes to run the MapReduce job. In both cases, Cloud MapReduce
is roughly twice as fast as Hadoop. Even with sorting, Cloud MapReduce still
has a large advantage, which suggests that other factors (e.g., parallelizing data
transfer and removing scheduling bottleneck) contribute significantly to Cloud
MapReduce’s advantage.

For the grep application, we use the same 1 GB data as used in the word count
example, and we grep for the keyword “which.” Cloud MapReduce takes 1001 s,
whereas Hadoop takes 1211 s. Adding sorting or combiner makes little difference,
since the amount of data in the reduce stage is small. The time difference is not as
much because this job is dominated by string matching in the map phase, which
is CPU intensive. Also, the map output data is small for the reduce stage; thus, the
effects of data shuffling and staging are not as pronounced.

For the reverse index application, we use the same 1.2 GB data that is used
in Phoenix evaluation [29]. We are not able to compare our performance with
that from Phoenix directly because Phoenix only reported performance numbers in
terms of speedup, and not in terms of absolute time.

The data set contains 92,367 HTML files. Hadoop takes 10 h to process all
data. In comparison, it took Cloud MapReduce only 569 s, more than 60 times
faster. To make sure it is not a problem with our reverse index implementation, we
run the word count application on the same data set, and it takes roughly 13 h to
complete.

Although we do not know for sure, we believe this is a limitation of the single
master node architecture. Since each access to a file requires a contact with the
master node, simply requesting the metadata for these files could be overwhelming.
In addition, Hadoop creates at least one map for each input file. For this data set,
there are 92,367 maps in the MapReduce computation. Such a large number of

Table 5.1  Time (s) to Run the Word Count Application

Combiner No Combiner

Hadoop 459 907

Cloud MapReduce 169 581

Cloud MapReduce w/sort 329 704

Note: 1 GB data on 5 nodes.

136  ◾  Cloud Computing and Software Services

maps place a strain on the master node to schedule and coordinate computation. In
0.20.0, there is no way to specify the number of maps manually. We also use version
0.19.0, and try to set the number of maps to a much smaller number manually, but
the setting is simply ignored.

5.5  Higher-Level Programming Languages
The programming models that we have discussed in this chapter are important
tools for large-scale analysis. However, they are built for programmers in gen-
eral, and they may be unnatural for business analysts or for quick ad hoc data
analysis.

There are a number of important works on high-level languages for large-scale
data processing. Even though we are not able to get into much detail, we highlight
the important work in this area so that interested readers can learn more.

Pig Latin [26] is a language developed at Yahoo Research. It is similar to
SQL in terms of its ease of use, but it made many design decisions that are radi-
cally different from SQL. It uses a procedural method of conveying the analysis
task and also uses user-defined functions extensively to support custom analysis.
It is implemented on top of Hadoop [16]—the open-source implementation of
MapReduce.

Google Sawzall [28] is also built on top of MapReduce. It is another system that
dramatically simplifies certain analytical jobs, such as statistical counting.

DryadLINQ [33] is a system developed at Microsoft Research. It is built on top
of Dryad [18], and it supports a simple set of LINQ queries, which makes it easy to
express a parallel processing job in Dryad.

References
 1. Al-Fares, M., Loukissas, A., and Vahdat, A. A scalable, commodity data center network

architecture. In Proceedings of the SIGCOMM, Seattle, WA, 2008.
 2. Brewer, E. A. Towards robust distributed systems (abstract). In PODC ’00: Proceedings

of the Nineteenth Annual ACM Symposium on Principles of Distributed Computing,
Portland, OR, 2000, ACM, New York, p. 7.

 3. Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., and Wallach, D. A. Bigtable: A
distributed storage system for structured data. In Proceedings of the OSDI, Seattle, WA,
2006, pp. 205–218.

 4. Yang, H.-C., Dasdan, A., Hsiao, R.-L., and Parker, D. S. Map-reduce-merge:
Simplified relational data processing on large clusters. In Proceedings of the SIGMOD,
Beijing, China, 2007.

 5. Clark, C., Fraser, K., Hand, S., Hansen, J. G., Jul, E., Limpach, C., Pratt, I., and
Warfield, A. Live migration of virtual machines. In Proceedings of the Second Symposium
on Networked Systems Design and Implementation (NSDI), Boston, MA, 2005, pp.
273–286.

Large-Scale Data Processing  ◾  137

 6. Dean, J. and Ghemawat, S. Mapreduce: Simplified data processing on large clusters.
In OSDI’04: Sixth Symposium on Operating System Design and Implementation, San
Francisco, CA, December 2004.

 7. Dean, J. and Ghemawat, S. Mapreduce: Simplified data processing on large clusters.
Commun. ACM 51(1) (January 2008), 107–113.

 8. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A.,
Sivasubramanian, S., Vosshall, P., and Vogels, W. Dynamo: Amazon’s highly available
key-value store. SIGOPS Oper. Syst. Rev. 41(6) (2007), 205–220.

 9. Freimuth, D., Hu, E., LaVoie, J., Mraz, R., Nahum, E., Pradhan, P., and Tracey, J.
Server network scalability and TCP offload. In Proceedings of the USENIX, Anaheim,
CA, April 2005, pp. 209–222.

 10. Ghemawat, S., Gobioff, H., and Leung, S.-T. The Google file system. In 19th ACM
Symposium on Operating Systems Principles, New York, October 2003.

 11. Gilbert, S. and Lynch, N. Brewer’s conjecture and the feasibility of consistent, avail-
able, partition-tolerant web services. SIGACT News 33(2) (2002), 51–59.

 12. Greenberg, A., Jain, N., Kandula, S., Kim, C., Lahiri, P., Maltz, D. A., Patel, P., and
Sengupta, S. Vl2: A scalable and flexible data center network. In Proceedings of the
SIGCOMM, Barcelona, Spain, 2009.

 13. Griffith, R., Chen, Y., Liu, J., Joseph, A., and Katz, R. Understanding TCP incast
throughput collapse in data-center networks. In Proceedings of the SIGCOMM WREN
Workshop, Barcelona, Spain, 2009.

 14. Guo, C., Lu, G., Li, D., Wu, H., Zhang, X., Shi, Y., Tian, C., Zhang, Y., and Lu, S.
Bcube: A high performance, server-centric network architecture for modular data cen-
ters. In Proceedings of the SIGCOMM, Barcelona, Spain, 2009.

 15. Guo, C., Wu, H., Tan, K., Shiy, L., Zhang, Y., and Luz, S. Dcell: A scalable and fault-
tolerant network structure for data centers. In Proceedings of the SIGCOMM, Seattle,
WA, 2008.

 16. Hadoop. http://lucene.apache.org/hadoop
 17. Hansen, J. G. and Jul, E. Self-migration of operating systems. In Proceedings of the

ACM SIGOPS European Workshop, Leuven, Belgium, 2004.
 18. Isard, M., Budiu, M., Yu, Y., Birrell, A., and Fetterly, D. Dryad: Distributed data-

parallel programs from sequential building blocks. In European Conference on
Computer Systems (EuroSys), Lisbon, Portugal, March 2007.

 19. Kapasi, U., Dally, W., Rixner, S., Owens, J., and Khailany, B. The imagine stream
processor. In Proceedings of International Conference on Computer Design, Freiburg,
Germany, September 2002.

 20. Kim, H. and Rixner, S. TCP offload through connection handoff. In Proceedings of the
EuroSys, Leuven, Belgium, April 2006, pp. 279–290.

 21. Liu, H. and Orban, D. Gridbatch: Cloud computing for large-scale data-intensive
batch applications. In IEEE CCGRID, Lyon, France, 2008.

 22. Liu, H. and Orban, D. Computing median values in a cloud environment using grid-
batch and mapreduce. In IEEE Cluster, New Orleans, LA, 2009.

 23. Mogul, J. TCP offload is a dumb idea whose time has come. In Proceedings of the
HotOS IX: The Ninth Workshop on Hot Topics in Operating Systems, Lihue, HI, 2003,
pp. 25–30.

 24. Mysore, R. N., Pamboris, A., Farrington, N., Huang, N., Miri, P., Radhakrishnan, S.,
Subramanya, V., and Vahdat, A. Portland: A scalable fault-tolerant layer 2 data center
network fabric. In Proceedings of the SIGCOMM, Barcelona, Spain, 2009.

138  ◾  Cloud Computing and Software Services

 25. Nelson, M., hong Lim, B., and Hutchins, G. Fast transparent migration for virtual
machines. In Proceedings of the USENIX, Anaheim, CA, 2005, pp. 391–394.

 26. Olston, C., Reed, B., Srivastava, U., Kumar, R., and Tomkins, A. Pig latin: A not-
so-foreign language for data processing. In Proceedings of the SIGMOD, Vancouver,
Canada, 2008.

 27. Phanishayee, A., Krevat, E., Vasudevan, V., Andersen, D., Ganger, G., Gibson, G.,
and Seshan, S. Measurement and analysis of TCP throughput collapse in cluster-based
storage systems. In Proceedings of the File and Storage Technologies (FAST), San Jose, CA,
February 2008.

 28. Pike, R., Dorward, S., Griesemer, R., and Quinlan, S. Interpreting the data: Parallel
analysis with sawzall. Sci. Program. J. Special Issue on Grids and Worldwide Computing
Programming Models and Infrastructure 13(4) (2005), 227–298.

 29. Ranger, C., Raghuraman, R., Penmetsa, A., Bradski, G., and Kozyrakis, C. Evaluating
MapReduce for multi-core and multiprocessor systems. In Proceedings of the 13th
International Symposium on High-Performance Computer Architecture (HPCA), Phoenix,
AZ, February 2007.

 30. Shivam, P., and Chase, J. S. On the elusive benefits of protocol offload. In Proceedings
of the ACM SIGCOMM Workshop on Network-I/O Convergence, Karlsruhe, Germany,
2003, pp. 179–184.

 31. Vasudevan, V., Phanishayee, A., Shah, H., Krevat, E., Andersen, D., Ganger, G.,
Gibson, G., and Mueller, B. Safe and effective fine-grained TCP retransmissions for
datacenter communication. In Proceedings of the SIGCOMM, Barcelona, Spain, 2009.

 32. Vogels, W. Eventually consistent. Commun. ACM 52(1) (2009), 40–44.
 33. Yu, Y., Isard, M., Fetterly, D., Budiu, M., Erlingsson, U., Gunda, P. K., and Currey, J.

DryadLINQ: A system for general-purpose distributed data-parallel computing using
a high-level language. In Proceedings of the Symposium on Operating System Design and
Implementation (OSDI), San Diego, CA, December 2008.

 34. Zaharia, M., Konwinski, A., Joseph, A. D., Katz, R., and Stoica, I. Improving mapre-
duce performance in heterogeneous environments. In Proceedings of the USENIX OSDI
San Diego, CA, 2008.

139

Chapter 6

Toward a Reliable Cloud 
Computing Service

Thomas J. Hacker

6.1  Introduction
Cloud computing services rely on the on-demand provision of a set of resources. As
cloud computing becomes more widely adopted, the size and scale of cloud com-
puting systems will necessarily increase to meet a growing demand—both in terms

Contents
6.1 Introduction ...139
6.2 Modeling the Service Load of a Cloud Computing System140

6.2.1 Measuring the Workload ..141
6.2.2 Framework for Requesting and Allocation Resources142
6.2.3 Modeling the Availability and Reliability of a Cloud

Computing Service ...143
6.2.3.1 Modeling the Probability of Blocking a Request144

6.2.4 Availability Discussion ..146
6.3 Modeling the Reliability of a Cloud Computing Service147

6.3.1 Node Reliability..148
6.3.1.1 Cloud Computing Partition Reliability150

6.4 Conclusions .. 151
References ... 151

140  ◾  Cloud Computing and Software Services

of the number of individual requests as well as the amount of resources required per
request. In contrast to approaches used in Grid and high-performance computing,
in which requests that cannot be immediately serviced are added to a queue for later
service, requests for cloud computing resources must be immediately fulfilled, or
denied due to a lack of available resources. The challenge facing cloud computing
service providers is to provision and have available for immediate allocation suf-
ficient resources ready to be deployed for service requests. The costs of maintaining
a pool of spare resources, however, are tremendous. A modern data center, sup-
plied with adequate power and cooling resources to house high-density computer
equipment, is expensive to build and operate. With current power utility rates, the
cumulative costs of powering computer equipment now exceed hardware costs after
only a few short years—well before the end of the useful lifetime of the equipment.
Commercial cloud computing organizations seeking to operate a profitable cloud
computing service face a serious dilemma. If there are not sufficient idle resources
available during the busiest service times, requests that could generate revenue will
need to be turned away. On the other hand, if the organization maintains a large
pool of idle resources awaiting these requests, the operational costs of running these
systems will erode profit margins, making it more difficult to successfully run a
service. An additional problem that arises is reliability. If an application requests a
large number of resources, or requests resources for a considerable length of time,
there is a measurable probability that one or more of the resources dedicated by
the cloud computing service for the application will fail during the lifetime of the
request, which denies access to resources. The expectation of an organization pay-
ing for these resources is that the service will be reliable over the lifetime of the
request. One possible option available for a cloud service provider is to provide a
number of hot-spare nodes added to the user allocation to ensure the availability
of the requested number of resources for the duration of the request. One problem,
however, is to estimate the number of additional resources required to provide some
level of guarantee of service.

In this chapter, we address these two problems, and present a model for deter-
mining the probability of blocking service requests and determining the number of
hot-spare nodes needed to provide a reliable cloud computing service. Specifically,
given a historic pattern of resource requests along with the total number of comput-
ing nodes available in the system, we present a model that can be used to predict
the probability of an N node cloud computing service blocking access due to insuf-
ficient capacity during a busy service period.

6.2   Modeling the Service Load of a 
Cloud Computing System

At the time of writing this chapter (March 2009), there are two well-known
cloud computing services. The best-known commercial one, the Amazon Elastic

Toward a Reliable Cloud Computing Service  ◾  141

Compute Cloud EC2 [1], provides a number of virtual machines based on a Xen
hypervisor that provides a selection of virtual machine types: small, consisting of
one virtual CPU core; large, containing two CPU cores: and extra large, with four
cores. Amazon charges for the use of the virtual machine instances based on an
EC2 Compute Unit, which is equivalent to a single CPU. An example of a noncom-
mercial cloud computing effort is the Eucalyptus [13] project, led by Rich Wolski
at the University of California, Santa Barbara.

The use of virtual machine technology for cloud computing decouples the num-
ber of virtual and physical CPUs. There is a practical upper bound on the number
of virtual machines and virtual processors that can be deployed on a server system.
If a cloud computing service is oversubscribed, the system will become slow and
unreliable, and new requests for service will be denied. Conversely, if the system is
undersubscribed, the costs of maintaining unutilized capacity will be unrecover-
able over time, and reduce profits. The challenge facing cloud computing service
providers is how many resources should be provisioned to reliably service a work-
load, and what is the probability of blocking new requests at a specific resource-
provisioning level?

In this section, we address this question. First, we describe a synthetic work-
load based on the measured job characteristics of a large grid computing system.
Based on this workload, we propose a negotiation process between a user and a
cloud computing system to bid for and acquire cloud computing resources. Based
on this framework, we derive a model that predicts the probability of blocking a
cloud computing service request based on the offered workload during busy peri-
ods. Following this, we derive a model of cloud computing node reliability, and
propose an approach to improve reliability.

6.2.1 Measuring the Workload
There are few cloud computing systems today for which detailed and extensive
workload traces are available. The closest analogue to a cloud computing system is a
grid computing system, which in many ways is similar to a cloud computing system
with one important difference. While grid computing systems have the capability
to queue requests for resources into a service queue to wait for available capac-
ity, cloud computing services must either provide immediate access to requested
resources or deny or block requests for these resources. Since there are few large-scale
cloud computing systems in use today, we developed an offered workload based on
the observed workload characteristics of a large grid computing system.

The Parallel Workloads Archive [4,9] maintains an extensive collection of work-
loads submitted to a variety of high-performance and grid computing systems. To
model the offered workload submitted to a cloud computing system, we used logs
of computational jobs submitted to the fs0 system, which was part of the grid com-
puting system of the Distributed Advanced School for Computing and Imaging in
the Netherlands (DAS2). The grid computing system we analyzed consisted of five

142  ◾  Cloud Computing and Software Services

distributed Linux clusters with a total of 400 processors, and the workload logs we
analyzed contain 432,987 job submissions from January 2003 through December
2003. To understand the stochastic characteristics of the workload, we assessed the
time between job submission events, the distribution of the number of processors
requested, and the runtime of each job. As found in related work [4,16] the time
between job submission events did not follow an exponential distribution, and the
workload intensity varied over the lifetime of the logs, with periods of intense and
quiescent computational and job submission activities.

6.2.2 Framework for Requesting and Allocation Resources
Step 1: Request for services
To characterize the workload of a cloud computing system, we first describe a
framework for resource requests, allocation, and deployment. Consider the follow-
ing multistep process from service request to service delivery and final completion.
In the first step, a user or application wishes to utilize resources provided by a cloud
computing system. A request is formed that consists of (1) a number of required
nodes; (2) specific resource requirements, such as operating system, amount of
memory, or processor type; (3) estimated maximum length of time for which the
cloud resource will be needed; and (4) expectation of desired grade of service and
reliability of service over the required time period.

Step 2: Response of the cloud computing system
In response to the resource request, the cloud computing system will immediately
communicate an offer, which consists of four different types of responses. The first
type is an offer to immediately allocate all of the requested resources (just in time)
at the time of request with a grade of service/reliability at levels required by the user
at a billing rate X. The second type of response is to provide an immediate alloca-
tion of all resources requested at a reduced grade of service or reliability at a reduced
billing rate Y < X. This type of response provides an option to the application or user
to be able to choose to utilize a degraded cloud computing service at a reduced rate.
The third type of response is to offer a subset of the requested resources—either at
a full reliability rate or with a degraded grade of service and reliability at a fraction
of the full rate. The fourth possible request is a decline response, in which the cloud
computing service provider lacks adequate resources to provide service or cannot
meet the required grade of service or reliability requirements.

Step 3: Response to the cloud computing system offer
In response to a positive offer from the cloud computing service to provide services,
the application can either accept or reject the offer. The expectation of the applica-
tion (or user driving the requesting application) is that the cloud computing system
is ready to immediately provide services, without queuing the user request or forc-
ing the user to wait for more than a brief period for access to services.

Toward a Reliable Cloud Computing Service  ◾  143

Step 4: Cloud computing system service provision
When an application accepts the cloud computing system’s offer, several ques-
tions must be addressed. First, can sufficient resources be found within the cloud
computing system to provide all of the resources offered by the cloud computing
system? Second, what will be the operational reliability of the set of resources com-
mitted to the user, and how can the cloud computing system ensure that this level
of reliability will be maintained?

Step 5: Application granted access to resources
Once the cloud computing system determines that it can provide the offered
resources at the required level of reliability, the application is granted access
to the resource for use. If, during the time period of use, one (or more) of the
resource elements provided by the cloud computing service fails, the application
and cloud computing service will face several problems. First, how can the user
application detect failure and respond to the failure in a manner that allows it
to tolerate failure? Second, what can the cloud computing system do to ensure
the continued reliability and grade of service that it agreed to provide during the
resource and pricing negotiation phase? Third, at what point will the user and
the system determine that the agreed-on grade of service and reliability cannot
be met, and how will a resulting reduced billing rate be negotiated? Finally, if
there is a minimum grade of service and reliability agreed on during the negotia-
tion process, does the user have the right to terminate the agreement and receive
a full or partial refund?

Step 6: Completion of computation and exit from the system
When the application terminates and releases resources, or if the application exceeds
the wall clock limit and is terminated, the job is completed. Resources released are
freed for use by new requests for resources.

6.2.3 Modeling the Availability and Reliability
of a Cloud Computing Service

Given the resource request process described in the previous section, two ques-
tions emerge. First, given a historic workload offered to a cloud computing service,
how many free and available resources will the cloud computing system need to
keep available to be able to service application requests during the peak period of
use? What will be the probability of rejecting those requests due to a lack of avail-
able resources? Second, given the mean time to failure (MTTF) of the underlying
nodes, what is the reliability of the nodes allocated by the cloud computing system
during the application execution time? Additionally, how many hot-spare nodes
will the cloud computing system need to allocate in reserve to serve as hot-spares
in case of node failure?

144  ◾  Cloud Computing and Software Services

To predict the number of resources that must be available in a cloud computing
system to service a load of requests, there are several factors that must be considered.
First, the number of computational nodes in a cloud computing system is limited,
and a request will require the simultaneous allocation of a number of nodes—some
may only request one node, but many will request a number of nodes up to the total
number of nodes available in the cloud computing system. Second, based on the
number of nodes requested, the arrival rate of requests for these resources during
the busy periods is a critical factor in driving the overall utilization of the cloud
computing system.

To model the workload, we partitioned the fs0 workload (described earlier) into
bins based on the number of processors requested: 1, 2, 4, 8, 16, 32, 64, and 128
processors; determined the most active periods of job submission activity over the
period of the logs; and calculated the average arrival rate (jobs per hour) and average
job runtime for the set of jobs submitted during the busy period.

Table 6.1 shows the number of submission events, average arrival rate, average
execution time, and job intensity for each workload class. During the busy periods,
the cloud computing system must immediately service requests by allocating the
number of requested resources from a pool of free resources, or block and deny
access due to a lack of available resources.

6.2.3.1 Modeling the Probability of Blocking a Request

To estimate the probability of blocking a request to the cloud computing system
during a busy period, we can use a generalized Erlang loss station model [2,7,8].

Consider a cloud computing service that features a total of C computational
nodes, each of which can be independently assigned to service a request. A workload

Table 6.1  Workload Model Partitioned into Resource Classes

Resource
Class

Node
Count Events λ (jobs/h) 1/μ (h)

α = λ/μ
Erlangs

1 1 6,158 3.25 0.0913 0.297

2 2 130,431 8.24 0.0941 0.776

3 4 27,156 5.01 0.1336 0.669

4 8 15,585 4.94 0.1012 0.503

5 16 21,359 4.14 0.1012 0.421

6 32 7,918 2.08 0.0987 0.205

7 64 9,722 4.33 0.0676 0.293

8 128 1,295 0.18 0.1738 0.0313

Toward a Reliable Cloud Computing Service  ◾  145

consisting of a mixture of requests is offered to the cloud computing system from a
community of users and applications. The service offered by the cloud computing
system is partitioned into resource classes of service, distinguished by the number
of computational nodes provided by the system in eight categories, each of which
contain 1, 2, 4, 8, 16, 32, 64, and 128 node partitions.

Each individual workload request describes the resource class requested (which
communicates the number of nodes selected from the set of partitions) and the
maximum time for which these resources will be needed. There are 8 classes of
service, and the number of nodes in resource class i is ki = 2(i−1) nodes. The arrival
rate of requests from the offered workload for resource class i is denoted by λi, the
average requested computational occupancy time by 1/μi, and the corresponding
class intensity (in Erlangs) by αi = λi/ui.

To utilize the multiclass Erlang loss model, a common assumption is that
the elapsed time between job requests must fit an exponential distribution. In
assessing the workload trace, we found that the time between events did not fit an
exponential distribution, as was found in [4]. Recent work by Bonald [2] deter-
mined that the blocking probability computed from an Erlang or Engset model
does not depend on the holding time distribution beyond the mean, and that it
is not necessary to assume that resource requests arrive as a Poisson process. It
is sufficient to assume that the sequence of resource requests generated by the
same user arrives as a Poisson process. For the model presented in this chapter,
we assume that user requests generated by the same user or application arrive as
a Poisson process.

At any given time, the state of resource use of the cloud computing system is
described by the row vector x = [x1, x2, …, xk], which represents that concurrent
number of jobs using resource class i. For example, if x3 = 2, then there are two
active jobs in resource class 3, each using 4 nodes in the cloud computing system
(8 nodes in total). The number of computational nodes that make up each resource
class is designated by r = [r1, r2, …, rk], where resource class ri describes a partition
of 2(i−1) nodes. If there are C total computational nodes in the cloud computing
system, the maximum number of concurrent jobs occupying the cloud computing
system cannot exceed C at any time, specifically,

x r⋅ = ≤

=
∑ x r Ci i

i

k

1

.

(6.1)

Since the number of computational nodes for each request and the number
of nodes for each class are integers, the stationary distribution of resource occu-
pancy for each resource class can be computed using the Kaufman–Roberts [7,15]
algorithm. Following the derivation of Bonald [2], the probability that the cloud
computing system node occupancy is n is

146  ◾  Cloud Computing and Software Services

p n

x x
n C

x x

kx xr n

k

()
! !

, , , , .
:

= =
=

∑ α α1

1

1
1

0 1� …

(6.2)

The probability that resource requests of type i will be blocked is then

B
p n

p n
i

n C r

C

n

C
i= = − +

=

∑
∑

()

()
.()1

0

(6.3)

For n = 1, …, C, p(n) is

p n r

n
p n ri i

i

i

k

() (),= −
=

∑ α

1
(6.4)

with p(0) = 1 and p(n) = 0 for all n < 0. This computation, which is linear in the num-
ber of resource classes k, is much more feasible than the direct calculation of the
stationary distribution based on all combinations of r and x that are equal to n in
Equation 6.3, which is exponential in the number of resource classes k.

Using the recurrence relation described by Equation 6.3, we can compute the
probability of the cloud computing system blocking requests for resources in class
i using Equation 6.4.

Using the arrival rate λ, execution time 1/μ, and workload intensity α from the
workload model, we computed a set of dimensioning curves for a cloud comput-
ing system containing a number of nodes ranging from C = 16 to C = 256 nodes.
Figure 6.1 shows the resulting dimensioning curves that describe the probability
of blocking requests for each resource class as a function of the number of nodes,
C, in the cloud computing system.

6.2.4 Availability Discussion
From the results shown in Figure 6.1, we make several observations. First, small
resource classes with a limited number of nodes have a low probability of blocking.
This makes sense, since it is simple to pack a system with a collection of small node
partitions. For a given resource class partition of i nodes, as the number of nodes
C in the cloud computing system is reduced to 2i, the blocking probability for the
i-node resource class rises dramatically. Second, providing reasonable availability
for large resource classes (64 and 128 nodes) with a limited system size of 128 nodes
will be difficult, due to the high probability of blocking 128 node requests (block-
ing probability 0.96) and 64 node requests (blocking probability 0.28). Third, for

Toward a Reliable Cloud Computing Service  ◾  147

modest size resource classes (e.g., 32 nodes or less), the marginal benefit in signifi-
cantly increasing the number of nodes in the cloud computing system is limited.
For example, in the 32-node resource class, increasing the number of nodes in the
cloud computing system from C = 128 nodes to C = 256 nodes reduces the blocking
probability from 0.055 to 0.002. This is a change of 5%, but at the cost of doubling
the size of the cloud computing system. It may not be worth improving the block-
ing probability by only 5% at the expense of increasing the cost and size of the
system by a factor of 2.

Based on the availability results from this section, several conclusions can
be drawn. It is possible to provide a high degree of on-demand availability for
a cloud computing system for a realistic workload by limiting the resource class
size, and by making available at least twice the number of nodes in the largest
resource class in the cloud computing system during a busy period based on a
historic workload. Second, resource classes containing ≤C/4 nodes, where C is the
number of nodes available in the cloud computing system, have a low probability
of blocking, and there is limited improvement in the probability of blocking as
C increases.

6.3   Modeling the Reliability of a 
Cloud Computing Service

The results in the previous section address the question of modeling the availabil-
ity of a cloud computing service offered a workload. Once an application or user
is granted access to a cloud computing service, the next problem that arises is the

0.4
0.5
0.6
0.7
0.8
0.9

1

0
0.1
0.2
0.3

16 32 64 128 130 132 164 194 256

Pr
ob

ab
ili

ty
 o

f
bl

oc
ki

ng
 re

qu
es

t

Cloud computing system size (number of nodes)

1 node class 2 node class 4 node class 8 node class
16 node class 32 node class 64 node class 128 node class

Figure 6.1  Cloud computing system dimensioning curve for multiple resource 
classes.

148  ◾  Cloud Computing and Software Services

inherent reliability of the service provided. If one of the nodes fails during the
allocated time, the application will lose service, and may potentially terminate. The
problem addressed in this section is as follows: given a cloud computing partition
of size M available over a time period [0,T], what is the probability of a failure over
that time? Additionally, if a failure occurs, what strategies could be used to recover
from the failure and provide the required number of functional nodes for the entire
allocation time?

6.3.1 Node Reliability
The resources provided by a cloud computing system for an individual user or
application consist of a partition of size M of a C node cloud computing system.
The nodes provided could be a hardware node, as is commonly done for high-
performance computing applications, or a virtual machine “slice” of a hardware
node. If the MTTF of the underlying hardware platform is known, it is possible
to compute the MTTF of a node in a partition of size M of a cloud computing
system.

If there are v virtual machines allocated to each hardware node of a cloud
computing system, the reliability of the virtual machine is directly linked to
hardware reliability. Thus, when the hardware fails, all v virtual machines run-
ning on this hardware will also fail. For simplicity, we assume that v = 1 for this
analysis.

The MTTF of the underlying hardware platform can be obtained from the
vendor or estimated from failure logs. Following the derivation of Hacker [6], the
MTTF for a partition of a cloud computing system can be computed. As described
in Hacker [6], and Nurmi, Brevik, and Wolski [3,11,12], the time between failures
for computer systems follows a Weibull distribution with scale parameter τ and
shape parameter β. The probability of a system failure during the time interval
[0,Δt] for the Weibull distribution of scale τ and shape β is [10]

F t t e t

e

t

t

t

(, ,)

.

(/)

(/)

∆
∆

∆

β τ β
τ τ

β
τ

τ β

β
=

= −

−
−

−

∫
1

0

1

d

 (6.5)

The probability that a node in the system will not fail in this time is

R t F t

e t

(, ,) (, ,)

.(/)

∆ ∆

∆

β τ β τ

τ β

= −

= −

1

 (6.6)

Toward a Reliable Cloud Computing Service  ◾  149

The mean of the Weibull distribution is given by τΓ(1 + 1/β), where Γ is the
Euler Gamma function. Assuming that the vendor MTTF corresponds to the
mean τ,

τ
β

=
+ ()()

MTTF
Γ 1 1

.

(6.7)

We can determine the Weibull reliability function for an M node partition of
a cloud computing system similarly—by treating the nodes as individual compo-
nents. Assuming that all nodes are identical, i.e., characterized by the same τnode
and βnode [14], we find

R t R t

e

M

i

M

t

i

M

partition node

node node

() ()

exp

(/)

∆ ∆

∆

=

=

= −

=

−

=

∏

∏
1

1

τ β

∆∆t
τ

β

node

node

 .

(6.8)

We assume that the partition’s reliability function is also governed by the Weibull
distribution with the cluster scale parameter, τpartition, and the cluster shape param-
eter, βpartition.

We assume that the node MTTF is identical for all nodes, and that the same
Weibull shape parameter applies to the nodes and to the cloud computing partition
as a whole; and using βnode = βpartition = β, we obtain

τ τβpartition node= 1

1N /

(6.9)

and the partitions’s MTTF:

MTTF

MTTF

partition node

node

= +

=

1 1 1

1

1

1

N

N

/

/ .

β

β

τ
β

Γ

(6.10)

150  ◾  Cloud Computing and Software Services

6.3.1.1 Cloud Computing Partition Reliability

Using Equation 6.8 with an estimated shape parameter, β = 0.8, and an
MTTFnode = 36,000 h, we can compute the probability of node failure for each par-
tition (which corresponds to resource classes described in the previous section)
over a time [0,T]. Table 6.2 shows the computed reliability for the resource classes
described above, which consist of partitions of the cloud computing system. The
computed reliability for the short runtimes derived from the workload is very
high—over 99% in all cases. To assess the effects of a longer runtime on reliability,
we scaled the runtime by a factor of 100; and as shown in the last two columns of
Table 6.2, reliability decreases as the number of nodes in the partition increases—
down to 0.73 for the 128-node partition.

While a 99% reliability is reasonably good, as runtime and the number of nodes
in a partition increases, reliability will fall. To provide a higher reliability for long-
running and large-partition jobs, the cloud computing system could reserve a pool
of hot-spare nodes to be used as failover nodes by the cloud computing system
or application in the event of node failure. The reliability model for this scenario
is a k-out-of-N system [5]. In this system, at least k out of N nodes must remain
functional during the time [0,T] in order for the entire system to be reliable. If
the partition size is k, and (N − k) hot-spares are available for use when one of the k
nodes fails, the resulting reliability of the N node partition can be computed. The
resulting reliability function is then

R t

N
i

R t R tk N
N i i

i

N k

() ()(()) ./∆ ∆ ∆=

−−

=

−

∑ 1
0

(6.11)

Table 6.2  Reliability of Cloud Computing Partitions

Resource
Class

Node
Count 1/μ (h) Reliability 100/μ (h) Reliability

1 1 0.0913 0.999 9.13 0.998

2 2 0.0941 0.999 9.41 0.996

3 4 0.1336 0.999 13.36 0.992

4 8 0.1012 0.999 10.12 0.987

5 16 0.1012 0.999 10.12 0.974

6 32 0.0987 0.998 9.87 0.951

7 64 0.0676 0.998 6.76 0.928

8 128 0.1738 0.992 17.38 0.730

Toward a Reliable Cloud Computing Service  ◾  151

Using Equation 6.11, we can compute the prob-
ability of a node failure within a k-node cloud com-
puting partition if (N−k) spare nodes are available to
take the place of a failed node. Table 6.3 shows the
computed failure rate with a maximum runtime of
20 h for a 128-node partition, which includes poten-
tially up to five spares.

From this table, it is clear that adding a few spares
has a significant effect on improving reliability. Thus,
to provide a good reliability level for a cloud comput-
ing system, a cloud computing system should provision
a number of spares that can be quickly deployed to
replace failed nodes.

6.4  Conclusions
In this chapter, we addressed two issues: given a workload, how many nodes are
required for a cloud computing system to provide immediate service with a limited
probability of blocking service requests; and once a set of resources are allocated,
what is the probability of failure of a node in use, and what are the reliability effects
of providing a set of hot-spare nodes. Combining a Generalized Erlang Loss Model
with a historic workload, it is possible to compute dimensioning curves that can be
used by a cloud computing provider to estimate the number of resources needed
to satisfy requests during the busy period. By taking into account the inherent
Weibull failure characteristics of a cloud computing system, as well as the number
of nodes in a cloud computing partition, it is possible to calculate the reliability of
the set of nodes over the lifetime of the task. By adding just a few hot-spare nodes,
the reliability of long-running and large partitions can be increased significantly.

References
 1. Amazon elastic compute cloud (amazon ec2), 2009.
 2. T. Bonald. Insensitive traffic models for communication networks. Discrete Event

Dynamic Systems, 17(3):405–421, 2007.
 3. J. Brevik, D. Nurmi, and R. Wolski. Automatic methods for predicting machine avail-

ability in desktop grid and peer-to-peer systems. In IEEE International Symposium
on Cluster Computing and the Grid (CCGRID), April 19–22, 2004, Chicago, IL, pp.
190–199. IEEE Computer Society, 2004.

 4. D. G. Feitelson and D. Tsafrir. Workload sanitation for performance evaluation. In
IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS),
March 19–21, 2006, Austin, TX, pp. 221–230.

 5. D. L. Grosh. Primer of Reliability Theory. John Wiley & Sons, New York, 1989.

Table 6.3  Reliability 
Using Spares

Spares Reliability

0 0.703

1 0.951

2 0.994

3 0.999

4 1.0

5 1.0

152  ◾  Cloud Computing and Software Services

 6. T. J. Hacker and Z. Meglicki. Using queue structures to improve job reliability. In
Proceedings of the 16th International Symposium on High-Performance Distributed
Computing (HPDC-16 2007), June 25–29, 2007, Monterey, CA, pp. 43–54. ACM,
2007.

 7. J. S. Kaufman. Blocking in a shared resource environment. IEEE Transactions on
Communications, COM-29, 10:1474–1481, 1981.

 8. H. Kobayashi and B. Mark. System Modeling and Analysis: Foundations of System
Performance Evaluation. Pearson Education, Upper Saddle River, NJ, 2009.

 9. H. Li, D. Groep, and L. Walters. Workload characteristics of a multi-cluster supercom-
puter. In D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn, eds., Job Scheduling
Strategies for Parallel Processing, Lecture Notes in Computer Science, vol. 3277. Springer-
Verlag, New York, 2004, pp. 176–193.

 10. D. N. Prabhakar Murthy, M. Xie, and R. Jiang. Weibull Models. Wiley Series in
Probability and Statistics. John Wiley & Sons, Hoboken, NJ, 2004.

 11. D. Nurmi, J. Brevik, and R. Wolski. Quantifying machine availability in networked
and desktop grid systems. Technical Report ucsb_cs:TR-2003-37, Department of
Computer Science, University of California, Santa Barbara, CA, November 2003.

 12. D. Nurmi, J. Brevik, and R. Wolski. Modeling machine availability in enterprise and
wide-area distributed computing environments. In Proceedings of 11th International
Euro-Par Conference (Euro-Par 2005), August 30 – September 2, 2005, Lisbon, Portugal,
Lecture Notes in Computer Science, vol. 3648. Springer, Berlin, 2005, pp. 432–441.

 13. D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and D.
Zagorodnov. The eucalyptus open-source cloud-computing system. In Proceedings of
Cloud Computing and Its Applications, October 22–23, 2008, Chicago, IL.

 14. M. Rausand and A. Høyland. System Reliability Theory: Models, Statistical Methods and
Applications, 2nd edn. John Wiley & Sons, Hoboken, NJ, 2004.

 15. J. W. Roberts. A service system with heterogeneous user requirement. In: Pujolle
G. ed., Performance of Data Communications Systems and Their Applications. North-
Holland, Amsterdam, the Netherlands, 1981.

 16. D. Tsafrir and D. G. Feitelson. Instability in parallel job scheduling simulation. The
role of workload flurries. In 20th International Parallel and Distributed Processing
Symposium (IPDPS), April 25–29, 2006, Rhodes Island, Greece.

153

Chapter 7

Abstractions for Cloud 
Computing with Condor

Douglas Thain and Christopher Moretti

7.1  Introduction
A cloud computer provides a simple interface that allows end users to allocate large
amounts of computing power and storage space at the touch of a button. However,
many potential users of cloud computers have needs much more complex than sim-
ply the ability to allocate resources. In scientific domains, it is easy to find examples

Contents
7.1 Introduction ... 153
7.2 Condor as a Cloud Computer .. 155
7.3 Map Abstraction .. 157
7.4 All-Pairs Abstraction .. 159
7.5 Sparse-Pairs Abstraction ...160
7.6 Wavefront Abstraction ...162
7.7 Directed Graph Abstraction ...164
7.8 Choosing the Right Abstraction ...167
7.9 Conclusion ...168
Acknowledgments ...169
References ...169

154  ◾  Cloud Computing and Software Services

of workloads that consist of hundreds or thousands of interacting processes. A user
who wishes to run such a workload on a cloud computer faces the daunting task of
deciding how many resources to allocate, where to dispatch each process, when and
where to move data, and how to deal with the inevitable failures. For this reason,
many users with large workloads are reluctant to move away from the predictable
environment of a single workstation or multicore server.

Abstractions are an effective way of harnessing large cloud computers while
insulating the user from technical complexities. An abstraction is a structure that
allows one to specify a workload in a way that is natural to the end user. It is then
up to the system to determine how best to realize the workload given the avail-
able resources. This also allows the user to move a workload from one machine to
another without rewriting it from scratch. The concept of abstraction is fundamen-
tal to computer science, and examples can be found in many software systems, such
as compilers, databases, and filesystems.

Map-Reduce [9] is a well-known abstraction for cloud computing. The Map-
Reduce abstraction allows the user to specify two functions that transform and
summarize data, respectively. If the desired computation can be expressed in this
form, then the computation can be scaled up to thousands of nodes. The Map-
Reduce abstraction is well suited for analyzing and summarizing large amounts of
data, and has a number of implementations of which the open-source Hadoop [6]
is the most widely deployed.

But are there other useful abstractions? In our work with several scientific com-
munities at the University of Notre Dame, we have encountered a number of large
workloads that are regularly structured, but do not fit the Map-Reduce paradigm.
In each case, we found workloads that were easy to write on the chalkboard, pos-
sible to run on one machine, but very challenging to scale up to hundreds or thou-
sands of nodes. In each case, our research group worked to design an abstraction
that could represent a large class of applications, and could execute reliably on a
cloud computer.

In this chapter, we will describe the following set of abstractions, in a roughly
increasing order of complexity:

 ◾ Map—Applies a single program to a large set of data
 ◾ All-Pairs—Computes a Cartesian product on two large sets of data
 ◾ Sparse-Pairs—Computes a function on selected pairs of two large sets of

data
 ◾ Wavefront—Carries out a large dynamic programming problem
 ◾ Directed Graph—Runs a large graph of processes with multiple dependencies

We have implemented these abstractions on the Condor distributed processing
system. We will begin with a short overview of Condor as a cloud computer, and
then explain each abstraction in turn. For each, we will present a formal model,
describe how the abstraction is implemented, and give an example of a community

Abstractions for Cloud Computing with Condor  ◾  155

that has used the abstraction to scale up an application to hundreds of CPUs. We
conclude the chapter by discussing the relative power of each abstraction.

7.2  Condor as a Cloud Computer
Our foundation for this work is the Condor distributed processing system. Condor
was first created in 1987 at the University of Wisconsin, and has remained in con-
tinuous development and deployment ever since [15,26]. At the time of writing, it
was deployed at several thousand institutions around the world, managing several
hundred thousand CPU cores [5,24]. At a typical university, the Condor software
is deployed to all available machines, including desktop workstations, classroom
machines, and server clusters, all of which are typically idle 90% of the day. Users
queue jobs to run in the system, and Condor matches the jobs to run on machines
that would otherwise go unused.

A large Condor pool can be considered a cloud computer. Like other cloud com-
puting systems, users request service from Condor, but do not care (and cannot
control) exactly which resources are used to service that request. A job submitted
to Condor could run on a desktop machine down the hall, or in a machine room
at another institution. However, Condor is unlike other cloud computing systems
in that it employs preemption [21]. A job running on a machine may be preempted
if the machine’s owner returns to type on the keyboard or otherwise uses the CPU.

Figure 7.1 shows the natural variations found in our campus Condor pool over
the course of July 2009. The dark “Owner” curve shows the number of CPUs cur-
rently in use by their owners, who are either typing at the keyboard or making
extensive use of the CPU. The lighter “Condor” curve shows the number of CPUs
currently harnessed by Condor. The lightest “Total” curve shows the total number
of CPUs in the pool, which varies between 500 and 600. As can be seen, all of these
values fluctuate considerable as machines are powered on and off, used during the
work day, and harvested for batch workloads.

0
100
200
300
400
500
600

30
July

23
July

16
July

09
July

02
July

N
um

be
r o

f C
PU

s

Total Condor Owner

Figure 7.1  Time variations in a Condor pool.

156  ◾  Cloud Computing and Software Services

Condor has been widely used to run large numbers of long-running com-
putations, typically scientific simulations. However, it is not as well suited to
large numbers of tasks that are short running, data intensive, or both. Even in
an unloaded system, it takes about 30 s from the time a job is submitted until
it actually begins running on a machine. This is because Condor must medi-
ate the needs of many different stakeholders, including the machine owner, the
job owner, and the pool manager. (Other cloud computing systems have similar
latencies for resource allocation.) Because Condor is careful to clean up thor-
oughly after a job completes, there is no easy way to maintain state on a machine
across multiple jobs.

To compensate for these properties, we have built an intermediate layer of
software called Work Queue that provides fast execution and data persistence on
top of Condor. Work Queue consists of two pieces: a Master and a Worker. A
Worker is a simple process that is submitted to the Condor pool like an ordi-
nary batch job. Once running, it makes a network connection back to a Master
process. The Master can send files to the Worker, execute programs, and retrieve
outputs.

In this way, the Master can start a new program in milliseconds rather than
30 s. Further, it can take advantage of a semi-persistent filesystem: if two consecu-
tive tasks require the same input data, it only needs to be sent to the Worker once.
Of course, if Condor decides to evict the Worker process, it will kill any running
processes and delete the local storage. The Master is able to detect these evictions,
and reassign tasks to other Workers as needed.

Figure 7.2 shows how all of these pieces fit together. The end user is not exposed
to any details of the cloud. Instead, he or she runs a command such as All–
Pairs or Wavefront corresponding to the desired abstraction. The abstraction
examines the workload, decides how many Workers it can use, and submits them

W

W

W

All-pairs
Master Master

Wavefront

W W

W W

Campus Condor cloud

Figure 7.2  Multiple abstractions sharing a Condor pool.

Abstractions for Cloud Computing with Condor  ◾  157

as jobs to Condor. Condor decides what resources to allocate to each user, and
each abstraction schedules tasks on whatever Workers become available. The result
is a layered system, where each component has a distinct responsibility, as shown
in Figure 7.3.

7.3  Map Abstraction
We will begin by describing the simplest abstraction—Map—and then work
our way up to more complex abstractions. For each, we will give a formal defini-
tion, describe an example, and then explain a significant result achieved using the
abstraction.

Map(data D[i], function F(data x))
returns array R such that R[i] = F(D[i])

Map applies a function F to all elements of a dataset D, yielding a result data-
set R. Of course, Map and similar operations have been available in functional
programming languages, such as LISP [23], for many years, and have long been
recognized as a suitable primitive for parallel programming [7,13]. Map is a natural
starting point for exploring parallelism.

In practice, our users invoke a stand-alone program called Map that accepts two
arguments: the function is the name of a conventional program that transforms
one file, and the array is a file listing the names of files to be mapped. In contrast
to Map-Reduce [9], which interfaces with C++, and Hadoop [6], which interfaces

Starts workers on machines that are available

Condor

Master

Queues tasks that are ready to run

Abstraction
Su

bm
its

 w
or

ke
rs

 as
 C

on
do

r j
ob

s

Submits entire workload for execution
End user

Workers

Dispatches tasks and data to available workers

Figure 7.3  A layered system for cloud computing.

158  ◾  Cloud Computing and Software Services

with Java, Map and the rest of our abstractions use ordinary executable programs as
“functions.” This allows end users to use whatever language they are most comfort-
able with, and often are able to plug in existing tools without recoding.

Figure 7.4 shows an application of Map used extensively in biometrics. A
common task is to convert a large set of iris images of about 300 kB each into
iris codes of about 20 KB each. (An iris code is a compressed binary representa-
tion of an iris actually used for archival and comparison [8].) A program named
ConvertIrisToCode can carry out one conversion in about 19 s.

To execute this workload, the user runs

Map IrisListing ConvertIrisToCode

Logically, this means to run ConvertIrisToCode once for each entry in
IrisListing:

ConvertIrisToCode iris001.jpg iris001.code
ConvertIrisToCode iris005.jpg iris005.code
ConvertIrisToCode iris008.jpg iris008.code
...

Although one could accomplish a Map by simply submitting batch jobs, our
implementation of the abstractions solves a number of technical challenges that
would otherwise make using the system very challenging. It caches the execut-
able and other required libraries on the execution nodes, detects failed or evicted
Workers, detects compatibility failures with various machines, aborts straggling
Workers, preferentially assigns tasks to faster nodes, and deals with network out-
ages and other failures. In this way, the user can focus on their desired work instead
of on the details of distributed computing.

A typical example of an unoptimized production run of Map on our cloud con-
verted 58,639 iris images to codes in 2.4 h, using anywhere between 100 and 400
Workers at any given time. The same workload would have taken 309 h on a single
CPU, for an effective speedup of 125×. By making use of the Map abstraction on
the cloud, the end user can accomplish in a few hours what previously took over a
week.

F

R[0] R[1] R[2]

D[0] D[2]D[1] . . .

R[n]. . .

D[n]

F F F
F F FF

. . .

. . .

Figure 7.4  Map abstraction applied to biometrics.

Abstractions for Cloud Computing with Condor  ◾  159

7.4  All-Pairs Abstraction
Building on the idea of applying a function to a one-dimensional array of sin-
gle inputs, we move on to All-Pairs, an abstraction in which each function call is
applied onto a pair of inputs.

All-Pairs(data A, data B, function F(data x, data y))
returns matrix R such that R[i, j] = F(A[i], B[j])

The All-Pairs abstraction applies a function F to each pair of elements in data-
sets A and B, yielding a result matrix R, where each cell is the result of comparing
two items. A common variant of All-Pairs is to let A = B, in which case it is often
only necessary to compute half of the result matrix. Previous researchers have stud-
ied All-Pairs theoretically [27] and on small clusters [4]. Our contribution is to scale
the problem up to hundreds of nodes in the cloud [16].

As with the previous abstraction, the user provides a “function” in the form
of a program that compares two input files. The datasets A and B are text files
listing the remaining files to be compared. For small problems, the result matrix
is emitted as a plain text file; for large problems, it is stored as a distributed data
structure.

All-Pairs problems occur in several fields, such as biometrics, bioinformatics,
and data mining. We will focus on biometrics here. A common problem in the
field is evaluation of new algorithms developed to improve the state of the art in
personal identification. One way to do this is to assemble a large corpus of images
and compare all of them to each other using the new algorithm. Results obtained
with different algorithms on the same set of images are directly comparable for
overall effectiveness.

Figure 7.5 continues with the application from the previous example. Using Map,
the user has already reduced 58,639 iris images into an equal number of compact

3.6 billion

Iris comparisons

0.02 s per pair

F

A[0]

A[1]

A[2]

A[3]

B[0] B[1] B[2] B[3]

Figure 7.5  All-Pairs abstraction applied to biometrics.

160  ◾  Cloud Computing and Software Services

iris codes. He or she has written a program CalculateIrisSimilarity
that computes the masked Hamming distance between two iris codes. The pro-
gram can complete approximately 50 such comparisons per second. An All-Pairs
comparison of these images against each other would consist of 3.4 billion func-
tion executions, 795 days of serial computation, and 6.8 TB of aggregate input
requirements.

Such a workload is impractical to complete serially, so scaling up to the cloud
is required. To invoke the All-Pairs abstraction, the user specifies the input sets and
the comparison function:

AllPairs SetA SetB CalculateIrisSimilarity

The abstraction handles all of the computation and data management. Using a
model that takes into account function computation time and data element sizes
it calculates how many resources should be used for the workload and how much
work they should be given at a time to balance queuing overhead and job run-
time. It then distributes data to chosen resources and assigns computation to these
resources. If the node has multiple cores, the access pattern is carefully chosen to
maximize the cache hit rate. The final results are stored in a large distributed array,
which may be accessed directly or downloaded to a local file.

Developing a model for the All-Pairs problem is a critical component for
several reasons. First, it relieves the user of the responsibility of determining
the number of resources. As problems scale up in size, the number of resources
required do not necessarily scale up in kind, and thus users may make poor deci-
sions—underprovisioning the system hurting performance, or overprovisioning
the system increasing overhead and wasting resources. Second, the ability to pre-
dict very general approximate runtimes based on simple diagnostic benchmarks
for work allows the system to manage running processes and detect jobs that are
not making progress within a reasonable time (whether due to bugs, hardware
misconfigurations, etc.) automatically instead of requiring a user to aggressively
monitor his job.

Our largest production run of All-Pairs compared 58,639 iris codes generated
from the Iris Challenge Evaluation 2006 [2] dataset all to each other. To our knowl-
edge, this is the largest such result ever computed on a publicly available dataset.
The abstraction ran in 10 days on a varying set of 100–200 nodes in the cloud, for
an effective speedup of about 80× [16].

7.5  Sparse-Pairs Abstraction
There are many workloads that involve the comparison of large sets of objects, but
do not require all possible comparisons. These workloads require the Sparse-Pairs
abstraction.

Abstractions for Cloud Computing with Condor  ◾  161

Sparse-Pairs(data A, data B, function F(data x, data y), pairs P)
returns array R such that F(A[P[i].x], B[P[i].y])

The Sparse-Pairs abstraction applies a function F to pairs of elements in sets A
and B given by the set P, yielding a result set R. Sparse-Pairs fits between the one-
dimensional array abstraction of Map, and the two-dimensional array abstraction
of All-Pairs. In this way, it is a bit like superimposing the Bag-of-Tasks [3,22] on top
of the one-dimensional structure of Map.

Sparse-Pairs problems occur frequently in the field of bioinformatics, particu-
larly in the problem of genome assembly. Very briefly, genome assembly is the prob-
lem of assembling many small fragments of DNA (hundreds of bytes each) into one
long string (billions of bytes) that represents the entire genomic code of an organ-
ism. This is much like putting together a jigsaw puzzle: one must compare many
pieces to each other in order to determine which should be adjacent.

In principle, one could run an All-Pairs abstraction to compare all fragments to
each other, and then match up the pieces with the best scores. However, for a suf-
ficiently large problem, this is computationally infeasible. Fortunately, there exist
various heuristics that can be used to filter out the vast majority of these compari-
sons [19], leaving only a list of “candidate” sequences to compare. This candidate
list becomes the P set for a Sparse-Pairs workload, as shown in Figure 7.6.

8 million

50−500 base sequences

0.03 s per pair

F

84 million pairs

F

P[1]:
A[2]−B[3]

P[0]:
A[1]−B[1]

A[0]

A[1]

A[2]

A[3]

ATCGB[1] B[2] B[3]B[0] CGTA ATGCCCAG

ATCG

CGTA

CCAG

ATGC

Figure 7.6  Sparse-Pairs abstraction applied to bioinformatics.

162  ◾  Cloud Computing and Software Services

The principal complication for Sparse-Pairs is that it is not generally feasible to
optimize a bulk transfer of data files to many nodes, because while each data item is
used multiple times, the number of repetitive uses may be far less than the number
of nodes. Thus, the Master must be active in transferring data, which potentially
creates a single bottleneck at the Master’s outgoing network link. Additionally, for
fast-finishing functions, even if the Master has sufficient bandwidth, the network
latency may be too great to keep a sufficient number of Workers satiated.

The first issue can be alleviated with compressed data—in bioinformatics, the
language {ACGT} can easily be compressed to two bits per base pair—or multiple
Masters. The second can be improved by grouping together many functions into a
single “task” sent to the Worker in order to prevent numerous high-latency round-
trips in sending data for potentially thousands of functions.

Two data-related factors differentiate Sparse-Pairs from both Map and All-
Pairs. First, although the pairs are sparse, each sequence is still used many times
throughout the workload. Thus, while the pairs to be computed could be written
in full to files in which every pair was a single element, and Map could then be run
using that input, this is inefficient. Instead, if the set of sequences is not too large
for the main memory, the sequences can be stored only once in their datafile and
are read into the Master’s memory to construct the tasks for the Workers on the fly
as the workload advances.

A Sparse-Pairs result is a subset of a corresponding All-Pairs result. All-Pairs
can be optimized to take advantage (via data transfer and assignment of computa-
tion to resources) of the fact that every single computation pair will be completed.
However, it is unnecessary to complete an entire All-Pairs problem for every case of
Sparse-Pairs; and for particularly sparse sets of pairs, it may be very inefficient to do
so even if the All-Pairs abstraction is highly optimized. The regular structure of All-
Pairs also allows the interface to the abstraction to require only the function and
the names of the full sets. Sparse-Pairs only transmits the designated pairs needed
for each computation.

Our Sparse-Pairs implementation is in regular use with a bioinformatics
research group at Notre Dame. Our largest assembly so far used 8 million sequences
extracted from a completed Sorghum bicolor genome and completed alignments for
84 million candidate pairs. (The equivalent All-Pairs would have required 64 tril-
lion comparisons.) Using 512 CPUs, the assembly is completed in just under 2 h,
with an effective speedup of 425× [17].

7.6  Wavefront Abstraction
So far, each of the abstractions discussed has allowed computation to be completed
in an arbitrary order. However, more complex abstractions, such as Wavefront, have
dependencies, requiring one stage of the computation to complete before another
can proceed.

Abstractions for Cloud Computing with Condor  ◾  163

Wavefront data data function data data data

returns

(, , (, ,))X Y F x y d

mmatrix
if
ifR i j

X i j
Y j i

F R i j R i j R i
[,]

[]
[]

([,], [,], [,
=

=
=

− − −

0
0

1 1 1 jj −

 1]) otherwise

Figure 7.7 shows the Wavefront abstraction, which is a recurrence relation in
two dimensions. Given two datasets as original input, and a function that takes
three inputs and returns a single output, calculate the function at each of n2 pos-
sible states of the system, where each state is defined by the results of its predecessor
states. A state’s predecessors are its neighbors in a matrix, whose values have been
computed by previous function executions. The problem can be generalized to mul-
tiple dimensions. Wavefront has previously been studied in the context of multicore
processors [1], which our work has extended to clusters and clouds of multicore
machines [28].

In practice, the user invokes Wavefront by specifying the input datasets and the
recurrence function. As before, the “function” is an arbitrary program that accepts
files on the command line

Wavefront XData YData RecurrenceFunction

Examples of Wavefront problems occur in game theory, economics, bioinfor-
matics, and any problem that involves dynamic programming. In game theory, a
recurrence table can be constructed to enumerate all possible states of a simulation
with given inputs. Each cell in the table is dependent on its previous neighbor

F

F

A[0]
5.3 M−base sequences

split into
100 × 100
wavefront
problem

GACA AGTC ACGCCCAG

ATCG

CGTA

CCAG

ATGC

A[1]

A[2]

A[3]

B[0] B[1] B[2] B[3]

Figure 7.7  Wavefront problem applied to bioinformatics.

164  ◾  Cloud Computing and Software Services

states. With a completed table, economists can see the start states, all possible final
states, and all possible paths within the simulated context.

A common use of Wavefront in bioinformatics is the alignment of two very
large DNA strings. This is done by constructing a dynamic programming table,
where each cell gives the “score” of the alignment with each string offset by the
coordinates of that cell. The alignment of two complete genomes (billions of bytes)
is intractable serially. However, the entire problem can be broken up into a number
of smaller sub-alignment problems. Each subproblem computes the dynamic pro-
gramming table for a fragment of the genome, and then passes the boundary value
to its neighbor.

In previous abstractions, the ability to predict runtimes of work units was used
primarily to provision resources. Determining which processes have run too long
is useful for detecting misconfigured nodes, but a slow node at the beginning or
middle of the workload does relatively little damage to the overall performance
because there is still a high degree of concurrency. In Wavefront, however, predict-
ing runtimes takes on extra importance. A slow-finishing work unit in Wavefront
propagates its delay through to all of its dependents. This is especially harmful
early in a workload, when most or all of the remaining computations are depen-
dents, and there is already limited concurrency available in the problem. To combat
this, Wavefront makes use of the Work Queue’s ability to remove, reschedule, and
restart tasks that have run significantly beyond their predicted completion time.

Using the Wavefront abstraction, we were able to complete the alignment of
two variants of the Anthrax genome measuring 5.4 million bytes. Each genome
was split into 100 fragments of about 54,000 bytes, yielding a 100 × 100 Wavefront
problem. Using the cloud, the problem completed in 8.3 h instead of 13 days,
achieving an effective speedup of 38×.

7.7  Directed Graph Abstraction
The abstractions that we have presented so far have a highly regular structure.
However, many users have applications that can only be described as a directed
graph of programs. There exist a number of workflow languages that are capable of
expressing arbitrary graphs of tasks, such as Dagman [25], Pegasus [10], Taverna
[18], Swift [29], BPEL [14], and Dryad [12], to name a few. Each of these lan-
guages has its own syntax and is capable of connecting to a number of remote
systems.

However, we often find that end users are reluctant to learn an entirely new lan-
guage simply to run some programs in a particular distributed system. Fortunately,
many are already using a coordination language that easily expresses parallelism.
The traditional Make [11] tool is typically used to drive the compilation and link-
ing of complex programs, but it can be used to drive any arrangement of programs
and files.

Abstractions for Cloud Computing with Condor  ◾  165

To this end, we designed a tool called Makeflow that implements the Directed
Graph abstraction using the same basic language as Make. In many cases, users
can take their existing Makefiles and use them unmodified with Makeflow. The
Makeflow program reads in a directed graph, and then submits jobs individually
to be executed. By changing command-line options, the same directed graph can
be run on a single multicore computer, on a Condor pool, or on the Work Queue
system. Makeflow keeps a transaction log, so that in the event of failure, the entire
workload can be picked up where it was left off, without losing or duplicating jobs.

Figure 7.8 shows a very small example of a Makeflow. The user gives a set of
rules, each one stating a program to run, along with the files that it requires and
the files that it uses. In the example, the program split accepts the file all.dat
as input and produces the files a.dat and b.dat as output. Each of these is then
consumed by the process program.

Figure 7.9 shows a larger example of a real Makeflow written to support a bio-
informatics application. In the figure, circles represent programs and squares rep-
resent the files that they read and write. In this particular example, the topmost
program reads a large input file and splits it into many pieces. Each piece is then
processed by a genomic search tool, which creates three different outputs per piece.
The results must be joined together and analyzed in order to produce a final result.
The system is capable of running workloads consisting of hundreds of thousands
of nodes.

Makeflow is currently used as the primary execution engine for a bioinformatics
research portal at the University of Notre Dame. A typical Makeflow job executed
via the portal consisted of 704 tasks dispatched to the Condor pool and ran on

Process

b.out

Process

a.out

Split

b.dat a.dat

all.data.dat b.dat: all.dat

split all.dat

a.out: a.dat
process a.dat

b.out: b.dat

process b.dat

Figure 7.8  Small example of the Makeflow language.

166  ◾  Cloud Computing and Software Services

Fi
na

liz
e

Co
m

pl
et

e

Co
lle

ct

To
ta

l

Co
lle

ct

Er
ro

r

Co
lle

ct

O
ut

pu
t

Bl
as

t

Er
ro

r.5
O

ut
pu

t.5

Bl
as

t

Er
ro

r.4
O

ut
pu

t.4

Bl
as

t

O
ut

pu
t.3

Bl
as

t

Er
ro

r.2
O

ut
pu

t.2

Bl
as

t

To
ta

l.1
To

ta
l.4

To
ta

l.0
To

ta
l.2

To
ta

l.5
To

ta
l.3

Er
ro

r.3
Er

ro
r.1

O
ut

pu
t.1

Bl
as

t

Er
ro

r.0
O

ut
pu

t.0

Sp
lit

In
pu

t.5
In

pu
t.4

In
pu

t.3
In

pu
t.2

In
pu

t.1
In

pu
t.0

Jo
b.

pa
ra

m
s

In
pu

t

Fi
gu

re
 7

.9
 

A
n 

ex
am

pl
e 

M
ak

efl
ow

 u
se

d 
in

 b
io

in
fo

rm
at

ic
s.

Abstractions for Cloud Computing with Condor  ◾  167

between 25–56 cores on a designated cluster. The overall workflow consumed 686
CPU-hours in 17 h of wall clock time, reducing the runtime from nearly a month
down to less than a day.

7.8  Choosing the Right Abstraction
As we have mentioned above, some abstractions can be interchanged with each
other, with some loss of efficiency. The formal relationship between different
abstractions, and how to choose among them, remains an open problem in our
field. How, then, can a user choose which one to use for a given problem? So far,
we have worked closely with our potential users to choose the appropriate abstrac-
tion for their needs. With the growing suite of abstractions, though, it is becoming
important that users in various fields can select the right abstraction from the suite
based on their knowledge of their own problem.

The intent of providing abstractions is for the user to define a large work-
load in a simple manner. The user should be able to use codes that are very
similar or identical to their serial implementations. The user should be able to
garner good performance without having to separately implement complicated
resource management, data management, and fault tolerance mechanisms into
each application.

Abstractions on the whole shield the user from difficult details about execut-
ing a workload in a distributed environment. However, it is often the case that the
abstraction that fits the problem best—either due to the design of the abstraction
or the way a user has defined the problem—will be more efficient due to less trans-
formation required to scale up to the cloud and because of greater possibilities for
problem-specific solution optimizations.

It is our general suggestion that a user should choose the abstraction that fits the
way he or she already thinks about his problem. This most easily fulfills the intent
of running a workload as is, and simply scaling up to a cloud while abstracting away
the messier details of the larger scale. This also usually requires the least amount
of user overhead to handle the details of transforming his serial application into an
entirely different problem before scaling it up.

An example of additional work required to transform the problem is seen when
comparing Wavefront to a general directed acyclic graph (DAG). A particular piece
of a Wavefront computation can be referenced simply by coordinates in the results
table. This ordered pair, when combined with the problem definition, is sufficient
to enumerate all incoming and outgoing edges in the DAG. The more general DAG
abstraction would need to define the problem in a less efficient manner, costing
execution time to complete the transcription into the more general definition and
also the disk/memory resources to store it. Even then, when executing, a general
DAG abstraction would still not have the advantages of automatically being able to
optimize disk and memory management to the rigid patterns of a Wavefront prob-
lem. Thus, it only makes sense for a user who is already looking at his workload as

168  ◾  Cloud Computing and Software Services

a Wavefront problem to use the abstraction that is most specific for that problem—
because it fits with how he or she has already designed his approach.

This is, however, only a general suggestion, and must be reevaluated even when
scaling up the same workload. An example of a case in which this is important was
shown above when discussing the Sparse-Pairs problem. A scientist may start with
a fairly dense set of pairs to compute between two sets, and decide to use the All-
Pairs problem. However, as the problem is scaled up and the set of pairs becomes
sparser, even though the All-Pairs abstraction is still available and will still solve
the problem, it no longer is the appropriate choice. Generalizing an arbitrary set of
computation pairs into the superset of computation pairs will increase the amount
of work he or she requires significantly. Not only will it require much more time
to compute all the extraneous pairs that he is not interested in, but the abstraction
solving that problem will provision more remote resources (data and worker nodes,
for instance) to solve the larger version (Table 7.1).

7.9  Conclusion
In this chapter, we have demonstrated several abstractions for cloud computing.
An abstraction allows an end user to express a very large workload in a com-
pact form, allowing the underlying system to handle the complexity of allocating
resources, dispatching tasks, managing data, and dealing with failures. For each
abstraction, we have shown a scientific application that gains significant benefit
from the cloud.

Our suite of abstractions is not necessarily complete. Our experience so far sug-
gests that a given community of researchers is likely to engage in the same kinds

Table 7.1  Summary of Typical Workloads

Application Problem Size
Runtime on

One CPU
Runtime
in Cloud

Map Transform to
iris code

58,639 irises 12.8 days 2.4 h

All-Pairs Compare iris
codes

58,639 irises 2 years 10 days

Sparse-Pairs Sequence
overlapping

84 million
pairs

35 days 2 h

Wavefront Long-sequence
alignment

5.3 million
bytes

13 days 8 h

Directed
Graph

Parallel genome
search

704 nodes 686 h 17 h

Abstractions for Cloud Computing with Condor  ◾  169

of computations, albeit with different underlying functions and different scales
of data. This is only natural, because both collaborating and competing research-
ers may use the same underlying techniques and must compare their work to one
another. For this reason, one or two abstractions may be sufficient to serve a very
large community of people in a given field of study. At our institution, Map and All-
Pairs are common tasks in biometrics research, while Sparse-Pairs and Wavefront
are useful for bioinformatics. We have found that Makeflow has broad applications.

We have implemented these abstractions in the Condor distributed system
because it is widely used to share computing power in academic settings. However,
the same concepts can be applied to other systems. For example, the Work Queue
system can be deployed on any kind of cloud computer in order to run the same set
of abstractions. Further, abstractions need not be implemented with plain programs
and files as we have done, but could also be implemented in dynamic languages,
such as Java or C#, using formal functions and datatypes. Such implementations
would be more strongly typed and have less invocation overhead, but would of
course be restricted to the given language.

For more information about these abstractions, the reader may consult our
research publications [16,17,20,28]. The code implementing these abstractions can
be downloaded from the Cooperative Computing Lab at the University of Notre
Dame at http://ccl.cse.nd.edu. The Condor distributed computing software is avail-
able from the University of Wisconsin at http://www.cs.wisc.edu/condor

Acknowledgments
This work was supported in part by the National Science Foundation grants
CCF-0621434 and CNS-0643229. We thank Professor Patrick Flynn, Karen
Hollingsworth, Robert Mckeon, and Tanya Peters for their collaboration on bio-
metrics applications. We thank Professor Scott Emrich, Michael Olson, Ben Drda,
and Rory Carmichael for their collaboration on bioinformatics applications. We
thank Ryan Jansen, Joey Rich, Kameron Srimoungchanh, and Rachel Witty for
testing early versions of our software.

References
 1. J. Anvik, S. MacDonald, D. Szafron, J. Schaeffer, S. Bromling, and K. Tan. Generating

parallel programs from the wavefront design pattern. In IEEE International Parallel and
Distributed Processing Symposium (IPDPS), Fort Eanderdale, FL, p. 165, 2002.

 2. Iris Challenge Evaluation 2006, National Institute of Standards and Technology http://
iris.nist.gov/ice/ice2006.htm, July 2009.

 3. D. Bakken and R. Schlichting. Tolerating failures in the bag-of-tasks programming
paradigm. In IEEE International Symposium on Fault Tolerant Computing, Montreal,
Canada, 1991.

170  ◾  Cloud Computing and Software Services

 4. A. Radenski, B. Norris, and W. Chen. A generic all-pairs cluster-computing pipeline
and its applications. In Proceeding of the International Conference on Parallel Computing,
Delft, the Netherlands, 1999.

 5. Condor World Map. http://www.cs.wisc.edu/condor/map, July 2009.
 6. The Hadoop Project. http://hadoop.apache.org, July 2009.
 7. G. E. Blelloch. Scans as primitive parallel operations. IEEE Transactions on Computers,

C-38(11):1526–1538, November 1989.
 8. J. Daugman. How iris recognition works. IEEE Transactions on Circuits and Systems for

Video Technology, 14(1):21–30, 2004.
 9. J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large cluster. In

Operating Systems Design and Implementation (OSDI), San Francisco, CA, 2004.
 10. E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta et al.

Pegasus: A framework for mapping complex scientific workflows onto distributed sys-
tems. Scientific Programming Journal, 13(3):219–237, 2005.

 11. S. Feldman. Make—A program for maintaining computer programs. Software: Practice
and Experience, 9:255–265, November 1978.

 12. M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: Distributed data parallel
programs from sequential building blocks. In Proceedings of EuroSys, Lisbon, Portugal,
March 2007.

 13. S. L. P. Jones. Parallel implementations of functional programming languages. The
Computer Journal, 32:175–186, April 1989.

 14. D. Jordan and J. Evdemon. Web services business process execution language version
2.0. OASIS Standard, April 2007.

 15. M. Litzkow, M. Livny, and M. Mutka. Condor—A hunter of idle workstations. In
International Conference on Distributed Computing Systems (ICDCS), San Jose, CA,
June 1988.

 16. C. Moretti, H. Bui, K. Hollingsworth, B. Rich, P. Flynn, and D. Thain, All-Pairs:
An abstraction for data intensive computing on campus grids. IEEE Transactions on
Parallel and Distributed Systems, accepted for publication in 2009.

 17. C. Moretti, M. Olson, S. Emrich, and D. Thain. Scalable Module Genome Assembly
on Campus Grids. Technical Report 2009-04, Computer Science and Engineering
Department, University of Notre Dame, Notre Dame, IN, 2009.

 18. T. Oinn et al. Taverna: A tool for the composition and enactment of bioinformatics
workflows. Bioinformatics, 20(17):3045–3054, 2004.

 19. M. Pop, S. L. Salzberg, and M. Shumway. Genome sequence assembly: Algorithms and
issues. Computer, 35(7):47–54, 2002.

 20. B. Rich and D. Thain. DataLab: Transactional data parallel computing on an active
storage cloud. In IEEE/ACM High Performance Distributed Computing, Boston, MA,
pp. 233–234, 2008.

 21. A. Roy and M. Livny. Condor and Preemptive Resume Scheduling. Kluwer Academic
Publishers, Norwell, MA, 2004.

 22. D. da Silva, W. Cirne, and F. Brasilero. Trading cycles for information: Using rep-
lication to schedule bag-of-tasks applications on computational grids. In Euro-Par,
Klagenfort, Austria, 2003.

 23. G. Steele. Common LISP: The Language. Digital Press, Woburn, MA, 1990.
 24. D. Thain and M. Livny. How to measure a large open source distributed system.

Concurrency and Computation: Practice and Experience, 18(15):1989–2019, 2006.

Abstractions for Cloud Computing with Condor  ◾  171

 25. D. Thain, T. Tannenbaum, and M. Livny. Condor and the grid. In F. Berman, A. Hey,
and G. Fox, eds., Grid Computing: Making the Global Infrastructure a Reality. Wiley,
New York, 2003.

 26. D. Thain, T. Tannenbaum, and M. Livny. Distributed computing in practice: The con-
dor experience. Concurrency and Computation: Practice and Experience, 17(2–4):323–
356, 2005.

 27. K. Theobald, and G. Gao. An efficient parallel algorithm for all pairs examination. In
ACM/IEEE Conference on Supercomputing, Albuquerque, NM, pp. 742–753, 1991.

 28. L. Yu, C. Moretti, S. Emrich, K. Judd, and D. Thain. Harnessing parallelism in mul-
ticore clusters with the all-pairs and wavefront abstractions. In IEEE High Performance
Distributed Computing, Munich, Germany, pp. 1–10, 2009.

 29. Y. Zhao, J. Dobson, L. Moreau, I. Foster, and M. Wilde. A notation and system
for expressing and executing cleanly typed workflows on messy scientific data. In
SIGMOD, Baltimore, MD, 2005.

173

Chapter 8

Exploiting the Cloud 
of Computing 
Environments: An 
Application’s Perspective

Raphael Bolze and Ewa Deelman

Contents
8.1 Introduction ... 174
8.2 Computing Environments .. 174

8.2.1 Institutional Grid..175
8.2.2 Cloud Computing ..178
8.2.3 Volunteer Computing ...180
8.2.4 Comparison of the Different Platforms ...182

8.3 Application Perspectives ...183
8.3.1 Highly Parallel Applications ...184
8.3.2 Tightly Coupled Application ..185
8.3.3 Scientific Workflows ...186

8.4 Discussion .. 191
8.5 Conclusions .. 191
References ...196

174  ◾  Cloud Computing and Software Services

8.1  Introduction
Traditionally, scientists have been using individual workstations, in-house com-
putational clusters, or campus high-performance resources to conduct their sci-
entific computations. When necessary, they applied for cycles on the top national
resources hosted by supercomputing centers and national laboratories. In the past
two decades, with the advancement of broad resource sharing technologies such
as Condor [1] and Globus [2], efforts such as SETI@home [3], and more recently
Cloud technologies [4], scientists are faced with an ever-expanding choice of com-
puting platforms each with its own benefits and drawbacks related to performance,
cost, ease of use, and other characteristics. Having this significant number of
computational options is a great opportunity for computational sciences provid-
ing resources that can scale up with the ever-expanding data collections and ever-
increasing computational needs of today’s applications.

In this chapter, we examine different types of computing environments, focus-
ing on their characteristics and providing example deployments. We also describe
different classes of scientific applications that are being used across the domains of
science today and illustrate them with examples (Section 8.2). We focus on three
main classes of applications including loosely coupled “bag of tasks” computational
paradigms, tightly coupled parallel codes, and computational workflows (Section
8.3). Finally, we provide an analysis of what computational environments suit par-
ticular types of applications. The hope is that the analysis will provide domain
scientists with the necessary information to make decisions regarding their choice
of computing environments.

8.2  Computing Environments
This section presents the “cloud” of computing environments available to scientists.
Today, we can identify three main types of cyberinfrastructures that can be con-
sidered by scientists when reaching for external resources to support computations.

First, we consider Institutional Grids. Those distributed platforms have received
considerable amount of attention for more than a decade and today several deploy-
ments exist in production. These grids can have a national or even worldwide
reach. Among them are EGEE [5], PRAGMA [6], TeraGrid [7], Open Science
Grid (OSG) [8], DutchGrid [9], and others. These grids rely on the funding from
major institutions (the National Science Foundation, the Department of Energy,
the European Commission, etc.). These institutions provide the infrastructure and/
or the funds to build and maintain these distributed grid deployments.

More recently, cloud computing has become a buzzword for on-demand com-
puting provided mainly by industry. Among the main cloud providers are Amazon
[10], Google [11], IBM [12], Microsoft [13], and others. These types of platforms
are often referred to as Utility grids [14] and tend to push the vision of everything

Exploiting the Cloud of Computing Environments  ◾  175

as a service (*aaS). Of course, these platforms also come with a business model and
provide a variety of services at a specified price and quality of service.

Finally, there is public computing or volunteer computing such as the World
Community Grid [15] or other Desktop Grids [16] that use the processing and stor-
age resources provided by volunteers from the general public to help scientists. The
idea is to enroll volunteers and use their spare computing time and storage space to
perform scientific computations.

In Sections 8.2.1 through 8.2.3, we present the main characteristics of three
infrastructures that rely on institutions, industry, and the public to provide compu-
tational capabilities. We point out their respective strengths and weakness and we
highlight the use requirements from the point of view of a scientific user.

8.2.1 Institutional Grid
Institutional Grid Computing is designed to address large-scale computational
problems using a network of shared resources. The major motivation is to use
aggregated resources that can include computing, storage, and network, and
are provided by multiple geographically distributed institutions. These grids are
mainly focused on integrating existing resources with their hardware, operating
systems (OSs), local resource management, and security infrastructure in order to
form a virtual organization (VO) [2]. For example, in the OSG [8] or EGEE [5],
when a project joins a VO, it contributes some of its own resources to the overall
collaboration while being able to take advantage of the other resources shared
within the organization. However, the resource provider maintains control over
their own resources and may decide how and when to share them with others.
This system works on the principle that not all the resources are needed at the
same time, and when a project does not need its own resources, these unutilized
computing cycles are made available to others in the broader collaboration/VO.

Other examples of Institutional Grids are the TeraGrid [7] and DEISA [17],
which provide a large-scale computational platform for a number of different sciences.

Instead of funding individual clusters or high-performance servers for indi-
vidual projects, grids pool together financial resources to deliver high-performance
computing (HPC) to a broad range of applications. As an example, Figure 8.1
shows the variety of scientific applications running on EGEE today. Initiatives
such as the TeraGrid and DEISA are building a cooperative HPC ecosystem, and
research projects can apply for allocations of compute cycles that allow them to
execute jobs on particular HPC centers or across a number of these centers.

Most grid deployments adopt a layered architecture [2] for the infrastructure.
Figure 8.2 presents one possible high-level view of these layers. The hardware layer
reflects the physical component of the infrastructure, this includes the characteris-
tics of the processor or cluster, its architecture, and all the specific physical machine
attributes that fully describe the platform. The network layer covers the connectiv-
ity of the distributed resources orchestrated in the platform, it provides information

176  ◾  Cloud Computing and Software Services

about the latency and bandwidth of the links, the network protocol, etc. The data
storage layer illustrates all the storage and file system space available and also the
protocol to access the data across the different resources. Finally, the software layer
covers a large spectrum of logical components from the middleware that manages
the infrastructure to the scientific application running on the platform.

The Institutional Grid provides several benefits as follows:

 ◾ Support for the scientific community and resource providers. As the
Institutional Grids are designed to serve multiple projects and are hosted in
several sites, there exists a community of experienced users and providers who
can offer help and advice. As an example, there are the EGEE User forums
[19] and many training events are organized [20]. The OSG maintains a Grid
Operation Center, and the TeraGrid maintains a help desk and other means
of providing support and outreach [7].

 ◾ There is almost no restriction regarding the type of application that can be
run on the infrastructure. In the most part, batch execution through queue
systems is supported, but there are also solutions to support more interactive
applications with interactive execution [21–23].

Platform

Software

Data storage

Network

Hardware

Figure 8.2  Grid layers and services.

High-energy physics

Infrastructure
Others
Multidisciplinary VOs
Computational

chemistry

Figure  8.1  Number  of  users  per  application  domain.  (From  EGEE:  CIC 
Operations  Portal,  http://cic.gridops.org/index.php?section=home&page=volist. 
With permission.)

Exploiting the Cloud of Computing Environments  ◾  177

 ◾ Resources are dedicated when available. It means that when a job is submitted
into the queue management system, it will execute on dedicated resources
when released from the queue.

 ◾ Diversity and large scale are also two strengths of Institutional Grids. There
are many sites participating in the grid and so there is potentially a large
number of resources that can meet user requirements in terms of character-
istics and availability.

 ◾ Institutional Grids are collaboration-oriented and provide a secure model to
share data [2]. The model has been built on the idea that giving access to
shared space and distributed computing resources helps researchers from dif-
ferent teams conduct joint scientific projects [24].

Despite all the benefits listed above, Institutional Grids also suffer from some draw-
backs as follows:

 ◾ The Institutional Grid is a shared environment, in the sense that resources are
made available to many users belonging to various collaborations. Thus, users
compete for resources. When a user’s job is submitted to the system, it is placed
in a batch queue where it is prioritized based on the site policies. The start time
of the job will depend on the load and the scheduling policy of the system [25].

 ◾ The environment and the middleware are in a way rigid and constrained.
Institutional Grids are designed to serve many domain scientists, including
those studying archeology, astronomy, earth sciences, finance, life sciences, etc.
[5] As a result, grids provide a generic software execution environment and tools.
This leaves users to interface their applications to the existing middleware,
which can be difficult and usually requires a significant amount of learning. To
help alleviate this problem, high-level tools are being developed to assist users.
Among them are workflow management systems [26–28] and application-level
interfaces [29,30]. Institutional Grids also spend a significant amount of effort
on user outreach and education helping new users take advantage of the distrib-
uted resources. Finally, scientific communities often come together to provide
community-based infrastructure such as science portals [31] to make it easier
for a large number of users to run common applications easily [32].

 ◾ Variability, evolution, and changeability of the grid middleware and the com-
puting environment. Grid software has been evolving over time to match
the needs of the community and the understanding of the computational
platform. For example, the latest Globus Toolkit, which is widely used on
today’s infrastructure, has been released in various versions over the years
(in sometimes incompatible ways) providing at times custom interfaces (GT
2.0), relying on a standard that was not supported in the long-term (OGSI—
and the GT3.0) release. This is the same case with EGEE and its middleware
gLite [33]. Users are thus left struggling to adapt their applications to the
new middleware as the older software releases are no longer supported.

178  ◾  Cloud Computing and Software Services

8.2.2 Cloud Computing
Recently, cloud computing has emerged as a new alternative for scientists to acquire
the computing and storage resources they need. There is still no widely accepted
definition for cloud computing but several common points of view are shared: (1)
it is scalable and elastic, a user can have as much or as little of a service as he or she
wants at any given time; and (2) it has a built-in pricing model, it lets users pay as
they go for the services they are asking for. In contrast to the Institutional Grid,
cloud computing brings its own stack of components and does not try to integrate
and glue the existing infrastructure provided by several sites. Clouds use vitualiza-
tion, which homogenizes differences in the underlying hardware and software. As
a result, they present a configurable environment in terms of the OS and software
stack with the virtual machine (VM) as the foundation.

It is clear that cloud computing inherits from the previous decade of research
and development in: grid computing, service-oriented architecture, and virtualiza-
tion. Cloud computing is often depicted as three layers (Figure 8.3) [14]: Platform-
as-a-Service (PaaS), Software-as-a-Service (SaaS), and Infrastructure-as-a-Service
(IaaS), but many definitions also include some other semantic considerations and
everything as a sService (*aaS). The PaaS layer points out the ability to build a
computing platform with storage capacity and applications as a service. It includes
tools and APIs to quickly build up service-based applications; examples of PaaS are
the Google App Engine [11], SalesForce Apex Language [34], and others. The SaaS
layer refers to any kind of application available to the user and deployed as a service
reusable by any user of the cloud. Google Apps [35] and SalesForce CRMs [36] are
examples of such services. In the case of scientific computing, it could be a call to a
scientific application or the stack of software needed to deploy the application. The
IaaS designates the ability to construct a complete infrastructure with a comput-
ing server and storage space. GoGrid [37] or Amazon with Amazon EC2 [10] and

Platform as a Service
(PaaS)

Software as a Service
(SaaS)

Infrastructure as a Service
(IaaS)

Figure 8.3  Cloud layer, everything as a service. (From Youseff, L. et al., Toward a 
unified ontology of cloud computing, in Grid Computing Environments Workshop
(GCE ’08), Austin, TX, 2008. With permission.)

Exploiting the Cloud of Computing Environments  ◾  179

Amazon S3 [38] services are an implementation of such services and provide com-
puting resources and storage space, respectively. In addition to cloud computing
services provided by private companies, there exists several tools such as Eucalyptus
[39], OpenNEbula [40], and Nimbus [41] that mimic commercial services using
clusters to deploy a test-bed cloud environment. With these tools, freely accessible
science clouds are being deployed [42].

Already, many scientific projects [43–45] have considered the use of cloud com-
puting services such Amazon EC2 for running their scientific applications.

The main benefits of cloud computing are as follows:

 ◾ Through the use of virtualization, cloud computing opens the infrastructure
to a large number of applications. Indeed, VMs and specialized OSs provide
an ideal environment to run legacy applications. These applications are often
very sensitive to the execution environment and no one wants to modify
these working and validated codes just to adapt it to a specific execution
platform.

 ◾ Virtualization used by clouds also provides a customized and reproducible
environment to target a specific application, so that the user can use it imme-
diately and/or reuse it at a later date. This can be an important consideration
in favor of cloud computing for a user who wants to be able to reproduce the
analysis over time or who deals with legacy applications that are hard to port
to new environments.

 ◾ The cloud promises scalable and dynamic resource allocations to fit user needs.
However, it is not clear how well this will be employed in practice when the
technologies are being leveraged by a large number of users.

Although clouds can provide a number of benefits, they also have some
disadvantages:

 ◾ Even though the hardware manufacturers and OSs have made a huge effort
to improve virtualization [46,47], the performance still depends on how the
underlying hardware, network, and VM have been configured. Although
virtual processor performance is close to physical processor performance,
virtual network performance still lags behind that of the physical interconnect
capabilities.

 ◾ There exist several actors and providers in the cloud market, but there is no
adopted standard and, even worse, some technologies rely on proprietary
interfaces. As a consequence, there is no compatibility between different ven-
dors. Once a user develops an application for a given cloud, it may take some
effort to port that application to a different cloud.

 ◾ The pricing model dictates the need to evaluate and quantify the computa-
tional, storage, and networking needs of an application or application set.
This is often hard to predict and can result in unanticipated costs.

180  ◾  Cloud Computing and Software Services

The distinction between cloud computing and Institutional Grid is small. For
example, we can refer to the early days of the Grid’5000 project [48] (now renamed
ALADDIN-G5K), which is a large scale experimental tool with deep reconfigura-
tion capabilities allowing researchers to deploy, install, boot, and run their specific
software images and possibly including all the layers of the software stack [49].
Up and running since 2004, this Institutional Grid has almost all the benefits of
cloud computing, and the only difference is that this environment was allocated
to computer scientists’ experiments in grid computing rather than to the broader
community.

8.2.3 Volunteer Computing
Volunteer computing is often named Desktop computing [50–52] as it uses desktop
computers as the underlying computational resources. Most of the volunteer com-
puting platforms have the same structure: a client program runs on the volunteer’s
computer. It periodically contacts project servers over the Internet, asking for jobs
and sending back the results of completed jobs (see Figure 8.4). This “pull” model
provides a mechanism to pass through the user’s firewalls that don’t allow incoming
connections.

There exist a number of frameworks for desktop computing such as Grid MP
[53], XtremWeb [54], or OurGrid [16], but certainly the most known and widely
used is the BOINC [50] middleware. Today, at least 29 projects [55] are using the
open source middleware to support their computations. The applications cover
a large spectrum of science: astronomy, physics, chemistry, earth science, math-
ematics, biology, and medicine. Compared with other types of HPC or cloud

Return result
Send workunit

Volunteers

Project servers

Figure 8.4  Public volunteer computing platform.

Exploiting the Cloud of Computing Environments  ◾  181

computing, volunteer computing has by nature a high degree of diversity. The
public computers vary widely in terms of hardware, OS, speed, availability, reli-
ability, and network connectivity. The World Community Grid [51] has reported
on the diversity of resources: 29 different processor types, from 1 to 64 cores; 14
different OSs; and a huge diversity in the quantity of memory and available disk
space. In addition to the heterogeneity in computing and storage resources, the
network connectivity of the volunteers can vary greatly as well from a few kB/s
to 4 MB/s.

In addition to this mosaic of resources, the application results returned to the
master are subject to errors. These errors can occur because of hardware malfunc-
tion (particularly on over-clocked computers) or malicious volunteers attempting
to get credit for computing not actually performed. To deal with erroneous results,
“redundant computing” is employed. Basically, the result is considerated valid when
it reaches a consensus (a set of similair results) by running the same computations
on a number of resources.

From the point of view of the scientist who wants to consider this kind of
platform, he or she has to provide an application source code that can run on
the biggest set of volunteer resources that have subscribed to the platform. As
an example, the World Community Grid asks for the following requirements
to technically qualify a scientific project: (1) projects should have a need for
millions of CPU hours of computation to proceed; (2) the computer software
algorithms required to accomplish the computations should be such that they
can be subdivided into many smaller independent computations; and finally (3)
if very large amounts of data are required, there should also be a way to parti-
tion the data into sufficiently small units corresponding to the computations.
Furthermore, the application should be able to make some checkpoints in order
to handle the potential interruption of the computation as the volunteer keeps
control of their desktop computer and can decide to stop participating in the
computation at any time.

The benefits provided by public computing are mainly as follows:

 ◾ There are potentially many resources. According to Forrester Research [56],
there will be 2.2 billion Internet users in the world by 2013.

 ◾ The use of public computing resources promotes the project to a high degree
of visibility to the public. Even if the scientist does not necessarily consider
publicity as personally beneficial, it can help motivate the public to actively
support the project.

Nevertheless, volunteer computing also has its disatvantages:

 ◾ There is no communication between computing resources. Thus, the resources
need to be treated as totally separate entities and can be suitable only for
independent tasks that do not require any inter-task communications.

182  ◾  Cloud Computing and Software Services

 ◾ There are several technical limitations.The task data footprint and data trans-
fers must be small (∼MB) and the task runtime has to be short (∼10 h).

 ◾ The resources are volatile and the whole platform depends on the willingness
of the public to share their computational power.

8.2.4 Comparison of the Different Platforms
The distinction between the three platforms previously presented is not very
clearly defined, as they can all be seen as distributed resources. We have cho-
sen to highlight these three computing environments because they can meet the
requirements of scientific applications, they are (or promise to be) widely used to
produce scientific results in a large range of scientific fields, and they are able to
support computations at a large scale. Finally, we want to differentiate between
them by the type of resource provider: an institution, a private company, or public
volunteers.

Cloud computing brings with it a different cost model. As opposed to grids that
are funded by national research agencies or volunteer computing, which is essen-
tially free, business-based cloud computing brings with it a monetary cost, where
users pay for the resources they utilize in their work. Several studies have investi-
gated the comparison of the three platforms described above. Most of the studies
consider both the performance and the cost-benefits of cloud-based services and
compare them to the two other plaforms. In our previous work [43], we studied the
cost of running a scientific workflow over a cloud. We estimated the cost of running
a given scientific application on such platforms and showed that for data-intensive
astronomy applications such as Montage [57] with a large number of short duration
tasks, the storage costs were insignificant as compared with the CPU costs. In [58],
experiments indicated that the cloud (or Amazon’s EC2, at least) is not yet mature
enough for HPC computations. The authors observed that the giga-floating point
operations per second (GFLOPs) obtained per dollar spent decrease exponentially
with increasing computing cores and correspondingly, the cost for solving a linear
system increases exponentially with the problem size, very much in contrast to
existing scalable HPC systems.

One clear advantage of cloud platforms is the indefinite availability of the
resources. The user is not restricted by the wall clock time on a grid cluster or by
the sudden unavailability of a volunteer resource. Thus, service-based applications
can be easily deployed on the cloud and can be available for long durations of
time.

Kondo et al. [59] compared the cloud [10] to volunteer computing [50] from the
perspective of an embarrsingly parallel and compute-intensive application (SETI@
home). The authors find that the ratio of volunteer nodes needed to achieve the
compute power of a small EC2 instance is about 2.83 active volunteer hosts to 1.
In addition, they find that at least 1400 volunteer computers are needed before

Exploiting the Cloud of Computing Environments  ◾  183

volunteer computing becomes more cost effective in terms of cents per floating
point operations per second (FLOP) (even if the volunteer resources are free, some-
one has to take care of the infrastructure).

Another study [60] developed formulas to find the real cost of CPU time. With
an assumption of 440 million CPU hours annually, the author finds that the pur-
chase mode of ressources is still a good investment compared to leasing resources
from a cloud.

These comparisons point out that applications can run within the three envi-
ronments, even though the cost/benefits vary. In order to choose the appropriate
execution environment, the behavior of the application needs to be characterized
from the point of view of performance, scalability, or other user-relevant metrics.
The associated execution costs of the application in a particular environment can
be quantified [43].

8.3  Application Perspectives
So far we have examined the computational environments available to the scien-
tists. This section identifies different points of view of scientists who need to rely
on distributed resources to conduct their scientific computations. It also describes
three commonly used programming models and characterizes the most appropriate
execution environments for these models.

There are many reasons that can make a scientist consider the use of exter-
nal computing resources to achieve his or her work. Some of these reasons are as
follows:

 ◾ Scaling up the application, running the computation on more data, thus
tackling bigger problems that could not be solved unless external resources
are used.

 ◾ Achieving a scientific goal. Some users do not have enough resources in their
own laboratory and therefore need to look for extra computing power or stor-
age. This situation is different from the need to scale up the application. In
this case, the user is not even able to run any instance of his or her problem
on the internal resources.

 ◾ Sharing applications and data with colleagues. If the user is producing data
or applications that other partners want to access, he or she needs to have a
convenient way to share it.

 ◾ Needing to use applications and data already provided by other scientists.
 ◾ Decreasing the completion time of the application; when the user has reached

a point where the completion time of his or her application is too long to be
useful, the user needs to improve the turnaround time of the application by
reaching out to external resources.

184  ◾  Cloud Computing and Software Services

Beyond the need of the scientists to use external resources to help them reach
science goals, there are also some typical use cases or programming paradigms.
Programming paradigms are designed to express algorithms elegantly and effi-
ciently. There are many programming models, each suited to a certain class of prob-
lems. Through various examples, we identify three basic computing models, which
are widely exploited in distributed environments:

 ◾ Highly parallel applications (bag of tags)
 ◾ Tightly coupled applications
 ◾ Scientific workflows

There exist other models but we believe that these three models reflect the most
commonly encountered applications deployed in scientific production platforms.

8.3.1 Highly Parallel Applications
Highly parallel computing is used to denote parallel computations in which each
individual (often identical) task can execute without any communication with
other tasks. It can also refer to a parameter sweep application where a set of experi-
ments is executed independently from each other. Many scientific applications fall
into this category. For example, scientists may want to iterate over a number of
parameters to validate their assumptions or they may want to explore a space of
parameters to find the suitable case or repetitively process a large amount of data
with the same application. Obviously, this case is one of the most convenient from
the point of view of the distribution of execution as it deals with independent tasks,
which only differ with respect to the input parameters. Nevertheless, this applica-
tion model still raises a lot of challenges, such as how to use resources efficiently or
how to load balance the workload.

An example of a highly parallel application is molecular docking [52], which
consists of techniques aiming to predict the interaction between biological mol-
ecules. The goal is to find the best way to associate two molecules in order to form a
multiprotein complex. Interactions could be between proteins, proteins and DNAs
(or RNAs), or proteins and small chemical compounds (ligands). The quality of
the interaction can be evaluated through an interaction energy that is calculated
according to the space configuration of the complex and the electric charges all
over the proteins. Docking methods are based on purely physical principles and are
perfectly suited to computer simulation in silico. Due to the small amount of data
needed to perform a docking computation (molecular structures and parameters
are on the order of megabytes), this type of project is particularly well adapted to
volunteer computing. However, the Institutional Grid can also handle such appli-
cations [61,62].

Another example of highly parallel applications is climate modeling, which
simulates the interaction of the atmosphere, ocean, land surface, and ice. The

Exploiting the Cloud of Computing Environments  ◾  185

climate varies on the timescales ranging from seasonal to centennial. There exist
several computer models of the coupled atmosphere-land surface-ocean-ice sys-
tems and there exist scientific tools for understanding and predicting natural and
human-caused changes in the Earth’s climate. State-of-the-art climate models now
include interactive representations of the ocean, the atmosphere, the land, hydro-
logic and cryospheric processes, terrestrial and oceanic carbon cycles, and atmo-
spheric chemistry. This field of science illustrates how highly parallel applications
can take advantage of different kinds of distributed environments. In one case [63],
the project carried out a large number of model runs in which parameters were
varied within their current range of uncertainty. Then it rejected those that failed
to model past climate successfully and used the remainder to study future climate.
Such computations required a small amount of input data, produced around 1 GB
of temporary files, and the final output was less than 20 MB so it could fit on a
desktop computer. In another case [64], even though the computation model fit
the parameter sweep paradigm, it was necessary to transfer or access large amounts
of data to be able to run climate analysis, and thus the use of a high-performance
computer and distributed data storage was necessary.

When a user has a highly parallel application, theoretically, they have the free-
dom to choose the three remote execution environments previously presented.
Nevertheless, practically, the user needs to know whether the application is robust
to failures and whether the source code is portable and able to be compiled and
executed on any type of environment. The data volume is also an issue; thus, the
user needs to know how much input is required and how much output is produced.
The task execution time also affects what environment is most suitable for a par-
ticular application.

8.3.2 Tightly Coupled Application
Tightly coupled applications refer to parallel applications with multiple interdepen-
dent processes. These processes exchange data during their execution and have to be
synchronized. Typically, these applications are written with parallel libraries such
as a message-passing interface (MPI) [65] or parallel virtual machine (PVM) [66]
that enable communication between processes. Inter-processes communication is
the key feature of these types of applications. It means that running one instance
of this application may involve the use of several processes allocated to different
processors across the network and the processors will need to be able to exchange
data during the execution (see Figure 8.5). The main concern of this type of appli-
cation is the ability to communicate efficiently and therefore the performance of
the network layer that connects the computing resources is of critical importance.

There exist a large number of tightly coupled applications and over the past
decades they have motivated the construction of ever larger (in terms of the num-
ber of processors and storage) and faster (in terms of network speed and FLOPS)
systems.

186  ◾  Cloud Computing and Software Services

A typical example of such an application is calculating the solution of a linear
system such as Ax = b, a matrix solving computation. Matrix-based computations
are a key computational kernel in many scientific applications, where physics laws
are applied to solve the underlying problem. Typically, parallel implementations of
matrix computation work well in multi-processor environments because the input
matrices can be sliced horizontally and vertically into small blocks that are mapped
onto the available processors. The communications can take place in parallel, and
thanks to asynchronous communication libraries, most of these communications
can be overlapped with the actual computations. All these characteristics render
the matrix product kernel suitable to an efficient parallel implementation on high-
performance clusters. In fact, most powerful machines in the world are ranked on
the Top 500 [67] list using the highly parallel LINPACK benchmark [68], which
solves a dense linear system in double precision.

Another example of a tightly coupled application is wave simulation [69,70],
where one strategy is to divide the area of interest into multiple regions and let
each processor/process simulate the movements within one region. The movement
within a region is not independent of the movement within the other regions,
but rather depends on the movement in its neighbor regions, and as a result each
process needs to communicate with its neighbors. MPI is employed to exchange
data between neighboring nodes at each time step in order to pass the wave-field
between neighboring sub-regions.

Because of frequent communications between application tasks, the vol-
unteer computing platform does not offer a feasible solution for tightly coupled
applications.

8.3.3 Scientific Workflows
In the general case, a workflow is defined as the organization and the formalization
of several operations in order to describe a broader application. Adapted to scientific
domains, a scientific workflow is the orchestration of programs involving several

Time

p1

p2

p3

p4

Idle

Computing
Communication

Figure 8.5  Gantt chart representation of process activity.

Exploiting the Cloud of Computing Environments  ◾  187

computing tasks where the output of one task is an input to another task. It may
also be called a loosely coupled application as opposed to a tightly coupled applica-
tion. These loosely coupled applications are composed of many tasks that can be
individually scheduled on different computing resources to achieve a greater level
of performance.

Workflows constitute the current trend in the composition of large-scale sci-
entific applications. However, unlike the highly parallel applications, data and
control dependencies exist between tasks. Workflow tasks can be either stand-
alone applications or service invocations. Scientific workflows are used in many
domains such as bioinformatics, climate modeling, image analysis, astrophysics,
etc. [71–75].

In addition, scientific workflows can often be depicted as directed graphs,
which often helps to visualize the data or control dependencies that exist in the
overall application. There are many examples of workflow-based applications [74].
Here, we only describe some of them.

The bioinformatics project at Harvard University is conducting a wide search
for small untranslated RNAs (sRNAs) that regulate several processes, such as secre-
tion or virulence in bacteria. The sRNA identification protocol using high-through-
put technology (SIPHT) program [76] uses a workflow to automate the search
for sRNA encoding-genes for all of the bacterial replicons in the National Center
for Biotechnology Information (NCBI) database. The kingdom-wide prediction
and annotation of sRNA encoding genes involves a variety of individual programs.
These involve the prediction of Rho-independent transcriptional terminators, Basic
Local Alignment Search Tools (BLAST) comparisons of inter-genetic regions of
different replicons, and the annotations of any sRNAs that are found. This applica-
tion is using the Condor DAGMan engine [77] to run application tasks on a cluster
of computing nodes to deliver results. It also has a web portal from which end-users
can launch and see the annotations of sRNA encoding-genes. Figure 8.6 shows a
graphical representation of the SIPHT workflow.

The Montage [57] application was created by the NASA/IPAC Infrared Science
Archive. It is an open source toolkit and it can be used to generate custom mosaics
of the sky using input images in the Flexible Image Transport System (FITS) format
[78]. This workflow of computing tasks is now a standard workflow application and
it has been widely used to test workflow enactment systems [43,79,80]. During the
production of the final mosaic, the geometry of the output is calculated from the
geometry of the input images. The inputs are re-projected to be of the same spatial
scale and rotation. The background emissions in the images are then corrected to
be of the same level in all images. The re-projected, corrected images are co-added
to form the final mosaic. Figure 8.7 shows the Directed Acyclic Graph (DAG)
representation of the Montage application for one region of the sky. Through the
use of the Pegasus Workflow Management System [26], this application has been
successfully enabled in the TeraGrid environment [81] and also in the Amazon
EC2/S3 cloud [43].

188  ◾  Cloud Computing and Software Services

Bl
as

t

SR
N

A

FF
N

_p
ar

se

Bl
as

t_
ca

nd
i..

.
Bl

as
t_

Q
RN

A
Bl

as
t_

pa
ra

l..
.

SR
N

A
_a

nn
ot

...

Se
nd

em
ai

l

Bl
as

t_
sy

nt
e..

.

Pa
ts

er
_c

on
...

Pa
ts

er
Pa

ts
er

Pa
ts

er
Pa

ts
er Pa

ts
er

Pa
ts

er

Pa
ts

er
Pa

ts
er

Pa
ts

er
Pa

ts
er

Pa
ts

er

Pa
ts

er
Pa

ts
er

Pa
ts

er
Pa

ts
er

Pa
ts

er

Pa
ts

er

Pa
ts

er

Tr
an

st
er

m
RN

A
M

ot
if

Fi
nd

te
rm

Pa
ts

er

Fi
gu

re
 8

.6
 

SI
PH

T 
w

or
kfl

ow
 r

ep
re

se
nt

at
io

n.

Exploiting the Cloud of Computing Environments  ◾  189

These two examples from different science fields illustrate the use of scientific
workflows. In contrast to the tightly coupled parallel applications, the communica-
tion occurs at the end of the execution of one program and usually the communi-
cation is done via a file transfer. The characterization of such applications requires
identifying all the programs involved in the computation and understanding their
computational characteristics such as execution time, amount of storage needed,
and software requirements.

Not all workflows are based on standalone computations such as those described
above. Some workflows are rather an orchestration of service invocations. These
types of workflows are often common in biology, where large amounts of databases
and computational tools are made available to the community as research products
and models. For example, the Taverna Workbench tool [28,72] provides access to
web services through a graphical user interface. Figure 8.8 shows an example of

mProjectPP

mDiffFit mDiffFit mDiffFit

mConcatFit

mBgModel

mBackground

mlmgTbl

mAdd

mShrink

mJPEG

mBackground mBackground mBackground

mDiffFit mDiffFit mDiffFit

mProjectPP mProjectPP mProjectPP

Figure 8.7  Example of one Montage workflow.

190  ◾  Cloud Computing and Software Services

W
or

kf
lo

w
 in

pu
ts

Se
qu

en
ce

s

In
pu

t_
da

ta

Co
nt

en
t_

lis
t

ru
nC

lu
st

al
W

2

EB
I_

Cl
us

ta
lW

2_
po

ll_
jo

b

W
or

kf
lo

w
 in

pu
ts

Jo
b_

ID

ch
ec

kS
ta

tu
s

Is
_d

on
e

Jo
b_

st
at

us

W
or

kf
lo

w
 o

ut
pu

ts

Su
cc

es
s

U
np

ac
k_

al
ig

nm
en

t_
re

su
lt

W
or

kf
lo

w
 o

ut
pu

ts

Cl
us

ta
lW

_a
lig

nm
en

t
Cl

us
ta

lW
_g

ui
de

_t
re

e

G
et

_g
ui

de
_t

re
e_

re
su

lt

U
np

ac
k_

gu
id

e_
tr

ee
_r

es
ul

t
U

np
ac

k_
ou

tp
ut

_r
es

ul
t

G
et

_o
ut

pu
t_

re
su

lt

Cl
us

ta
lW

_o
ut

pu
t

Jo
b_

ID

G
et

_a
lig

nm
en

t_
re

su
lt

Jo
b_

pa
ra

m
s

Em
ai

l_
ad

dr
es

s

Fi
gu

re
 8

.8
 

EB
I C

lu
st

al
W

2 
w

or
kfl

ow
. (

Fr
om

 M
cW

ill
ia

m
, H

., 
EB

I C
lu

st
al

W
2,

 h
tt

p:
//

w
w

w
.m

ye
xp

er
im

en
t.

or
g/

w
or

kfl
ow

s/
20

3.
 W

it
h 

pe
rm

is
si

on
.)

Exploiting the Cloud of Computing Environments  ◾  191

a Taverna workflow shared through the myExperiment.org portal [82]. This appli-
cation performs a ClustalW [83] multiple sequence alignment using the EBI’s
ClustalW2 web service [84]. The input parameters are the set of sequences to align
and the e-mail address of the user. The results are the alignment, the guide tree
used to produce the final alignment, the job ID, and the output of the ClustalW
program.

8.4  Discussion
In this section, we aim to identify appropriate execution environments for differ-
ent types of applications. The Table 8.1 indicates which resources are appropriate
given the characteristics of the application in terms of computational, storage, and
communication needs as well as in terms of the desired resource availability, cost,
and desired security.

Ease of use is another characteristic that one could explore in the context of the
various computing environments. However, ease of use is dependent on the user’s
knowledge and familiarity with the various infrastructures. In all cases, however,
users need to learn new technologies and tools.

8.5  Conclusions
In this chapter, we described three main distributed computing environments that
are being used to advance science. We also described some of the programming
models that scientists use to perform computations in distributed environments.
We also illustrated the features of grids, clouds, and volunteer computing that are
appropriate for various application characteristics.

As we look at the developments in the area of computing, we can see how
over time, computer manufacturers and software providers are providing ever-
increasing capabilities. Until not long ago, a computing center would purchase
high-performance hardware and a service contract from a computer manufacturer
such as IBM, and although this model of compute cycle acquisition is still pres-
ent, we see more businesses providing more of the services backed by large scale
data and compute centers. In this model, the revenues to the companies are not
a single large-purchase, but are rather potentially growing over time. This model
can also potentially allow businesses to keep their customers for a longer term
as they provide ever more increasing functionality. The cost of maintenance of
computing resources can also be potentially lowered, because the maintenance is
concentrated in the large-scale centers and can be done in a flexible way without
exposing the changes to the users. This is in contrast to the current model, where
computer technicians need to be dispatched to customer sites and need to restore
the compute systems to the specifications of the customer.

192  ◾  Cloud Computing and Software Services
Ta

bl
e 

8.
1 

C
ri

te
ri

a 
to

 C
on

si
de

r 
W

he
n 

Se
le

ct
in

g 
a 

C
om

pu
ta

ti
on

al
 E

nv
ir

on
m

en
t

A
p

p
lic

at
io

n
 C

h
ar

ac
te

ri
st

ic
s/

Su
it

ab
ili

ty
 o

f a
 C

o
m

p
u

ti
n

g
En

vi
ro

n
m

en
t

G
ri

d
s

C
lo

u
d

s
Vo

lu
n

te
er

C

o
m

p
u

ti
n

g

C
om

pu
ta

ti
on

s

Si
n

gl
e

p
ro

ce
ss

o
r

st
an

d
-

al
o

n
e

co
d

es
Ye

s,
 b

u
t c

o
m

p
u

te
 s

it
e

p
o

lic
ie

s
o

ft
en

p

re
fe

r
m

u
lt

i-
p

ro
ce

ss
o

r
ap

p
lic

at
io

n
s

Ye
s,

 b
u

t m
ak

e
su

re
 to

 p
ic

k
th

e
ri

gh
t

vi
rt

u
al

 r
es

o
u

rc
e

in
st

an
ce

 w
it

h
 1

 c
o

re
Ye

s

M
u

lt
i-

p
ro

ce
ss

o
r

st
an

d
-

al
o

n
e

co
d

es
Ye

s,
 b

u
t n

ee
d

 to
 b

e
aw

ar
e

o
f

w
al

lc
lo

ck
 ti

m
e

(c
h

ec
kp

o
in

t l
o

n
g

co
m

p
u

ta
ti

o
n

s)

O
n

ly
 fo

r
a

sm
al

l n
u

m
b

er
 o

f c
o

re
s—

n
ee

d

to
 p

ic
k

th
e

ri
gh

t i
n

st
an

ce
 a

n
d

 c
re

at
e

th
e

ri
gh

t V
M

 w
it

h
 M

PI
 o

r
O

p
en

M
P

N
o

Se
rv

ic
e-

b
as

ed
 a

p
p

lic
at

io
n

s
N

o
t t

h
e

b
es

t e
n

vi
ro

n
m

en
t b

ec
au

se

o
f w

al
lc

lo
ck

 li
m

it
at

io
n

s
an

d

fi
re

w
al

l i
ss

u
es

Ye
s,

 m
ay

 w
an

t t
o

 c
o

n
si

d
er

 in
cr

ea
si

n
g

th
e

n
u

m
b

er
 o

f s
er

vi
ce

 in
st

an
ce

s
as

 th
e

co
m

p
u

ta
ti

o
n

al
 lo

ad
 in

cr
ea

se
s

N
o

C
om

pu
ta

ti
on

s

Ti
m

e-
cr

it
ic

al
 c

o
m

p
u

ta
ti

o
n

s
Ye

s,
 if

 r
es

o
u

rc
e

p
ro

vi
si

o
n

in
g

is

em
p

lo
ye

d
 o

r
p

ri
o

ri
ty

 q
u

eu
es

 a
re

p

ro
vi

d
ed

Ye
s

N
o

D
at

a 
co

m
m

un
ic

at
io

ns
 (

in
 t

ig
ht

ly
 c

ou
pl

ed
 a

nd
 w

or
kfl

ow
-b

as
ed

 a
pp

lic
at

io
ns

)

Fr
eq

u
en

t m
es

sa
ge

-b
as

ed

in
te

r-
p

ro
ce

ss
o

r
co

m
m

u
n

ic
at

io
n

s

Ye
s,

 a
lt

h
o

u
gh

 lo
n

g
d

u
ra

ti
o

n

ap
p

lic
at

io
n

s
w

it
h

 ti
m

es
 g

re
at

er

th
an

 w
al

lc
lo

ck
 ti

m
e

n
ee

d
 to

 b
e

ch
ec

kp
o

in
te

d

O
n

ly
 fo

r
p

ar
al

le
l c

o
d

es
 w

it
h

 s
m

al
l

n
u

m
b

er
s

o
f c

o
re

s
(r

ig
h

t n
o

w
 ≤

8)
; f

o
r

la
rg

er
 n

u
m

b
er

s
o

f c
o

re
s,

 n
ee

d
 to

 s
et

u

p
 m

es
sa

gi
n

g
o

ve
r

th
e

vi
rt

u
al

iz
ed

n

et
w

o
rk

 w
h

ic
h

 c
an

 b
e

sl
o

w

N
o

Exploiting the Cloud of Computing Environments  ◾  193
In

fr
eq

u
en

t m
es

sa
ge

-b
as

ed

co
m

m
u

n
ic

at
io

n
s

Ye
s

Ye
s,

 b
u

t f
o

r
la

rg
er

 n
u

m
b

er
s

o
f

p
ro

ce
ss

o
rs

 n
ee

d
 to

 s
et

 u
p

 M
PI

 a
cr

o
ss

th

e
V

M
s

N
o

In
fr

eq
u

en
t

co
m

m
u

n
ic

at
io

n
s

(b
as

ed

o
n

 fi
le

s
fo

r
ex

am
p

le
)

Ye
s,

 a
lt

h
o

u
gh

 if
 to

o
 m

an
y

fi
le

s
ar

e
b

ei
n

g
re

ad
 a

n
d

 w
ri

tt
en

, m
ay

 w
an

t
to

 c
o

n
si

d
er

 th
e

u
se

 o
f r

es
o

u
rc

es

w
it

h
 p

ar
al

le
l fi

le
 s

ys
te

m
s

su
ch

 a
s

Lu
st

er
 [8

6]
.

Ye
s,

 b
u

t n
ee

d
 to

 d
ec

id
e

w
h

et
h

er
 to

 u
se

th

e
cl

o
u

d
 s

to
ra

ge
 s

ys
te

m
, o

r
se

t u
p

 a

fi
le

 s
ys

te
m

 b
et

w
ee

n
 V

M
 in

st
an

ce
s,

 o
r

p
er

fo
rm

 c
o

m
m

u
n

ic
at

io
n

s
vi

a
st

o
ra

ge

ex
te

rn
al

 to
 th

e
cl

o
u

d

N
o

D
at

a 
st

or
ag

e

Sm
al

l d
at

a
fo

o
tp

ri
n

t
Ye

s
Ye

s,
 c

an
 fi

t w
it

h
in

 a
 V

M
 o

r
b

e
h

o
st

ed
 o

n

th
e

cl
o

u
d

 s
to

ra
ge

 s
er

vi
ce

Ye
s,

 li
m

it
ed

 to

m
eg

ab
yt

es

La
rg

e
d

at
a

fo
o

tp
ri

n
t

Ye
s,

 b
u

t m
ay

 h
av

e
to

 p
u

t d
at

a
in

 a

sp
ec

ia
liz

ed
 s

to
ra

ge
 s

ys
te

m
, s

u
ch

 a
s

SR
M

 [8
7]

.

Ye
s,

 b
u

t a
n

 a
p

p
ro

p
ri

at
e

co
m

p
u

te

in
st

an
ce

 m
ay

 h
av

e
to

 b
e

ch
o

se
n

 a
n

d

cl
o

u
d

 s
to

ra
ge

 u
se

d

N
o

So
ft

w
ar

e

Le
ga

cy
 s

o
ft

w
ar

e
Ye

s,
 if

 th
e

en
vi

ro
n

m
en

t i
s

ri
gh

t
Ye

s,
 if

 th
e

V
M

 c
an

 b
e

cr
ea

te
d

Pr
o

b
ab

ly
 n

o
t a

go

o
d

 id
ea

,
b

ec
au

se
 th

e
n

u
m

b
er

 o
f

p
o

te
n

ti
al

re

so
u

rc
es

 c
an

b

e
sm

al
l

(c
o

n
ti

n
u

ed
)

194  ◾  Cloud Computing and Software Services

Ta
bl

e 
8.

1 
(c

on
ti

nu
ed

) 
C

ri
te

ri
a 

to
 C

on
si

de
r 

W
he

n 
Se

le
ct

in
g 

a 
C

om
pu

ta
ti

on
al

 E
nv

ir
on

m
en

t

A
p

p
lic

at
io

n
 C

h
ar

ac
te

ri
st

ic
s/

Su
it

ab
ili

ty
 o

f a
 c

o
m

p
u

ti
n

g
en

vi
ro

n
m

en
t

G
ri

d
s

C
lo

u
d

s
Vo

lu
n

te
er

C

o
m

p
u

ti
n

g

So
ft

w
ar

e
re

q
u

ir
in

g
re

st
ri

ct
iv

e
lic

en
se

s
O

n
ly

 if
 a

lr
ea

d
y

in
st

al
le

d
 o

n
 th

e
si

te
Pr

o
b

ab
ly

 n
o

, i
ss

u
e

o
f l

ic
en

si
n

g
o

n
 V

M
s

ca
n

 b
e

lim
it

in
g

N
o

So
ft

w
ar

e
re

q
u

ir
in

g
sp

ec
ia

liz
ed

 li
b

ra
ri

es
Ye

s,
 b

u
t m

ay
 r

eq
u

ir
e

as
si

st
an

ce

fr
o

m
 s

ys
te

m
 a

d
m

in
is

tr
at

o
rs

 to

in
st

al
l a

n
d

 c
o

n
fi

gu
re

Ye
s,

 c
an

 b
e

p
u

t i
n

 a
 V

M
Ye

s,
 a

lt
h

o
u

gh

n
ee

d
s

sm
al

l
d

at
a

fo
o

tp
ri

n
t

Th
e

ap
p

lic
at

io
n

s
n

ee
d

s
to

 b
e

p
o

rt
ab

le

R
es

ou
rc

es

C
o

st
N

o
n

e,
 b

u
t t

h
e

u
se

r
n

ee
d

s
to

 a
p

p
ly

fo

r
cy

cl
es

 (T
er

aG
ri

d
) o

r
w

o
rk

w

it
h

in
 th

e
p

o
lic

ie
s

o
f a

 V
O

 (O
SG

)

In
 c

o
m

m
er

ci
al

 c
lo

u
d

s,
 c

o
st

s
u

su
al

ly

in
cl

u
d

e
th

e
co

st
 o

f t
h

e
co

m
p

u
te

in

st
an

ce
, s

to
ra

ge
, a

n
d

 d
at

a
tr

an
sf

er
 in

an

d
 o

u
t o

f t
h

e
cl

o
u

d

N
o

n
e

Exploiting the Cloud of Computing Environments  ◾  195

A
m

o
u

n
t o

f r
es

o
u

rc
es

av

ai
la

b
le

D
ep

en
d

s
o

n
 th

e
cy

cl
e

al
lo

ca
ti

o
n

an

d
/o

r
o

n
 th

e
V

O
 p

o
lic

y
In

 th
eo

ry
, u

n
lim

it
ed

; i
n

 p
ra

ct
ic

e,
 s

p
ec

ia
l

ag
re

em
en

ts
 w

it
h

 p
ro

vi
d

er
s

n
ee

d
 to

 b
e

m
ad

e
to

 a
cq

u
ir

e
si

gn
ifi

ca
n

t r
es

o
u

rc
es

D
ep

en
d

s
o

n
 th

e
p

o
p

u
la

 ri
ty

 o
f

th
e

p
ro

je
ct

R
es

o
u

rc
e

av
ai

la
b

ili
ty

—
st

ar
tu

p
 ti

m
e

o
f

ap
p

lic
at

io
n

s

D
ep

en
d

s
o

n
 r

es
o

u
rc

e
lo

ad
 a

n
d

 s
it

e
p

o
lic

ie
s,

 u
se

rs
 c

o
m

p
et

e
fo

r
re

so
u

rc
es

M
in

u
te

s
C

an
 v

ar
y

gr
ea

tl
y,

d

ep
en

d
s

o
n

th

e
re

ad
in

es
s

o
f v

o
lu

n
te

er
s

to
 p

ro
vi

d
e

re
so

u
rc

es
 to

th

e
p

ro
je

ct

Se
cu

ri
ty

X
50

9
ce

rt
ifi

ca
te

-b
as

ed
 (u

se
rs

 n
ee

d

to
 a

cq
u

ir
e

a
ce

rt
ifi

ca
te

 fr
o

m
 a

tr

u
st

ed
 a

u
th

o
ri

ty
—

ca
m

p
u

s
o

r
gr

id

o
p

er
at

io
n

s)

X
50

9
ce

rt
ifi

ca
te

-b
as

ed
 (u

se
rs

 n
ee

d
 to

ac

q
u

ir
e

a
ce

rt
ifi

ca
te

 fr
o

m
 th

e
cl

o
u

d

p
ro

vi
d

er
);

o
th

er
 s

ec
u

ri
ty

 m
o

d
el

s
ca

n

b
e

d
ep

lo
ye

d
 in

si
d

e
th

e
V

M
S

C
o

m
p

u
ta

ti
o

n
s

ar
e

sa
n

d
b

o
xe

d

an
d

 d
at

a
ar

e
en

cr
yp

te
d

N
et

w
o

rk
 p

er
fo

rm
an

ce

b
et

w
ee

n
 p

ro
ce

ss
o

rs
H

ig
h

-p
er

fo
rm

an
ce

 c
o

n
n

ec
ti

vi
ty

C
o

m
m

o
d

it
y

gi
ga

b
it

 E
th

er
n

et
C

o
n

su
m

er
-

gr
ad

e
In

te
rn

et

196  ◾  Cloud Computing and Software Services

It will be interesting to see how cloud computing evolves and how it can be
made relevant to science applications. Will the campus and national computing
centers disappear?

References
 1. D. Thain et al., Distributed computing in practice: The Condor experience [Research

articles], Concurrency and Computation: Practice and Experience, 17, 323–356, 2005.
 2. I. Foster et al., The anatomy of the grid: Enabling scalable virtual organizations, The

International Journal of High Performance Computing Applications, 15, 200–222, 2001.
 3. E. Korpela et al., SETI@home: Massively distributed computing for SETI, Computing

in Science and Engineering, 3, 5, 2001.
 4. G. Lawton, Moving the OS to the Web, Computer, 41, 4, 2008.
 5. Enabling Grids for E-sciencE (EGEE). Available: http://www.eu-egee.org/
 6. The Pacific Rim Application and Grid Middleware Assembly. Available: http://www.

pragma-grid.net
 7. TeraGrid. Available: http://www.teragrid.org/
 8. Open Science Grid. Available: www.opensciencegrid.org
 9. DutchGrid: Large-scale distributed computing in the Netherlands. Available: http://

www.dutchgrid.nl/
 10. Amazon Elastic Compute Cloud. Available: http://aws.amazon.com/ec2/
 11. Google App Engine. Available: http://code.google.com/appengine/
 12. IBM Cloud Computing. http://www.ibm.com/ibm/cloud/
 13. Windows Azure Platform. Available: http://www.microsoft.com/azure/
 14. L. Youseff et al., Toward a unified ontology of cloud computing, in Grid Computing

Environments Workshop (GCE ’08), Austin, TX, 2008.
 15. World Community Grid. Available: http://www.worldcommunitygrid.org/
 16. OurGrid community. Available: http://www.ourgrid.org/
 17. Distributed European Infrastructure for Supercomputing Applications. Available:

http://www.deisa.eu/
 18. EGEE: CIC Operations Portal. Available: http://cic.gridops.org/index.php?section=

home&page=volist
 19. EGEE user forum. Available: http://egee-uf3.healthgrid.org/
 20. EGEE training event. Available: http://www.egee.nesc.ac.uk/schedreg/index.cfm
 21. V. Talwar et al., An environment for enabling interactive grids, in Symposium on High

Performance Distributed Computing (HPDC’03), Seattle, WA, 2003.
 22. H. Xiao et al., An implementation of interactive jobs submission for grid comput-

ing portals, in Proceedings of the 2005 Australasian Workshop on Grid Computing
and E-Research, vol. 44, Newcastle, Australia: Australian Computer Society, Inc.,
Darlinghurst, Australia, 2005, pp. 67–70.

 23. I. Sfiligoi, Making science in the Grid world: Using glideins to maximize scientific
output, in Nuclear Science Symposium Conference Record, Honolulu, HI, 2007, pp.
1107–1109.

 24. E. Deelman et al., GriPhyN and LIGO, Building a virtual data Grid for gravitational
wave scientists, in High Performance Distributed Computing (HPDC’02), Edinburgh,
Scotland, 2002.

Exploiting the Cloud of Computing Environments  ◾  197

 25. D. Lingrand et al., Modeling the latency on production grids with respect to the
 execution context, Parallel Computing (PARCO), 35, 493–511, 2009. http://rainbow.
polytech.unice.fr/publis/lingrand-glatard-etal:2009.pdf

 26. E. Deelman et al., Pegasus: A framework for mapping complex scientific workflows
onto distributed systems, Scientific Programming Journal, 13, 219–237, 2005.

 27. T. Fahringer et al., ASKALON: A tool set for cluster and Grid computing, Concurrency
and Computation: Practice and Experience, 17, 143–169, 2005.

 28. T. Oinn et al., Taverna: A tool for the composition and enactment of bioinformatics
workflows, Bioinformatics, 20, 3045–3054, 2004.

 29. SAGA—ASimpleAPI for GridApplications. Available: http://saga.cct.lsu.edu/
 30. S. Jha et al., Grid interoperability at the application level using SAGA, in International

Grid Interoperabilty and Interoperation Workshop (IGIIW 2007), Bangalore, India,
2007.

 31. List of TeraGrid Science Gateways. Available: http://teragrid.org/gateways/gateway_
list.php

 32. Online Simulation and more for Nanotechnology. Available: http://nanohub.org/
 33. GLite: Lightweight Middleware for Grid Computing. Available: http://glite.web.cern.

ch/glite/
 34. Apex: Salesforce on-demand programming language andframework. Available: http://

developer.force.com/
 35. Google Apps. Available: http://www.google.com/apps/intl/en/business/index.html
 36. Salesforce: Customer Relationships Management Solutions. Available: http://www.

salesforce.com/crm/
 37. GoGRID. http://www.gogrid.com/
 38. Amazon Simple Storage Service. Available: http://aws.amazon.com/s3/
 39. D. Nurmi et al., The eucalyptus open-source cloud-computing system, in Cluster

Computing and the Grid CCGRID’09, Shanghai, China, 2009, pp. 124–131.
 40. OpenNebula: Open source toolkit for cloud computing. Available: http://www.

opennebula.org
 41. Nimbus. Available: http://workspace.globus.org/
 42. Science Clouds. Available: http://workspace.globus.org/clouds/
 43. E. Deelman et al., The cost of doing science on the cloud: the Montage example, in

SC ’08: Proceedings of the 2008 ACM/IEEE conference on Supercomputing, Austin, TX,
2008, pp. 1–12.

 44. K. Keahey and T. Freeman, Science Ccouds: Early experiences in cloud computing for
scientific applications, in Cloud Computing and Its Applications (CCA-08), Chicago, IL,
2008.

 45. A. Matsunaga et al., CloudBLAST: Combining mapreduce and virtualization on distrib-
uted resources for bioinformatics applications, in eScience ’08, Indianapolis, IN, 2008.

 46. L. Youseff et al., Evaluating the performance impact of xen on MPI and process execu-
tion for HPC systems, in Virtualization Technology in Distributed Computing (VTDC
2006), Tampa, FL, 2006.

 47. P. Barham et al., Xen and the art of virtualization, in 19th ACM Symposium on Operating
Systems Principles (SOSP-03), Bolton Landing, NY, 2003, pp. 163–167.

 48. ALADDIN-G5K. Available: https://www.grid5000.fr
 49. R. Bolze et al., Grid’5000: A large scale and highly reconfigurable experimental grid tes-

tbed, International Journal of High Performance Computing Applications, 20, 481–494,
2006.

198  ◾  Cloud Computing and Software Services

 50. D. P. Anderson, BOINC: A system for public-resource computing and storage, in Fifth
IEEE/ACM International Workshop on Grid Computing, Pittsburgh, PA, 2004.

 51. D. P. Anderson and K. Reed, Celebrating diversity in volunteer computing, in Hawaii
International Conference on System Sciences (HICSS’09), Waikoloa, HI, 2009.

 52. V. Bertis et al., Large scale execution of a bioinformatic application on a volunteer
grid, in Workshop on Parallel and Distributed Scientific and Engineering Computing
(PDSEC08), Miami, FL, 2008.

 53. Grid MP overview. Available: http://www.univaud.com/hpc/products/grid-mp/
 54. F. Cappello et al., Computing on large-scale distributed systems: XtremWeb architec-

ture, programming models, security, tests and convergence with grid, Future Generation
Computer Systems, 21, 417–437, 2005.

 55. BOINC projects list. Available: http://boinc.berkeley.edu/projects.php
 56. Z. D. Wigder, 2009, Global Online Population Forecast, 2008 to 2013. Available:

http://www.forrester.com/Research/Document/Excerpt/0,7211,53355,00.html
 57. Montage project. Available: http://montage.ipac.caltech.edu/
 58. J. Napper and P. Bientinesi, Can cloud computing reach the top500? in Proceedings of

the Workshop on UnConventional High Performance Computing, New York, 2009.
 59. D. Kondo et al., Cost-benefit analysis of cloud computing versus desktop grids, in 18th

International Heterogeneity in Computing Workshop, Rome, Italy, 2009.
 60. E. Walker, The real cost of a CPU hour, Computer, 42, 35–41, 2009.
 61. V. Breton et al., Grid added value to address malaria, in Cluster Computing and the Grid

Workshops, Singapore, 2006.
 62. H.-C. Lee et al., Grid-enabled high-throughput in silico screening against influenza A

neuraminidase, IEEE Transactions on NanoBioscience, 5, 288–295, 2006.
 63. D. A. Stainforth et al., Uncertainty in predictions of the climate response to rising

levels of greenhouse gases, Nature, 433, 403–406, 2005.
 64. B. Allcock et al., High-performance remote access to climate simulation data: A chal-

lenge problem for data grid technologies, in SuperComputing (SC’01), Denver, CO,
2001.

 65. MPI: Message Passing Interface. Available: http://www.mpi-forum.org/
 66. PVM: Parallel Virtual Machine. http://www.csm.ornl.gov/pvm/
 67. TOP500: Supercomputer sites. Available: http://www.top500.org/
 68. A. Petitet et al., HPL—A portable implementation of the high-performance linpack

benchmark for distributed-memory computers. Available: http://www.netlib.org/
benchmark/hpl/

 69. S. E. Minkoff, Spatial parallelism of a 3D finite difference velocity-stress elastic wave
propagation code, SIAM Journal on Scientific Computing, 24, 1–19, 2002.

 70. T. Bohlen, Parallel 3D viscoelastic finite difference seismic modelling, Computers and
Geosciences, 28, 887–899, 2002.

 71. E. Deelman et al., Managing large-scale workflow execution from resource provision-
ing to provenance tracking: The cybershake example, in e-Science, Amsterdem, the
Netherlands, 2006.

 72. T. Oinn et al., Taverna/myGrid: Aligning a workflow system with the life sciences com-
munity, in Workflows for e-Science, I. J. Taylor et al., Eds., ed: Springer-Verlag London
Ltd., Godalming, U.K., 2007, pp. 300–319.

 73. I. J. Taylor et al., Eds., Workflow for e-Science, Springer, New York, 2007.
 74. S. Bharathi et al., Characterization of scientific workflows, in The Third Workshop on

Workflows in Support of Large Scale Science (WORKS08), Austin, TX, 2008.

Exploiting the Cloud of Computing Environments  ◾  199

 75. J. Montagnat et al., Workflow-based data parallel applications on the EGEE produc-
tion grid infrastructure, Journal of Grid Computing, 6, 369–383, 2008.

 76. J. Livny et al., High-throughput, kingdom-wide prediction and annotation of bacterial
non-coding RNAs, PLoS ONE, 3(9), e3197, 2008.

 77. DAGMan: Directed Acyclic Graph Manager. Available: http://www.cs.wisc.edu/
condor/dagman

 78. FITS: Flexible Image Transport System. Available: http://fits.gsfc.nasa.gov/
 79. A. Barker et al., Eliminating the middleman: Peer-to-peer dataflow, Presented at the

Proceedings of the 17th International Symposium on High Performance Distributed
Computing, Boston, MA, 2008.

 80. S.-M. Park and M. Humphrey, Data throttling for data-intensive workflows, in IEEE
International Symposium on Parallel and Distributed Processing (IPDPS 2008), Miami,
FL, 2008.

 81. N. Anagnostou et al., Montage: Experiences in astronomical image mosaicking on the
teragrid, in SuperComputing (SC’04), Pittsburgh, PA, 2004.

 82. D. D. Roure et al., myExperiment: Defining the social virtual research environment,
Presented at the Proceedings of the 2008 Fourth IEEE International Conference on eScience,
Indianapolis, IN, 2008.

 83. M. A. Larkin et al., Clustal W and Clustal X version 2.0, Bioinformatics, 23, 2947–
2948, Nov 01 2007.

 84. EBI’s ClustalW2 web service. Available: http://www.ebi.ac.uk/Tools/webservices/
services/clustalw2

 85. H. McWilliam, EBI ClustalW2. Available: http://www.myexperiment.org/
workflows/203

 86. Lustre file system. Available: www.lustre.org
 87. A. Shoshani et al., Storage resource managers: Middleware components for grid stor-

age, in The Nineteenth IEEE Symposium on Mass Storage Systems (MSS’02), College
Park, MA, 2002.

201

Chapter 9

Granules: A Lightweight 
Runtime for Scalable 
Computing with Support 
for Map-Reduce

Shrideep Pallickara, Jaliya Ekanayake,
and Geoffrey Fox

Contents
9.1 Introduction ...202
9.2 NaradaBrokering ..203
9.3 Granules ...205

9.3.1 Computational Task ...205
9.3.2 Datasets and Collections ...206
9.3.3 Specifying a Scheduling Strategy ...206
9.3.4 Finite-State Machine for a Computational Task207
9.3.5 Interleaving Execution of Computational Tasks208

9.3.5.1 Sizing Thread-Pools ..208
9.3.6 Diagnostics ...208

202  ◾  Cloud Computing and Software Services

9.1  Introduction
Cloud computing has gained significant traction in recent years. By facilitating
access to an elastic (meaning the available resource pool that can expand or con-
tract over time) set of resources, cloud computing has demonstrable applicability to
a wide range of problems in several domains.

Appealing features within cloud computing include access to a vast number
of computational resources and inherent resilience to failures. The latter feature
arises, because in cloud computing the focus of execution is not a specific, well-
known resource but rather the best available one. Another characteristic of a lot of
programs that have been written for cloud computing is that they tend to be state-
less. Thus, when failures do take place, the appropriate computations are simply
relaunched with the corresponding datasets.

Among the forces that have driven the need for cloud computing are falling
hardware costs and burgeoning data volumes. The ability to procure cheaper, more
powerful CPUs coupled with improvements in the quality and capacity of networks
have made it possible to assemble clusters at increasingly attractive prices. The pro-
liferation of networked devices, Internet services, and simulations has resulted in

9.4 Support for Map-Reduce in Granules ..209
9.4.1 Two Sides of the Same Coin ...210
9.4.2 Setting Up Graphs .. 211
9.4.3 Creating Computational Pipelines .. 211
9.4.4 Observing the Life Cycle of a Pipeline ..212

9.5 Developing and Deploying Applications Using Granules212
9.5.1 Developing Applications ...212

9.5.1.1 Initialization ...213
9.5.1.2 Processing Logic ...213
9.5.1.3 Scheduling Strategy ..213

9.5.2 Deploying Applications Using Granules214
9.5.2.1 Initializing Communications and Resource Discovery.....214
9.5.2.2 Initializing and Deploying Computational Tasks214
9.5.2.3 Tracking/Steering a Deployed Application 215

9.6 Related Work ... 215
9.7 Benchmarks ...217

9.7.1 Streaming Substrate ..217
9.7.2 Information Retrieval: Exactly-Once ..218
9.7.3 k-Means: Iterative ..219
9.7.4 Periodic Scheduling ..220
9.7.5 Data Driven ..221
9.7.6 Assembling mRNA Sequences ...222

9.8 Conclusions ..224
References ...224

Granules  ◾  203

large volumes of data being produced. This, in turn, has fueled the need to process
and store vast amounts of data. These data volumes cannot be processed by a single
computer or a small cluster of computers. Furthermore, in most cases, this data can
be processed in a pleasingly parallel fashion. The result has been the aggregation of
a large number of commodity hardware components in vast data centers.

Map-Reduce [1], introduced by Dean and Ghemawat at Google, is the most
dominant programming model for developing applications in cloud settings. Here,
large datasets are split into smaller, more manageable sizes, which are then pro-
cessed by multiple map instances. The results produced by individual map func-
tions are then sent to reducers, which collate these partial results to produce the final
output. A clear benefit of such concurrent processing is a speed-up that is propor-
tional to the number of computational resources. Map-Reduce can be thought of
as an instance of the Single Program/Process, Multiple Data (SPMD) [2] program-
ming model for parallel computing introduced by Federica Darema. Applications
that can benefit from Map-Reduce include data and/or task-parallel algorithms in
domains such as information retrieval, machine learning, graph theory, and visu-
alization, among others.

In this chapter, which is an extended version of our paper [21], we describe
Granules [3], a lightweight streaming-based runtime for cloud computing. Granules
allows processing tasks to be deployed on a single resource or a set of resources.
Besides the basic support for Map-Reduce, we have incorporated support for vari-
ants of the Map-Reduce framework that are particularly suitable for scientific appli-
cations. Unlike most Map-Reduce implementations, Granules uses streaming for
disseminating intermediate results, as opposed to using file-based communications.
This leads to demonstrably better performance (see benchmarks in Section 9.7).

This chapter is organized as follows. In Section 9.2, we provide a brief overview
of the NaradaBrokering substrate that we use for streaming. We discuss some of
the core elements of Granules in Section 9.3. Section 9.4 outlines our support for
Map-Reduce and for the creation of complex computational pipelines. Section 9.5
describes the process of developing and deploying applications using Granules. In
Section 9.6, we describe related work in this area. In Section 9.7, we profile several
aspects of the Granules runtime, and where possible, contrast its performance with
comparable systems, such as Hadoop, Dryad, and MPI (Message Passing Interface).
In Section 9.8, we present our conclusions.

9.2  NaradaBrokering
Granules uses the NaradaBrokering [4–6] streaming substrate (developed by us)
for all its streams disseminations. The NaradaBrokering content distribution net-
work (depicted in Figure 9.1) comprises a set of cooperating router nodes known as
brokers. Producers and consumers do not directly interact with each other. Entities,
which are connected to one of the brokers within the broker network, use their

204  ◾  Cloud Computing and Software Services

hosting broker to funnel streams into the broker network and, from thereon, to
other registered consumers of those streams.

NaradaBrokering is application independent and incorporates several services
to mitigate network-induced problems as streams traverse domains during dissemi-
nations. This system provisions easy-to-use guarantees while delivering consistent
and predictable performance that is adequate for use in real-time settings.

Consumers of a given data stream can specify, very precisely, the portions of the
data stream that they are interested in consuming. By preferentially deploying links
during disseminations, the routing algorithm [4] in NaradaBrokering ensures that
the underlying network is optimally utilized. This preferential routing ensures that
consumers receive only those portions of streams that are of interest to them. Since
a given consumer is typically interested in only a fraction of the streams present in
the system, preferential routing ensures that a consumer is not deluged by streams
that it will subsequently discard.

The system incorporates support for reliable streaming and secure streaming. In
reliable streaming, the substrate copes with disconnects and process/link failures of
different components within the system with the ability to fine-tune redundancies
[5] for a specific stream. Secure streaming [6] enforces the authorization and con-
fidentiality constraints associated with the generation and consumption of secure
streams while coping with denial-of-service attacks.

Some of the domains that NaradaBrokering has been deployed in include earth-
quake science, particle physics, environmental monitoring, geosciences, geographic
information system (GIS) systems, and defense applications.

Producers or consumers

Broker node

Figure 9.1  NaradaBrokering broker network.

Granules  ◾  205

9.3  Granules
Granules orchestrates the concurrent execution of processing tasks on a distributed
set of machines. Granules is itself distributed, and its components permeate not
only the computational resources on which it interleaves processing, but also the
desktop from where the applications are being deployed in the first place. The run-
time manages the execution of a set of processing tasks through various stages of
their life cycle: deployment, initialization, execution, and termination. Figure 9.2
depicts the various components that comprise Granules.

9.3.1 Computational Task
The most fundamental unit in Granules is the notion of a computational task. This
computational task encapsulates processing functionality, specifies its scheduling
strategy, and operates on different types of datasets. These computational tasks
can take on additional interchangeable roles (such as map and reduce) and, when
cascaded, can form complex execution pipelines.

Computational tasks require the domain specialists to specify processing func-
tionality. This processing typically operates upon a collection of datasets encapsu-
lated within the computational task.

The computational task encapsulates functionality for processing for a given
fine-grained unit of data. This data granularity could be a packet, a file, a set of files,
or a database record. For example, a computational task can be written to evaluate a
regular expression query (grep) on a set of characters, a file, or a set of files. In some

R1

G
R2

G
RN

G

C C
G

A
G

Discovery
services

Life-cycle
management

Diagnostics

Deployment
manager

Concurrent
execution

queue
Dataset

initializer

Content distribution network

A A

GranulesG
C Client Computational resourcesRX

Granules

Figure 9.2  Overview of the Granules runtime.

206  ◾  Cloud Computing and Software Services

cases, there will not be a specific dataset; rather, each computational task instance
initializes itself using a random-seed generator.

Computational tasks include several metadata, such as versioning information,
time stamps, domain identifiers, and computation identifiers. Individual instances
of the computational tasks include instance identifiers and task identifiers, which in
turn allows us to group several related computational tasks together.

9.3.2 Datasets and Collections
In Granules, datasets are used to simplify access to the underlying data type.
Datasets currently supported within Granules include streams and files; support
for databases is being incorporated. For a given data type, besides managing the
allocation and reclamation of assorted resources, Granules also mediates access to
it. For example, Granules performs actions related to simplifying the production
and consumption of streams, reading and writing of files, and transactional access
to databases.

A data collection is associated with every computational task. A data collection
represents a collection of datasets, and maintains information about the type, num-
ber, and identifiers associated with every encapsulated dataset.

All that the domain specialist needs to specify is the number and type of data-
sets involved. The system imposes no limits on the number of datasets within a
dataset collection. During initializations of the dataset collection, depending on
the type of the constituent datasets, Granules subscribes to the relevant streams,
configures access to files on networked file systems, and sets up connections Java
Database Connectivity (JDBC) to the databases.

Dataset collections allow observers to be registered to track data availability,
dataset initializations, and closure. This simplifies data processing, since it obviates
the need to perform polling.

9.3.3 Specifying a Scheduling Strategy
Computational tasks specify a scheduling strategy, which in turn governs their
lifetimes. Computational tasks can specify their sched-
uling strategy along three dimensions (see Figure 9.3).
The counts axis specifies the number of times a compu-
tational task needs to be executed. The data driven axis
specifies that the computational task needs to be sched-
uled for execution whenever data is available on any
one of its constituent datasets. The periodicity axis spec-
ifies that computational tasks be periodically scheduled
for execution at predefined intervals (specified in ms).

Each of these axes can extend to infinity, in which
case, it constitutes a stay-alive primitive. A domain

Counts

Data driven

Periodicity

Figure 9.3  Dimensions 
for scheduling strategy.

Granules  ◾  207

specialist can also specify a custom scheduling strategy that permutes along these
three dimensions. Thus, one can specify a scheduling strategy that limits a compu-
tational task to be executed a maximum of 500 times either when data is available
or at regular intervals.

A computational task can change its scheduling strategy during execution, and
Granules will enforce the newly established scheduling strategy during the next
round of execution (Section 9.3.5). This scheduling change can be a significant
one—from data driven to periodic. The scheduling change could also be a minor
one with changes to the number of times the computation needs to be executed, or
with an update to the periodicity interval.

In addition to the aforementioned primitives, another primitive—stay alive
until termination condition reached—can be specified. In this case, the computa-
tional task continues to be “stay alive” until the computational task asserts that its
termination condition has been reached. The termination condition overrides any
other primitives that may have been specified and results in the garbage collection
of the computational task.

9.3.4 Finite-State Machine for a Computational Task
At a given computational resource, Granules maintains a finite-state machine
(FSM) for every computational task. This FSM, depicted in Figure 9.4, has four
states: initialize, activated, dormant, and terminate.

The transition triggers for this FSM include external requests, elapsed time
intervals, data availability, reset counters, and assertions of the termination condi-
tion being reached.

When a computational task is first received in a deployment request, Granules
proceeds to initialize the computational task. The FSM created for this computa-
tional task starts off in the initialize state.

If, for some reason, the computational task cannot proceed in its execution,
either because the datasets are not available or the start-up time has not yet elapsed,
the computational task transitions into the dormant state. If there were problems in
initialization, the computational task transitions into the terminate state.

Terminate

Initialize

Dormant

Activated

Figure 9.4  FSM for a computational task.

208  ◾  Cloud Computing and Software Services

If, on the other hand, the computational task was initialized successfully, and
is ready for execution with accessible datasets, it transitions into the activated state.

9.3.5 Interleaving Execution of Computational Tasks
At each computational resource, Granules maintains a pool of worker threads to
manage and interleave the concurrent execution of multiple computational tasks.

When a computational task is activated and ready for execution, it is moved
into the activated queue. As and when worker threads become available, the com-
putational tasks are pulled from the first in first out (FIFO) queue and executed in
a separate thread. Upon completion of the computational task, the worker thread is
returned back to the thread-pool, to be used to execute other pending computational
tasks within the activated queue. The computational task is placed either in the dor-
mant queue or scheduled for garbage collection depending on the state of its FSM.

After a computational task has finished its latest (or the first) round of execu-
tion, checks are made to see if it should be terminated. To do so, the scheduling
strategy associated with the computational task is retrieved. If a computational
task needs to execute a fixed number of times, a check is made to see if the counter
has reset. If the computational task specifies a stay-alive primitive based either on
data availability or periodicity, checks are made to see if the datasets continue to be
available or if the periodicity interval has elapsed. A check is also made to see if the
computational task has asserted that its termination condition has been reached.

If none of these checks indicate that the computational task should be termi-
nated, it is scheduled for another round of execution or it transitions into the dor-
mant state. A computational task can continually toggle between the dormant and
the activated state till a termination condition has been reached.

9.3.5.1 Sizing Thread-Pools

The number of worker threads within the thread-pool is configurable. In general,
the number of threads needs to be balanced so that the accrued concurrency gains
are not offset by context-switching overheads among the threads. As a general rule,
it is a good idea to set this number to be approximately equal to the number of
execution pipelines available on a given machine. Thus, for a quad-core CPU with
two execution pipelines per core, the thread-pool will be set up to have approxi-
mately eight threads.

9.3.6 Diagnostics
In Granules, a user can track the status of a specific computational task or collec-
tions (job) of computational tasks. The system maintains diagnostic information
about every computational task. This includes information about the number of
times a computational task was scheduled for execution, its queuing overheads, its

Granules  ◾  209

CPU-bound time, the time it was memory-resident, and the total execution time. A
computational task can also assert that diagnostic messages be sent back to the cli-
ent during any (or some) of its state transitions. On the client side, an observer can
be registered for collections of computational tasks to track their progress without
the need to actively poll individual computational tasks.

9.4  Support for Map-Reduce in Granules
Map-Reduce is the dominant framework used in cloud computing settings. In
Map-Reduce, a large dataset is broken up into smaller chunks that are concurrently
operated upon by map function instances. The results from these map functions
(usually, <key, value> pairs) are combined in the reducers, which collate the values
for individual keys. Typically, there are multiple reducers, and the outputs from
these reducers constitute the final result. This is depicted in Figure 9.5.

The Map-Reduce framework has several advantages. First, the domain scientist
only needs to provide the Map-Reduce functionality and the datasets. Second, it is
the responsibility of the framework to transparently scale as the number of available
resources, and the problem size, increases. Finally, the orchestration of the concur-
rent data-parallel execution is managed by the framework.

In traditional Map-Reduce, intermediate stages exchange results using a set of
<key, value> pairs. We have incorporated support for this basic result type. But we
have also incorporated support for exchange of primitive data types, such as int,
short, boolean, char, long, float, and double. We have also incorpo-
rated support for exchanging arrays ([]) and 2D arrays ([][]) of these primitive data
types. There is also support for exchanging Objects that encapsulated compound
data types, along with arrays and 2D arrays of these Objects.

The intermediate results in most Map-Reduce implementations utilize file IO
for managing results produced by the intermediate stages. The framework then
notifies appropriate reducers to pull or retrieve these results for further processing.

d1

d2

dN

Map1

Map2

MapN

Reduce1

ReduceK

o1

oK

D
at

as
et

Figure 9.5  Basic Map-Reduce framework.

210  ◾  Cloud Computing and Software Services

Depending on the application, the overheads introduced by performing such
disk-IO can be quite high. In Granules, we use streaming to push these results
onto appropriate reducers. Streaming, as validated by our benchmarks (described
in Section 9.7), is significantly faster, and we think that there are several classes of
applications that can benefit from this.

Additionally, since the results are being streamed as and when they have been
computed, successive stages have access to partial results from preceding stages
instead of waiting for the entire computation to complete. This is particularly use-
ful in situations where one is interested in getting as many results as possible within
a fixed amount of time.

9.4.1 Two Sides of the Same Coin
In Granules, map and reduce are two roles associated with the computational task.
These roles inherit all the computational task functionality, while adding function-
ality specific to their roles.

The map role adds functionality related to adding, removing, tracking, and
enumerating the reducers associated with the map function. Typically, a map func-
tion has one reducer associated with it. In Granules, we do not limit the number
of reducers associated with a map function. This feature can be used to fine-tune
redundancies within a computational pipeline.

The reduce role adds functionality related to adding, removing, tracking, and
enumerating maps associated with it. The reducer has facilities to track output
generated by the constituent maps. Specifically, a reducer can determine if par-
tial or complete outputs have been received from the maps. The reduce role also
incorporates support to detect and discard any duplicate outputs that may be
received.

The map and reduce roles have facilities to create and publish results. The
payloads for these results can be primitive data types that we discussed earlier,
Objects encapsulating compound data types, <key, value> pairs, arrays, and
2D arrays of the same. In Granules, generated results include sequencing infor-
mation and metadata specific to the generator. Additionally, an entity is allowed
to assert if these results are partial results and/or if the processing has been
completed.

Since map and reduce are two roles of the computational task in Granules, they
inherit functionality related to scheduling strategy (and life-cycle management),
diagnostic strategy, and dataset management.

Individual map and reduce instances toggle between the activated and dor-
mant states (Section 9.3.5) till such time that they are ready to assert that their
termination condition has been reached. For example, a reducer may assert that it
has reached its termination condition only after it has received, and processed, the
outputs of its constituent maps.

Granules  ◾  211

9.4.2 Setting Up Graphs
Granules supports a set of operations that allow graphs to be set up. Individual
maps can add/remove reducers. Similarly, reducers are allowed to add/remove
maps. The functions are functionally equivalent. Granules also allows the map
and reduce roles to be interchangeable: a map can act as a reducer, and vice versa.
Figure 9.6 depicts how support for addition/removal of roles combined with role
interchangeability can be used to create a graph with a feedback loop. In our
benchmarks, involving the k-means machine learning algorithm, we have three
stages with a feedback loop from the output of stage 2 to its input. Granules man-
ages overheads related to ensuring that the outputs from the map are routed to the
correct reducers.

Additionally, Granules can create execution graphs once the numbers of map
and reduce instances in a pipeline have been specified. Granules ensures the appro-
priate linkage of the Map-Reduce instances.

9.4.3 Creating Computational Pipelines
Typically, in Map-Reduce, the instances that comprise an execution pipeline are
organized in a directed acyclic graph (DAG), with the execution proceeding in
sequence through monotonically increasing stages.

In Granules, we have incorporated support for cycles to be present. This allows
Granules to feedback the outputs of some stage, within a pipeline, to any of its pre-
ceding stages. The system places no restrictions on the span length, or the number,
of the feedback in the pipeline. In a sense it can be argued that Granules supports
both data- and control-flow graphs. An example of such a computational graph in
Granules is depicted in Figure 9.7.

One feature of the computational task plays a role in allowing these loops:
the notion of the stay-alive computation. Furthermore, since this is available at
the microlevel (computational task), individual stages, collection of stages, or the

M1

M2

M3

M4

R1

R2

RM
RM.addreduce (M1)
RM.addreduce (M2)
RM.addreduce (M3)
RM.addreduce (M4)

Figure 9.6  Creating a simple feedback loop.

212  ◾  Cloud Computing and Software Services

computational pipeline itself can be dependent on iterative, periodic, data-driven,
or termination conditions.

Granules manages the pipeline complexity. The domain scientist does not need
to cope with fan-in complexity, which corresponds to the number of units that feed
results into a given instance. Once a pipeline has been created, a domain specialist
does not have to cope with IO, synchronization, or networking-related issues. The
runtime includes facilities to track outputs from preceding stages.

9.4.4 Observing the Life Cycle of a Pipeline
At the client side, during the deployment process, Granules allows a life-cycle
observer to be registered for an execution pipeline. This observer processes diag-
nostic messages received from different computational resources running Granules.
These diagnostic messages relate to state transitions associated with the different
computational task instances (and the map and reduce roles) and the pertinent
metrics associated with the computation task. The life-cycle observer reports to the
client upon completion of an execution pipeline. The observer also reports errors in
the execution of any of the units that comprise the pipeline.

9.5   Developing and Deploying 
Applications Using Granules

In this section, we describe the process of developing and deploying applications
using Granules. In both cases, Granules incorporates support for utility classes,
whose behavior may be extended to suit specific needs.

9.5.1 Developing Applications
Granules simplifies the process of developing applications. Developers sim-
ply extend the MapReduceBase class. This class implements functionality that
encompasses both the map and reduce roles of a computation. One requirement is
that the derived class has exactly one constructor, which does not take any argu-
ments. Developers of the derived class only need to implement the execute()

Stage 1 Stage 2 Stage 3

Figure 9.7  Creating pipelines with cycles.

Granules  ◾  213

method. Typical steps involved in implementing this method include initialization
of the datasets and data structures, processing logic, and specification of a schedul-
ing strategy.

9.5.1.1 Initialization

Typically, depending on the type of the dataset, initialization of the datas-
ets involved in the processing is performed automatically. The designer sim-
ply specifies the identifiers for the dataset. Initializations of the data structures
needed by the computation can be performed either in the null constructor or
in the execute() method. In the latter case, care must be taken to ensure that
the initializations are performed only once across successive invocations of the
execute() method.

9.5.1.2 Processing Logic

The processing logic within the execute() method is domain specific. This pro-
cessing would involve either the generation of results, or the management and col-
lation of previously produced results. In the reduce role, it is also possible to check
if outputs have been received from all the preceding maps in addition to discarding
any duplicate results that were generated.

The generation of results is easy, and the system allows entities to attach differ-
ent payloads to these results. The system currently allows for the payloads for these
results to be <key, value> pairs, where the elements of these tuples could be objects
that encapsulate compound data types. The system allows instances, arrays([]), and
2D arrays ([][]) of primitive data types such as int, short, long, double,
float, and char to be attached as payloads of these results. The system handles
the marshaling and un-marshaling of these payloads automatically.

The processing logic also needs to cope with exceptions that will be thrown
as results of the processing. These exceptions could result from problems with the
datasets, marshaling issues, and networking problems.

9.5.1.3 Scheduling Strategy

A computational task can change its scheduling strategy during execution. This
change is reflected during the next iteration of the execute() method. The sys-
tem enforces the newly created scheduling strategy as soon as the current iteration
of the execute() method terminates. Computational tasks that have specified a
scheduling strategy that constitutes either a stay-alive primitive, or implies a certain
number of iterations, can assert that their termination condition has been reached.
At this time, the computational task is scheduled for garbage collection as soon as
control returns from the execute() method.

214  ◾  Cloud Computing and Software Services

9.5.2 Deploying Applications Using Granules
Granules provides a helper class, the InstanceDeployer, to enable applications,
and the computational tasks that comprise it, to be deployed on a set of resources.
This class performs several operations related to initializing communications,
resource discovery, and deployment of computations. It is recommended that a
deployer be created for each application. This can be done by simply extending the
InstanceDeployer.

9.5.2.1 Initializing Communications and Resource Discovery

The first step that an application deployer needs to perform is to initialize com-
munications with the content distribution network (NaradaBrokering). This can
be performed by invoking the constructor for the base class (InstanceDeployer),
which takes a set of properties as its argument. This is typically done by invoking
the super(streamingProperties) in the derived class’s constructor. Some
of the elements that are typically part of this set of properties include the hostname,
the port, and the transport type for one of the router nodes within the content
dissemination network. Depending on the transport over which communications
take place, there would be additional elements that may need to be specified. For
example, if the Secure Sockets Layer (SSL) communications are used, additional
elements that need to be specified include the locations of the truststore and the
keystore that would be used for secure communications.

Once communications have been established, Granules automatically discov-
ers resources that are currently available. This list could be periodically refreshed
should the need arise.

9.5.2.2 Initializing and Deploying Computational Tasks

The developer then needs to provide a method that initializes the computational
tasks. This involves one or more of the following:

 1. Initializing the Processing Directives associated with an instance: These direc-
tives are used to encode instance-specific information that is accessible only
to the instance in question.

 2. Specification of the datasets and collection associated with the computation:
Granules is responsible for configuring access to these datasets.

 3. Linking of the Map-Reduce roles: Granules ensures that once-linked results
produced by the maps are automatically routed to the appropriate reducers.

 4. Specifying the scheduling strategy for the computational tasks: By default, the
exactly-once scheduling strategy is used.

 5. Distribution of datasets across these instances: Granules incorporates utilities
that allow this distribution to be performed efficiently.

Granules  ◾  215

To deploy an application, the developer only needs to invoke the deploy() method
in the InstanceDeployer. This method deploys the computational tasks on the set
of resources that were discovered during the initialization phase.

9.5.2.3 Tracking/Steering a Deployed Application

The InstanceDeployer implements the JobLifecycleObserver interface, which
allows one to track the status of multiple jobs, and the computational tasks that
comprise them. Classes that extend the InstanceDeployer have the option to over-
ride methods specific to the JobLifecycleObserver interface. Specifically, for a
given Job, Granules maintains its registered JobLifecycleObserver and invokes
methods on this observer whenever there is an update to the deployment or execu-
tion status of the computational tasks that comprise it.

Associated with each Job, Granules maintains a ProgressTracker that main-
tains information about the execution state of each of the computational tasks that
comprise the application. The LifecycleMetrics associated with every computa-
tional task includes information about

 1. The arrival time for the computational task
 2. The queuing overhead for the computational task
 3. The total CPU-bound time for the computational task across multiple itera-

tions (if there are any)
 4. The processing time for the computational task
 5. The current status of the computational task {Awaiting Data, Queued for

Execution, Executing, Terminated, Successful, FAILED}

The status of a Job is the cumulative status of the computational tasks that com-
prise it.

The InstanceDeployer also incorporates methods for tracking/steering a com-
putation. There are methods to refresh the status of a specific computational task
or the entire Job. These methods result in updates to the life-cycle metrics of the
relevant computational tasks. Additionally, Granules also allows computational
tasks to be aborted when they are in execution. The system allows either a specific
computational task to be suspended or the entire Job.

9.6  Related Work
The original Map-Reduce paper [1] by Ghemawat and Dean described how their
programming abstraction was being used in the Google search engine and other
data-intensive applications. This work was itself inspired by map and reduce primi-
tives present in Lisp and other functional programming languages. Google Map-
Reduce is written in C++ with extensions for Java and Python. Sawzall [7] is an
interpreted, procedural programming language used by Google to develop Map-
Reduce applications.

216  ◾  Cloud Computing and Software Services

Hadoop [8] was originally developed at Yahoo, and is now an Apache project.
It is by far the most widely used implementation of the Map-Reduce framework. In
addition to the vast number of applications at Yahoo, it is also part of the Google/
IBM initiative to support university courses in distributed computing. Hadoop
is also hosted as a framework over Amazon’s EC2 [9] cloud. Unlike Granules,
Hadoop supports only exactly-once semantics, meaning that there is direct support
within the framework for map and reduce functions to maintain state.

Hadoop uses the Hadoop Distributed File System (HDFS) files for communi-
cating intermediate results between the map and reduce functions, while Granules
uses streaming for these disseminations, thus allowing access to partial results.

HDFS allows for replicated, robust access to files. During the data-staging
phase, Hadoop allows the creation of replicas on the local file system; compu-
tations are then spawned to exploit data locality. Hadoop supports automated
recovery from failures. Currently, Granules does not incorporate support for
automated recovery from failures; this will be the focus of our future work in
this area. Here, we plan to harness the reliable streaming capabilities available in
NaradaBrokering.

The most dominant model for developing parallel applications in the high
performance computing (HPC) community is the SPMD [2] model (first pro-
posed by Federica Darema) in tandem with the MPI [10] library. The SPMD
model is a powerful one, and Map-Reduce can in fact be thought of as an instance
of the SPMD model. The use of MPI has, however, not been as widespread outside
the scientific community.

Microsoft Research’s Dryad [11] is a system designed as a programming model
for developing scalable parallel and distributed applications. Dryad is based on
DAGs. In this model, sequential programs are connected using one-way channels.
It is intended to be a super-set of the core Map-Reduce framework. Dryad pro-
vides job management and autonomic capabilities, and makes use of the Microsoft
Shared Directory Service. However, since Dryad is developed based on DAGs, it
is not possible to develop systems that have cycles in them. For example, in our
benchmarks, we were not able to implement the k-means machine learning algo-
rithm [12] using the basic Dryad framework.

Phoenix [13] is an implementation of Map-Reduce for multi-core and multipro-
cessor systems. A related effort is Qt Concurrent [14], which provides a simplified
implementation of the Map-Reduce framework in C++. Qt Concurrent automati-
cally optimizes thread utilizations on multi-core machines depending on core
availability. Disco [15], from Nokia, is an open-source Map-Reduce runtime devel-
oped using the Erlang functional programming language. Similar to the Hadoop
architecture, Disco stores the intermediate results in local files and accesses them
using HTTP connections from the appropriate reduce tasks.

Holumbus [16] includes an implementation of the Map-Reduce framework,
developed in the Haskell functional programming language at the FH Wedel
University of Applied Sciences, Germany.

Granules  ◾  217

Skynet [17] is an open-source Ruby-based implementation of the Map-Reduce
framework. Skynet utilizes a peer-recovery system for tracking the constituent
tasks. Peers track each other and, once failure is detected, can spawn a replica of
the failed peer.

We had originally developed a prototype implementation of Map-Reduce,
CGL-MapReduce [18], which implemented Map-Reduce using streaming (once
again, using NaradaBrokering) with the ability to “keep alive” map instances.
Granules represents an overhaul, and incorporates several new capabilities, such as
built-in support for sophisticated life-cycle management (periodicity, data driven,
and termination conditions), powerful creation and duplicate detection of results,
and diagnostics in addition to the ability to create complex computational pipelines
with feedback loops in multiple stages. The code base for the Granules (available for
download) runtime has also been developed from scratch.

9.7  Benchmarks
In our benchmarks, we profile several aspects of the Granules’ performance.
We are specifically interested in determining system performance for different
life cycles associated with the computational tasks. The different life cycles we
benchmark include exactly-once, iterative, periodic, and data-driven primitives.
Where possible, we contrast the performance of Granules with comparable
systems, such as Hadoop, Dryad, and MPI. It is expected that these bench-
marks would be indicative of the performance that can be expected in different
deployments.

All machines involved in these benchmarks have four dual-core CPUs, a
2.4 GHz clock, and an 8 GB RAM. These machines were hosted on a 100 Mbps
LAN. The Operating System on these machines is Red Hat Enterprise Linux ver-
sion 4. All Java processes executed within version 1.6 of Sun’s Java Virtual Machine
(JVM). We used version 3.4.6 of the gcc complier for C++, and for MPI we used
version 7.1.4 of the Local Area Multicomputer (LAM) MPI [19].

9.7.1 Streaming Substrate
Since we use the NaradaBrokering streaming substrate for all communications
between entities, we present a simple benchmark to give the reader an idea of the
costs involved in streaming. Our results outline the communication latencies in
a simplified setting involving one producer, one consumer, and one broker. The
communication latencies are reported for stream fragments with different pay-
load sizes. Additional NaradaBrokering benchmarks in distributed settings can be
found in [4,5].

Two cluster machines were involved in this benchmark. The producer and con-
sumer were hosted on the same machine to obviate the need to account for clock

218  ◾  Cloud Computing and Software Services

drifts while measuring latencies for streams issued by the producer, and routed by
the broker (hosted on the second machine) to the consumer.

The reported delay, in the results depicted in Figure 9.8, is the average of 50
samples for a given payload size, the standard deviation for these samples also being
reported. The Y-axis for the standard deviation is the axis on the right side (blue)
of the graph. Streaming latencies vary from 750 μs/hop for 100 bytes to 1.5 ms/hop
for a stream fragment of 10 kB in cluster settings.

9.7.2 Information Retrieval: Exactly-Once
In this section, we present results from a simple information retrieval example.
Given a set of text files, the objective is to histogram the counts associated with
various words in these files. The performance of Granules is contrasted with that of
Hadoop and Dryad. The Dryad version to which we have access uses C#, LINQ,
and file-based communications using the Microsoft Shared Directory Service. The
OS involved in the Dryad benchmarks is Windows XP.

For this benchmark, we vary the cumulative size of the datasets that need to
be processed. The total amount of data that is processed is varied from 20 GB to
100 GB. There were a total of 128 map instances that were deployed on the five
machines involved in the benchmark.

The results depicted in Figure 9.9 demonstrate the benefits of using stream-
ing as opposed to file-based communications. As the size of the datasets increases,
there is a concomitant increase in the number and size of the intermediate results
(file based). This contributes to the slower performance of Hadoop and Dryad. We
expect the performance of Dryad’s socket-based version to be faster than their file-
based version.

0

1

2

3

4

5

100 1,000 10,000
0

1

2

3

4

5
M

ea
n

tr
an

sit
 d

el
ay

 (m
s)

St
an

da
rd

 d
ev

ia
tio

n
(m

s)

Content payload size (bytes)

Round-trip delays for different payload sizes (100 B–10 kB)

Delay
Standard deviation

Figure 9.8  Streaming overheads in cluster settings.

Granules  ◾  219

9.7.3 k-Means: Iterative
Machine learning provides a fertile ground for iterative algorithms. In our bench-
marks, we considered a simple algorithm in the area of unsupervised machine
learning: k-means. Given a set of n data points, the objective is to organize these
points into k clusters.

The algorithm starts off by selecting k centroids, and then associates different
data points within the dataset to one of the clusters based on their proximity to the
centroids. For each of the clusters, new centroids are then computed. The algorithm
is said to converge when the cumulative Euclidean distance between the centroids
in successive iterations is less than a predefined threshold.

In k-means, the number of iterations depends on the initial choice of the cen-
troids, the number of data points, and the specified error rate (signifying that the
centroid movements are acceptable). The initial set of data points is loaded at each
of the map functions. Each map is responsible for processing a portion of the entire
dataset. What changes from iteration to iteration are the centroids. The output of
each map function is a set of centroids.

The benchmarks, which were run on five machines, also contrast the per-
formance of Granules with MPI using a C++ implementation of the k-means
algorithm.

The graphs depicted in Figure 9.10 have been plotted on a log-log graph so
that the trends can be visualized a little better. We varied the number of data
points in the dataset from 105 to 4 × 107. The results indicate that Hadoop’s
performance is orders of magnitude slower than Granules and MPI. In Hadoop,

0

500

1000

1500

2000

2500

3000

20 30 40 50 60 70 80 90 100

O
ve

rh
ea

d
fo

r h
ist

og
ra

m
m

in
g

w
or

ds
 (s

)

Total size of dataset (GB)

Hadoop
Dryad

Granules

Figure 9.9  Processing time for histogramming words.

220  ◾  Cloud Computing and Software Services

these centroids are transferred using files, while Granules uses streaming.
Furthermore, since Hadoop does not support iterative semantics, map func-
tions need to be initialized and the datasets need to be reloaded using HDFS.
Though these file-system reads are being performed locally (thanks to HDFS
and data collocation), these costs can still be prohibitive, as evidenced in our
benchmarks. Additionally, as the size of the dataset increases, the performances
of the MPI/C++ implementation of k-means and the Granules/Java implementa-
tion of k-means start to converge.

9.7.4 Periodic Scheduling
In this section, we benchmark the ability of Granules to periodically schedule tasks
for execution. For this particular benchmark, we initialized 10,000 map functions
that needed to be scheduled for execution every 4 s.

The objective of this benchmark is to show that a single Granules instance can
indeed enforce periodicity for a reasonable number of map instances.

Figure 9.11 depicts the results of periodic executions of 10,000 maps for 17 iter-
ations. The graph depicts the spacing in the times at which these maps are sched-
uled for execution. The X-axis represents a specific map instance (assigned IDs from
1 to 10,000), and the Y-axis represents the spacing between the times at which a
given instance was scheduled. Each map instance reports 17 values.

The first time a computational task is scheduled for execution, a base time, tb,
is recorded. Subsequent iterations report the difference between the base time, tb,
and the current time, tc. In almost all cases, the spacing between the successive
executions for any given instance was between 3.9 and 4.1 s. In some cases, there
is a small notch; this reflects cases where the first execution was delayed by a small

O
ve

rh
ea

d
(s

)

0.1
0.1

10,000

1,000

100

10

1

1 10 100
Number of 2D data points (millions)

Hadoop
Granules

MPI

Figure 9.10  Performance of the k-means algorithm.

Granules  ◾  221

amount, the (constant) impact of which is reflected in subsequent iterations for
that map instance.

9.7.5 Data Driven
In this section, we describe the performance of matrix multiplication using Granules.
In this case, the object is to measure the product of two dense 16,000 × 16,000
matrices, that is, each matrix has 256 million elements with predominantly non-
zero values.

The matrix multiplication example demonstrates how computational tasks can
be “stay alive,” and be scheduled for execution when data is available. The maps are
scheduled for execution as and when the data is available for the computations to
proceed.

For this benchmark, we vary the number of machines involved in the experi-
ment from 1 to 8. There are a total of 16,000 map instances. At a given time,
each of these maps processes portions of the rows and columns that comprise the
matrix. Each Granules instance copes with a fragment of more than 2000 concur-
rent streams. In total, every Granules instance copes with 32,000 distinct streams.

The results for the processing times (plotted on a log-log scale) can be seen
in Figure 9.12. In general, as the number of available machines increases, there
is a proportional improvement in the processing time. Our plots of the speed-
up (Figure 9.13) in processing times with the availability of additional machines
reflect this.

In general, these graphs demonstrate that Granules can bring substantial ben-
efits to data-driven applications by amortizing the computational load on a set of
machines. Domain scientists do not need to write a single line of networking code;
Granules manages this in a transparent fashion for the applications.

0

10

20

30

40

50

60

70

0 2,000 4,000 6,000 8,000 10,000

Ti
m

e t
as

k
sc

he
du

le
d

at
 (s

)

Computational tasks

Figure 9.11  Periodic scheduling of 10,000 computational tasks.

222  ◾  Cloud Computing and Software Services

9.7.6 Assembling mRNA Sequences
This section describes the performance of Granules in orchestrating the execution
of applications developed in languages other than Java. The application we consider
is the CAP3 [20] messenger Ribonucleic acid (mRNA) sequence assembly applica-
tion (C++) developed at Michigan Tech.

An Expressed Sequence Tag (EST) corresponds to mRNAs transcribed from
genes residing on chromosomes, individual EST sequences represent a fragment
of mRNA. CAP3 allows us to perform EST assembly to reconstruct full-length
mRNA sequences for each expressed gene.

Our objective as part of this benchmark was also to see how Granules can be
used to maximize core utilizations on a machine. CAP3 takes as input a set of files.
In our benchmark, we need to process 256 files during the assembly.

1,024

2,048

4,096

8,192

16,384

1 2 4 8

Pr
oc

es
sin

g
tim

e (
s)

Number of machines

Processing time

Figure 9.12  Processing time for matrix multiplication on different machines.

1

2

4

8

1 2 4 8

Sp
ee

d-
up

Number of machines

Speed-up

Figure 9.13  Speed-up for matrix multiplication.

Granules  ◾  223

On a given machine, we fine-tuned the concurrency by setting the number of
worker threads within the thread-pool to different values. By restricting the num-
ber of threads, we also restricted the amount of concurrency and the underlying
core utilizations. We started off by setting the worker-pool size to 1, 2, 4, and 8 on
1 machine, and then used 8 worker threads on 2, 4, and 8 machines. This allowed
us to report results for 1, 2, 4, 8, 16, 32, and 64 cores.

The results of our benchmark in terms of processing costs and the speed-ups
achieved are depicted in Figures 9.14 and 9.15, respectively. In general, as the num-
ber of available cores increases, there is a corresponding improvement in execution
times.

8

16

32

64

128

256

512

1024

1 2 4 8 16 32 64

Pr
oc

es
sin

g t
im

e
(s

)

Number of cores

Processing time

Figure 9.14  Processing time for EST assembly on different cores using Granules 
and CAP3.

1

2

4

8

16

32

64

1 2 4 8 16 32 64

Sp
ee

d-
up

Number of cores

Speed-up

Figure 9.15  Speed-up for EST assembly using Granules and CAP3.

224  ◾  Cloud Computing and Software Services

The results demonstrate that, when configured correctly, Granules can maxi-
mize core utilizations on a given machine. The graphs plotted on a log-log scale
indicate that for every doubling of the available cores, the processing time for
assembling the mRNA sequences reduces by half (approximately). The Granules
runtime reads the thread-pool sizing information from a configuration file; we
will be investigating mechanisms that will allow us to dynamically size these
thread-pools.

9.8  Conclusions
In this chapter, we described the Granules runtime. Rich life-cycle support within
Granules allows computations to retain state, which in turn is particularly appli-
cable for several classes for scientific applications.

Granules allows complex computational graphs to be created. As discussed,
these graphs can encapsulate both control flow and data flow. Granules enforces
the semantics of complex distributed computational graphs that have one or more
feedback loops. The domain scientist does not have to cope with IO, threading,
synchronization, or networking libraries while developing applications that span
multiple stages, with multiple distributed instances comprising each stage. These
computational pipelines can be dependent on iterative, periodic, data-driven, or
termination conditions.

Demonstrable performance benefits have been accrued by Granules as a result
of using streaming for disseminating intermediate results.

Granules’ rich life-cycle support, and its performance when contrasted with
comparable systems, underscores the feasibility of using Granules in several set-
tings. As part of our future work, we will be investigating support for autonomic
error detection and recovery within Granules.

References
 1. J. Dean and S. Ghemawat, Mapreduce: Simplified data processing on large clusters,

Communications of the ACM, 51, 107–113, January 2008.
 2. F. Darema, SPMD model: Past, present and future, Recent Advances in Parallel Virtual

Machine and Message Passing Interface: Eighth European PVM/MPI Users’ Group Meeting,
Santorini/Thera, Greece, 2001.

 3. S. Pallickara, J. Ekanayake, and G. Fox, An overview of the granules runtime for cloud
computing (Short Paper), Proceedings of the IEEE International Conference on e-Science,
Indianapolis, IN, 2008.

 4. S. Pallickara and G. Fox, Naradabrokering: A middleware framework and architec-
ture for enabling durable peer-to-peer grids, Proceedings of the ACM/IFIP/USENIX
International Middleware Conference Middleware-2003, Rio de Janeiro, Brazil, 2003,
pp. 41–61.

Granules  ◾  225

 5. S. Pallickara et al., A framework for secure end-to-end delivery of messages in publish/
subscribe systems, Proceedings of the Seventh IEEE/ACM International Conference on
Grid Computing (GRID 2006), Barcelona, Spain, 2006.

 6. S. Pallickara, H. Bulut, and G. Fox, Fault-tolerant reliable delivery of messages in dis-
tributed publish/subscribe systems, Fourth IEEE International Conference on Autonomic
Computing, Jacksonville, FL, June 2007, p. 19.

 7. R. Pike, S. Dorward, R. Griesemer, and S. Quinlan, Interpreting the data: Parallel anal-
ysis with Sawzall, Scientific Programming Journal, Special Issue on Grids and Worldwide
Computing Programming Models and Infrastructure, 13(4), 227–298, 2005.

 8. Apache Hadoop, http://hadoop.apache.org/core/
 9. S. Garfinkel, An evaluation of amazon’s grid computing services: EC2, S3 and SQS,

Technical Report TR-08-07, Harvard University, Cambridge, MA, August 2007.
 10. Message Passing Interface Forum, MPI: A message passing interface, Proceedings of

Supercomputing’93, Portland, OR, IEEE Computer Society Press, Washington, DC,
November 1993, pp. 878–883.

 11. M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, Dryad: Distributed data-parallel
programs from sequential building blocks, European Conference on Computer Systems,
Lisbon, Portugal, March 2007.

 12. J. B. MacQueen, Some methods for classification and analysis of multivariate observa-
tions, Proceedings of Fifth Berkeley Symposium on Mathematical Statistics and Probability,
Vol. 1, Berkeley, CA, University of California Press, Berkeley, CA, 1967, pp. 281–297.

 13. C. Ranger, R. Raghuraman, A. Penmetsa, G. R. Bradski, and C. Kozyrakis, Evaluating
mapreduce for multi-core and multiprocessor systems, Proceedings of the International
Symposium on High-Performance Computer Architecture (HPCA), Phoenix, AZ, 2007,
pp. 13–24.

 14. Qt Concurrent, Simplified mapreduce in C++ with support for multicores, April 2009,
http://labs.trolltech.com/page/Projects/ Threads/ QtConcurrent

 15. Disco project, http://discoproject.org/
 16. S. Schlatt, T. Hübel, S. Schmidt, and U. Schmidt, The Holumbus distributed comput-

ing framework and mapreduce in Haskell, 2009, http://holumbus.fh-wedel.de/trac
 17. A. Pisoni, Skynet: A ruby mapreduce framework, April 2009, http://skynet.rubyforge.org/
 18. J. Ekanayake, S. Pallickara, and G. Fox, Map-reduce for scientific applications,

Proceedings of the IEEE International Conference on e-Science, Indianapolis, IN, 2008.
 19. J. M. Squyres and A. Lumsdaine, A component architecture for LAM/MPI, Proceedings

of Euro PVM/MPI, Venice, Itlay, October 2003.
 20. X. Huang and A. Madan, CAP3: A DNA sequence assembly program, Genome

Research, 9, 868–877, 1999.
 21. S. Pallickara, J. Ekanayake, and G. Fox, Granules: A lightweight, streaming runtime for

cloud computing with support for map-reduce, Proceedings of the IEEE International
Conference on Cluster Computing (CLUSTER 2009), New Orleans, LA, 2009.

227

Chapter 10

Dynamic and Adaptive 
Rule-Based Workflow 
Engine for Scientific 
Problems in Distributed 
Environments

Marc Frincu and Ciprian Craciun

Contents
10.1 Introduction .. 228
10.2 Workflow Modeling ...229

10.2.1 Workflow Decomposition ...232
10.2.2 Task Implementation Model .. 234
10.2.3 Task Semantics ...236

10.3 Present Workflow Issues and Solutions ...237
10.3.1 Present Workflow Solutions ..238

10.3.1.1 Classic Approaches ...239
10.3.1.2 ECA-Based Approaches ..240

10.4 Scientific Workflows Examples ...242
10.5 ECA Workflow Formalism ...243

228  ◾  Cloud Computing and Software Services

10.1  Introduction
Currently, there is a great tendency toward creating and implementing new
Distributed System paradigms, such as Grid and Cloud Computing, which allow
users to both store data and execute applications in a distributed environment with-
out having to be concerned about resource and computational restrictions provided
by their personal computers. More and more business and scientific applications
rely on the use of Distributed Systems to solve complex tasks in a completely trans-
parent manner so that users would not have to be concerned about where the data
is stored or the application is being executed, but instead be focused on the result
of the desired job. Together with the occurrence of specific user requirements that
need a Distributed System to be solved, there have also appeared applications that
need to be solved in a finite number of steps and in certain periods of time. These
applications usually consist of several tasks linked together by a workflow that can
have at least one entry and exit point.

We should note that workflows have been extensively used in business applica-
tions as well as science for solving specific problems. There is a consistent branch
of computer science that deals with the subject of business applications by provid-
ing businessmen with tools that allow them to focus on modeling and supervis-
ing business activities rather than on actual implementation or execution. In what
concerns the current chapter, we will deal only with scientific workflows, although
the ideas presented here can be applied without major modifications for the busi-
ness case. On the other hand, scientific workflows arise from various fields, such as
applied mathematics, physics, chemistry, biology, geography, or history, which use
complex problems that require breaking them into atomic tasks that can be later
independently executed. In order to obtain a greater efficiency, these tasks can be
executed inside a Distributed System transparent from the user point of view and
orchestrated by using either a centralized or a distributed approach. During the
workflow’s execution, the user would be unaware of the places where tasks are being
executed and of the internal logic driving the process. The main interest of the user
would be the result itself, which would be sent back after the workflow’s execution
has ended. This way of solving problems is similar to the one followed by Grid and,
more recently, Cloud Computing.

The enactment of scientific workflows requires complex coordination between
workflow activities and entities belonging to the Grid or Cloud. Aspects regarding
the coordination usually include large amounts of required computation and data
storage elements, services, data discovery and selection mechanisms, control and
data dependency handling, preparing activities for execution, failure handlers, etc.

10.6 Workflow Construction ...247
10.7 Conclusions ..248
Acknowledgment ..249
References ...249

Dynamic and Adaptive Rule-Based Workflow Engine  ◾  229

As for this Chapter, the difference between Grid and Cloud Computing with
regard to the way a workflow is executed is that of concept: Both Grids and Clouds
are viewed as resource pools offering services for certain jobs. Among the disadvan-
tages that Grids may have over Clouds, we can enumerate issues related to licens-
ing, legal or political issues, lack of virtualization support, complex architectures,
tools and technologies, etc. However, Grids have also managed to offer easy access
to their resources in the form of state-full Grid Services, which allow users to sub-
mit jobs without having to know any details on the underlying platform. Also Grid
Services permit users to later query the result of their computation and offer digital
certificates as security mechanisms. In addition, Clouds offer virtualization, and
thus they are capable of running multiple virtual machines on the same resource.
For the scientific domain, this can be seen as an advantage by running solutions
that require different platforms on the same physical machine.

Distributed Systems are dynamic in nature and consequently susceptible both
to network and resource failures as well as to changes in their workload. Therefore,
a workflow orchestration engine needs to be able to adapt to this unpredictable
behavior. Furthermore, workflows must allow dynamic evolution during runtime
in case the workflow definitions have been modified. These definitions could
concern changes in task dependencies or description, or changes in the method
a task should be solved and could occur naturally in any workflow due to task
migration, synchronization, occurrences of augmented solution providers, etc.
All these issues need to be dealt with automatically because a manual approach
or workflow abortion could prove to be inefficient due to various reasons, such
as workflow length and complexity. Automation is also a necessity owing to the
fact that the execution happens inside a cloud where the user has no control over
what happens. Moreover, safe nets in the form of logs, warnings, or errors with
the aim of notifying the user of possible wrong results need to be offered. Faulty
responses could result from a wrong execution path resulted from improper ser-
vice selection.

The rest of this chapter will address all these issues by starting with a short
introduction in workflow modeling, decomposition, and task semantics. Then a
brief overview on present workflow issues and solutions will be addressed followed
by the description of a simple workflow formalism intended for self-adaptation and
auto-generation. In this direction, some examples of scientific workflows will be
given. Finally, several general conclusions will be drawn. The workflows will be
placed in a Distributed System context, and where necessary, issues and examples
will be explained.

10.2  Workflow Modeling
Before addressing service-oriented workflow-related issues, we first need to define
what re-searchers understand by workflows, how they help us in describing

230  ◾  Cloud Computing and Software Services

executable solutions to particular problems, and how they resemble to or diverge
from classic approaches such as logic schemes or textual algorithms. These will be
introduced by using either generic or concrete examples. An important aspect we
need to bear in mind before proceeding is that workflows operate at higher levels
and do not get into low-level details (unlike arithmetic operations and file IO).

When solving a particular problem, one of the first steps, as far as basic software
engineering is concerned, is to decompose the workflow into smaller problems until
we reach a point where there are immediate solutions for each existing subproblem.
As a consequence, we obtain a tree where each node is a problem to be solved, its
direct children are subproblems, and the leaves of the tree are problems with imme-
diate or basic solutions. We can assert that in fact each node represents not only a
problem to be solved but also the method by which we aggregate the sub-solutions
of the subproblems. Thus, by walking the tree downward (from the root) we obtain
the decomposition, whereas by walking the tree upward (from the leaves) we obtain
the actual computations that have to be done. What we have seen so far is yet only
an instantiation of a more generic problem that has roughly the same solving method
but differs only in the actual manipulated values. Therefore, we modify our tree by
replacing values with symbolic parameters. As previously mentioned, decomposition
needs to be stopped when a certain level of granularity has been reached and the iden-
tified subproblems have already known solutions (the histogram equalization in case
of image processing, sparse matrix multiplication for mathematical problems, etc.).

Single nodes can be treated as procedures, namely, as a single unit of work or a
program that efficiently solves the well-defined corresponding subproblem. Such
a procedure has an output represented by the solution of the problem, and some
inputs consisting of the direct parameters of the subproblem, which are received
when invoked.

The procedure itself is stripped of any decomposition responsibility, and its
unique purpose is to combine the inputs representing both rightful parameters and
solutions of subproblems into desired outputs. As an
example (see Figure 10.1), we could consider (although
it breaks the granularity rule stated above) computing
the Least Common Multiple (LCM) of two numbers,
(A and B). To solve this, we have chosen to divide
the product of these two numbers by their Greatest
Common Divisor (GCD). In order to accomplish it,
we have two nodes (procedures), one for computing the
LCM having as inputs A, B, and GCD, and one for
computing the GCD that receives as inputs A and B.
From the previous example, we can see that the real
parameters for both procedures are A and B, and that
the input GCD for the LCM node is in fact the solu-
tion of the GCD subproblem.

A (in) B (in)
M (out)

LCM

GCD

Figure 10.1  LCM solu-
tion tree.

Dynamic and Adaptive Rule-Based Workflow Engine  ◾  231

With more complicated problems, we can clearly notice that by leaving the
actual solving method for subproblems outside the procedure itself, we enhance
flexibility by allowing the workflow engine to select a method that best matches
the particular inputs. In the light of our example, the focus of the solution tree is
hence shifting from its nodes to its edges, away from the procedures and toward
the data flow between these procedures. Furthermore, we can state that workflows
mainly act as glue-code, which binds together applications into complete working
meta-applications.

The comparison with the solution tree is incomplete and too particular because
we could imagine a situation in which two tasks have a common dependency, as
in the case of the Fibonacci recursive function or the Normalized Differential
Vegetation Index (NDVI). In this case, modeling the workflow as a tree could lead
us to repeat the same calculations twice, which is inefficient in terms of comput-
ing resources. In contrast, if nodes were allowed to share subproblem outputs, our
problem would be solved and we would be offered a Directed Acyclic Graph (DAG)
permitting data reuse. Figures 10.2 and 10.3 give a graphical illustration of the
NDVI computation when using both a tree and a graph model. The details of these
computations will be described in Section 10.4.

NDVI (out)

NIR

Img Img Img Img

Coordinates (in)

RED

/

– +

NIR RED

Figure 10.2  NDVI solution tree.

232  ◾  Cloud Computing and Software Services

Another problem that arises from the previous tree model
is that it allows only for one output for each task, Which is
not always true for real-life problems. As a simple example,
we could, take the integer division of two numbers that has
two valid and useful outputs: the quotient and the reminder.
In contrast, if we allow only one output for each task we will
end up with two tasks, one for the division and one for the
reminder, both of them sharing almost the same code and
thus leading to execution overhead. Another example could
be the split of a color image into its RGB layers. As a conse-
quence, a natural extension to our initial tree model would
be to allow a task to return multiple values, and therefore
certain parts of the output could be used as inputs in some
tasks while others for other tasks. By applying this modifica-
tion, we also obtain a DAG.

As a remark, we can safely state that the building blocks
of workflows are the procedures (the nodes), also called
tasks, and the data flow dependencies between them (the
edges in our tree). Additionally, we can assume that work-
flows are deterministic, meaning that for the same inputs
we always obtain the same outputs. Also it seems that the
natural way of expressing workflows is by modeling them
as DAGs, since they not only provide a valuable simplicity
in expressing them but also might enhance the overall effi-
ciency of the resulting system.

10.2.1 Workflow Decomposition
In what follows, we will deal with task-dependency-related aspects; explain the
most basic workflow decomposition constructs as sequence, split, and join; and add
to them other special-purpose constructs as decisions and loops. Also we disregard
the fact that an edge between two nodes represents the data flow between the
output of one and the input of the other, and will treat them as simple execution
dependencies. The reason for this assumption is because many workflow engines
treat the edges as explicit execution precedence and obtain the data dependency
only as a consequence to it. Besides, it is obvious that from such a perspective,
variables are indispensable and almost the only means through which tasks can
communicate.

A brief overview on the most used constructs is given below.
The sequence construct (see Figure 10.4) is similar to the construct from logic

schemes meaning that tasks are executed one at a time, starting the next only after
the previous one has ended. This construct could come from the fact that the out-
put of the previous task is the input of the next task.

NDVI (out)

Coordinates (in)

Img

NIR RED

– +

/

Figure 10.3  NDVI 
simplified  solution 
as a DAG.

Dynamic and Adaptive Rule-Based Workflow Engine  ◾  233

The split construct (see Figure 10.5) introduces par-
allelism into workflows and allows tasks to be executed
concurrently. It could be compared with spawning new
threads, each of them solving an independent problem.

The join construct (see Figure 10.6) represents the
end of a split construct and allows parallel paths to join,
thus providing a synchronization mechanism. We must
note that there is no need for a one-to-one mapping
between splits and joins.

The conditional construct (see Figure 10.7) must
also be added to the list as it is required when decision-
making scenarios occur. It can have many flavors ranging
from a mere if-condition-else form to a multi-condition
construct (similar to the switch case in programming
languages), with one sub-workflow for each condition
and an additional default one.

Additionally, there are cases when we have to extend
the model by including iterative constructs. Such an
example is the while-like construct, which takes a con-
dition and a sub-workflow and executes it until
the condition is satisfied. Such cases are typical for
workflows that contain tasks that are nondeter-
ministic or have side effects. Most implementations
try to avoid such situations, and DAG-oriented
workflow engines do not support them because
they imply a loop.

Although none of the existing workflow
engines implicitly support Map-Reduce (Dean
and Ghemawat, 2004) patterns (see Figure 10.8),
they are often used especially in Cloud/Grid
Computing due to their capability to express
scalability. In what follows, we make an adap-
tation for workflows as the original design
described in the cited paper used a master process
that had to oversee the entire progress, and thus played the role of a simplified
orchestration workflow engine. There are normally three basic steps to a Map-
Reduce pattern: fan, map, and reduce. First the fanning process has the purpose
to take one big chunk of data and split it into smaller pieces. It does not appear
in the original paper as this resposability was built into the map phase and coor-
dinated by the master process. Then the mapping process takes each small piece
and applies the needed processing independently and in parallel with the other
pieces. Finally, the reduce process takes a range of processed data and aggregates
them. Considering the NDVI example, we can imagine splitting (fanning) the

T1

T2

T3

Figure 10.4  Sequence 
construct for workflow 
decomposition.

T1

T2 T3 T4

Figure  10.5  Split  construct 
for workflow decomposition.

234  ◾  Cloud Computing and Software Services

area into smaller areas in case of large images, com-
puting the NDVI individually (map) for each area,
and ultimately putting the puzzle back together into a
larger image for the initial bigger area (reduce).

Finally, we can mention trivial constructs, such as
task invocation, variable assignment, and basic data
manipulation (needed for minor adaptation of mis-
matching outputs and inputs), which can also be used
but are not always part of a workflow language like the
basic decomposition constructs.

Workflow languages relying on the previously
mentioned constructs need to explicitly express par-
allelism. This approach has two major shortcomings:
first, the user (developer) has to proactively think
about the parallelism; second, the engine has almost
no liberty to find concurrency (other than explicitly
expressed), thus reducing the overall efficiency. As
it will be seen later in this chapter, the only work-
flows that overcome these issues are those based on
execution rules following an Event-Condition-Action
(ECA) paradigm.

After having explained the basic workflow con-
structs, we can now further define a well-formed work-
flow from a decomposition perspective. A well-defined
workflow is either one identifying with a single task, an
instantiation of a single workflow decomposition con-
struct, or any finite combination of the decomposition
constructs.

A consequence to the previous definition is that the
notions of task and workflow are interchangeable, and
in what concerns the rest of the chapter, they can be
safely swapped.

10.2.2 Task Implementation Model
Workflows can be regarded from two perspectives: the way they are implemented
and their semantic aspects In what follows, we have tried to give a small intro-
duction on both topics, starting with implementation and concluding with the
semantic part.

When speaking about workflow implementations, we are mainly referring to
different frameworks and platforms that provide developers with a common work-
ing base in order to implement and use the tasks. The main differences between
these platforms are the way in which tasks are implemented and how they obtain

T1 T2

T3

Figure  10.6  Join  con-
struct  for  workflow 
decomposition.

C1 C2 C3

T1 T2 T3

Figure 10.7  Conditional 
construct  for  workflow 
decomposition.

Dynamic and Adaptive Rule-Based Workflow Engine  ◾  235

their inputs and give outputs. More precisely, we can speak either of process-based
or service-based workflows. These two approaches also show how workflows have
evolved from chaining offline applications to wrapping applications as services and
providing an online interface.

Process-oriented workflows have advanced from a mechanism of controlling
operating-system processes. Probably the simplest workflow languages may
be considered to be shell-scripting languages (like Bash) and make-like tools.
The former allows sequential and conditional process chaining, while the lat-
ter provides a descriptive rule-like language that even offers automatic parallel-
ism detection. As for the purpose of workflow management, these examples can
however be considered rudimentary, since more advanced systems are needed.
Nevertheless, all process-based solutions have in common the basic working
principles: assuming a list of arbitrary command-line applications with each
application provided with the right input/output files, we can construct and
execute a workflow solution by chaining these applications in a certain way.
A particular aspect is the way these processes (tasks) communicate with one
another: they are neither capable of taking (pulling) their own inputs nor sub-
mitting (pushing) their outputs, and these facilities must be provided to them by
the platform. This aspect is essential in the context Distributed Computing, as

Large (initial)
input

Fan

Intermediate
inputs

Intermediate
outputs

Reduce

Large (final)
output

Map

Figure 10.8  Map-Reduce workflow pattern.

236  ◾  Cloud Computing and Software Services

outputs from tasks need to be transported to the node requiring them as inputs,
thus incurring network load.

With the appearance of Service-Oriented Architectures (SOA), which allow to
embed at low-cost processes as Web Services, a shift from process-oriented tasks to
service-oriented ones was accomplished. The change has brought other advantages as
well, namely, in the way inputs and outputs are handled by transforming the com-
mand-line arguments and textual configuration files into XML documents, which
enclose all the task-required parameters. An interesting and very important aspect
concerning Distributed Computing in this service-oriented paradigm is represented
by the way in which raw input/output data is handled (for example, large satellite
images): instead of relying on the platform to provide file transfer from one node to
another, the job is delegated to a distributed storage system, while services explicitly
use identifiers of such distributed files as inputs or outputs. Moreover, this abstrac-
tion provides the very foundation on which Cloud Computing is built by allowing
providers to expose local applications for external use by means of Web Service.

10.2.3 Task Semantics
Usually we think of tasks as black boxes that expose a certain interface with strict
inputs and outputs and show dependable behaviors. This implies the existence of a
contract between the task implementation (what the developer has done) and the
task execution (what the user gets). Generally, this contract can have two facets:
syntactic and semantic (in the majority of cases, the former).

From a syntactic point of view, a task description reveals to us what type of
inputs/outputs it expects to receive/send. For instance, it might tell us that it
expects an integer or a list of strings, each matching a certain regular expression.
Going even further, it might disclose to us that it awaits a complex compound
structure but also provides alternatives. For instance, we can consider an Enterprise
Resource Planning (ERP) system where a task could accept a person data type
provided either as a structure containing the name, the address, national identi-
fier numbers, or as a unique system-related identifier. These definitions are specific
to each workflow engine, and in Business Process Execution Language (BPEL)
(WSBPEL, 2007), for example, they are described by using a standard Web Service
Web Service Description Language (WSDL). In the case of a make file (which,
as stated previously, could be seen as the most elementary workflow engine), it is
described in terms of file extensions and file name patterns. In any case, the syn-
tactic contract refers only to data typing (number, string, structure, list, etc.) and
some rudimentary conditions (not empty, greater than zero, matching a regular
expression, etc.) that make the transition to the semantic perspective.

In the case of the semantic contract, some tools and languages may allow us to
describe more complex validation rules for both inputs and outputs, and also the
relation between them. These rules are named preconditions (which logic statements
should be true for valid inputs) and post-conditions (which logic statements should

Dynamic and Adaptive Rule-Based Workflow Engine  ◾  237

be true for the outputs and for the relation between inputs and outputs). Although
there is no production-ready workflow engine that allows such a perspective, it
could be the key to both workflow formal verification and automatic generation.
Such a scenario has been proposed in (Lu et al., 2006) and will be overseen in
Section 10.6.

10.3  Present Workflow Issues and Solutions
Generally, an adaptive workflow engine needs to take into consideration issues
related with data integrity; failure handling; open world service assumption; ad hoc
workflow design; a multitier abstraction architecture that separates application and
user concerns from operational and middleware concerns; support for e-Science
lifecycle in which experiments need to be structured, repeatable, and verifiable;
data-flow-centric model; etc. Probably the most important problems related to
workflow execution are to ensure data integrity and failure handling. The first of
them can be solved using either model checking at design time or proper service
selection for task execution during runtime. The second one is more problematic as
errors could occur in many places and cannot be usually predicted. They include
failures of the workflow engine itself, failures of the component services, and fail-
ures of the network fabric, which will be briefly discussed in what follows.

Solving workflow engine failures could be achieved by offering a cloning mech-
anism and creating multiple workflow instances on various resources. Only the ini-
tial workflow instance would be active, while the rest of the instances periodically
query the active one to check whether it is still running or not. In case of failure to
respond to pings, one of the inactive workflows would instead become active and
take over the role. To facilitate this operation each time a task changes its status or
a rule is added or retracted front the rule base, all the inactive workflows will be
notified of the respective event. Consequently, each of them would have an updated
view of the overall workflow execution status. As an alternative, a scenario where a
workflow is divided into several smaller ones (Lu et al., 2006)—each of them con-
sisting of part of the initial rule base—the part of the workflow that corresponds to
these rules can be considered. Yet, these approaches are not completely distributed
as they still rely on one or more centralized workflow engines. Instead, an approach
in which there does not exist a workflow engine and tasks act as agents with cer-
tain requirements, input and output ports, dependencies, and other relevant infor-
mation, such as task type (initial, intermediate, and final), problem description,
etc., could be taken into account. In this case also, two main approaches can be
taken. The first one is dependent on a central Task Discovery Mechanism (TDM),
but allows tasks to execute independently and without a centralized or distributed
orchestrator. Tasks register themselves to the TDM and query it periodically in
order to update their status. In addition, tasks still waiting for their dependencies
to finish execution also regularly query the TDM to check whether or not their

238  ◾  Cloud Computing and Software Services

dependencies have finished. A completely distributed approach could be achieved if
tasks carried additional information, such as the IDs of their dependencies, and sent
at times a broadcast message on a specific port containing besides the dependency
ID some query information. Still this scenario is unlikely applicable to large-scale
Distributed Systems, which consist of large IP address spaces and where various
network security policies would hinder the message from passing through.

Failures of the component services as well can be solved by using rules that
allow multiple retries when attempting to access a service, or by using a discovery
mechanism that relies on semantic information to retrieve information regarding
the possible service alternatives for solving a specific task.

Failures of the network fabric are probably the most difficult issues when deal-
ing with failure handling and recovery. Using a distributed workflow approach,
such as the ones formerly described, combined with a mechanism for storing work-
flow states and resuming them at a later time could provide a certain assurance
that the workflow will eventually be executed. However, there remains the issue of
time costs with users normally interested in solving their problems under certain
deadline constraints where possible.

The failure-related aspects presented in the previous paragraphs also concern
users executing scientific workflows, these usually take a lot of time to solve with
intervals ranging from a couple of minutes to days or weeks. As a result, workflow
engines need to cope with these aspects and try to offer viable solutions so that the
workflows would either get executed as a result of some rule-based decisions or
would be paused and reactivated once the problems have been solved.

10.3.1 Present Workflow Solutions
Presently, there are many solutions that allow the composition and orchestration
of tasks, most of them including an SOA-based approach and using either Web or
Grid Services as communication end points between services. Composing tasks
exposed as services is a preferred approach as it allows service providers to expose
software in an easy and uniform way such that anyone complying to the used
standards could easily access and use them. In what concerns service composition
DAGs or Petri nets can be used to model two different approaches. The first one
is based on classic task composition, which is usually accomplished during design
time and cannot be easily adapted to support runtime changes as the second one
that relies on an ECA. Orchestration engines falling in the first category ordinarily
rely on XML-based formalisms to express relations between tasks. In the second
case, flow can be seen as made of rules composed of events that trigger actions
implying data updates or task invocations as a result of some conditions. This is
more suited in case adaptation to system/logical failures or runtime changes in the
structure of the workflow are required. Orchestration engines using this approach
lean on forward-chaining algorithms, such as RETE (Forgy, 1990), to activate
subsequent rules.

Dynamic and Adaptive Rule-Based Workflow Engine  ◾  239

While the subject of the topic presented in this chapter is dealt with in a large
amount of papers, it is our goal in what follows to present exclusively the most sig-
nificant and the latest achievements in the field.

10.3.1.1 Classic Approaches

Web Service orchestration can be achieved using classic languages, most of them
being XML based. One of the most popular standards in service orchestration
is the WS-BPEL 2.0 (WSBPEL, 2007) language. It is an orchestration language
aimed, at describing an executable process involving message exchanges with other
systems that, in this case, can be exposed as Web Services. Besides this feature,
it allows defining and initializing XML- and WSDL-typed variables, support for
writing expressions and queries in languages such as XPath 1.0, structured pro-
gramming by using well-known constructs (including if-then-else, while, sequence,
flow, parallel, etc.), encapsulation of logic by using local variables, event and fault
handlers, concurrent access to variables, etc. Alternatively, if a non-XML language
is preferred, BPEL script offers a translation from WS-BPEL 2.0 into a JavaScript
and Ruby-syntax-like language. Recently, Charfi and Mezini (2007) proposed
an aspect-oriented approach as an alternative to the process-oriented approach of
BPEL. In the same paper, the authors also argue that process-oriented composition
languages suffer from two main problems. The first one concerns the modularity
of the specification as it might not be suited for cases concerning exception han-
dling, access control and authentication, business rules, etc., while the second one
concerns the dynamic adaptation during runtime of the service logic. WS-BPEL
2.0 tries to cope with the second issue by introducing dynamic partner bind-
ing. Macariu et al. (2008) also try to tackle with the second problem by offering
semi-dynamic Web Service composition focused only on a limited class of scien-
tific workflows that concern mathematical problems. Due to its standardization,
WS-BPEL 2.0 has been widely adopted as part of many workflow engines, such as
ActiveBPEL and Apache-ODE.

YAWL (Yet Another Workflow Language) (van der Aalst and ter Hofstede,
2005) can be seen as a viable alternative to BPEL. It is also based on XML includ-
ing XPath and XQuery to define and manipulate data, and covers most of the exist-
ing workflow patterns. It permits dynamic adaptation of workflow models by using
worklets and supports design-time model validation, such as detecting deadlocks.
Probably the mainly developed feature related with YAWL as far as the work pre-
sented in this chapter is concerned with are the worklets (Adams, 2007). They are
represented by a set of self-contained workflow processes attached to a specific task
and allow dynamic runtime selection depending on the particular work instance
context by using a Ripple Down Rules (RDR) approach. RDS allows for rules to be
defined in hierarchical order by using binary trees with each node being represented
by a rule and having a false and/or true branch. The single node with an exception
is the root node that alone has a true branch. The worklet service maintains a set of

240  ◾  Cloud Computing and Software Services

RDRs that determine—based on the current data—what worklet should be chosen
as a replacement for a specific task during runtime.

Scufl is data-flow-centric workflow composition language used by the Taverna
(Oinn et al., 2006) workflow engine. Taverna follows a three-tiered architecture
approach with Scufl being responsible for linking applications at the user abstrac-
tion level. The execution layer interprets the Taverna Data Object Model that
handles implicit control flows, while the Freeflue enactment engine manages the
invocation of different families of services. Scufl uses a simplified syntax in which
collections, control structures, or error-handling mechanisms are implicit with the
main components consisting of a set of processors (logical services with one or
more input and output ports), a set of data links for connecting data sources to
destinations, and coordination links that allow order dependencies where required.
The main disadvantage of Scufl is the impossibility of specifying user-defined con-
straints to either processors or data links. An XML-based version called XScufl
(Greenwood, 2004) has also been developed.

Ontology Web Language for Services (OWL-S), formerly known as DARPA
Agent Markup Language for Services (DAML-S) (Ankolekar et al., 2001), is an
ontology-based approach, which can be successfully used in composing Web Services.
Composition can be achieved by using the CompositeProcess class part of the process
ontology. This class allows users to specify structures such as sequence, split, unor-
dered, join, choice, condition, and iteration. One of the goals of OWL-S is to allow
agents to automatically invoke and compose tasks based on their semantic description.
In Korhpnen et al. (2003), the DAML-S process model is enhanced with transactional
concepts, and the resulting workflow can then be executed using a workflow engine.

Other approaches represent workflows as DAGs or rely on the Job Submission
Description Language (JSDL) (Anjomshoaa et al., 2005). The former is used in proj-
ects like Pegasus (Deelman et al., 2005) and Condor (Thain et al., 2003), which
rely on Direct Acyclic Graph Manager (DAGMan) to subsequently execute them,
while the latter is used in g-Eclipse (Wolniewicz et al., 2007). DAGMan allows for
dynamic mapping and some failure-handling features, but is aimed at maximiz-
ing processor efficiency, offering a fixed scheduling mechanism and limited con-
trol constructs. JSDL is primarily used for describing the submission requirements
of individual jobs, and therefore a workflow language is needed to represent job
dependencies. g-Eclipse uses an XML format that allows jobs described by using
JSDL to be linked together by using one or more input/output ports. In Narayanan
and McIlraith (2002), part of DAML-S semantics is transformed to first-order
logic and Petri nets. A solution to automatic Web Service composition by using
both situation calculus and Petri nets is also proposed.

10.3.1.2 ECA-Based Approaches

While workflow languages, such as WS-BPEL, have become standards in Web
Service composition, they lack the flexibility and adaptability of rule-based

Dynamic and Adaptive Rule-Based Workflow Engine  ◾  241

approaches. Moreover, even though enhancements such as worklets allow dynamic
runtime task selection, they let the designer (user) think of all the aspects and
issues that may appear during the execution of the respective workflow and add
them to the rule hierarchy. Hence, in case a scenario for which a correspondent
worklet does not exist, it is the conclusion of the last rule satisfied on the path
to it that is taken into account. This could infer errors in the overall workflow
behavior and result, as wrong decisions could be made on the grounds of insuf-
ficient existing knowledge. Worklets are also strongly related with tasks and, as a
result, are not meant for dealing with system or network failures. Their best use
could therefore be the correct selection of a solution to the problem depicted by
the task.

Rule-based languages, such as ECA or CA (Condition Action), allow an alter-
native declarative approach by allowing (Weigand et al., 2008) intuitive formal
semantics by exploiting a limited set of primitives, direct support for business and
science policies, flexibility by following alternative execution paths in case of errors
or unreachable solutions, adaptability by easy insertion and retraction of rules, and
reusability by their property of being isolated from the process context.

Weigand et al. (2008) describe a CA-based engine called FARAO (FrAmewoRk
for Adaptive Orchestration) relying on semantic Web with the goal of offering
adaptable service orchestration. FARAO is based on Adaptive Service-Oriented
Architecture (ASOA) (Hiel et al., 2008) and uses a shared ontology, which allows
rules to refer to data items in terms of it. Thus, changes in the service interface do
not influence the orchestration directly as long as it adheres to the ontology. ASOA
allows for services to be adapted autonomously or semiautonomously following a
monitor-plan-act cycle via a management interface.

Nagl et al. (2006) present a service-oriented rule engine called VIDRE (Vienna
Distributed Rules Engine), which uses RuleML (Lee and Sohn, 2003) to represent
facts, rules, and queries. It also distributes rules across several rule engines, thus
increasing the separation and execution of business rules inside multiple (virtual)
organizations.

Other approaches include injecting rules inside the WSDL specifications fol-
lowed by their deployment on a service executor (Kamada and Mendes, 2007) or
using an interceptor (Rosenberg and Dustdar, 2005) for catching BPEL activities.
After an activity has been caught, applicable business rules are called via a rule
broker service.

The aspect-oriented approach of BPEL, called AO4BPEL (Charfi and Mezini,
2007), also provides a separation of the main activities from the composition logic
and follows at the same time the principles of WS-BPEL 2.0. Aspect-oriented pro-
gramming has been recently acknowledged by many authors as a useful and power-
ful technique in cases where dynamic application adaptation is required.

AgentWork (Muller et al., 2004) is another workflow engine that allows rule-
based adaptation by adding and removing tasks based on ECA rules. Adams (2007)
argues that AgentWork does not offer the flexibility of RDR as worklets do and that

242  ◾  Cloud Computing and Software Services

changes are limited to individual tasks rather than the process-for-task replacement
offered by the worklet service.

As it can be noticed from the previous paragraphs, there exist many workflow
languages and systems that aim at offering both a standardized solution and a
dynamic approach to runtime changes in the workflow execution. Among them the
most suited for the job seem to be the ECA approaches, as they offer several advan-
tages like separation of logic represented by rules from data represented by objects,
declarative programming useful for applications focused on what to do instead of
how to do it, scalability, and centralization of knowledge. These conclusions also
arise naturally from what Clouds are and how they work. Clouds are based on
virtualized resources that are offered on demand as services. When a user submits
a request to a workflow engine exposed as a service, it expects back the result. The
workflow engine is responsible for querying the Cloud for any compatible services
with its tasks and to call these services once the associated task is ready for execu-
tion. The querying can be done based on ECA execution rules and by using some
semantic information stored inside the service and task ontologies. This approach
allows the user to submit not only pre-created workflows but also only the problem
at hand. Based on the latter and on available ontologies, the workflow engine is
then able to create the workflow for that particular problem by using a backward-
chaining mechanism based on existing execution rules.

10.4  Scientific Workflows Examples
The scientific domain relies more and more on Distributed Computing due to
large amounts of computations or data requirements. In this frame, the SCIEnce
(Macariu et al., 2008) and GiSHEO (Frincu et al., 2009; GiSHEO, 2009) projects
aim at providing the user with the possibility to use the advantages of Grids and
Clouds for solving problems from two distinct and complementary approaches.
The SCIEnce project intends to provide users with access to various Computer
Algebra Systems (CASs) and to solve complex problems by using workflows that
are executed over a Distributed System transparently to the user. Each task inside
a mathematical workflow is represented by an operation that can be solved directly
(for example, the GCD or the factorial). The project relies on WS-BPEL 2.0 as the
workflow language and on ActiveBPEL as the orchestration engine. To overcome
the difficulty of writing in the BPEL language, a simpler and restrictive language
called Abstract Workflow Language (AWL) (Macariu et al., 2008) has been cre-
ated on top of it. Providing scheduling and dynamism to BPEL has proven to
be more difficult as initially expected, and there are still some open issues that
have not entirely met their answers. Among them, we can enumerate the ones
related to choosing resources dynamically at runtime or integrating a scheduler
inside the engine. The former is of special interest as CASs differ in the algorithms
they implement for solving such tasks. Therefore, we should be able to choose

Dynamic and Adaptive Rule-Based Workflow Engine  ◾  243

dynamically at runtime the most appropriate one for the job, operation which
requires comprehensive knowledge on CAS behavior in various scenarios and an
appropriate workflow platform.

The GiSHEO project aspires to provide a platform for earth sciences (history
or archeology, for instance) by offering access to satellite image processing through
means of web services. Although image processing may be trivial when taken sepa-
rately, there are cases when we need to bind them together into a workflow in order
to achieve the desired result. Useful examples come from the field of archeology;
assuming that we want to identify ancient human settlements we could apply the
following sequence of transformations: gray-level conversion, histogram equaliza-
tion, quantization, and thresholding. Another example is represented by the NDVI
value used in geography and meteorology for determining the presence of vegeta-
tion. The NDVI can be easily computed by using the Map-Reduce construct, as
it is usually required for large sets of images. For each image in the set, we need to
extract the red (RED) and near-infrared (NIR) bands, which will be used to com-
pute the index as (NIR−RED/NIR+RED). After finishing the computations, the
construct will return a set of processed NDVI values, which can be further used in
statistics or additional processing. The language expressing the workflow has been
chosen to be ECA based and orchestrated by an inference engine. The choice of this
approach allowed for the rule chain to be automatically discovered in case users
only submitted a request for a particular processing and not the entire workflow.
The rule-based approach allows the backward-chaining mechanism to determine
the path to be taken starting from the desired output. This mechanism also ensures
that the solution will be valid since, besides rule selection, the mechanism also
offers a semantic check of each selected service.

Despite that the need for a Distributed System is not immediately obvious, it
becomes clear once the data required for processing becomes too large to be stored
in one place or the services required by tasks are geographically distributed. In the
frame of the SCIEnce project, the problem submitted by the user does not neces-
sarily imply large quantities of data but in contrast requires access to CASs exposed
as services in various geographical places. One of the dissimilarities between the
SCIEnce project and the GiSHEO project lies in the fact that the latter requires
a distributed data system as the used images are usually large (several gigabytes
each). In this direction, the services must be placed where the data is, or near it, as
transfers would imply an overhead that is too great.

The following sections will deal mostly with the workflow formalism and auto-
generation method used in the GiSHEO project.

10.5  ECA Workflow Formalism
Recently, several papers have sought defining a formalism for describing adaptive
workflows. The work carried out by Lu et al. (2006) defines a model based on

244  ◾  Cloud Computing and Software Services

Hoare semantics that allows to automatically check if a workflow can be produced
from its actual implementation and to synthesize a workflow implementation based
on a specification and a task library. The model focuses on formalizing the seman-
tics of the workflow together with its preconditions and post-conditions and on
providing a set of inference rules for each of the following control constructs: empty
workflow, composition, loop, universal, conjunction, condition, and disjunction.

In Chun et al. (2002), the authors present a knowledge-based workflow model.
Ontologies are used to describe tasks and their relationships as well as the compo-
sitional rules. Each user is also associated with a user profile, which is evaluated
against compositional rules by the composition algorithm. The authors argue that
this approach minimizes the workflow evaluations during runtime and automatizes
the interagency workflow design.

A workflow formalism based on the High-Order Chemical Language (HOCL)
is presented in Nemeth et al. (2005). HOCL derives from the γ calculus and has
been successfully used to represent self-organizing systems (Banâtre et al., 2007).
The work carried out by Nemeth et al. (2005) tries to provide a coordination frame-
work where a higher level of autonomy is provided, workflow activities are able to
react and adapt to environmental changes, a distributed enactment that can make
decisions based on partial workflow information is achieved, and advanced con-
trol structures are supported. One of the main advantages of this approach is the
implicit parallelism of the model, which arises from the fact that tasks are viewed
as molecules inside a chemical solution and, as in any real reaction, the process
takes place in parallel for each present reactive molecule. Solutions can also contain
sub-solutions, which in turn can comprise molecules that react. As a general rule,
sub-solutions cannot react with the solution before all the reactions inside them
have completed.

In what follows, a simple ECA rule-based workflow formalism will be pre-
sented. It has been introduced in the GiSHEO project as the starting point of an
inference rule-based service composition engine. The reasons for electing such an
approach have been already discussed in the previous sections. This approach also
shows how we can achieve service composition by using only rules and a forward-
chaining engine.

Similar to the formalism described in Chun et al. (2002), where the ontologies
for domain services and tasks are the same, the model we propose also considers
tasks and services to be interchangeable. A task T or likewise a service S can be
described as a five tuple θ = θ1 θ2 θ3 θ4 θ5, where θ1 specifies the number of task
instances (the default value being one); θ2 and θ3 designate, respectively, the input
and output ports of the task; θ4 encloses the preconditions of the tasks (the tasks
that need to be executed before it and optional conditions based on the results of
their execution); θ5 holds the operations needed to be carried out by the task; and
θ6 comprehends other semantic information related to it. The semantic information
could contain data about preferred services, required system configuration, and
system load.

Dynamic and Adaptive Rule-Based Workflow Engine  ◾  245

A workflow W can be specified by ω = ω1 ω2 ω3 ω4 ω5 ω6, where the elements are
the same as for tasks, the only difference being ω6, which represents the collection
of tasks belonging to it. A natural way of representing workflows is by using DAGs
consisting of tasks linked together by preconditions. Similar to tasks, workflows
must have at least one input and output port. As mentioned in Section 10.2.1, the
notion of workflows and tasks is interchangeable, which is also true in the former
definition. As an example, we can note the similarity between the workflow and
task ontologies, and the particular case where ω6 contains a single task in which
case the two are identical.

In Nemeth et al. (2005), the notion of abstract and concrete workflow is intro-
duced. An abstract workflow is seen as a model that expresses the logic of the prob-
lem without containing any means of solving it. In order to accomplish this, a
mapping of tasks on services is needed. Such a workflow where tasks are mapped on
services is called a concrete workflow. The same work also emphasizes that in order
to provide full dynamism and autonomy, the conversion between an abstract and a
concrete workflow must be accomplished during runtime. We further introduce a
mapping function for generating a concrete workflow, ft: T → S, where S is a service
that satisfies the task description θ for one or more tasks T ∈ ω6.

The evolution function or rule that allows the activation of tasks based on the
fulfillment of their preconditions and additional conditional elements can be
expressed by a function r T Tn m: condition → , where Tn represents the tasks needed
to be completed before the Tm tasks can proceed with, their own execution. The
condition represents additional criteria that must be satisfied by the Tn tasks. It is
also part of the task precondition set θ4, but we have chosen to emphasize its impor-
tance. It can however be safely omitted without loss of generality. The inverse func-
tion r−1 gives the θ4 list of preconditions. As an example of a rule function, we could
consider a rule such as r T T T(,)1 2 3

2 1T T.output1<10, .output1>0 → , where T3 gets executed
only after T1 and T2 are completed and if the output on the output1 ports for the
two tasks is greater than 0 for T1 and smaller than 10 for T2.

In the same manner, a user profile can be expressed similar to that in Chun
et al. (2002) as u1u2 where u1 and u2 represent the user’s goal service and the user’s
service preferences, respectively.

The workflow model described before combines the formerly presented model
by mixing features such as multiple task instances, implicit parallelism, and inte-
gration of resource selection inside the rules found in the HOCL representation of
Nemeth et al. (2005) with semantic information and ontologies from Chun et al.
(2002). The resulting workflow language is also backward-chaining enabled, allow-
ing for automatic generation and self-adaptation. This is achieved by using the rule
function that allows binding together tasks, and its inverse function that allows
workflow generation starting from a desired solution. The aim of the formalism is
to offer the basis for a simplified language without loss of generality. The follow-
ing text will show how the constructs presented in Section 10.2.1 can be expressed
without introducing any new elements besides the rules themselves.

246  ◾  Cloud Computing and Software Services

Rules are defined simply by mentioning the events and conditions that need
to take place in order to trigger the execution-consequent tasks. Events are viewed
as completed tasks and are placed on the left-hand side of the rule. Linking the
output of left-hand-side tasks with the input of right-hand-side tasks is accom-
plished by variables. For example, the rule A[a = o1] → B[i1 = a] links the output
port o1 of task A with the input port i1 of task B through variable a. All tasks on
the right-hand side get executed in parallel in the same way as multiple rules are
triggered simultaneously if their left-hand-side conditions are met. This aspect of
rule-based workflows allows for constructs such as split and join to be naturally
expressed without introducing additional elements inside the rule. For instance, a
(synchronized) join can be expressed as A[a = o1], B[b = o1] → C[i1 = a, i2 = b], and
a (parallel) split as A[a = o1] → B[i1 = a], C[i1 = a]. Synchronization between sev-
eral tasks can also be achieved by adding them into the left-hand side of the rule:
A[b = o1], B → C[i1 = b]. The previous example shows how task A is synchronized
with task B and cannot execute until the latter is completed. Conditional rules
can be expressed by placing conditions on the variables: A[a = o1] → B[i1 = a]|d < 1.
Loops can also be easily modeled as in the following example consisting of two
rules: A[a = o1], B[b = o1] → A[i1 = a, i2 = b]|d < 1 and A[a = o1], B[b = o1] → C[i1 = a,
i2 = b]|d >= 1. The former rule expresses the condition to reiterate the loop, while
the latter expresses the exit condition.

While tasks are executed by services, the choice of the latter is accomplished by
the workflow engine through the ft mapping function. In addition as their ontol-
ogies are defined in the same manner, services could easily be added inside the
rules if required. This practice is however not recommended as the service selection
should be made at runtime based on the most current data by the engine, a special-
ized scheduler, or the task itself. In the case of GiSHEO, the selection is made by
the centralized workflow enactment engine during runtime.

Rules can also specify whether or not the left-hand-side tasks or the
number of right-hand-side-produced instances get consumed. In this direction,
the formalism allows for tasks to have multiple instances. This feature allows
the introduction of explicit sequencing of multiple rules ready for execution. As
an example, we can consider the two rules where task A has only one instance:
A[a = o1, consume = true] → B[i1 = a], A[i1 = a, instances = 1] and A[a = o1, con-
sume = true] → C[i1 = a], A[i1 = a, instances = 1]. In this example, the rules cannot
fire simultaneously, and one of them needs to wait for the other to produce another
instance of task A. Multiple task instances allow users to express workflows based
on nature, such as chemical reactions (Nemeth et al., 2005). Moreover, we can
define multiple-rule visibility domains or solutions (if using a chemical metaphor),
which allow both grouping of rules and creating sub-workflows that execute based
only on rules belonging to a particular domain. When all the rules have triggered
(all tasks that can trigger rules have been consumed), the reaction can extend to
wider domains.

Dynamic and Adaptive Rule-Based Workflow Engine  ◾  247

10.6  Workflow Construction
While most applications and frameworks focus on enhancing the execution and
debugging of workflows, only a few try to focus on automatic construction or vali-
dation. While in the former case they allow the user to create the workflow in an
iconographic mode by dragging and dropping or by providing some commonly
used blocks, in the latter case they just verify the workflow from the syntactic
perspective.

To see why automatic generation or at least guided design is important, we
take a typical case found in scientific problems in which the scientist tries to opti-
mize or solve a concrete problem that is part of a bigger problem. We assume
that the used method relies on partial results obtained from other methods that
had been studied and hopefully implemented by other scientists. In this case, the
performance and usually the consequence of the experiments depend not only on
the particular solution but also on the way the methods for the dependencies are
selected. Additionally, as the scientist has extensive expertise exclusively in a small
portion of the enclosing domain, he does not always know how to best choose these
dependencies.

Another usage for such facilities is that as the infrastructure and supporting
technologies grow, the problems become more and more complex and overwhelm
the capacity to choose the right methods. Also a missed opportunity could be the
parallelism built into the workflows, which often leads to suboptimal solutions
because of the fact that the designer does not always capture all possible parallel
scenarios.

Some possible solutions (Chun et al., 2002; Korhonen et al., 2003) have already
been described in one of the previous sections. Another one is described in the
paper presented by Lu et al. (2006), where the authors focus mainly on formal
checking of workflows. Only as a consequence of the implied model’s properties
is generation taken into account. In this case, each task is defined as follows: P(x‒)
T(x‒)[Q1(x‒), …, Qn(x‒)], where x‒ represents the input parameters, P(x‒) is a first-order
logic predicate that represents the precondition of task T (the conditions that must
be true in order to execute the task), and the Qi(x‒) vectors stand for possible task
post-conditions (what should happen after the task execution). It should be noted
that this model provides the opportunity for nondeterminism, since only one of
the post-conditions could be true. This possibility is more than what is needed in
scientific workflows where a simplified model would look like P(x‒)T(x‒)[Q(x‒)]. The
cited paper also describes a proof-of-concept algorithm for both verification and
generation of a workflow.

The drawback for all these automatic solutions is that they imply an all-or-
nothing approach where the user either provides all the necessary data, which leads
to a complete workflow construction, or nothing is obtained. In our view, a human-
assisted approach where the automatic system tries to create a complete workflow

248  ◾  Cloud Computing and Software Services

and, in case of failure, asks the user for missing pieces would be more appropriate.
This is also the case of the workflow engine developed in the frame of the GiSHEO
project. The engine partially offers design-time solutions to users by providing a
subset of rules that lead to the desired result. Given the user’s requirements (param-
eters) and the desired problem, the engine searches the task ontologies and selects
appropriate services. Then starting from the desired problem and by recursively
using the previously defined r −1 function, it extracts the appropriate rules. If the
resulted set contains no rules with preconditions matching the presented param-
eters, the engine simply shows the obtained chaining and warns the user of the
incomplete nature of the workflow. It is then up to the user to revise and submit
new input parameters.

As a conclusion, it can be said that even though automatic generation exists,
there is still need for human intervention either when incomplete input data is
provided or when the result is dependent on the input values and/or intermediate
variations of the parameters, which cannot be done automatically.

10.7  Conclusions
This chapter has given a brief overview on scientific workflows seen from a
Distributed System perspective. In the first part of the chapter, it has been shown
that given the increased need of larger storage and computational resources, work-
flows have migrated toward a distributed approach by using Web Services as end
points for their tasks. In this direction, two main approaches regarding classic
and rule-based workflow composition have emerged. The latter seems to be more
suited to handle issues related to scalability, failure tolerance, data integrity, and
scheduling. It also provides implicitly support for task composition through the use
of an inference engine. Although scheduling is an important issue related to task
execution, it has been intentionally omitted due to the fact that such a problem
requires a large amount of space to be properly addressed. As long as the services
return a result in a reasonable amount of time, scheduling can be safely ignored. It
only becomes a problem when a cost function, such as a time constraint, based on
payed access or a deadline is applied to the workflow. In the second part, we have
presented a rule-based workflow formalism and language developed as part of the
GiSHEO project. Its aim is to facilitate the creation of workflows by specifying a
minimal yet complete workflow language, to allow self adaptation during runtime
and auto-workflow generation.

Despite the fact that the need for a service-based distributed workflow system
or at least a workflow suited for executing distributed tasks through services has
become clear in the last decade, much is still to be done. Although the solutions
seem at first numerous and independent from each other, there is a tendency toward
the inclusion of semantic information, ontologies, and execution rules inside the
execution engines. This work has strived to present both an introduction into what

Dynamic and Adaptive Rule-Based Workflow Engine  ◾  249

workflows for Distributed Computing are (what they are made of and what solu-
tions and problems currently exist) and how service composition can be easily
achieved by using rules and semantics.

Acknowledgment
This research has been partially supported by the European Space Agency PECS
Contract no. 98061 GiSHEO: On Demand Grid Services for High Education and
Training in Earth Observation.

References
Adams, M. J. (2007). Facilitating dynamic flexibility and exception handling for workflows.

Ph D thesis, Queensland University of Technology, Brisbane, Australia.
Anjomshoaa, A., F. Brisard, M. Drescher et al. (2005). Job submission description language.

http://www.ggf.org/documents/GFD.56.pdf (accessed March 30, 2009).
Ankolekar, A., M. Burstein, J. Hobbs et al. (2001). DAML-S: Semantic markup for web

services. http://www-2.cs.cmu.edu/softagents/papers/SWWS.pdf (accessed March 30,
2009).

Banâtre, J., P. Fradet, and Y. Radenac (2007). Programming self-organizing systems with
the higher-order chemical language. International Journal of Unconventional Computing
3(3), 161–177.

Charfi, A. and M. Mezini (2007). Ao4bpel: An aspect-oriented extension to bpel. World
Wide Web 10(3), 309–344.

Chun, S., V. Atluri, and N. Adam (2002). Domain knowledge-based automatic workflow
generation. In Proceedings of the 13th International Conference on Database and Expert
Systems Application (DEXA’02), Aixen Provence, France, pp. 81–92. Springer-Verlag,
London, U.K.

Dean, J. and S. Ghemawat (2004). Mapreduce: Simplified data processing on large clus-
ters. In Proceedings of the Sixth Conference on Symposium on Operating Systems Design
and Implementation (OSDI’04), San Francisco, CA, pp. 10–10. USENIX Association,
Berkeley, CA.

Deelman, E., G. Singh, M. Su et al. (2005). Pegasus: A framework for mapping com-
plex scientific workflows onto distributed systems. Scientific Programming 13(3),
219–237.

Forgy, C. (1990). Rete: A fast algorithm for the many pattern/many object pattern match
problem. In Expert Systems: A Software Methodology for Modern Applications, ed. P. G.
Reith, pp. 324–341. IEEE Computer Society Press, Los Alamitos, CA.

Frincu, M., S. Panica, M. Neagul, and D. Petcu (2009). Gisheo: On demand grid ser-
vice based platform for eo data processing. In Proceedings of the Third International
Workshop on High Performance Grid Middleware (HiperGrid’09), Bucharest, Romania,
pp. 415–422. Politehnica Press, Romania.

GiSHEO (2009). On demand grid services for high education and training in earth observa-
tion. http://gisheo.info.uvt.ro (accessed April 22, 2009).

250  ◾  Cloud Computing and Software Services

Greenwood, M. (2004). Xscufl language reference. http://www.mygrid.org.uk/wiki/Mygrid/
WorkFlow#XScufl_workflow_definitions (accessed March 30, 2009).

Hiel, M., H. Weigand, and W. van den Heuvel (2008). An adaptive service-oriented architec-
ture. In Enterprise Interoperability III, eds. K. Mertens, R. Ruggaber, and K. Popplewell,
and X. Xu, pp. 197–208. Springer, London, U.K.

Kamada, A. and M. Mendes (2007). Business rules in a service development and execution
environment. In Proceedings of the International Symposium on Communications and
Information Technologies, Sydney, Australia, pp. 1366–1371. IEEE Computer Society,
Washington, DC.

Korhonen, J., L. Pajunen, and J. Puustjarvi (2003). Automatic composition of web service
workflows using a semantic agent. In Proceedings of the 2003 IEEE/WIC International
Conference on Web Intelligence (WI’03), Beijing, China, pp. 566. IEEE Computer
Society, Washington, DC.

Lee, J. and M. Sohn (2003). The extensible rule markup language. Communications of the
ACM 46(5), 59–64.

Lu, S., A. Bernstein, and P. Lewis (2006). Automatic workflow verification and generation.
Theoretical Computer Science 353(1), 71–92.

Macariu, G., A. Carstea, and M. Frincu (2008). Service-oriented symbolic computing with
symgrid. Scalable Computing: Practice and Experience 9(2), 11–25. http://www.scpe.
org/vols/vol09/no2/SCPE_9_2_04.pdf (accessed April 16, 2009).

Muller, R., G. Greiner, and E. Rahm (2004). Agent work: A workflow system supporting
rule-based workflow adaptation. Data and Knowledge Engineering 51(2), 223–256.

Nagl, C., F. Rosenberg, and S. Dustdar (2006). Vidre—A distributed service-oriented
business rule engine based on ruleml. In Proceedings of the 10th IEEE International
Enterprise Distributed Object Computing Conference (EDOC ’06), Hong Kong, China,
pp. 35–44. IEEE Computer Society, Washington, DC.

Narayanan, S. and S. McIlraith (2002). Simulation, verification and automated composition
of web services. In Proceedings of the 11th International Conference on World Wide Web
(WWW’02), Honolulu, HI, pp. 77–88. ACM, New York, NY.

Nemeth, Z., C. Perez, and T. Priol (2005). Workflow enactment based on a chemical meta-
phor. In SEFM ’05: Proceedings of the Third IEEE International Conference on Software
Engineering and Formal Methods, Koblenz, Germany, pp. 127–136. IEEE Computer
Society, Washington, DC.

Oinn, T., M. Greenwood, M. Addis et al. (2006). Taverna: Lessons in creating a work-flow
environment for the life sciences: Research articles. Concurrency and Computation:
Practice and Experience 18(10), 1067–1100.

Rosenberg. F. and S. Dustdar (2005). Business rules integration in bpel—A service-oriented
approach. In Proceedings of the Seventh IEEE International Conference on E-Commerce
Technology (CEC’05), München, Germany, pp. 476–479. IEEE Computer Society,
Washington, DC.

Thain, D., T. Tannenbaum, and M. Livny (2003). Condor and the grid. In Grid Computing:
Making the Global Infrastructure a Reality, eds. F. Berman, A.J.G. Hey, and G. Fox,
pp. 299–335. John Wiley & Sons, Chichester, U.K.

van der Aalst, W. M. P. and A. H. M. ter Hofstede (2005). Yawl: Yet another workflow lan-
guage. Information Systems 30(4), 245–275.

Weigand, H., W. van den Heuvel, and M. Hiel (2008). Rule-based service composition and
service-oriented business rule management. Proceedings of the International Workshop
on Regulations Modelling and Deployment (ReMoD’08), Montpellier, France.

Dynamic and Adaptive Rule-Based Workflow Engine  ◾  251

Wolniewicz. P., N. Meyer, M. Stroinski, M. Stuempert, H. Kornmayer. M. Polak, and H.
Gjermundrod (2007). Accessing grid computing resources with g-eclipse platform.
Computational Methods in Science and Technology 13(2), 131–141.

WSBPEL (2007). Web services business process execution language version 2.0. http://docs.
oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf (accessed March 30, 2009).

253

Chapter 11

Transparent Cross-
Platform Access to 
Software Services Using 
GridSolve and GridRPC

Keith Seymour, Asim YarKhan, and Jack Dongarra

Contents
11.1 Introduction to RPC and Network-Based Software Services254
11.2 The GridRPC API ..256

11.2.1 Function Handles and Session IDs ...257
11.2.2 Initializing and Finalizing Functions ..257
11.2.3 Remote Function Handle Management Functions257
11.2.4 GridRPC Call Functions ..258
11.2.5 Asynchronous GridRPC Control Functions258
11.2.6 Asynchronous GridRPC Wait Functions258
11.2.7 Error Reporting Functions ..258
11.2.8 Related Work on Network-Enabled Servers259

11.3 GridSolve: A GridRPC Implementation...259
11.3.1 Overview and Architecture .. 260

254  ◾  Cloud Computing and Software Services

Distributed computing can be daunting even for experienced programmers.
Although many projects have been created to facilitate developing distributed
applications, they are often quite complex in themselves. While many scientific
applications could benefit from distributed computing, the complexity of the pro-
gramming models can be a high barrier to entry, especially since many of these
applications are developed by domain scientists without extensive training in soft-
ware development. Thus, we believe that the paramount design consideration of a
distributed computing model should be ease of use. With this in mind, we discuss
GridRPC, which is a model for remote procedure call (RPC) in the context of a
computational grid or other loosely coupled distributed computing environment.
Then we discuss GridSolve, an implementation of the GridRPC model.

11.1   Introduction to RPC and Network-
Based Software Services

RPC refers to a mechanism that allows invoking a procedure on a remote machine
as if the procedure was implemented locally. The invocation is typically carried out
by means of a communications library and “stub” procedures. The library handles
packing up the user’s data, sending it across the network to the remote machine,

11.3.2 Transparency and Ease of Use...261
11.3.2.1 Stubless Clients ...261
11.3.2.2 Scientific Computing Environments262
11.3.2.3 Server Administration ...262

11.3.3 Scheduling in GridSolve ...263
11.3.3.1 Agent Scheduling ..263
11.3.3.2 Server Performance Prediction 264
11.3.3.3 Scheduling Using Proxies for Computational

Resources ...265
11.3.3.4 Client Scheduling .. 266
11.3.3.5 Task Graph Scheduling...267

11.4 RPC Transparency Issues .. 268
11.4.1 Parameter Passing .. 268
11.4.2 Binding to Servers ...269
11.4.3 Exception Handling and Fault Tolerance269
11.4.4 Data Representation ...270
11.4.5 Performance ..270
11.4.6 Security...272
11.4.7 Transparency ..272

11.5 Summary ...272
References ...273

Transparent Cross-Platform Access to Software Services  ◾  255

and unpacking it there. The process of packing the data into a standard format
(especially important for cross-platform scenarios) is referred to as data marshaling.
Once the data has been transferred, the RPC system invokes the user’s procedure
and passes the data to it. From this point, the user’s procedure takes control and
executes until completion. Then the process is reversed to send the results back to
the client machine. The “stub” procedures are used to enable linking the programs
(since the actual procedure does not exist locally to be linked) and to initiate the
RPC process via calls to the RPC library. This standard RPC process is depicted
in Figure 11.1.

One of the earliest implementations of RPC was part of the Cedar project at
Xerox Palo Alto Research Center [1], although the concept had been discussed for
several years prior to the Xerox implementation [2]. Cedar used RPC to enable
distributed computing primarily because of the ease-of-use inherent in the RPC
paradigm. Procedure calls were considered a well-understood mechanism and pro-
vided clean and simple semantics. Around that time, RPC was also being inves-
tigated in the context of distributed operating systems. In a critique of RPC as a
general communications model for arbitrary applications [3], it is argued (among
other things) that since true transparency is impossible, it may be better to design a
partially transparent mechanism. If the system is transparent to the point that the
programmers really do not know if their calls will be executed locally or remotely,
then there could be serious performance implications (e.g., if a sorting routine
called a comparison procedure thousands of times, unaware that it would be exe-
cuted remotely). Most modern RPC-like systems are not aiming for that level
of transparency, but the critique raises issues that are still relevant today. In this

Client application

RPC stub

RPC library

Operating system

RPC stub

RPC library

Operating system

Remote procedure

Client machine Server machine

Network

Figure 11.1  Client–server interaction in standard RPC.

256  ◾  Cloud Computing and Software Services

chapter, we will touch on these and other RPC transparency issues in the context
of a grid-based RPC implementation.

The RPC model has several benefits, but the main concern from the perspec-
tive of high-performance computing is efficiency. If the user’s local machine is
slow, but remote resources are fast, RPC can provide an overall reduction in exe-
cution time, even including the cost of data marshaling. However, traditional
RPC only allows for synchronous calls, that is, once the procedure is invoked, the
client program must sit idle until it completes, even if it had other useful computa-
tions it could be doing. The synchronous model also prevents submitting multiple
parallel RPC requests, which could provide for even better overall performance.
Another limitation of the traditional RPC model is that the mapping of RPC
request to server is very simplistic, often requiring the use of a specific machine.
Intelligent selection of servers could drastically improve the performance. Also the
use of client-side stubs requires language-specific generators for all client language
bindings. Furthermore, consider the implications of this compilation requirement
on interactive computing environments like MATLAB• or Octave, in which
cases, the user cannot be expected to compile stubs just to make use of a remote
procedure.

RPC remains a useful mechanism due to its elegance and simplicity, but the
aforementioned limitations have prompted several extensions to the model, includ-
ing asynchronous calls, task parallel calls, real-time resource scheduling, fault tol-
erance, security, and stubless operation. We will be discussing GridRPC, a recent
specification of an API (application programming interface) for grid-based RPC,
as well as a complete implementation of this API within the GridSolve system.

11.2  The GridRPC API
As mentioned in Section 11.1, the difficulty of using most programming models is a
hindrance to the widespread adoption of grid computing. One particular program-
ming model that has proven to be viable is an RPC mechanism tailored for the
grid, or “GridRPC.” Although at a very high-level view the programming model
provided by GridRPC is that of standard RPC plus asynchronous coarse-grained
parallel tasking, in practice there are a variety of features that will largely hide the
dynamicity, insecurity, and instability of the grid from the programmers. As such,
GridRPC allows not only enabling individual applications to be distributed, but
also can serve as the basis for even higher-level software substrates, such as distrib-
uted, scientific components on the grid.

The GridRPC API [4] represents ongoing work to standardize and implement
a portable and simple RPC mechanism for grid computing. This standardization
effort is being pursued through the Open Grid Forum (previously, Global Grid
Forum) Research Group on Advanced Programming Models [5].

Transparent Cross-Platform Access to Software Services  ◾  257

In this section, we informally describe the GridRPC model and the functions
that comprise the API. A detailed listing of the GridRPC function prototypes can
be found in the GridSolve Users’ Guide [6].

11.2.1 Function Handles and Session IDs
Two fundamental objects in the GridRPC model are function handles and ses-
sion IDs. The function handle represents a mapping from a function name to an
instance of that function on a particular server. The GridRPC API does not dictate
the mechanics of resource discovery, since different underlying GridRPC imple-
mentations may use vastly different protocols. Once a particular function-to-server
mapping has been established by initializing a function handle, all RPC calls using
this function handle will be executed on the server specified in that binding. A
session ID is an identifier representing a particular non-blocking RPC call. The
session ID is used throughout the API to allow users to obtain the status of a previ-
ously submitted non-blocking call, to wait for a call to complete, to cancel a call, or
to check the error code of a call.

11.2.2 Initializing and Finalizing Functions
The initialize and finalize functions are similar to the MPI initialize and finalize
calls. Client GridRPC calls before initialization or after finalization will fail.

 ◾ grpc _ initialize reads the configuration file and initializes the
required modules.
 ◾ grpc _ finalize releases any resources being used by GridRPC.

11.2.3 Remote Function Handle Management Functions
The function handle management group of functions allows creating and destroying
function handles.

 ◾ grpc _ function _ handle _ default creates a new function handle
using the default server. This could be a predetermined server name or it could
be a server that is dynamically chosen by the resource discovery mechanisms
of the underlying GridRPC implementation, such as the GridSolve agent.
 ◾ grpc _ function _ handle _ init creates a new function handle

with a server explicitly specified by the user.
 ◾ grpc _ function _ handle _ destruct releases the memory asso-

ciated with the specified function handle.
 ◾ grpc _ get _ handle returns the function handle corresponding to the

given session ID (that is, corresponding to that particular non-blocking request).

258  ◾  Cloud Computing and Software Services

11.2.4 GridRPC Call Functions
A GridRPC call may be either blocking (synchronous) or non-blocking (asynchro-
nous), and it accepts a variable number of arguments (like printf) depending on
the calling sequence of the particular routine being called.

 ◾ grpc _ call makes a blocking RPC with a variable number of arguments.
 ◾ grpc _ call _ async makes a non-blocking RPC with a variable num-

ber of arguments.

11.2.5 Asynchronous GridRPC Control Functions
The following functions apply only to previously submitted non-blocking requests.

 ◾ grpc _ probe checks whether the asynchronous GridRPC call has
completed.
 ◾ grpc _ probe _ or checks whether any of the previously issued non-

blocking calls in a given set have completed.
 ◾ grpc _ cancel cancels the specified asynchronous GridRPC call.
 ◾ grpc _ cancel _ all cancels all previously issued calls.

11.2.6 Asynchronous GridRPC Wait Functions
The following five functions apply only to previously submitted non-blocking
requests. These calls allow an application to express desired nondeterministic com-
pletion semantics to the underlying system, rather than repeatedly polling on a set
of sessions IDs. (From an implementation standpoint, such information could be
conveyed to the OS scheduler to reduce cycles wasted on polling.)

 ◾ grpc _ wait blocks until the specified non-blocking requests have completed.
 ◾ grpc _ wait _ and blocks until all of the specified non-blocking requests

in a given set have completed.
 ◾ grpc _ wait _ or blocks until any of the specified non-blocking requests

in a given set has completed.
 ◾ grpc _ wait _ all blocks until all previously issued non-blocking

requests have completed.
 ◾ grpc _ wait _ any blocks until any previously issued non-blocking

request has completed.

11.2.7 Error Reporting Functions
Of course it is possible that some GridRPC calls can fail, so we need to provide the
ability to check the error code of previously submitted requests. The following error
reporting functions provide error codes and human-readable error descriptions:

Transparent Cross-Platform Access to Software Services  ◾  259

 ◾ grpc _ get _ error returns the error code associated with a given non-
blocking request.
 ◾ grpc _ error _ string returns the error description string, given a

numeric error code.
 ◾ grpc _ get _ failed _ sessionid returns the session ID of the last

invoked GridRPC call that caused a failure.

11.2.8 Related Work on Network-Enabled Servers
Several Network-Enabled Servers (NES) provide mechanisms for transparent access
to remote resources and software. Ninf-G [7] is an implementation of the GridRPC
API that can function on top of a variety of grid middleware environments, such as
Globus, Condor, and SSH (as of version 5). Ninf-G provides an interface definition
language that allows services to be easily added, and client APIs are provided in C
and Java. Security, scheduling, and resource management are generally left up to
the underlying middleware.

The DIET (Distributed Interactive Engineering Toolbox) project [8] is a
client–agent–server RPC architecture, which uses the GridRPC API as its pri-
mary interface. A CORBA Naming Service handles the resource registration
and lookup, and a hierarchy of agents handle the scheduling of services on the
resources. An API is provided for generating service profiles and adding new ser-
vices, and a C client API exists.

NEOS [9] is a network-enabled problem-solving environment designed as a
generic application service provider (ASP). Any application that can be changed to
read its inputs from files and write its output to a single file can be integrated into
NEOS. The NEOS server acts as an intermediary for all communication. The cli-
ent data files go to the NEOS server, which sends the data to the solver resources,
collects the results, and then returns the results to the client. Clients can use e-mail,
Web, socket-based tools, and CORBA interfaces.

Other projects are related to various aspects of GridSolve. For example, task-
farming-style computation is provided by the Apples Parameter Sweep Template
(APST) project [10], the Condor Master Worker (MW) project [11], and the
Nimrod-G project [12]. Request sequencing and workflow management is handled
by projects like Condor DAGman [13].

11.3  GridSolve: A GridRPC Implementation
GridSolve is a GridRPC-compliant distributed computing system that provides
an efficient and easy-to-use programming model for using remote computational
resources. Remote resources can provide access to specialized hardware or highly
tuned software with the performance and features desired by a computational

260  ◾  Cloud Computing and Software Services

scientist. The basic goal of GridSolve is to provide an easy-to-use, uniform, por-
table, and efficient way to access computational resources over a network.

11.3.1 Overview and Architecture
The GridSolve system is comprised of a set of loosely connected machines. By
loosely connected, we mean that these machines are on the same local, wide, or
global area network, and may be administrated by different institutions and orga-
nizations. Moreover, the GridSolve system is able to support these interactions in a
heterogeneous environment, that is, machines of different architectures, operating
systems, and internal data representations can participate in the system at the same
time.

Figure 11.2 shows the global conceptual picture of the GridSolve system. In
this figure, we can see the three major components of the system: the client, the
agent, and the servers (computational or software resources). GridSolve and systems
like it are often referred to as grid middleware. GridSolve acts as a glue layer that
brings the application or user together with the hardware and/or software needed
to complete useful tasks. At the top tier, the GridSolve client library is linked in

Agent

Monitor
Database

Scheduler

Client

grpc_call (&h, a, b, c, ...);

Request
description

Brokered
decision

Servers Servers

Input
data

Output
results

Status and
workload

Status and
workload

Figure 11.2  GridSolve architecture showing interactions between client, agent, 
and servers.

Transparent Cross-Platform Access to Software Services  ◾  261

with the user’s application. The application then makes calls to GridSolve’s API
(GridRPC) for specific services. Through the GridRPC API, GridSolve client-users
gain access to aggregate resources without needing to know anything about distrib-
uted computing or maintaining software libraries. In fact, the user does not even
have to know that remote resources are involved. The GridSolve agent maintains a
database of GridSolve servers along with their capabilities (hardware performance
and allocated software) and dynamic usage statistics. It uses this information to
allocate server resources for client requests. The agent finds servers that will service
requests the quickest, balances the load amongst its servers, and keeps track of
failed ones. The GridSolve server is a daemon process that awaits client requests.
The server can run on single workstations, clusters of workstations, symmetric mul-
tiprocessors, or machines with massively parallel processors. A key component of
the GridSolve server is a source code generator, which parses a GridSolve Interface
Definition Language (gsIDL) file. This gsIDL file contains information that allows
the GridSolve system to create new service modules and incorporate new function-
alities. In essence, the gsIDL defines an interface and wrapper that GridSolve uses
to call functions being incorporated. The (hidden) semantics of a GridSolve request
are as follows:

 1. Client contacts the agent with a service request description
 2. Agent returns a brokered decision containing a list of capable servers
 3. Client contacts the server and sends input data
 4. Server receives the data and runs appropriate service
 5. Client receives the output results or error status from the server

From the user’s perspective, the call to GridSolve acts very much like the call to
the original function. The GridSolve calls can also be made in an asynchronous
fashion, so that the client can either perform other tasks during the RPC call, or
the client can submit multiple parallel RPC service requests and then probe for
their completion.

11.3.2 Transparency and Ease of Use
In addition to the standard GridRPC API, GridSolve provides a number of fea-
tures that make it easier to use and provide a substantial benefit. These features are
intended to make it easier for the service provider to add services, and easier for the
user to take advantage of these services.

11.3.2.1 Stubless Clients

GridSolve is designed so that the clients do not require client-side stubs to be gener-
ated and compiled in order to call remote procedures. This is in contrast with many
other RPC systems, where a client stub needs to be generated and bound for each

262  ◾  Cloud Computing and Software Services

remote function. Several dynamically reconfigurable languages, such as Java and
Python, allow clients to incorporate new functionality on the fly, but traditional
languages, such as C and Fortran, cannot easily do so. GridSolve accomplishes
this by using generalized marshaling routines on the client and the server. Using
a stubless client in GridSolve enables it to make new server functionality available
to its clients without requiring any changes at the client side. The drawback of this
approach is that type-checking cannot be done at the time of calling the GridSolve
API. However, this stubless approach fits well with the goal of making GridSolve
easy to use. After a client is deployed, no additional changes are required for the
client to access new functions deployed at any server.

11.3.2.2 Scientific Computing Environments

GridSolve has a strong focus on ease of use, since this is still perceived to be a sub-
stantial barrier to the general adoption of distributed and grid computing services.
As such, in addition to C and Fortran client interfaces, GridSolve provides client
bindings to several high-level SCEs (scientific computing environments), such as
MATLAB, Octave, and IDL (Interactive Data Language). In this way, it becomes
possible to combine high-performance distributed grid resources with the flexibil-
ity, familiarity, and productivity of SCEs. The SCE bindings allow the user to make
calls to remote functions in a natural way, and the GridSolve client handles all the
details of converting data from the SCEs’ internal representations to GridSolve
data representations. Then the GridSolve client submits the RPC request to the
GridSolve server, and when the remote reply is received, the client converts it back
to the natural format for the SCE. This smooth integration with SCEs is one of the
most successful features of GridSolve.

11.3.2.3 Server Administration

We have implemented a simple technique for adding arbitrary services to a running
server. First, the new service should be built as a library or object file. Then the user
writes a specification of the service parameters in a gsIDL file. The GridSolve ser-
vice compiler processes the gsIDL and generates a wrapper, which is automatically
compiled and linked with the service library or object files. The services are com-
piled as external executables with interfaces to the server described in a standard
format. The server reexamines its own configuration and installed services periodi-
cally to detect new services. In this way, it becomes aware of the additional services
without recompilation or restarting of the server itself.

Server administrators may specify arbitrary server attributes in a configuration
file. These attributes are used to enable filtering or criteria matching in the selection
of resources. For example, the server could have attributes describing the machine’s
architecture or amount of memory. These attributes are sent to the agent and stored
in its database so that clients can make complex requests (e.g., only give me x86

Transparent Cross-Platform Access to Software Services  ◾  263

servers with more than 2 GB of memory). The agent can very quickly filter service
requests using these attributes to find matches with the appropriate servers.

Server administrators can also add restrictions in the configuration file. This
allows restricting access to the server under certain conditions, such as during peak
times or when there are a certain number of jobs already running.

11.3.3 Scheduling in GridSolve
Scheduling is essential for achieving an efficient and responsive distributed system.
In a distributed, heterogeneous environment like the grid, services can achieve very
different performance depending on many factors, including the network condi-
tions, the server speeds, the temporary load on the server, and the efficiency of
installed software. These factors need to be accounted for when scheduling service
requests onto servers. GridSolve has several alternative scheduling methods avail-
able, and the topic of scheduling remains an active research area within GridSolve.

11.3.3.1 Agent Scheduling

In agent-based scheduling, the agent uses knowledge of the requested service, infor-
mation about the parameters of the service request from the client, and the current
state of the resources to score the possible servers and return the servers in a sorted
order.

When a service is started, the server informs the agent about services that it
provides and the computational complexity of those services. This complexity is
expressed using two integer constants a and b and is evaluated as aNb, where N
is the problem size. At start-up, the server notifies the agent about its computa-
tional speed (approximate MFlops from a simple benchmark), and it continually
updates the agent with information about its workload. When an agent receives
a request for a service with a particular problem size, it uses the service complex-
ity and the server status information to estimate the time to completion on each
server providing that service. It orders the servers in terms of time to completion,
and then returns the list of servers to the client. The client then sends the service
request to the fastest server. If that fails for some reason, the client can resubmit the
service request to the next fastest service, thus providing a basic level of fault toler-
ance. This scheduling heuristic, summarized in Figure 11.3, is known as Minimum

for all servers Si that can provide the desired service
T1(Si) = estimated amount of time for computation on Si
T2(Si) = estimated time for communicating input and output data
T(Si) = T1(Si) + T2(Si) estimated total time using Si
select the server Sm which has the minimum time, where T(Sm) = min T(Si) ∀i

Figure 11.3  Minimum Completion Time algorithm.

264  ◾  Cloud Computing and Software Services

Completion Time. It is simple to implement and works well in many practical cases.
Each service request should be assigned to the server that would complete the ser-
vice in the minimum time, assuming that the currently known loads on the servers
will remain constant during the execution and the communication costs between
the client and all the servers are the same.

However, the Minimum Completion Time heuristic does not try to maximize
the throughput when servers are allowed to run multiple services, and there are
many more requested services than available servers. Since an estimate of the exe-
cution time for the currently executing service is available, this knowledge could
be used to schedule new service requests more intelligently. Some explorations of
alternative scheduling heuristics using historical execution trace information are
described in [14].

11.3.3.2 Server Performance Prediction

The server also plays an important role in helping agent-based scheduling to work
effectively. To efficiently schedule an application requires being able to accurately
predict the duration of the requests that compose the application. However, pre-
dicting the duration of a request is a difficult task. Indeed, the duration might
depend on the data (size and values), on the machine where the application is run,
and on the implementation of the service. Even when the duration of a service does
not depend on the data values (as is the case with many linear algebra kernels),
predicting this duration is hard. In GridSolve, the duration of the task is described
in the gsIDL file using the highest degree of the complexity polynomial, which
gives an approximation of the number of operations the service has to perform
when the inputs are known. The server’s speed (number of operations per second) is
computed by running a simple benchmark when the server is launched. The server
periodically updates its current workload, which is used by the agent to scale down
the server’s speed. Then the estimated duration of the task is computed at runtime
by dividing the estimated number of operations by the current speed of the server.
However, computing the duration of a service based on the complexity polynomial
has several drawbacks.

First, even though the complexity polynomial does not depend on the imple-
mentation, different implementations of the same algorithm do not necessarily
have the same speed. Assume, for instance, that the service is the matrix multiply
routine of the BLAS (Basic Linear Algebra Subroutines). There are a lot of dif-
ferent implementations of the same BLAS API, ranging from reference BLAS (a
non-optimized Fortran version) to automatically tuned libraries, such as ATLAS
[15], and up to specific implementations optimized for a precise version of a cer-
tain CPU, such as the Goto BLAS [16]. The complexity of these implementations
is always the same (O(N 3), for multiplying matrices of order N), but the execution
time might be completely different (for instance, the reference BLAS are about
six times slower than the vendor-optimized version on some CPUs). This effect is

Transparent Cross-Platform Access to Software Services  ◾  265

not taken into account by the standard Minimum Completion Time scheduling
heuristic in GridSolve.

Moreover, obtaining the speed of the machine with a benchmark assumes that
the flop rate of each service is the same as the benchmark. In practice, this is not
true because compute-intensive services achieve higher flop rates than data-intensive
services. In GridSolve, the server’s speed is estimated by running a Linpack bench-
mark, which performs close to the peak flop rate of the processor. This is appro-
priate when the requested service is a compute-intensive one, such as for a linear
algebra kernel. However, if the service is I/O bound (such as database access) or
memory constrained (such as an out-of-core computation), the estimated runtime
is likely to be a huge underestimation of the actual runtime.

Finally, for a given service, a slight change of a parameter may lead to a differ-
ent algorithm and a different time to execute the service. For instance, the matrix–
matrix multiply routine of the BLAS (dgemm) performs C ← αAB + βC, where A,
B, and C are matrices. It is easy to see that the case α = 1 and β = 0 is completely
different from the case α = 0 and β = 1. However, in the current GridSolve model,
since the values of α and β are not related to the size of the data, they do not appear
in the complexity model for the dgemm service.

To solve the problems described above, we propose using a complexity template
model for each service that is instantiated on each server for each different use case
of the service. This template model consists of a polynomial of the parameters of the
problem, and a set of category variables. The polynomial describes the behavior of
the service and has coefficients that will be assigned by GridSolve based on the prior
execution performance history. The use of categories differentiates the separate per-
formance classes, which cannot be modeled as a continuous complexity function.

GridSolve uses a parametric regression system to compute or update the coef-
ficients for the complexity templates at runtime. Each time the server runs the ser-
vice, it updates the coefficients of the model using this run and the previous ones.
A certain number of previous runs are stored on the server’s local disk, which can
be reused if the server has to be stopped and restarted. The server periodically sends
updates of the coefficients to the agent, which evaluates the expressions at runtime
to get an accurate prediction of the execution time of the service. The detailed
complexity parameters that the agent receives from the server allow more accurate
scheduling decisions to be made.

11.3.3.3 Scheduling Using Proxies for Computational Resources

In this server-based approach to scheduling, GridSolve creates server-proxies to del-
egate the scheduling to specialized scheduling and execution services, such as batch
systems, Condor, or LFC (LAPACK for Clusters). The GridSolve agent sees the
server-proxy as a single server entity, even though the server-proxy can represent a
large number of actual resources, and so the proxy handles the scheduling for these
resources rather than the GridSolve agent.

266  ◾  Cloud Computing and Software Services

The GridSolve agent can decide to assign the service request to a server-proxy
based on several factors (e.g., the proxy can register itself with the agent as a virtual
server with a large amount of processing power). The server-proxy will delegate the
request to the specialized service (e.g., Condor), which schedules and executes the
request. The server-proxy then returns the results back to the client.

11.3.3.4 Client Scheduling

Scheduling based purely on computation cost may give poor results because the
communication cost can be a very large factor in the overall RPC cost, especially in
a WAN environment. While choosing the fastest server may minimize the execu-
tion time, if this server is on a distant network, the communication cost can easily
overshadow the savings in the execution time.

To eliminate this weakness, we need an estimate of the network performance
between the client and the servers that could possibly execute the service. This can
be difficult to know ahead of time given the dynamic nature of the system, so we
gather the information empirically at the time the call is made. When the client
gets a list of servers from the agent, it is sorted based only on the estimate of the
computational cost. Normally, the client would simply submit the service request
to the first server on the list, but instead we first measure the bandwidth from the
client to the top few servers using a simple 32 kB ping-pong benchmark. Given the
total data size and the network speed, we compute an estimate of the total commu-
nication and computation RPC time for the servers and reorder the list of servers.

There is some cost associated with performing these measurements, but our
expectation is that the reduction in the total RPC time will compensate for the
overhead. Nevertheless, we try to keep the measurement overhead to a minimum.
The time required to perform the measurement will depend on the number of serv-
ers that have the requested problem, and the bandwidth and latency from the client
to these servers. When the data size is relatively small, the measurements are not
performed, because it would take less time to send the data than it would take to
perform the measurements. Also, since a given service may be available on many
servers, the cost of measuring the network speed to all of them could be prohibitive.
Therefore, the number of servers to be measured is limited to those with the highest
computational performance. The exact number of measurements is configurable
by the client. Once the measurements have been made, they can be cached for a
certain amount of time so that subsequent calls on that client do not have to repeat
the same measurement. The lifetime of the cached measurements is configurable
by the user.

There are many other projects that monitor grid performance (see [17] or [18]
for a review). For example, the Network Weather Service (NWS) [19] is a popular
general system service that can monitor the performance of network bandwidth
and latency (as well as other measures) and provide a statistical forecast for future
performance. However, for the GridSolve system, most of the existing systems are

Transparent Cross-Platform Access to Software Services  ◾  267

inappropriate because clients enter and leave GridSolve dynamically, making it dif-
ficult to measure and retain the communication costs between the clients and the
full set of servers. Moreover, NWS is required to be configured on each end, which
necessitates some expertise that we do not assume. Hence, we have chosen to imple-
ment low-overhead probes as a way of building up the communication cost matrix
between a client and the servers relevant to that client.

11.3.3.5 Task Graph Scheduling

There are two deficiencies associated with the standard RPC-based model when
a computational problem essentially forms a workflow consisting of a sequence of
tasks, among which there exist data dependencies. First, intermediate results are
passed among tasks by first returning to the client, resulting in additional data
transport between the client and the servers, which is pure overhead. Second,
since the execution of each individual task is a separate RPC session, it is diffi-
cult to explore the potential parallelism among tasks where there is no immedi-
ate data dependency. Our previous approach to request sequencing partially solves
the problem of unnecessary data transport by clustering a sequence of tasks based
upon the dependency among them and scheduling them to run collectively. This
approach has two limitations. First, the only mode of execution it supports is on a
single server. Second, it prevents the potential parallelism among tasks from being
explored. Recent work on GridSolve has focused on creating an enhanced request-
sequencing technique that eliminates these limitations and solves the above prob-
lems. The core features of this work include direct inter-server data transfer and the
capability of parallel task execution. The objective of this work is to simplify the
parallel execution of data-driven workflow applications in GridSolve.

In GridSolve request sequencing, a request is defined as a single GridRPC call
to an available GridSolve service. A data-driven workflow application is constructed
as a sequence of requests, among which there may exist data dependencies. For each
workflow application, the sequence of requests is scanned, and the data dependency
between these requests is analyzed. The output of the analysis is a distributed acy-
clic graph (DAG) representing the workflow: tasks within the workflow are repre-
sented as nodes, and data dependencies among tasks are represented as edges. The
workflow scheduler then schedules the DAG to run on the available servers. A set
of tasks can potentially be executed concurrently if their dependencies permit it.

In order to eliminate unnecessary data transport when tasks are run on mul-
tiple servers, the standard RPC-based computational model of GridSolve has been
extended to support direct data transfer among servers. Specifically, in order to
avoid the case that intermediate results are passed among tasks via the client, serv-
ers must be able to pass intermediate results among each other, without the client
being involved.

Recent experiments [20] demonstrated promising benefit from eliminating
unnecessary data transfer and exploiting the parallelism found by automatically

268  ◾  Cloud Computing and Software Services

constructing and analyzing the task graph. The algorithm for workflow scheduling
and execution currently used in GridSolve request sequencing is primitive in that it
does not take into consideration the differences among tasks and does not consider
the overall mutual impact between task clustering and network communication.
We are planning to substitute a more advanced algorithm for this primitive one.
Additionally, we are currently working on providing support for advanced work-
flow patterns, such as conditional branches and loops, which are not supported in
the current implementation.

11.4  RPC Transparency Issues
As we mentioned in the introduction, there are some nontrivial issues to deal with
when aiming for a transparent RPC implementation. In this section, we discuss
some of these issues within the context of the GridRPC specification and our
GridSolve implementation.

11.4.1 Parameter Passing
In local procedure calls, arguments are passed by value or by reference. Pass-by-
value means that the actual value of the argument is passed to the procedure (e.g., if
x has the value 5 and x is passed by value, then the procedure is given the value 5).
In contrast, pass-by-reference means that a pointer is passed to the procedure, which
must be dereferenced to obtain the actual values (e.g., if the value pointed to by x
is stored in memory address 0 × 100, then the procedure is given the value 0 × 100).
Pass-by-reference is useful in a couple of scenarios. First, it allows the procedure to
modify the value of an argument, which is not possible in a pass-by-value situation.
Also, it is more efficient for passing large data structures, like matrices, because only
one address needs to be passed instead of all the values.

In the context of RPC, the problem with pass-by-reference is that the remote
machine is in a different address space, so any pointers from the client machine will
be meaningless. This could be handled by making requests back to the client when
data from the remote pointer is accessed, but that would be very inefficient. The
typical approach (and the one implemented in GridSolve) is to pass a copy of the
data referenced by the pointer and then restore any modifications to the data upon
completion of the RPC. However, in an asynchronous situation, the user needs to
be careful because any modifications to the referenced data made after the call but
before the results from the RPC are restored would be lost.

Another complication with parameter passing in RPC is that of complex or
user-defined data structures. Sun RPC uses XDR (External Data Representation)
[21], which is a standard for describing and encoding arbitrary data. In GridSolve,
we chose to avoid XDR for performance reasons and because almost all of the pro-
cedures we were dealing with used simple data structures like vectors and matrices.

Transparent Cross-Platform Access to Software Services  ◾  269

There are trade-offs between transparency, flexibility, simplicity, and efficiency.
We gave up some transparency and flexibility to gain simplicity and efficiency.

11.4.2 Binding to Servers
RPC binding refers to locating the remote host with the procedure to be invoked
and then finding the correct server process on that host. Traditional RPC required
specifying the remote host name explicitly. When the user is expected to supply the
host names for the remote calls, the veneer of transparency begins to erode. Also,
it becomes more than just a transparency issue when asynchronous RPC is consid-
ered. In this case, the selection of the remote host to satisfy the request can have a
big effect on the performance.

The GridRPC function handle represents a mapping from a service descriptor
(in this case, a simple character string) to the remote server that will be used to
execute the function. This mapping could be specified by the user or determined by
the middleware using simple resource discovery mechanisms or possibly some more
sophisticated scheduling algorithms. In the end, the GridRPC specification leaves
the issue of binding up to the various implementations.

The normal GridRPC calling sequence is to first initialize the handle and bind to
a server using a call to grpc _ function _ handle _ default() followed by
a call to grpc _ call() (or one of its brethren) at some point later. In the case of
the GridSolve implementation, there is a slight problem with performing the schedul-
ing in this scenario. GridSolve relies on having access to the values of the arguments
in grpc _ call() at the time the scheduling is performed, so it can estimate the
execution time and the communication cost of sending the data. However, at the
time grpc _ function _ handle _ default() is called, we do not know
which values will be used in the eventual call, so scheduling is not possible.

To deal with this issue, we allow the user to specify a special host name when
initializing the function handle. The special name signifies to the GridSolve inter-
nals that the function handle binding should be delayed until the first time the
handle is used to make a call. Subsequent calls using that function handle will not
change the binding, so the semantics of successive GridRPC calls is not altered.

In terms of transparency, GridSolve does require the user to know the host
name of the GridSolve agent, which performs the binding and scheduling, but
the user never needs to know any of the server details. This seems like a reasonable
trade-off because of multiple benefits provided by the agent.

11.4.3 Exception Handling and Fault Tolerance
Whenever communication with remote machines is involved, there is a possibil-
ity for new and subtle errors to appear. This can destroy the sense of transparency
because now the user must deal with many new failure scenarios, which would
never happen with a local procedure call. The GridRPC specification largely avoids

270  ◾  Cloud Computing and Software Services

attempting to maintain this kind of procedure-level transparency. The GridRPC
calls have their own return values and error codes that must be dealt with appropri-
ately. Any errors from the remote procedure itself must be passed back as an output
argument of the RPC.

Despite the lack of transparency in exception handling, the GridRPC
Specification leaves open the possibility of implementing transparent fault tol-
erance. In GridSolve, if a call fails, the system will automatically find another
server to which to resubmit the job. This is completely transparent, so the user
never knows that there were failures in the system. This brings up several issues
of how to detect failures. There are many failure scenarios, and the handling of
each one is a bit different, but these implementation details do not really affect the
user’s perception of RPC transparency. The issue of fault tolerance also affects the
issue of binding, because when errors occur, the final server handling the request
might be different from the one originally selected. GridSolve allows the user to
enable or disable the fault-tolerant mode in order to match the desired GridRPC
semantics.

11.4.4 Data Representation
The internal representation of data is an important issue in RPC because the local
and remote machines may have different word lengths, floating-point formats,
and byte orderings. If the user has to think about their data representation or
data structures, the illusion of transparency is lost. We mentioned XDR earlier
as a solution to the issue of passing complex data structures, but XDR also han-
dles conversion of primitive data types between architectures by using a common
intermediate representation. The GridRPC specification says nothing about data
conversion, so it is left up to the implementors to decide. In GridSolve, we imple-
mented a receiver makes right protocol, which allows the client to send data in its
native format, which the receiver then converts to its own native format if needed.
This avoids having to do two separate conversions (each end converting between
native and common representations) as well as avoiding making an extra copy of
the data on the sending side. GridSolve is still limited in its support for complex
data structures, but we feel the increased efficiency in the common cases is worth
making the trade-off.

11.4.5 Performance
While we make great effort to ensure good performance in GridSolve, the fact
remains that extra communication overhead is inherent in any RPC. It was men-
tioned in [3] that if you had a truly transparent RPC for arbitrary applications,
serious performance degradation could be inadvertently introduced. Of course,
GridRPC specifies a different API for remote calls, so users will be aware of which
calls are local and which are remote. Nevertheless, to achieve the best performance

Transparent Cross-Platform Access to Software Services  ◾  271

in an RPC-based application, the developers should carefully consider the ratio of
computation time to communication time (since processor power has been increas-
ing faster than communication speed, this issue gets more serious every year). Take
matrix multiplication as an example. We compute C ← αAB + βC, where A, B, and
C are matrices. For the sake of simplicity, assume that they are all square matrices
of size N × N. The communication costs will be on the order of

C N

C N

input

output

= × ×

= ×

3 elementsize
bandwidth

elementsize
band

2

2

wwidth

C C Ctotal input output= +

where
“elementsize” is the size of each matrix element in bytes
“bandwidth” is the number of bytes per second for the network

Assuming a local network bandwidth of 11 MB/s and an element size of 8 bytes,
the communication cost for N = 3000 is around 25 s. The computational costs will
be on the order of

P N Mp=

2
3

3

where Mp is the performance of the machine in floating-point operations per sec-
ond. At N = 3000 and local machine performance of Mp = 800 Mflop/s, the local
computation cost would be roughly 22.5 s. So, it costs more to send the data (not
counting the remote execution time) than it would to just do the computation
locally. Since the computation cost is growing faster than the communication cost,
there will eventually be a crossover point where it makes sense to do the RPC, but
it depends on the performance of the remote machine relative to the local machine
as well as the network speed (WANs are often much worse than our 11 MB/s LAN
example).

While this example might be discouraging, there are still many favorable sce-
narios for RPC, especially when taking into account task parallelism. One example
is in parameter sweep problems, where the data being distributed is relatively small,
and many servers can be used asynchronously and simultaneously to evaluate dif-
ferent input data with the output being collated in some way. Tasks that are suited
to RPC computation include Evolutionary Algorithms (genetic algorithms, etc.),
Monte Carlo–style algorithms, and optimization algorithms.

272  ◾  Cloud Computing and Software Services

11.4.6 Security
Unlike with local procedures, when executing a remote procedure, the data is
exposed on the network and therefore susceptible to snooping. Security is another
area that is not addressed by the GridRPC specification, but the various implemen-
tations choose their own strategies. We have not implemented any data encryption
methods in GridSolve. It is an important issue, but most of our users are running
the entire GridSolve infrastructure on their local networks (e.g., behind firewalls).
Because of this, there has not been a huge demand for encryption in GridSolve, but
it should be straightforward to add since we have already implemented a transpar-
ent data compression module, and encryption could be added to this module at the
data transport level.

11.4.7 Transparency
Trying to achieve total transparency (even if it is possible) would result in unex-
pected behavior and unacceptable performance degradation. As it was mentioned
earlier, from a design standpoint, total transparency might not be the ideal any-
way. We have attempted to design a system that is transparent in the sense of
shielding users from unnecessary details and allowing for relatively painless con-
version of code to a distributed implementation. The user still retains control
over their application in deciding which functions are appropriate for remote pro-
cessing. But the user does not need to know which server will be used, how the
data will be converted, whether the job was resubmitted to another server due
to failures, etc. This level of partial transparency allows the GridSolve system to
provide better overall performance for the users while leaving the user in control
of their application.

11.5  Summary
Using distributed grid resources in a simple and effective manner is difficult,
though there are multiple programming models that are attempting to meet this
challenge. The GridRPC API is a simple and portable programming model pro-
viding a standardized mechanism for accessing grid resources. GridSolve provides
an implementation of GridRPC and adds a substantial list of features that are
designed to make access to grid resources transparent and easier to accomplish.
Client bindings for commonly used SCEs (e.g., MATLAB, Octave, and IDL) make
it easy for a computational scientist to use grid resources from within their preferred
tools. Transparent scheduling via the GridSolve agent relieves the user from having
to know the details of the servers and service providers. Service-level fault toler-
ance provides a simple and usable mode for failure recovery. Task graph scheduling
allows the composition of sequences of tasks into an inferred workflow, without

Transparent Cross-Platform Access to Software Services  ◾  273

requiring additional input from the user. Using all these techniques and more,
GridSolve has been working to make the grid easier to use, and further research on
this goal continues.

References
 1. A. D. Birrell and B. J. Nelson. Implementing remote procedure calls. ACM Transactions

on Computer Systems, 2(1): 39–59, 1984.
 2. J. E. White. A high-level framework for network-based resource sharing. In Proceedings

of the National Computer Conference, New York, June 1976.
 3. A. S. Tanenbaum and R. van Renesse. A critique of the remote procedure call Paradigm.

In Proceedings of the EUTECO 88 Conference, Vienna, Austria, pp. 775–783, 1988.
 4. K. Seymour, N. Hakada, S. Matsuoka, J. Dongarra, C. Lee, and H. Casanova. Overview

of GridRPC: A remote procedure call API for grid computing. In M. Parashar, editor,
GRID 2002, Baltimore, MD, pp. 274–278, 2002.

 5. Global Grid Forum Research Group on Programming Models. http://www.gridforum.
org/7_APM/APS.htm

 6. J. Dongarra, Y. Li, K. Seymour, and A. YarKhan. Users’ guide to GridSolve V0.19.
Technical Report, Innovative Computing Laboratory. University of Tennessee,
Knoxville, TN, June 2008.

 7. Y. Tanaka, H. Nakada, S. Sekiguchi, T. Suzumura, and S. Matsuoka. Ninf-G: A refer-
ence implementation of RPC-based programming middleware for grid computing.
Journal of Grid Computing, 1(1):41–51, 2003.

 8. E. Caron, F. Desprez, F. Lombard, J.-M. Nicod, L. Philippe, M. Quinson, and F.
Suter. A scalable approach to network enabled servers (research note). Lecture Notes
in Computer Science, 2400/2002, pp. 239–248, 2002. Springer, Berlin/Heidelberg,
Germany.

 9. E. Dolan, R. Fourer, J. J. Moré, and T. S. Munson. The NEOS server for optimiza-
tion: Version 4 and beyond. Technical Report ANL/MCS-P947-0202, Mathematics and
Computer Science Division, Argonne National Laboratory, Argonne, IL, February 2002.

 10. H. Casanova, G. Obertelli, F. Berman, and R. Wolski. The AppLeS parameter sweep
template: User-level middleware for the grid. In Proceedings of Supercomputing ’2000
(CD-ROM), Dallas, TX, November 2000, p. 60. IEEE Computer Society, Washington,
DC. ISBN 0-7803-9802-5.

 11. J. Linderoth, S. Kulkarni, J-P. Goux, and M. Yoder. An enabling framework for
master-worker applications on the computational grid. In Proceedings of the Ninth
IEEE Symposium on High Performance Distributed Computing (HPDC9), Pittsburgh,
PA, pp. 43–50, August 2000.

 12. D. Abramson, R. Buyya, and J. Giddy. A computational economy for grid computing
and its implementation in the Nimrod-G resource broker. Future Generation Computer
Systems, 18(8):1061–1074, October 2002.

 13. J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke. Condor-G: A computa-
tion management agent for multi-institutional grids. Cluster Computing, 5:237–246,
2002.

 14. Y. Caniou and E. Jeannot. Experimental study of multi-criteria scheduling heuristics
for GridRPC systems. In ACM-IFIP Euro-Par 2004, Pisa, Italy, September 2004.

274  ◾  Cloud Computing and Software Services

 15. R. C. Whaley and J. J. Dongarra. Automatically tuned linear algebra software (ATLAS).
In ACM, editor, SC’98: High Performance Networking and Computing: Proceedings of
the 1998 ACM/IEEE SC98 Conference: Orange County Convention Center, November
7–13, 1998, Orlando, FL, 1998. ACM Press and IEEE Computer Society Press, New
York and Silver Spring, MD. Best Paper Award for Systems.

 16. K. Goto and R. van de Geijn. High-performance implementation of the level-3 BLAS.
Technical Report CS-TR-06-23, Department of Computer Sciences, The University
of Texas at Austin, Austin, TX, May 5, 2006.

 17. D. Lu, Y. Qiao, P. A. Dinda, and F. E. Bustamante. Characterizing and predicting TCP
throughput on the wide area network. In 25th International Conference on Distributed
Computing Systems (ICDCS 2005), June 6–10, 2005, Columbus, OH, pp. 414–424,
2005.

 18. S. Zanikolas and R. Sakellariou. A taxonomy of grid monitoring systems. Future
Generation Computer Systems, 21(1): 163–188, January 2005.

 19. R. Wolski, N. T. Spring, and J. Hayes. The network weather service: A distributed
resource performance forecasting service for metacomputing. Future Generation
Computer Systems, 15(5–6): 757–768, 1999.

 20. Y. Li, J. Dongarra, K. Seymour, and A. YarKhan. Request sequencing: Enabling
Workflow for efficient problem solving in GridSolve. In International Conference on
Grid and Cooperative Computing (GCC 2008), Shenzhen, China, October 2008.

 21. Sun Microsystems Inc. XDR: External data representation standard. RFC 1014, Sun
Microsystems, Inc., June 1987.

275

Chapter 12

High-Performance 
Parallel Computing 
with Cloud and Cloud 
Technologies

Jaliya Ekanayake, Xiaohong Qiu, Thilina Gunarathne,
Scott Beason, and Geoffrey Fox

Contents
12.1 Introduction ...276
12.2 Cloud Technologies ..278

12.2.1 Hadoop ...278
12.2.2 Dryad and DryadLINQ ...279
12.2.3 CGL-MapReduce ...279
12.2.4 MPI ... 280

12.3 Programming Models ..281
12.4 Data Analyses Applications ... 284

12.4.1 CAP3—Sequence Assembly Program.. 284
12.4.2 High-Energy Physics ...285
12.4.3 Iterative MapReduce—Kmeans Clustering and Matrix

Multiplication ...285

276  ◾  Cloud Computing and Software Services

12.1  Introduction
Cloud and cloud technologies are two broad categories of technologies related to
the general notion of Cloud Computing. By “cloud,” we refer to a collection of
infrastructure services, such as Infrastructure as a service (IaaS) and Platform as a
service (PaaS), provided by various organizations where virtualization plays a key
role. By “cloud technologies,” we refer to various cloud runtimes, such as Hadoop
(ASF, core, 2009a), Dryad (Isard et al. 2007), and other MapReduce (Dean and
Ghemawat 2008) frameworks, and also the storage and communication frame-
works, such as Hadoop Distributed File System (HDFS) and Amazon S3 (Amazon
2009).

The introduction of commercial cloud infrastructure services, such as Amazon
EC2, GoGrid (ServePath 2009), and ElasticHosts (ElasticHosts 2009), has allowed
users to provision compute clusters fairly easily and quickly, by paying a mon-
etary value for the duration of their usages of the resources. The provisioning of
resources happens in minutes, as opposed to hours and days required in the case
of traditional queue-based job-scheduling systems. In addition, the use of such
virtualized resources allows the user to completely customize the virtual machine
(VM) images and use them with ROOT/administrative privileges, another feature
that is hard to achieve with traditional infrastructures. The availability of open-
source cloud infrastructure softwares, such as Nimbus (Keahey et al. 2005) and
Eucalyptus (Nurmi et al. 2009), and open-source virtualization software stacks,

12.4.4 Alu Sequencing Studies...287
12.4.4.1 Alu Clustering ..287
12.4.4.2 Smith–Waterman Dissimilarities287
12.4.4.3 The O(N 2) Factor of 2 and Structure of Processing

Algorithm ...288
12.4.4.4 Dryad Implementation ...288
12.4.4.5 MPI Implementation ..289

12.5 Evaluations ...290
12.5.1 Introduction ...290
12.5.2 CAP3 and Particle Physics Case Studies290
12.5.3 Kmeans and Matrix Multiplication Case Studies293
12.5.4 Alu Sequence Analysis Case Study ..294

12.5.4.1 Performance of Smith–Waterman–Gotoh Algorithm294
12.5.4.2 Threaded Implementation ...294

12.6 Performance of MPI on Clouds ..295
12.6.1 Benchmarks and Results ...296

12.7 Conclusions and Future Work ..305
Acknowledgments .. 306
References ...307

HPC with Cloud and Cloud Technologies  ◾  277

such as Xen Hypervisor (Barham et al. 2003), allows organizations to build private
clouds to improve the resource utilization of the available computation facilities.
The possibility of dynamically provisioning additional resources by leasing from
commercial cloud infrastructures makes the use of private clouds more promising.

Among the many applications that benefit from cloud and cloud technologies,
the data/compute-intensive applications are the most important. The deluge of data
and the highly compute-intensive applications found in many domains, such as
particle physics, biology, chemistry, finance, and information retrieval, mandate
the use of large computing infrastructures and parallel processing to achieve con-
siderable performance gains in analyzing data. The addition of cloud technologies
creates new trends in performing parallel computing. An employee in a publishing
company who needs to convert a document collection, terabytes in size, to a differ-
ent format can do so by implementing a MapReduce computation using Hadoop,
and running it on leased resources from Amazon EC2 in just a few hours. A scien-
tist who needs to process a collection of gene sequences using the CAP3 (Huang
and Madan 1999) software can use virtualized resources leased from the univer-
sity’s private cloud infrastructure and Hadoop. In these use cases, the amount of
coding that the publishing agent and the scientist need to perform is minimal (as
each user simply needs to implement a map function), and the MapReduce infra-
structure handles many aspects of the parallelism.

Although the above examples are successful use cases for applying cloud and
cloud technologies for parallel applications, through our research, we have found
that there are limitations in using current cloud technologies for parallel applica-
tions that require complex communication patterns or require faster communica-
tion mechanisms. For example, Hadoop and Dryad implementations of Kmeans
clustering applications, which perform an iteratively refining clustering operation,
show higher overheads compared to implementations of MPI or CGL-MapReduce
(Ekanayake et al. 2008)—a streaming-based MapReduce runtime developed by
us. These observations raise questions: What applications are best handled by
cloud technologies? What overheads do they introduce? Are there any alternative
approaches? Can we use traditional parallel runtimes such as MPI in cloud? If
so, what overheads does it have? These are some of the questions we try to answer
through our research.

In Section 12.1, we give a brief introduction of the cloud technologies, and in
Section 12.2, we discuss with examples the basic functionality supported by these
cloud runtimes. Section 12.3 discusses how these technologies map into program-
ming models. We describe the applications used to evaluate and test technologies
in Section 12.4. The performance results are discussed in Section 12.5. In Section
12.6, we present details of an analysis we have performed to understand the per-
formance implications of virtualized resources for parallel MPI applications. Note
that we use MPI running on non-VMs in Section 12.5 for comparison with cloud
technologies. We present our conclusions in Section 12.7.

278  ◾  Cloud Computing and Software Services

12.2  Cloud Technologies
Cloud technologies such as MapReduce and Dryad have created new trends in
parallel programming. The support for handling large data sets, the concept of
moving computation to data, and the better quality of services provided by the
cloud technologies make them a favorable choice to solve large-scale data/compute-
intensive problems.

The granularity of the parallel tasks in these programming models lies in
between the fine-grained parallel tasks that are used in message-passing infrastruc-
tures such as PVM (Dongarra et al. 1993) and MPI (Forum n.d.), and coarse-
grained jobs in workflow frameworks such as Kepler (Ludscher et al. 2006) and
Taverna (Hull et al. 2006), in which the individual tasks could themselves be par-
allel applications written in MPI. Unlike the various communication constructs
available in MPI, which can be used to create a wide variety of communication
topologies for parallel programs, in MapReduce, the “map→reduce” is the only
communication construct available. However, our experience shows that most com-
posable applications can easily be implemented using the MapReduce programming
model. Dryad supports parallel applications that resemble Directed Acyclic Graphs
(DAGs), in which the vertices represent computation units, and the edges represent
communication channels between different computation units.

In traditional approaches, once parallel applications are developed, they are
executed on compute clusters, supercomputers, or grid infrastructures (Foster
2001), where the focus on allocating resources is heavily biased by the availabil-
ity of computational power. The application and the data both need to be moved
to the available computational resource in order for them to be executed. These
infrastructures are highly efficient in performing compute-intensive parallel appli-
cations. However, when the volume of data accessed by an application increases,
the overall efficiency decreases due to the inevitable data movement. Cloud tech-
nologies such as Google MapReduce, Google File System (GFS) (Ghemawat et al.
2003), Hadoop and HDFS, Microsoft Dryad, and CGL-MapReduce adopt a more
data-centered approach to parallel runtimes. In these frameworks, the data is staged
in data/ compute nodes of clusters or large-scale data centers, such as in the case of
Google. The computations move to the data in order to perform the data process-
ing. Distributed file systems, such as GFS and HDFS, allow Google MapReduce
and Hadoop to access data via distributed storage systems built on heterogeneous
compute nodes, while Dryad and CGL-MapReduce support reading data from
local disks. The simplicity in the programming model enables better support for
quality of services such as fault tolerance and monitoring.

12.2.1 Hadoop
Apache Hadoop has a similar architecture to Google’s MapReduce runtime, where
it accesses data via HDFS, which maps all the local disks of the compute nodes to

HPC with Cloud and Cloud Technologies  ◾  279

a single file system hierarchy, allowing the data to be dispersed across all the data/
computing nodes. HDFS also replicates the data on multiple nodes so that failures
of any nodes containing a portion of the data will not affect the computations
that use that data. Hadoop schedules the MapReduce computation tasks depend-
ing on the data locality, improving the overall I/O (input/output) bandwidth. The
outputs of the map tasks are first stored in local disks until later, when the reduce
tasks access them (pull) via HTTP connections. Although this approach simplifies
the fault-handling mechanism in Hadoop, it adds a significant communication
overhead to the intermediate data transfers, especially for applications that produce
small intermediate results frequently.

12.2.2 Dryad and DryadLINQ
Dryad is a distributed execution engine for coarse-grained data parallel applica-
tions. It combines the MapReduce programming style with dataflow graphs to
solve the computation tasks. Dryad considers computation tasks as DAGs, where
the vertices represent computation tasks and the edges act as communication chan-
nels over which the data flows from one vertex to another. The data is stored in
(or partitioned to) local disks via the Windows shared directories and metadata
files, and Dryad schedules the execution of vertices depending on the data local-
ity. (Note: The academic release of Dryad only exposes the DryadLINQ (Yu et al.
2008) API for programmers. Therefore, all our implementations are written using
DryadLINQ, although it uses Dryad as the underlying runtime.) Dryad also stores
the output of vertices in local disks, and the other vertices that depend on these
results access them via the shared directories. This enables Dryad to re-execute
failed vertices, a step that improves fault tolerance in the programming model.

12.2.3 CGL-MapReduce
CGL-MapReduce is a lightweight MapReduce runtime that incorporates several
improvements to the MapReduce programming model, such as (1) faster intermedi-
ate data transfer via a pub/sub broker network, (2) support for long-running map/
reduce tasks, and (3) efficient support for iterative MapReduce computations. The
architecture of CGL-MapReduce is shown in Figure 12.1 (left). (Note: Please note
that the CGL-MapReduce is now known as Twister: Iterative MapReduce Runtime.)

The use of streaming enables CGL-MapReduce to send the intermediate results
directly from its producers to its consumers, and eliminates the overhead of the
file-based communication mechanisms adopted by both Hadoop and Dryad. The
support for long-running map/reduce tasks enables configuring and reusing map/
reduce tasks in the case of iterative MapReduce computations, and eliminates the
need for reconfiguring or reloading static data in each iteration. This feature comes
with the distinction of “static data” and “dynamic data” that we support in CGL-
MapReduce. We refer to any data set that is static throughout the computation

280  ◾  Cloud Computing and Software Services

as “static data,” and the data that is changing over the computation as “dynamic
data.” Although this distinction is irrelevant to the MapReduce computations that
have only one map phase followed by a reduce phase, it is extremely important for
iterative MapReduce computations, in which the map tasks need to access a static
(fixed) data again and again. Figure 12.1 (right) highlights the synchronization and
communication characteristics of Hadoop, Dryad, CGL-MapReduce, and MPI.

Additionally, CGL-MapReduce supports the distribution of smaller variable
data sets to all the map tasks directly, a functionality similar to MPI_Bcast() that
is often found to be useful in many data analysis applications. Hadoop provides
a similar feature via its distributed cache, in which a file or data is copied to all
the compute nodes. Dryad provides a similar feature by allowing applications to
add resources (files) that will be accessible to all the vertices. With the above fea-
tures in place, CGL-MapReduce can be used to implement iterative MapReduce
computations efficiently. In CGL-MapReduce, data partitioning and distribution
is left to the users to handle, and it reads data from shared file systems or local
disks. Although the use of streaming makes CGL-MapReduce highly efficient,
implementing fault tolerance with this approach is not as straightforward as it is in
Hadoop or Dryad. We plan to implement fault tolerance in CGL-MapReduce by
re-execution of failed map tasks and redundant execution of reduce tasks.

12.2.4 MPI
MPI, the de facto standard for parallel programming, is a language-independent
communications protocol that uses a message-passing paradigm to share the data
and state among a set of cooperative processes running on a distributed memory
system. MPI specification (Forum, MPI) defines a set of routines to support various
parallel programming models, such as point-to-point communication, collective
communication, derived data types, and parallel I/O operations.

Communication

Data read/write

File systemData split

R R

M

R

M

M

R R

M

Worker nodes

Content dissemination network

M MR
driver

User
program

Disk HTTP

Disk HTTP

Disk HTTP

Disk HTTP

Yahoo Hadoop
uses short running

processes
communicating

via disk and
tracking processes

Microsoft Dryad
uses short-running

processes
communicating

via pipes, disk, or
shared memory
between cores

CGL-MapReduce
is long-running,
processing with
asynchronous

distributed
Rendezvous

synchronization

MPI is long-
running processes
with Rendezvous

for message
exchange/

synchronization

Pipes

Pipes

Pipes

Pipes Pub-sub bus

Pub-sub bus

Pub-sub bus

Pub-sub bus MPI

MPI

MPI

MPI

Map worker

Reduce worker

Figure 12.1  (Left) Components of CGL-MapReduce. (Right) Different synchro-
nization and intercommunication mechanisms used by parallel runtimes.

HPC with Cloud and Cloud Technologies  ◾  281

Most MPI runtimes are deployed in computation clusters where a set of com-
pute nodes are connected via a high-speed network connection yielding very low
communication latencies (typically in microseconds). MPI processes typically have
a direct mapping to the available processors in a compute cluster or to the processor
cores in the case of multi-core systems. We use MPI as the baseline performance
measure for the various algorithms that are used to evaluate the different paral-
lel programming runtimes. Table 12.1 summarizes the different characteristics of
Hadoop, Dryad, CGL-MapReduce, and MPI.

12.3  Programming Models
When analyzing applications written in the MapReduce programming model, we
can identify three basic execution units, namely, (1) map-only, (2) map-reduce, and
(3) iterative map-reduce. Complex applications can be built by combining these
three basic execution units under the MapReduce programming model. Table 12.2
shows the data/computation flow of these three basic execution units, along with
examples.

In the MapReduce programming model, the tasks that are being executed at
a given phase have similar executables and similar input and output operations.
With zero reduce tasks, the MapReduce model reduces to a map-only model, which
can be applied to many “embarrassingly parallel” applications. Software systems
such as batch queues, Condor (Condor 2009), Falkon (Raicu et al. 2007), and
SWARM (Pallickara and Pierce 2008) all provide similar functionality by schedul-
ing large numbers of individual maps/jobs. Applications that can utilize a “reduc-
tion” or an “aggregation” operation can use both phases of the MapReduce model,
and, depending on the “associative” and “commutative” nature of the reduction
operation, multiple reduction phases can be applied to enhance the parallelism. For
example, in a histogramming operation, the partial histograms can be combined in
any order and in any number of steps to produce a final histogram.

The “side effect–free” nature of the MapReduce programming model does not
promote iterative MapReduce computations. Each of the map and reduce tasks are
considered as atomic execution units with no state shared in between executions.
In parallel runtimes, such as those of the MPI, the parallel execution units live
throughout the entire life of the program; hence, the state of a parallel execution
unit can be shared across invocations. We propose an intermediate approach to
develop MapReduce computations. In our approach, the map/reduce tasks are still
considered free from side effects, but the runtime allows configuring and reusing
the map/reduce tasks. Once configured, the runtime caches the map/reduce tasks.
This way, both map and reduce tasks can keep the static data in memory, and can
be called iteratively without loading the static data repeatedly.

Hadoop supports configuring the number of reduce tasks, which enables the
user to create “map-only” applications by using zero reduce tasks. Hadoop can be

282  ◾  Cloud Computing and Software Services
Ta

bl
e 

12
.1

 
C

om
pa

ri
so

n 
of

 F
ea

tu
re

s 
Su

pp
or

te
d 

by
 D

if
fe

re
nt

 P
ar

al
le

l P
ro

gr
am

m
in

g 
R

un
ti

m
es

Fe
at

u
re

H
ad

o
o

p
D

ry
ad

C
G

L-
M

ap
Re

d
u

ce
M

PI

Pr
o

gr
am

m
in

g
m

o
d

el
M

ap
R

ed
u

ce
D

A
G

-b
as

ed
 e

xe
cu

ti
o

n

fl
o

w
s

M
ap

R
ed

u
ce

 w
it

h
 a

 C
om

bi
ne

p

h
as

e
V

ar
ie

ty
 o

f t
o

p
o

lo
gi

es

co
n

st
ru

ct
ed

 u
si

n
g

th
e

ri
ch

 s
et

 o
f p

ar
al

le
l

co
n

st
ru

ct
s

D
at

a
h

an
d

lin
g

H
D

FS
Sh

ar
ed

 d
ir

ec
to

ri
es

/lo
ca

l
d

is
ks

Sh
ar

ed
 fi

le
 s

ys
te

m
/lo

ca
l

d
is

ks
Sh

ar
ed

 fi
le

 s
ys

te
m

s

In
te

rm
ed

ia
te

d

at
a

co
m

m
u

n
ic

at
io

n

H
D

FS
/p

o
in

t t
o

 p
o

in
t v

ia

H
TT

P
Fi

le
s/

TC
P

p
ip

es
/ s

h
ar

ed

m
em

o
ry

 F
IF

O
C

o
n

te
n

t d
is

tr
ib

u
ti

o
n

n

et
w

o
rk

 (N
ar

ad
aB

ro
ke

ri
n

g
(P

al
lic

ka
ra

 a
n

d
 F

o
x

20
03

))

Lo
w

-l
at

en
cy

co

m
m

u
n

ic
at

io
n

ch

an
n

el
s

Sc
h

ed
u

lin
g

D
at

a
lo

ca
lit

y/
ra

ck
 a

w
ar

e
D

at
a

lo
ca

lit
y/

 n
et

w
o

rk

to
p

o
lo

gy
–b

as
ed

 r
u

n
ti

m
e

gr
ap

h
 o

p
ti

m
iz

at
io

n
s

D
at

a
lo

ca
lit

y
A

va
ila

b
le

 p
ro

ce
ss

in
g

ca
p

ab
ili

ti
es

Fa
ilu

re
 h

an
d

lin
g

Pe
rs

is
te

n
ce

 v
ia

 H
D

FS
,

re
-e

xe
cu

ti
o

n
 o

f m
ap

 a
n

d

re
d

u
ce

 ta
sk

s

R
e-

ex
ec

u
ti

o
n

 o
f v

er
ti

ce
s

C
u

rr
en

tl
y

n
o

t i
m

p
le

m
en

te
d

(r

e-
ex

ec
u

ti
n

g
m

ap
 ta

sk
s,

re

d
u

n
d

an
t r

ed
u

ce
 ta

sk
s)

Pr
o

gr
am

-l
ev

el
 c

h
ec

k-
p

o
in

ti
n

g
O

M
PI

(G

ab
ri

el
 e

t a
l.

20
04

),
FT

 M
PI

M
o

n
it

o
ri

n
g

M
o

n
it

o
ri

n
g

su
p

p
o

rt
 o

f
H

D
FS

, m
o

n
it

o
ri

n
g

M
ap

R
ed

u
ce

 c
o

m
p

u
ta

ti
o

n
s

M
o

n
it

o
ri

n
g

su
p

p
o

rt
 fo

r
ex

ec
u

ti
o

n
 g

ra
p

h
s

Pr
o

gr
am

m
in

g
in

te
rf

ac
e

to

m
o

n
it

o
r

th
e

p
ro

gr
es

s
o

f
jo

b
s

M
in

im
al

 s
u

p
p

o
rt

 fo
r

ta
sk

-l
ev

el
 m

o
n

it
o

ri
n

g

La
n

gu
ag

e
su

p
p

o
rt

Im
p

le
m

en
te

d
 u

si
n

g
Ja

va
;

o
th

er
 la

n
gu

ag
es

 a
re

su

p
p

o
rt

ed
 v

ia
 H

ad
o

o
p

st

re
am

in
g

Pr
o

gr
am

m
ab

le
 v

ia
 C

#,

D
ry

ad
LI

N
Q

 p
ro

vi
d

es

LI
N

Q
 p

ro
gr

am
m

in
g

A
PI

fo

r
D

ry
ad

Im
p

le
m

en
te

d
 u

si
n

g
Ja

va
;

o
th

er
 la

n
gu

ag
es

 a
re

su

p
p

o
rt

ed
 v

ia
 Ja

va

w
ra

p
p

er
s

C
, C

+
+

, F
o

rt
ra

n
, J

av
a,

C

#

HPC with Cloud and Cloud Technologies  ◾  283

used to implement iterative MapReduce computations, but the framework does not
provide additional support to implement them efficiently. The CGL-MapReduce
supports all the above three execution units, and the user can develop applica-
tions with multiple stages of MapReduce by combining them in any order. Dryad
execution graphs resembling the above three basic units can be generated using
DryadLINQ operations. DryadLINQ adds the LINQ programming features
to Dryad where the user can implement various data analysis applications using
LINQ queries, which will be translated to Dryad execution graphs by the compiler.
However, unlike in the MapReduce model, Dryad allows the concurrent vertices
to have different behaviors and different I/O characteristics, thus enabling a more
workflow-style programming model. Dryad also allows multiple communication
channels in between different vertices of the dataflow graph. Programming lan-
guages such as Swazall (Pike et al. 2005), introduced by Google for its MapReduce
runtime, enable high-level language support for expressing MapReduce computa-
tions, and the Pig (ASF, pig, 2009b) available as a subproject of Hadoop allows
query operations on large data sets.

Apart from these programming models, there are other software frameworks
that one can use to perform data/compute-intensive analyses. Disco (Nokia 2009)
is an open-source MapReduce runtime developed using a functional programming

Table 12.2  Three Basic Execution Units under the MapReduce 
Programming Model

Map-Only Map-Reduce Iterative Map-Reduce

Input

map()

Output

Input

map()

reduce()

Output

Input

map()

reduce()

Output

Cap3 analysis (we will
discuss more about this
later)

HEP data analysis (we
will discuss more
about this later)

Expectation
maximization
algorithms

Converting a collection
of documents to
different formats,
processing a collection
of medical images, and
brute-force searches in
cryptography;
parametric sweeps

Histogramming
operations,
distributed search,
and distributed
sorting; information
retrieval

Kmeans clustering,
matrix multiplication

284  ◾  Cloud Computing and Software Services

language named Erlang (Ericsson 2009). The Disco architecture shares clear simi-
larities with both Google and Hadoop MapReduce architectures. Sphere (Gu and
Grossman 2009) is a framework that can be used to execute user-defined functions
in parallel on data stored in a storage framework named Sector. Sphere can also per-
form MapReduce-style programs, and the authors compare its performance with
Hadoop for tera-sort applications. All-Pairs (Moretti et al. 2009) is an abstraction
that can be used to solve the common problem of comparing all the elements in
a data set with all the elements in another data set by applying a given function.
This problem can be implemented using Hadoop and Dryad as well, and we dis-
cuss a similar problem in Section 12.4.4. We can also develop an efficient itera-
tive MapReduce implementation using CGL-MapReduce to solve this problem.
The algorithm is similar to the matrix multiplication algorithm that we explain in
Section 12.4.3.

MPI and threads are two other programming models that can be used to imple-
ment parallel applications. MPI can be used to develop parallel applications in
distributed memory architectures, whereas threads can be used in shared memory
architectures, especially in multi-core nodes. The low-level communication con-
structs available in MPI allow users to develop parallel applications with various
communication topologies involving fine-grained parallel tasks. The use of low-
latency network connections between nodes enables applications to perform a large
number of inter-task communications. In contrast, the next-generation parallel
runtimes, such as MapReduce and Dryad, provide a small number of parallel con-
structs, such as “map-only,” “map-reduce,” “Select,” “Apply,” and “Join,” and do not
require high-speed communication channels. These constraints require adopting
parallel algorithms that perform coarse-grained parallel tasks and less communi-
cation. The use of threads is a natural approach in shared memory architectures,
where communication between parallel tasks reduces to the simple sharing of point-
ers via the shared memory. However, the operating system’s support for user-level
threads plays a major role in achieving better performances using multi-threaded
applications. We will discuss the issues in using threads and MPI in more detail in
Section 12.5.4.2.

12.4  Data Analyses Applications
12.4.1 CAP3—Sequence Assembly Program
CAP3 is a DNA sequence assembly program developed by Huang and Madan
(1999) that performs several major assembly steps: These steps include computation
of overlaps, construction of contigs, construction of multiple sequence alignments,
and generation of consensus sequences to a given set of gene sequences. The pro-
gram reads a collection of gene sequences from an input file (FASTA file format)
and writes its output to several output files, as well as the standard output:

HPC with Cloud and Cloud Technologies  ◾  285

 Input.fsa CAP3 Stdout Other output files→ → +

The program structure of this application fits directly with the “map-only” basic
execution unit, as shown in Table 12.2. We implemented a parallel version of CAP3
using Hadoop, CGL-MapReduce, and DryadLINQ. Each map task in Hadoop
and in CGL-MapReduce calls the CAP3 executable as a separate process for a
given input data file (the input “Value” for the map task), whereas in DryadLINQ, a
“homomorphic Apply” operation calls the CAP3 executable on each data file in its
data partition as a separate process. All the implementations move the output files
to a predefined shared directory. This application resembles a common paralleliza-
tion requirement, where an executable script, or a function in a special framework
such as MATLAB• or R, needs to be executed on each input data item. The above
approach can be used to implement all these types of applications using any of the
above three runtimes.

12.4.2 High-Energy Physics
Next, we applied the MapReduce technique to parallelize a High-Energy Physics
(HEP) data analysis application, and implemented it using Hadoop, CGL-
MapReduce, and Dryad. The HEP data analysis application processes large vol-
umes of data, and performs a histogramming operation on a collection of event
files produced by HEP experiments. The details regarding the two MapReduce
implementations and the challenges we faced in implementing them can be found
in Ekanayake et al. (2008). In the DryadLINQ implementation, the input data files
are first distributed among the nodes of the cluster manually. We developed a tool
to perform the manual partitioning and distribution of the data. The names of the
data files available in a given node were used as the data to the DryadLINQ pro-
gram. Using a homomorphic “Apply” operation, we executed a ROOT-interpreted
script on groups of input files in all the nodes. The output histograms of this
operation were written to a predefined shared directory. Next, we used another
“Apply” phase to combine these partial histograms into a single histogram using
DryadLINQ.

12.4.3 Iterative MapReduce—Kmeans Clustering
and Matrix Multiplication

Parallel applications that are implemented using message-passing runtimes can uti-
lize various communication constructs to build diverse communication topologies.
For example, a matrix multiplication application that implements Fox’s Algorithm
(Fox et al. 1987) and Cannon’s Algorithm (Johnsson et al. 1989) assumes parallel
processes to be in a rectangular grid. Each parallel process in the grid commu-
nicates with its left and top neighbors, as shown in Figure 12.2 (left). The cur-
rent cloud runtimes, which are based on dataflow models such as MapReduce and

286  ◾  Cloud Computing and Software Services

Dryad, do not support this behavior, in which the peer nodes communicate with
each other. Therefore, implementing the above type of parallel applications using
MapReduce or DryadLINQ requires adopting different algorithms.

We have implemented matrix multiplication applications using Hadoop and
CGL-MapReduce by adopting a row/column decomposition approach to split the
matrices. To clarify our algorithm, let us consider an example where two input
matrices, A and B, produce matrix C, as the result of the multiplication process.
We split the matrix B into a set of column blocks and the matrix A into a set of row
blocks. In each iteration, all the map tasks process two inputs: (1) a column block of
matrix B and (2) a row block of matrix A. Collectively, they produce a row block of
the resultant matrix C. The column block associated with a particular map task is
fixed throughout the computation, while the row blocks are changed in each itera-
tion. However, in Hadoop’s programming model (a typical MapReduce model),
there is no way to specify this behavior. Hence, it loads both the column block and
the row block in each iteration of the computation. CGL-MapReduce supports the
notion of long-running map/reduce tasks, where these tasks are allowed to retain
static data in the memory across invocations, yielding better performance for “itera-
tive MapReduce” computations. The communication pattern of this application is
shown in Figure 12.2 (middle).

Kmeans clustering (Macqueen 1967) is another application that performs
iteratively refining computation. We also implemented Kmeans clustering applica-
tions using Hadoop, CGL-MapReduce, and DryadLINQ. In the two MapReduce
implementations, each map task calculates the distances between all the data ele-
ments in its data partition and all the cluster centers produced during the previous
run. It then assigns data points to these cluster centers, based on their Euclidian
distances. The communication topology of this algorithm is shown in Figure 12.2
(right). Each map task produces partial cluster centers as the output; these are then

User program

reduce()

map() map()

Cij

Ci
User program

reduce()

map() map()

Ai

B

PijAi

j
Bj

Data split—2D data points

Compute the
distance to each
data point from

each cluster center,
and assign points to
the cluster centers

Compute the new
cluster centers

Compute the error and decide
whether to continue iteration

Figure  12.2  (Left)  Communication  topology  of  Cannon’s  Algorithm  imple-
mented using MPI.  (Middle) Communication  topology of matrix multiplication 
application based on MapReduce.  (Right) Communication  topology of Kmeans 
clustering implemented as a MapReduce application.

HPC with Cloud and Cloud Technologies  ◾  287

combined at a reduce task to produce the current cluster centers. These current
cluster centers are used in the next iteration, to find the next set of cluster centers.
This process continues until the overall distance between the current cluster centers
and the previous cluster centers reduces below a predefined threshold. The Hadoop
implementation uses a new MapReduce computation for each iteration of the pro-
gram, while CGL-MapReduce’s long-running map/reduce tasks allow it to reuse
map/reduce tasks. The DryadLINQ implementation uses various DryadLINQ
operations, such as “Apply,” “GroupBy,” “Sum,” “Max,” and “Join,” to perform the
computation, and it also utilizes DryadLINQ’s “loop unrolling” support to per-
form multiple iterations as a single-large query.

12.4.4 Alu Sequencing Studies

12.4.4.1 Alu Clustering

The Alu clustering problem (Batzer and Deininger 2002) is one of the most chal-
lenging problems for sequence clustering, because Alus represent the largest repeat
families in human genome. There are about 1 million copies of Alu sequences in
human genome, in which most insertions can be found in other primates and only
a small fraction (∼7000) are human specific. This indicates that the classification
of Alu repeats can be deduced solely from the 1 million human Alu elements.
Notably, Alu clustering can be viewed as a classical case study for the capacity of
computational infrastructures, because it is not only of great intrinsic biological
interest, but also a problem of a scale that will remain as the upper limit of many
other clustering problems in bioinformatics for the next few years, for example,
the automated protein family classification for a few millions of proteins predicted
from large metagenomics projects.

12.4.4.2 Smith–Waterman Dissimilarities

We identified samples of the human and chimpanzee Alu gene sequences using
Repeatmasker (Smith et al. 2004) with Repbase Update (Jurka 2000). We have
been gradually increasing the size of our projects with the current largest samples
having 35,339 and 50,000 sequences, and these require a modest cluster, such as
Tempest (768 cores), for processing in a reasonable time (a few hours, as shown in
Section 12.5). Note from the discussion in Section 12.4.4.1 that we are aiming at
supporting problems with a million sequences—quite practical today on TeraGrid,
and equivalent facilities given basic analysis steps scale like O(N 2).

We used an open-source version NAligner (Smith–Waterman software) of the
Smith–Waterman–Gotoh (SW-G) algorithm (Smith and Waterman 1981, Gotoh
1982) modified to ensure low start-up effects by each thread processing large num-
bers (above a few hundreds) at a time. The memory bandwidth needed was reduced
by storing data items in as few bytes as possible.

288  ◾  Cloud Computing and Software Services

12.4.4.3 The O(N2) Factor of 2 and Structure
of Processing Algorithm

The Alu sequencing problem shows a well-known factor-of-2 issue present in
many O(N 2) parallel algorithms, such as those in direct simulations of astrophysi-
cal stems. We initially calculate in parallel the distance, D(i,j), between points
(sequences) i and j. This is done in parallel over all processor nodes selecting criteria
i < j (or j > i for the upper triangular case) to avoid calculating both D(i,j) and the
identical D(j,i). This can require substantial file transfer, as it is unlikely that nodes
requiring D(i,j) in a later step will find that it was calculated on nodes where it is
needed.

For example, the MDS (Multi Dimensional Scaling) and PW (PairWise) clus-
tering algorithms, described in Fox et al. (2008), require a parallel decomposition
where each of N processes (MPI processes, threads) has 1/N of sequences, and for
this subset {i} of sequences stores in memory D({i},j) for all sequences j and the
subset {i} of sequences for which this node is responsible. This implies that we need
D(i,j) and D(j,i) (which are equal) stored in different processors/disks. This is a
well-known collective operation in MPI called either gather or scatter.

12.4.4.4 Dryad Implementation

We developed a DryadLINQ application to perform the calculation of pair-
wise SW-G distances for a given set of genes by adopting a coarse-grained task
decomposition approach that requires minimum inter-process communication
to ameliorate the higher communication and synchronization costs of the paral-
lel runtime. To clarify our algorithm, let us consider an example where N gene
sequences produce a pairwise distance matrix of size N × N. We decompose the
computation task by considering that the resultant matrix groups the overall
computation into a block matrix of size D × D, where D is a multiple (>2) of
the available computation nodes. Due to the symmetry of the distances D(i,j)
and D(j,i), we only calculate the distances in the blocks of the upper triangle
of the block matrix, as shown in Figure 12.3 (left). The blocks in the upper tri-
angle are partitioned (assigned) to the available compute nodes, and an “Apply”
operation is used to execute a function to calculate (N/D) × (N/D) distances in
each block. After computing the distances in each block, the function calculates
the transpose matrix of the resultant matrix, which corresponds to a block in
the lower triangle, and writes both these matrices into two output files in the
local file system. The names of these files and their block numbers are commu-
nicated back to the main program. The main program sorts the files based on
their block numbers and performs another “Apply” operation to combine the
files corresponding to a row of blocks in a single-large row block, as shown in
Figure 12.3 (right).

HPC with Cloud and Cloud Technologies  ◾  289

12.4.4.5 MPI Implementation

The MPI version of SW-G calculates pairwise distances using a set of either single-
or multi-threaded processes. For N gene sequences, we need to compute half of
the values (in the lower triangular matrix), which is a total of M = N × (N − 1)/2
distances. At a high level, computation tasks are evenly divided among P processes
and execute in parallel, namely, the computation workload per process is M/P.
At a low level, each computation task can be further divided into subgroups and
run in T concurrent threads. Our implementation is designed for flexible use of a
shared memory multi-core system and distributed memory clusters (tight-coupled
to medium-tight-coupled communication technologies, such threading and MPI).
We provide options for any combinations of thread versus process versus node, as
shown in Figure 12.4. The real computation workload per parallel unit is decided
by M/(T × P × # nodes).

As illustrated in Figure 12.4, the data decomposition strategy runs a “space-
filling curve through the lower triangular matrix” to produce equal numbers of
pairs for each parallel unit such as process or thread. It is necessary to map indexes
in each pairs group back to corresponding matrix coordinates (i,j) for constructing
a full matrix later on. We implemented a special function, “PairEnumerator,” as
the convertor. We tried to limit runtime memory usage for performance optimiza-
tion. This is done by writing a triple of i,j and also writing the distance value of
pairwise alignment to a stream writer, and the system flushes accumulated results
to a local file periodically. As the final stage, individual files are merged to form a
full distance matrix.

Upper triangle

Blocks in upper triangle

0

V

0

File I/O File I/O File I/O

DryadLINQ
vertices

DryadLINQ
vertices

Each D consecutive blocks are merged to form a
set of row blocks each with N × D elements

0T 1T DD–1 DD–1T1

V V

V V V

1 DD–1

0

0
0

(0,d–1)
(0,d–1)

1
(d,2d–1)
(0,d–1)

D
(0,d–1)

(d,2d–1)

D+1
(d,2d–1)
(d,2d–1)

D–1
((D–1)d,Dd–1)

(0,d–1)

DD–1
((D–1)d,Dd–1)
((D–1)d,Dd–1)

N × N matrix broken down into D × D blocks

1

1

D–1

D–1

Figure 12.3  Task decomposition (left) and DryadLINQ vertex hierarchy (right) 
of  the  DryadLINQ  implementation  of  SW-G  pairwise  distance  calculation 
application.

290  ◾  Cloud Computing and Software Services

12.5  Evaluations
12.5.1 Introduction
For our evaluations, we used three compute clusters (details are given in Table 12.3)
with two 32-node clusters having almost identical hardware configurations and one
latest 32-node cluster of 24-core machines with Infiniband connections. DryadLINQ
and the MPI application that performs SW-G computation were run on the
Windows cluster (Ref B, Ref C), while Hadoop, CGL-MapReduce, and other MPI
applications were run on the Linux cluster (Ref A). We measured the performance
of these applications, and present the results in terms of parallel overhead defined for
parallelism P by

f P

P T P T
T

()
() ()
()

=
× − 1

1
 (12.1)

where
P denotes parallelism (e.g., processes, threads, and map tasks) used
T denotes time as a function of the number of parallel processes used

T(1) is replaced in practice by T(S), where S is the smallest number of processes that
can run the job. We used Hadoop release 0.20, the academic release of DryadLINQ,
Microsoft MPI, and OpenMPI (OMPI) version 1.3.2 for our evaluations.

12.5.2 CAP3 and Particle Physics Case Studies
The results of our performance measurements for CAP3 and particle physics are
shown in Figures 12.5 through 12.8.

0

0

1

2 1
(2,0)

2
(2,1)

N(N–1)/2
(N–1,N–2)

Space-filling curve Each process has workload of M/P elements

Merge files

I/O I/O I/O
File I/O

M/PM/P Indexing

Threading
T0 T1 T0 T1 T0 T1

PPP1P0

0 1
M =

N×(N–1)/2

MPI

M/P

0
(1,0)

N–1

Lower triangle
1 2 N–1

Figure 12.4  Task decomposition (left) and MPI (right) implementation of SW-G 
pairwise distance calculation application.

HPC with Cloud and Cloud Technologies  ◾  291

0

100

200

300

400

500

600

119,808 239,616 359,424 479,232 599,040

A
ve

ra
ge

 ti
m

e (
s)

Number of reads processed

Hadoop
CGL-MapReduce

DryadLINQ

Figure 12.5  Performance of the CAP3 application—average time (in s) against 
the number of gene reads processed.

Table 12.3  Different Computation Clusters Used for the Analyses

Feature
Linux Cluster

(Ref A)
Windows Cluster

(Ref B)
Windows Cluster

(Ref C)

Node 32 32 32

CPU Intel(R) Xeon(R)
CPU L5420
2.50 GHz

Intel(R) Xeon(R)
CPU L5420
2.50 GHz

Intel(R) Xeon(R)
CPU E7450
2.40 GHz

CPU/# cores 2/8 2/8 4/24

Total cores 256 256 768

Memory 32 GB 16 GB 48 GB

Disk 1 disk of Western
Digital Caviar RE
160 GB SATA 7200

2 disks of 1000 GB
(1 TB) Ultrastar
A7K1000 7200

2 HP 146 GB 10K 2.5
SAS HP SP HDD

Network Gigabit Ethernet Gigabit Ethernet 20 Gbps Infiniband

Operating
system

Red Hat Enterprise
Linux Server
release 5.3—64 bit

Windows Server
Enterprise—64
bit

Windows Server
2008 HPC Edition
(Service Pack 1)

292  ◾  Cloud Computing and Software Services

From these results, it is clearly evident that the cloud runtimes perform
 competitively well for both “map-only-style” and “map-reduce-style” applications.
In the HEP data analysis, both CGL-MapReduce and DryadLINQ access input
data from local disks, where the data is partitioned and distributed beforehand.
Currently, HDFS can be accessed using Java or C++ clients only, and the ROOT-
interpretable scripts (ROOT—data analysis framework developed at CERN) are

0

100

200

300

400

500

600

512,000 5.12e+006 1.024e+007 2.048e+007

A
ve

ra
ge

 ti
m

e f
or

 1
6

ite
ra

tio
ns

 (s
)

Number of 2D data points

Hadoop
DryadLINQ

CGL-MapReduce
MPI

Figure 12.7  Overhead induced by different parallel programming runtimes for 
the  Kmeans  clustering  application—overhead  against  the  number  of  2D  data 
points clustered. (Note: Both axes are in log scale.)

0

500

1000

1500

2000

200 400 600 800 1000

A
ve

ra
ge

 ti
m

e (
s)

Amount of data (GB)

Hadoop
DryadLINQ

CGL-MapReduce

Figure 12.6  Performance of  the HEP data analysis application—average  time 
(in s) against the amount of input data processed (in GB).

HPC with Cloud and Cloud Technologies  ◾  293

not capable of accessing data from HDFS. Therefore, we placed the input data
in the IU (Indiana University) Data Capacitor—a high-performance parallel file
system based on the Lustre file system, and programmed the map task in Hadoop
to directly access data from it. The performance results show that this dynamic
data movement in the Hadoop implementation incurred considerable overhead to
the computation, while the ability of reading input data from local disks gave sig-
nificant performance improvement to both DryadLINQ and CGL-MapReduce, as
compared to the Hadoop implementation.

12.5.3 Kmeans and Matrix Multiplication Case Studies
For an iterative class of applications, cloud runtimes show considerably high over-
heads, compared to the MPI and CGL-MapReduce versions of the same applica-
tions; the results shown in Figures 12.7 and 12.8 imply that, for these types of
applications, we still need to use high-performance parallel runtimes or alternative
approaches. (Note: The negative overheads observed in the matrix multiplication
application are due to the better utilization of a cache by the parallel application
than the single-process version.) CGL-MapReduce shows a close performance
closer to the MPI for large data sets in the case of Kmeans clustering and matrix
multiplication applications, an outcome that highlights the benefits of supporting
iterative computations and the faster data communication mechanism present in
CGL-MapReduce.

–1
0
1
2

5

10

1024 2048 3072 4096 5120 6144

O
ve

rh
ea

d
=

(P
×

T(
P)

–
T(

1)
)/T

(1
)

Dimension of a matrix

MPI
CGL-MapReduce

Hadoop

Figure 12.8  Overhead induced by different parallel programming runtimes for 
the  matrix  multiplication  application—overhead  against  the  dimension  of  an 
input matrix.

294  ◾  Cloud Computing and Software Services

12.5.4 Alu Sequence Analysis Case Study

12.5.4.1 Performance of Smith–Waterman–Gotoh Algorithm

We performed the Dryad and MPI implementations of Alu SW-G distance calcula-
tions on two large data sets and obtained the following results.

There is a short partitioning phase for DryadLINQ, and then both approaches
calculate the distances and write these out to intermediate files, as discussed in
Section 12.4. We note that the merge time is currently much longer for MPI than
DryadLINQ, while the initial steps are significantly faster for MPI. However, the
total times in Table 12.4 indicate that both MPI and DryadLINQ implementa-
tions perform well for this application, with MPI a few percent faster with current
implementations. As expected, the times scale proportionally to the square of the
number of distances. On 744 cores, the average time of 0.0067 ms/pair that corre-
sponds to roughly 5 ms/pair calculated per core is used. The coarse-grained Dryad
application performs competitively with the tightly synchronized MPI application.
It proves once more the applicability of the cloud technologies for the composable
applications.

12.5.4.2 Threaded Implementation

In Section 12.5.4.1, we looked at using MPI with one process per core and
compared this with a threaded implementation, with each process having sev-
eral threads. Labeling the configuration as t × m × n for t threads per process,
m MPI processes per node, and n nodes, we compare choices of t, m, and n in
Figure 12.9.

Table 12.4  Comparison of DryadLINQ and MPI Technologies on Alu 
Sequencing Application with SW-G Algorithm

Technology
Total

Time (s)
Time per
Pair (ms)

Partition
Data (s)

Calculated
and Output
Distance (s)

Merge
Files (s)

Dryad 50,000
sequences

17200.413 0.0069 2.118 17104.979 93.316

35,339
sequences

8510.475 0.0068 2.716 8429.429 78.33

MPI 50,000
sequences

16588.741 0.0066 N/A 13997.681 2591.06

35,339
sequences

8138.314 0.0065 N/A 6909.214 1229.10

HPC with Cloud and Cloud Technologies  ◾  295

The striking result for this step is that MPI easily outperforms the equivalent
threaded version of this embarrassingly parallel step. In Figure 12.9, all the peaks in
the overhead correspond to patterns with large values of t. Note that the MPI intra-
node 1 × 24 × 32 pattern completes the full 624 billion alignments in 2.33 h—4.9
times faster than the threaded implementation 24 × 1 × 32. This 768-core MPI run
has a parallel overhead of 1.43 corresponding to a speedup of 316.

The SW-G alignment performance is probably dominated by memory band-
width issues, and we are pursuing several points that could affect this, though it
is not at our highest priority as SW-G is not the dominant step. We have tried to
identify the reason behind the comparative slowness of threading. Using Windows
monitoring tools, we found that the threaded version has about a factor of 100 more
context switches than in the one-thread-per-process MPI version. This could lead
to a slowdown of the threaded approach and correspond to Windows handling of
paging of threads with large memory footprints.

12.6  Performance of MPI on Clouds
After the previous observations, we analyzed the performance implications of cloud
for parallel applications implemented using MPI. Specifically, we were trying to
find the overhead of virtualized resources, and understand how applications with
different communication-to-computation (C/C) ratios perform on cloud resources.
We also evaluated different CPU-core assignment strategies for VMs, in order to
understand the performance of VMs on multi-core nodes.

0

2

4

6

8

10

12

1×1×1
1×2×1

2×1×1
1×4×1

2×2×1
4×1×1

1×8×1
2×4×1

4×2×1
8×1×1

1×16×1

2×8×1
4×4×1

8×2×1
16×1×1

1×24×1

24×1×1

1×24×8

24×1×8

1×24×16

24×1×16

1×24×32

24×1×32

Pa
ra

lle
l o

ve
rh

ea
d

Parallel patterns (threads × MPI processes × nodes)

Smith–Waterman–Gotoh alignment timings for 35,339 points
12,497,500 Alignments

Figure 12.9  Performance of Alu gene alignments for different parallel patterns.

296  ◾  Cloud Computing and Software Services

Commercial cloud infrastructures do not allow users to access the bare-
hardware nodes, in which the VMs are deployed, a must-have requirement for our
analysis. Therefore, we used a Eucalyptus-based cloud infrastructure deployed at
our university for this analysis. With this cloud infrastructure, we have complete
access to both VM instances and to the underlying bare-metal nodes, as well as the
help of the administrators; as a result, we could deploy different VM configura-
tions, allocating different CPU cores to each VM. Therefore, we selected the above
cloud infrastructure as our main test bed.

For our evaluations, we selected three MPI applications with different com-
munication and computation requirements, namely, (1) the matrix multiplication,
(2) Kmeans clustering, and (3) the Concurrent Wave Equation Solver. Table 12.5
highlights the key characteristics of the programs that we used as benchmarks.

12.6.1 Benchmarks and Results
The Eucalyptus (version 1.4) infrastructure we used is deployed on 16 nodes of an
iDataplex cluster, each of which has 2 Quad Core Intel Xeon processors (for a total
of 8 CPU cores) and 32 GB of memory. In the bare-metal version, each node runs a
Red Hat Enterprise Linux Server release 5.2 (Tikanga) operating system. We used
the OMPI version 1.3.2 with the gcc version 4.1.2. We then created a VM image
from this hardware configuration, so that we would have a similar software envi-
ronment on the VMs once they were deployed. The virtualization is based on the
Xen hypervisor (version 3.0.3). Both bare-metal and virtualized resources utilized
gigabit Ethernet connections.

When VMs are deployed using Eucalyptus, it allows us to configure the
number of CPU cores assigned to each VM image. For example, with 8 core
systems, the CPU-core allocation per VM can range from 8 cores to 1 core per
VM, resulting in several different CPU-core assignment strategies. In an Amazon
EC2 infrastructure, the standard instance type has half a CPU per VM instance
(Evangelinos and Hill 2008). In the current version of Eucalyptus, the minimum
number of cores that we can assign for a particular VM instance is 1; hence, we
selected five CPU-core assignment strategies (including the bare-metal test) listed
in Table 12.6.

We ran all the MPI tests, on all five hardware/VM configurations, and mea-
sured the performance and calculated speedups and overheads. We calculated
two types of overheads for each application using formula (1). The total overhead
induced by virtualization and parallel processing is calculated using the bare-metal
single-process time as T(1) in formula (1). The parallel overhead is calculated using
the single-process time from a corresponding VM as T(1) in formula (1).

In all the MPI tests we performed, we used the following invariant to select the
number of parallel processes (MPI processes) for a given application:

 Number of MPI processes = Number of CPU cores used

HPC with Cloud and Cloud Technologies  ◾  297

Table 12.5  Computation and Communication Complexities of Different 
MPI Applications Used

Application
Matrix

Multiplication
Kmeans

Clustering
Concurrent Wave

Equation

Description Implements
Cannon’s
Algorithm

Assume a
rectangular
process grid
(Figure 12.1, left)

Implements
Kmeans
Clustering
algorithm

A fixed number of
iterations are
performed in
each test

A vibrating string is
decomposed (split)
into points, and
each MPI process
is responsible for
updating the
amplitude of a
number of points
over time

Grain size (n) The number of
points in a matrix
block handled by
each MPI process

The number of
data points
handled by a
single MPI
process

Number of points
handled by each
MPI process

Communication
pattern

Each MPI process
communicates
with its
neighbors both
row-wise and
column-wise

All MPI processes
send partial
clusters to one
MPI process
(rank 0); rank 0
distributes the
new cluster
centers to all the
nodes

In each iteration,
each MPI process
exchanges
boundary points
with its nearest
neighbors

Computation
per MPI
process

[(()])O n 3 O(n) O(n)

Communication
per MPI
process

[(()])O n O n2 = () O(1) O(1)

C/C O
n
1

O
n
1

O
n
1

Message size ()n n2 = D—where D is the
number of
cluster centers

D << n

Each message
contains a double
value

Communication
routines used

MPI_Sendrecv_
replace()

MPI_Reduce()

MPI_Bcast()

MPI_Sendrecv()

298  ◾  Cloud Computing and Software Services

For example, for the matrix multiplication application, we used only half the
number of nodes (bare-metal or VMs) available to us, so that we had 64 MPI
processes = 64 CPU cores. (This is mainly because the matrix multiplication appli-
cation expects the MPI processes to be in a square grid, in contrast to a rectangular
grid). For Kmeans clustering, we used all the nodes, resulting in a total of 128
MPI processes utilizing all 128 CPU cores. Some of the results of our analysis
highlighting the different characteristics we observed are shown in Figures 12.10
through 12.17.

For the matrix multiplication, the graphs show very close performance char-
acteristics in all the different hardware/VM configurations. As we expected, the
bare-metal has the best performance and speedup values, compared to the VM
configurations (apart from the region close to the matrix size of 4096 × 4096, where
the VM performed better than the bare-metal; we have performed multiple tests
at this point, and found that it is due to the cache performances of the bare-metal
node). After the bare-metal, the next-best performance and speedups were recorded
in the case of 1 VM per bare-metal node configuration, in which the performance
difference was mainly due to the overhead induced by the virtualization. However,
as we increased the number of VMs per bare-metal node, the overhead increased

Table 12.6  Different Hardware/VM Configurations Used for Our 
Performance Evaluations

Ref Description

Number of
CPU Cores

Accessible to
the Virtual or

Bare-Metal
Node

Amount of
Memory (GB)
Accessible to
the Virtual or

Bare-Metal
Node

Number of
Virtual or

Bare-Metal
Nodes

Deployed

BM Bare-metal
node

8 32 16

1-VM-8-core 1 VM instance
per bare-
metal node

8 30 (2 GB is
reserved for
dom0)

16

2-VM-4-core 2 VM instances
per bare-
metal node

4 15 32

4-VM-2-core 4 VM instances
per bare-
metal node

2 7.5 64

8-VM-1-core 8 VM instances
per bare-
metal node

1 3.75 128

HPC with Cloud and Cloud Technologies  ◾  299

as well. At 81 processes, the 8 VMs per node configuration shows about a 34%
decrease in speedup compared to the bare-metal results.

In Kmeans clustering, the effect of virtualized resources is much clearer than
in the case of matrix multiplication. All VM configurations show a lower perfor-
mance compared to the bare-metal configuration. In this application, the amount
of data transferred between MPI processes is extremely low compared to the

0

10

20

30

40

50

60

70

1024 2048 3072 4096 5120 6144

A
ve

ra
ge

 ti
m

e (
s)

Dimension of a matrix

Bare-metal
1-VM

2-VMs
4-VMs
8-VMs

Figure  12.10  Performance  of  the  matrix  multiplication  application—average 
time (in s) against the size of a matrix (number of MPI processes = 64).

0

100

200

300

400

500

9 16 25 36 64 81

Sp
ee

du
p

=
T(

1)
/T

(P
)

Number of MPI processes = number of CPU cores

Bare-metal
1-VM

2-VMs
4-VMs
8-VMs

Figure  12.11  Speedup  of  the  matrix  multiplication  application—speedup 
against the number of MPI processes = number of CPU cores used (fixed matrix 
size = 5184 × 5184).

300  ◾  Cloud Computing and Software Services

amount of data processed by each MPI process, and also in relation to the amount
of computations performed. Figures 12.14 and 12.15 show the total overhead and
the parallel overhead for Kmeans clustering under different VM configurations.
From these two calculations, we found that, for VM configurations, the overheads
are extremely large for data-set sizes of less than 10 million points, for which the
bare-metal overhead remains less than 1 (for all cases). For larger data sets, such as
those of 40 million points, all overheads reached less than 0.5. The slower speedup

0

1

2

3

4

5

0.5 1 10 16 20 30 40

A
ve

ra
ge

 ti
m

e (
s)

Number of 3D data points (millions)

Bare-metal
1-VM
2-VM
4-VM
8-VM

Figure 12.12  Performance of Kmeans clustering—average time (in s) against the 
number of 3D data points clustered (number of MPI processes = 128).

0

10

20

30

40

50

60

70

80

90

16 32 48 64 80 96 112 128

Sp
ee

du
p

=
T(

1)
/T

(P
)

Number of MPI processes = number of CPU cores

Bare-metal
1-VM

2-VMs
4-VMs
8-VMs

Figure  12.13  Speedup  of  Kmeans  clustering—speedup  against  the  number  of 
MPI processes = number of CPU cores used (number of data points = 860,160).

HPC with Cloud and Cloud Technologies  ◾  301

of the VM configurations (shown in Figure 12.13) is due to the use of a smaller
data set (∼800K points) to calculate the speedups. The overheads are extremely
large for this region of the data sizes, and hence, this resulted in lower speedups
for the VMs.

The concurrent wave equation splits a number of points into a set of paral-
lel processes, and each parallel process updates its portion of the points in some

0

0.2

0.4

0.6

0.8

1

3e–006 6e–006 8e–006 1.25e–005

O
ve

rh
ea

d
=

(P
×

T(
P)

–
T(

1)
)/T

(1
)

1/grain size (log scale)

Bare-metal
1-VM

2-VMs
4-VMs
8-VMs

Figure  12.14  Total  overhead  of  Kmeans  clustering—overhead  against  1/grain 
size,  grain  size = number  of  2D  data  points  per  parallel  task  (number  of  MPI 
processes = 128).

0

0.1

0.2

0.3

0.4

0.5

0.6

3e–006 6e–006 8e–006 1.25e–005

O
ve

rh
ea

d
=

(P
×

T(
P)

–
T(

1)
)/T

(1
)

1/grain size (log scale)

Bare-metal
1-VM

2-VMs
4-VMs
8-VMs

Figure 12.15  Parallel overhead of Kmeans clustering—parallel overhead against 
1/grain size (number of MPI processes = 128).

302  ◾  Cloud Computing and Software Services

number of steps. An increase in the number of points increases the amount of
computations performed. Since we fixed the number of steps in which the points
were updated, we obtained a constant amount of communication in all the test
cases, resulting in a C/C ratio of O(1/n). In this application also, the difference
in performance between the VMs and the bare-metal version was clearer, and at
the highest grain size, the total overhead of 8 VMs per node is about seven times

0

0.5

1

1.5

2

2.5

3

8,192 20,480 30,720 40,960 51,200

A
ve

ra
ge

 ti
m

e (
s)

Number of points

Bare-metal
1-VM

2-VMs
4-VMs
8-VMs

Figure  12.16  Performance  of  the  Concurrent  Wave  Equation  Solver—average 
time (in s) against the number of points computed (number of MPI processes = 128).

0

0.2

0.4

0.6

0.8

1

0.004 0.008 0.012 0.016

O
ve

rh
ea

d
=

(P
×

T(
P)

–
T(

1)
)/T

(1
)

1/grain size

Bare-metal
1-VM

2-VMs
4-VMs
8-VMs

Figure  12.17  Total  overhead  of  the  Concurrent  Wave  Equation  Solver—over-
head against 1/grain size, grain size = number of points assigned per parallel task 
(number of MPI processes = 128).

HPC with Cloud and Cloud Technologies  ◾  303

higher than the overhead of the bare-metal configuration. The performance differ-
ences between the different VM configurations became smaller with the increase
in grain size.

From the above experimental results, we can see that the applications with
lower C/C ratios experienced a slower performance in virtualized resources. When
the amount of data transferred between MPI processes is large, as in the case of the
matrix multiplication, the application is more susceptible to the bandwidth than
the latency. From the performance results of the matrix multiplication, we can see
that the virtualization has not affected the bandwidth considerably. However, all
the other results show that the virtualization has caused considerable latencies for
parallel applications, especially with smaller data transfer requirements. The effect
on latency increases as we use more VMs in a bare-metal node.

According to the Xen para-virtualization architecture (Barham et al. 2003),
domUs (VMs that run on top of a Xen para-virtualization) are not capable of
performing I/O operations by themselves. Instead, they communicate with dom0
(privileged OS) via an event channel (interrupts) and the shared memory, and
then the dom0 performs the I/O operations on behalf of the domUs. Although
the data is not copied between domUs and dom0, dom0 needs to schedule the
I/O operations on behalf of domUs. Figure 12.18 (left) and (right) shows this
behavior in the 1 VM per node and 8 VMs per node configurations, respectively,
that we used.

In all the above parallel applications we tested, the timing figures measured
correspond to the time for computation and communication inside the applica-
tions. Therefore, all the I/O operations performed by the applications are network
dependent. From Figure 12.19 (right), it is clear that dom0 needs to handle eight
event channels when there are eight VM instances deployed on a single bare-
metal node. Although the eight MPI processes run on a single bare-metal node,
since they are in different virtualized resources, each of them can only commu-
nicate via dom0. This explains the higher overhead in our results for 8 VMs per
node configuration. The architecture reveals another important feature as well,
that is, in the case of the 1 VM per node configuration, when multiple processes

Core 1 Core 1
Shared memory
Xen hypervisor

PV block
backend

driver

PV block
backend

driver

PV
block
driver

PV block
driver

PV
block
driver

MPI
1

1

2 2

3
1

3

MPI
8

MPI
1

MPI
8

MPI
2

Dom 0 Dom U1 Dom U8

Event channels Event channel
Dom 0 Dom U1

Core 8 Core 1 Core 1
Shared memory
Xen hypervisor

Core 8

Figure 12.18  (Left) Communication between dom0 and domU when 1 VM per 
node is deployed. (Right) Communication between dom0 and domUs when 8 VMs 
per node are deployed.

304  ◾  Cloud Computing and Software Services

(MPI or others) that run in the same VM communicate with each other via the
network, all the communications must be scheduled by dom0. This results in
higher latencies. We could verify this by running the above tests with LAM MPI
(a predecessor of OMPI, which does not have improved support for in-node com-
munications for multi-core nodes). Our results indicate that, with LAM MPI,
the worst performance for all the tests occurred when 1 VM per node was used.
For example, Figure 12.19 shows the performance of Kmeans clustering under
bare-metal, 1 VM per node, and 8 VMs per node configurations. This observation
suggests that, when using VMs with multiple CPUs allocated to each of them for
parallel processing, it is better to utilize parallel runtimes, which have better sup-
port for in-node communication.

Several others have also performed relevant research on the performance impli-
cations of virtualized resources. Youseff et al. (2006) present an evaluation of the
performance impact of Xen on MPI. According to their evaluations, the Xen does
not impose considerable overheads for HPC (high-performance computing) appli-
cations. However, our results indicate that the applications that are more sensitive
to latencies (smaller messages, lower C/C ratios) also experience higher overheads
under virtualized resources, and this overhead increases as more and more VMs
are deployed per hardware node. From their evaluations, it is not clear how many
VMs they deployed on the hardware nodes, or how many MPI processes were used
in each VM. According to our results, these factors cause significant changes in
possible results. Running 1 VM per hardware node produces a VM instance with
a similar number of CPU cores, such as in a bare-metal node. However, our results
indicate that, even in this approach, if the parallel processes inside the node com-
municate via the network, the virtualization may produce higher overheads under
the current VM architectures.

0

2

4

6

8

10

Bare-metal 1-VM per node 8-VMs per node

A
ve

ra
ge

 ti
m

e (
s)

LAM MPI
OpenMPI

Figure 12.19  LAM versus OMPI under different VM configurations.

HPC with Cloud and Cloud Technologies  ◾  305

Evangelinos and Hill (2008) discuss the details of their analysis of the perfor-
mance of HPC benchmarks on the EC2 cloud infrastructure. One of the key obser-
vations noted in their paper is that both the OMPI and the MPICH2-nemsis show
extremely large latencies, while the LAM MPI, the GridMPI, and the MPICH2-
scok show smaller, smoother latencies. This observation is similar to what we
observed with the LAM MPI in our tests, and the same explanation holds valid for
their observation as well.

Walker (2008) presents benchmark results of the performance of HPC applica-
tions using “high-CPU extra-large” instances provided by EC2, and on a similar set
of local hardware nodes. The local nodes are connected using Infiniband switches,
whereas the Amazon EC2 network technology is unknown. The results indicate
about a 40%–1000% performance degradation on the EC2 resources, compared
to the local cluster. Since the differences in operating systems and the compiler ver-
sions between the VMs and bare-metal nodes may cause variations in results, for
our analysis, we used a cloud infrastructure over which we have complete control.
In addition, we used similar software environments in both VMs and bare-metal
nodes. In our results, we noticed that applications that are more susceptible to
latencies experience a higher performance degradation (around 40%) under virtu-
alized resources. Bandwidth does not seem to be a consideration in private cloud
infrastructures.

Gavrilovska et al. (2007) discuss several improvements over the current vir-
tualization architectures to support HPC applications, such as HPC hyper-
visors and self-virtualized I/O devices. We notice the importance of such
improvements and research. In our experimental results, we used hardware nodes
with 8 cores, and deployed and tested up to 8 VMs per node in these systems. Our
results show that the virtualization overhead increases with the number of VMs
deployed on a hardware node. These characteristics will have a larger impact on
systems having more CPU cores per node. A node with 32 cores running 32 VM
instances may produce very large overheads under the current VM architectures.

12.7  Conclusions and Future Work
We have described several different studies of clouds and cloud technologies on both
real applications and standard benchmark. These address different aspects of paral-
lel computing using either traditional (MPI) or the new cloud-inspired approaches.
We find that cloud technologies work well for most pleasingly parallel problems
(“map-only” and “map-reduce” classes of applications). In addition, their support
for handling large data sets, the concept of moving computation to data, and the
better quality of services provided such as fault tolerance and monitoring, all serve
to simplify the implementation details of such problems. Applications with com-
plex communication patterns observe higher overheads when implemented using

306  ◾  Cloud Computing and Software Services

cloud technologies, and even with large data sets, these overheads limit the usage
of cloud technologies for such applications. Enhanced MapReduce runtimes, such
as CGL-MapReduce, allow iterative-style applications to utilize the MapReduce
programming model, while incurring minimal overheads, as compared to other
runtimes, such as Hadoop and Dryad.

Handling large data sets using cloud technologies on cloud resources is an area
that needs more research. Most cloud technologies support the concept of mov-
ing computation to data where the parallel tasks access data stored in local disks.
Currently, it is not clear to us whether this approach would work well with the VM
instances that are leased only for the duration of use. A possible approach is to stage
the original data in high-performance parallel file systems or Amazon S3–type
storage services, and then move the data to the VMs each time they are leased to
perform computations.

MPI applications that are sensitive to latencies experience moderate-to-higher
overheads when performed on cloud resources, and these overheads increase as the
number of VMs per bare-hardware node increases. For example, in Kmeans clus-
tering, 1 VM per node shows a minimum of an 8% total overhead, while 8 VMs per
node show at least a 22% overhead. In the case of the Concurrent Wave Equation
Solver, both these overheads are around 50%. Therefore, we expect the CPU-core
assignment strategies, such as half a core per VM, to produce very high overheads
for applications that are sensitive to latencies. Applications that are not suscep-
tible to latencies, such as those that perform large data transfers and/or higher C/C
ratios, show minimal total overheads in both bare-metal and VM configurations.
Therefore, we expect that the applications developed using cloud technologies will
work fine with cloud resources, because the milliseconds-to-seconds latencies that
they already have under the MapReduce model will not be affected by the addi-
tional overheads introduced by the virtualization. This is also an area we are cur-
rently investigating. We are also building applications (biological DNA sequencing)
whose end-to-end implementation from data processing to filtering (data-mining)
involves an integration of MapReduce and MPI (Fox et al. 2008).

Acknowledgments
We would like to thank Joe Rinkovsky and Jenett Tillotson from University
Information Technology Services, Indiana University (IU UITS), for their dedi-
cated support in setting up a private cloud infrastructure and helping us with vari-
ous configurations associated with our evaluations. We would also like to thank the
Advanced Research Services and Tools (ARTS) team at Microsoft Research for their
support on hardware and software infrastructures. We are grateful to Mina Rho
and Haixu Tang from the Indiana University School of Informatics and Computing
for their help in understanding Alu sequence clustering and providing human and
chimpanzee gene sequence data.

HPC with Cloud and Cloud Technologies  ◾  307

References
Amazon.com, Inc. 2009. Simple Storage Service (S3). http://aws.amazon.com/s3
ASF. 2009a. Apache Hadoop Core. http://hadoop.apache.org/core
ASF. 2009b. Apache Hadoop Pig. http://hadoop.apache.org/pig/
Barham, P., B. Dragovic et al. 2003. Xen and the art of virtualization. Proceedings of the 19th

ACM Symposium on Operating Systems Principles, Bolton Landing, NY.
Batzer, M.A. and P.L. Deininger. 2002. Alu repeats and human genomic diversity. Nat. Rev.

Genet. 3(5): 370–379.
Condor Team. 2009. Condor DAGMan. http://www.cs.wisc.edu/condor/dagman/
Dean, J. and S. Ghemawat. 2008. MapReduce: Simplified data processing on large clusters.

Commun. ACM 51(1): 107–113.
Dongarra, J., C.A. Geist et al. 1993. Integrated PVM framework supports heterogeneous

network computing. Comput. Phys. 7(2): 166–175.
Ekanayake, J., S. Pallickara et al. 2008. MapReduce for data intensive scientific analyses.

IEEE Fourth International Conference on eScience ’08, Indianapolis, IN.
ElasticHosts Ltd. 2009. Cloud Hosting. http://www.elastichosts.com/
Ericsson 2009. Erlang programming language. http://www.erlang.org/
Evangelinos, C. and C. Hill. 2008. Cloud computing for parallel scientific HPC applications:

Feasibility of running coupled atmosphere-ocean climate models on Amazon’s EC2.
The First Workshop on Cloud Computing and its Applications (CCA’08), Chicago, IL.

Forum, MPI. n.d. MPI (Message Passing Interface). http://www.mcs.anl.gov/research/
projects/mpi/

Foster, I. 2001. The anatomy of the grid: Enabling scalable virtual organizations. Int.
J. Supercomput. Appl. 15: 200–222.

Fox, G.C., A. Hey, and S. Otto. 1987. Matrix algorithms on the hypercube I: Matrix multi-
plication. Parallel Comput. 4: 17.

Fox, G., S. Bae et al. 2008. Parallel data mining from multicore to cloudy grids. Proceedings
of the International Advanced Research Workshop on High Performance Computing and
Grids (HPC2008), Cetraro, Italy.

Gabriel, E., G.E. Fagg et al. 2004. Open MPI: Goals, concept, and design of a next genera-
tion MPI implementation. Proceedings of the 11th European PVM/MPI Users’ Group
Meeting. Budapest, Hungary.

Gavrilovska, A., S. Kumar et al. March 2007. Abstract high-performance hypervisor archi-
tectures: Virtualization in HPC systems. Proceedings of the HPCVirt 2007, Lisbon,
Portugal.

Ghemawat, S., H. Gobioff et al. 2003. The Google file system. SIGOPS Oper. Syst. Rev.
37(5): 29–43.

Gotoh, O. 1982. An improved algorithm for matching biological sequences. J. Mol. Biol.
162: 705–708.

Gu, Y. and R.L. Grossman. 2009. Sector and sphere: The design and implementation of
a high-performance data cloud. Philos. Trans. A: Math Phys. Eng. Sci. 367(1897):
2429–2445.

Huang, X. and A. Madan. 1999. CAP3: A DNA sequence assembly program. Genome Res.
9(9): 868–877.

Hull, D., K. Wolstencroft et al. 2006. Taverna: A tool for building and running workflows of
services. Nucleic Acids Res. 34(Web Server issue): W729–32.

308  ◾  Cloud Computing and Software Services

Isard, M., M. Budiu et al. 2007. Dryad: Distributed data-parallel programs from sequential
building blocks. SIGOPS Oper. Syst. Rev. 41(3): 59–72.

Johnsson, S.L., T. Harris et al. 1989. Matrix multiplication on the connection machine.
Proceedings of the 1989 ACM/IEEE Conference on Supercomputing, Reno, NV. ACM,
New York.

Jurka, J. 2000. Repbase update: A database and an electronic journal of repetitive elements.
Trends Genet. 9:418–420.

Keahey, K., I. Foster et al. 2005. Virtual workspaces: Achieving quality of service and quality
of life in the Grid. Sci. Program. 13(4): 265–275.

Ludscher, B., I. Altintas et al. 2006. Scientific workflow management and the Kepler system
[research articles]. Concurr. Comput. Pract. Exp. 18(10): 1039–1065.

Macqueen, J. 1967. Some methods for classification and analysis of multivariate observations.
Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability,
Vol. 1: Statistics, Berkeley, CA, pp. 281–297.

Moretti, C., H. Bui et al. 2009. All-pairs: An abstraction for data intensive computing on
campus grids. IEEE Trans. Parallel Distrib. Syst. 21(1): 33–46.

Nokia. 2009. Disco project. http://discoproject.org/
Nurmi, D., R. Wolski et al. 2009. The eucalyptus open-source cloud-computing system.

Proceedings of the Ninth IEEE/ACM International Symposium on Cluster Computing and
the Grid, Shanghai, China.

Pallickara, S. and G. Fox. 2003. NaradaBrokering: A distributed middleware framework
and architecture for enabling durable peer-to-peer grids. Proceedings of the ACM/
IFIP/USENIX 2003 International Conference on Middleware, Rio de Janeiro, Brazil.
Springer-Verlag, New York.

Pallickara, S. L. and M. Pierce. 2008. SWARM: Scheduling large-scale jobs over the loosely-
coupled HPC clusters. Proceedings of the IEEE Fourth International Conference on
eScience ’08 (eScience, 2008), Indianapolis, IN.

Pike, R., S. Dorward et al. 2005. Interpreting the data: Parallel analysis with Sawzall. Sci.
Program. 13(4): 277–298.

Raicu, I., Y. Zhao et al. 2007. Falkon: A fast and light-weight tasK executiON framework.
Proceedings of the 2007 ACM/IEEE Conference on Supercomputing, Reno, NV. ACM,
New York.

ServePath. 2009. GoGrid Cloud Hosting. http://www.gogrid.com/
Smith, T.F. and M.S. Waterman. 1981. Identification of common molecular subsequences.

J. Mol. Biol. 147:195–197.
Smith, A.F.A., R. Hubley, and P. Green. 2004. Repeatmasker. http://www.repeatmasker.org
Smith Waterman Software. http://jaligner.sourceforge.net/naligner/
Vermorel, J. 2005. NAligner (Smith Waterman software with Gotoh enhancement). http://

jaligner.sourceforge.net/naligner/
Walker, E. 2008. Benchmarking Amazon EC2 for high-performance scientific computing.

http://www.usenix.org/publications/login/2008–10/openpdfs/walker.pdf.
Youseff, L., R. Wolski et al. 2006. Evaluating the performance impact of Xen on MPI and

process execution for HPC systems. Proceedings of the First International Workshop on
Virtualization Technology in Distributed Computing, Tampa, FL.

Yu, Y., M. Isard et al. 2008. DryadLINQ: A system for general-purpose distributed data-
parallel computing using a high-level language. Proceedings of the Symposium on
Operating System Design and Implementation (OSDI), San Diego, CA.

309

Chapter 13

BioVLAB: Bioinformatics 
Data Analysis Using 
Cloud Computing and 
Graphical Workflow 
Composers

Youngik Yang, Jong Youl Choi, Chathura Herath,
Suresh Marru, and Sun Kim

Contents
13.1 Introduction ...310
13.2 Motivation to Use Cloud Computing ..310
13.3 System Architecture and Components ... 311

13.3.1 User Interaction Layer ..312
13.3.1.1 Workflow Composer and Execution Engine312
13.3.1.2 XBaya—Workflow System ..313
13.3.1.3 Web Portal ..316

13.3.2 Middleware Services ... 317
13.3.2.1 Generic Factory .. 317

310  ◾  Cloud Computing and Software Services

13.1  Introduction
Recent advances in high-throughput instrument technologies allow small research
labs to obtain data for scientific projects of their interest in a cost-effective way. In
biology and medicine, this opened a door to a genome-wide study. Unfortunately,
many small research labs are unable to afford the analysis of such data since the data
analysis task requires bioinformatics experts and a good computing infrastructure
to process and analyze a large amount of data. We have been developing a novel bio-
informatics computing architecture, called BioVLAB, using Amazon cloud com-
puting and the Linked Enviroments for Atmospheric Discovery (LEAD)/OGCE
(Open Grid Computing Environments) scientific workflow system. The emergence
of cloud computing enables biologists to perform data analysis tasks without wor-
rying about computing resources and related issues such as system administration
and resource allocation. The BioVLAB architecture is based on the LEAD/OGCE
workflow system that includes a front-end graphical workflow system named
XBaya, which allows biologists to run tasks in an intuitive way. XBaya empowers
users to visually monitor workflow execution in real time and provides controls to
modify the workflow and steer it according to their scientific needs. The workflow
system presents an elegant abstraction so that biologists can focus on science while
the system deals with all cloud computing and local resource interactions.

Using the BioVLAB architecture, we have developed three experimental
systems: BioVLAB-protein, for a simple protein sequence analysis; BioVLAB-
microarray, for analyzing microarray data from NCBI’s (National Center for
Biotechnology Information) GEO (Gene Expression Omnibus); and BioVLAB-
MMIA (microRNA and mRNA integrated analysis), for the combined analysis of
gene and microRNA expression data. This chapter discusses the BioVLAB system
architecture and the three prototype systems.

13.2  Motivation to Use Cloud Computing
Cloud computing is becoming important in both academia and industry, since the
recent advancement in new technologies—such as high throughput computing

13.3.3 Compute and Data Resources ... 318
13.3.3.1 Amazon Computing Clouds Services 318

13.4 Bioinformatics Applications ... 319
13.4.1 BioVLAB-Protein ... 319
13.4.2 BioVLAB-Microarray ... 319
13.4.3 BioVLAB-MMIA ...321

13.5 Conclusion ...325
References ...325

BioVLAB  ◾  311

based on multi-core/multi-process architecture, cost-efficient memory and data
capacity, and virtualization techniques—is changing the traditional concept of
data analysis into a data-intensive way. For many years in research communities,
data analysis using computers mainly depends on the capacity of local, small set
of computers. However, in the current situation, we are now witnessing a burst
of data, and such small sets of computing nodes are not enough to keep up with
the fast generation of huge volume of data. Many researchers are now trying to
use the full capacity of computing powers by utilizing parallelism or a form of
multiple computers, called computer clusters or grids, for data-intensive com-
puting. Another important characteristic of cloud computing is elasticity that
allows users to purchase computing power only for the capacity and duration
that the users need. Especially, this is an important, new opportunity for small
research labs that do not have high-performance computing infrastructure in
place.

Currently, a handful of cloud-computing services are available to the public or
are ready for release in the near future. Among them, the Amazon Elastic Compute
Cloud (also known as EC2) is the first cloud-computing service in which users
can “rent” multiple or hundreds of computing units in an on-demand manner. As
seen in our previous work [1] and Amazon’s report [2], many services and applica-
tions have been developed for running in Amazon EC2. Microsoft is also testing
a cloud-computing service, called Azure, to provide an Internet-scale cloud service
platform. By collaborating with academia, HP, Intel, and Yahoo, Microsoft has
recently launched a cloud computing test bed, called M45, to provide a globally dis-
tributed Internet-scale testing environment to support various academic researches.

13.3  System Architecture and Components
The BioVLAB system is based on the LEAD/OGCE workflow infrastructure. The
implementation of this infrastructure heavily uses Service-Oriented Architecture
(SOA) concepts. This architecture can be classified into three major layers. As
shown in Figure 13.1, the topmost layer is the user interaction layer. The XBaya
Graphical User Interface (GUI) serves as the user-facing interface, enabling biolo-
gists to construct, execute, and monitor workflow executions. The entire workflow
system can be operated as a custom desktop application or can be coupled with the
OGCE- based web portal interface.

The second layer represents various middleware components comprising of
a workflow composition API (application programming interface), an execution
engine, and monitoring capabilities. These components are further detailed in
Section 13.3.1. The middleware layer also includes a web service wrapper called
GFac (generic factory), which wraps command-line scientific applications into web
services. These wrapped application services can be invoked stand-alone or can be
orchestrated into workflows.

312  ◾  Cloud Computing and Software Services

The third layer represents various computing and data resources from local
workstations to computational clouds like Amazon EC2. The GFac toolkit has
a built-in functionality to manage all data transfers and jobs. The toolkit accepts
a request from the workflow execution system and translates this request into
data movement, and computes job submission to local, grid, or cloud computing
resources. The wrapped application service is registered with a web service registry
called XRegistry, which is used by the workflow GUI to browse and construct the
registered services into workflows.

13.3.1 User Interaction Layer
The main components of the user interaction layer are the workflow system and the
web portal.

13.3.1.1 Workflow Composer and Execution Engine

The concept of workflow has been introduced in scientific research communities
to enable a batch execution of multiple tasks on behalf of users. By using such
workflows, we can reduce a user’s involvement and release the burden of repeating
tedious tasks. Among various workflow composer and execution engines available
in the public domain, BioVLAB uses XBaya, a graphical workflow composer and
execution engine.

Using XBaya, a user can compose a workflow with ease by performing simple
drag and drop from the workbench, which displays the available applications users
can include, and execute the workflow graph instantly. After executing a workflow,

User interactions

Web portal

Event bus

Middleware services

Workflow engine
(ODE) XRegistry

Compute and data resources
Computational

cloud
Computational

grids
Local lab
resources

GFac
services

XBaya GUI

XBaya core

Other clients

Figure 13.1  BioVLAB architecture.

BioVLAB  ◾  313

XBaya can report to users the execution status of the workflow. Detailed status
messages will be displayed on the monitor panel, as shown in Figure 13.2.

In Section 13.3.1.2, we will explain XBaya in detail.

13.3.1.2 XBaya—Workflow System

XBaya, a scientific workflow tool, is the main point of interaction for the scientist
dealing with the workflow system, and it provides a high-level SOA-based pro-
gramming model to interact with the service layer of the workflow system. This
scientific workflow-programming model has been recognized as the accepted stan-
dard across different scientific disciplines and the preferred programming model for
scientific computing. This section focuses on describing the modes of operation of
the XBaya workflow tool.

The XBaya workflow system facilitates three modes of operation with respect to
the different stages of workflow execution:

 1. Workflow composition
 2. Workflow orchestration
 3. Workflow monitoring

Besides interacting with these different phases of workflow life cycle, XBaya also
manages authentication and authorization of workflow users and provides a com-
prehensive security infrastructure based on the GSI (Grid Security Infrastructure)
[35], while facilitating user authorizations as well as user groups.

13.3.1.2.1 Workflow Composition

XBaya is a pure SOA-based workflow system, and the workflow activities are either
pure web services or workflow control structures. The web services can be abstract
services that can be instantiated to actual service just in time when they are needed
for the workflow, or they can be concrete services deployed by a third party. The

Workbench panel:
showing a list of

available bioinformatics
applications to be
used for workflow

composition.

Workflow
composer panel: A

user can drag and drop
applications from

the workbench panel
to compose a workflow.

Monitor panel:
execution status
information of a

workflow will be shown
through this panel.

Application
information panel:
displaying selected
application’s input/
output information.

Figure 13.2  Components of XBaya.

314  ◾  Cloud Computing and Software Services

control structures provided by XBaya on the other hand consist of conditional
branching structures, commonly known as if-else conditions and parallel process-
ing structures like for-each blocks that facilitate doing parallel transforms to array
data structures. Besides services and control structures, sometimes, certain data
structures require minor transformations, and many workflow systems provide
widget components to facilitate such requirements (e.g., regEx widget for string
comparison). XBaya provides the flexibility for the workflow user to implement a
widget as the workflow is composed, by implementing a Java skeleton that captures
the widget functionality in a Java operation.

The workflow system consists of a registry service, named XRegistry [36],
which allows resource sharing in a secure manner. This is a registry that is also used
by other components, like GFac, for resource storage and lookups. The registry
interface not only allows resource sharing and service discovery, but also provides
a mechanism to protect the application service from unauthorized access, thus
preventing unauthorized users from having access to scientific applications. The
service authors could create their services using a GFac toolkit and register them in
the XRegistry as abstract services, and XBaya allows users to query these services
and import them to be used in composition. Besides looking up XRegistry, XBaya
allows third-party web services to be included in the workflow either by importing
the WSDL (Web Services Description Language) file of the service or by providing
the End Point Reference (EPR) of the web service. Further, as shown in Figure
13.3, the XBaya workbench provides an interactive and easy drag-and-drop inter-
face for workflow composition.

Composition
and

monitoring Abstract
DAG model

BPEL 1.1

GPEL
engine

Apache
ODE engine

Taverna

Python runtimeJython-
based enactor

Message bus

Dynamic
enactor/

interpreter

BPEL 2.0

SCUFL

Python

Figure 13.3  Architecture of the XBaya workflow system.

BioVLAB  ◾  315

13.3.1.2.2 Workflow Orchestration

XBaya provides a high-level workflow description language, referred to as the
Abstract DAG model in Figure 13.3, that is independent of conventional workflow
execution languages. This allows the composition of the workflow to be completely
decoupled from the execution, as well as the workflow to be transformed into dif-
ferent workflow-execution languages easily. The different workflow-enactment
environments do have their merits and demerits, and depending on the domain sci-
ence, the optimal workflow-enactment environment should be chosen to capitalize
on the merits. For example, the Apache Orchestration Director Engine (ODE) [37]
workflow engine is well equipped to handle long-running workflows in a scalable
manner, whereas the XBaya dynamic enactor would provide dynamic user interac-
tion during workflow execution, thus providing better steering of the workflow.
Figure 13.3 provides the architecture of the XBaya workflow tool, and how the
interaction with different workflow engines would take place, as well as how the
Abstract DAG model may get compiled into each execution environment as neces-
sary. In this chapter, the focus would be on the XBaya dynamic workflow enac-
tor/interpreter, because the flexibilities provided by the dynamic workflow enactor
seem to fit the bioinformatics domain while fulfilling the other necessary require-
ments expected of the workflow system.

The following sets of features capture the interactive and dynamic aspects of the
workflows that are provided by the XBaya workflow system. We define an activity
to be an encapsulation of logic that can be represented as an XBaya workflow node.

 1. Deviations during workflow execution when workflow definition is static:
 a. Fault handling
 b. Dynamic change workflow inputs, workflow rerun
 c. Dynamic change in point of execution, workflow smart rerun
 d. Pause execution, step through execution, and debug points
 2. On-the-fly workflow composition when workflow definition changes:
 a. Dynamic addition of activities to the workflow
 b. Dynamic removal or replacement of activity from the workflow

These two sets are organized in a way that the first set captures the dynamic interac-
tions that do not require changes to the workflow definition while it is executing.
In other words, the workflow definition remains static during the dynamic inter-
actions. The second set in the taxonomy are the dynamic interactions that would
change the definition of the workflow.

Since some of the features require the workflow definition to be changed while
it is being executed, compilation of the workflow to a script would be a wrong
approach. If the workflow is interpreted one activity at a time, as the user makes
changes to the workflow, these changes would automatically be picked up when
the interpreter visits those nodes of the workflow. In XBaya, the workflows are
interpreted rather than compiled, and the result of execution of each activity is

316  ◾  Cloud Computing and Software Services

check-pointed. The interpretation allows the workflow definition to be changed
dynamically, while the check-pointing allows the parts of the workflows to be run
again as necessary. These dynamic features allow scientists to monitor the work-
flows as they execute and make real-time changes to the workflows and steer their
scientific application to achieve better results.

13.3.1.2.3 Workflow Monitoring

The XBaya workflow system provides a real-time monitoring interface for the work-
flows to evaluate the progress of an experiment. Figure 13.4 shows a workflow in
the middle of the execution where the different colors of the components show
the execution status of that particular component (gray: complete, green: running,
and yellow: waiting). The monitoring infrastructure of the workflow is completely
decoupled with the workflow execution so that the workflow can be run with or
without monitoring. The workflow system employs a WS-Eventing-based [38]
publish/subscribe messaging system as a message bus to gather the progress of the
workflow that is happening in distributed locations and services, and the XBaya
monitoring interface would listen to those notifications sent by the workflow activi-
ties and reflect the progress of the workflow in the workbench.

13.3.1.3 Web Portal

The management of our system as an administrator or the access of stored data
as an individual user can be performed through the portal interface called web

Figure 13.4  Illustration of workflow monitoring.

BioVLAB  ◾  317

portal. We built a web portal by using the OGCE portal [3]. As an administrator,
the management of registered applications that users are allowed to execute can
be performed easily through GFac’s registry portlet that we have deployed in our
system. User management and access control can also be done through the portlet
interface provided by OGCE.

The user can upload and download inputs and outputs of bioinformatics appli-
cations, which are stored in the remote storage services, such as Amazon EC2 and
Microsoft’s Application-Based Storage, through our web portal simply by using a
web browser.

13.3.2 Middleware Services
Most bioinformatics applications lack interoperability, and they are mostly stand-
alone and platform-dependent; thus, it requires significant efforts to execute mul-
tiple applications in a single environment. In our system, we deploy the Generic
Service Toolkit, known as GFac, to convert any command-line bioinformatics
application into a web service, which is accessible by XBaya.

13.3.2.1 Generic Factory

GFac wraps a command-line application into a web service. The toolkit also handles
file staging, job submission, and monitoring. Furthermore, the wrapped service acts
as the extensible runtime around which extensions like sharing, auditing, resource
brokering, and urgent computing may be implemented.

The service toolkit includes a GFac service for on-demand creation of applica-
tion services, and a service runtime that provides logic for application services. A
user defines his applications, deployment information, and mapping to the service,
as three deployment descriptors: application, host, and service description docu-
ments. The host description documents include Java and toolkit installation loca-
tions and temporary working directories, and if it is a compute host description, it
includes the remote access mechanisms for file transfers and job submissions. On
the other hand, the application deployment descriptions define application instal-
lation location and execution information about the application itself. Finally, the
service description documents define input, output, and other application configu-
ration information.

When a user requests a new application service, the factory service chooses
a host from registered service hosts, and starts a new application service on this
host. If multiple service hosts are registered, the factory service will provide load-
balancing by choosing a host in a round-robin fashion. The newly created service
fetches deployment descriptors from the registry and configures itself according to
the contract defined by the service and according to application descriptions. After
a successful initialization, the service registers its WSDL in the registry service so

318  ◾  Cloud Computing and Software Services

that it can be used by other workflow executions, and the service self-shutdown,
after a given period of inactivity.

When an application service is invoked, the service parses the request and
identifies the parameters that should be passed into the underlying application. As
mentioned earlier, a typical application service invocation involves two hosts: the
service host, where the service instance is running, and the application host, where
the application is executed. Services and applications have a one-to-many mapping,
where multiple application descriptions correspond to different installations of the
same application. After deciding the best application host to execute the applica-
tion, the input data files specified by input parameters are staged to this application
host and the underlying application is executed using a job submission mechanism.
The service monitors the status of the remote application and publishes frequent
activity information to the event bus. Once the invocation is complete, the applica-
tion service tries to determine the results of the application invocation by searching
the standard output for user-defined patterns or by listing prespecified locations for
the generated data products.

Apart from wrapping a command-line application as a service, the applica-
tion service provides a number of add-on facilities that are essential for a scientific
workflow environment. The application service runtime is implemented using a
processing pipeline based on the Chain-of-Responsibility pattern, where insert-
ing interceptors can alter the pipeline. The resulting architecture is highly flexible
and extensible, and provides the ideal architectural basis for a system that sup-
ports a wide range of requirements. Furthermore, the design has abstracted out
common services like file transfer, registry support, notification support, and job
submission, allowing different implementations to be switched dynamically or via
configurations.

13.3.3 Compute and Data Resources
Some bioinformatics applications are computationally intensive and require a pow-
erful high-performance or parallelizable computation environment. To respond to
this problem, our system is designed to utilize remote high-performance resources,
such as the computing cloud of Amazon EC2 in which a user can create any num-
ber of virtual computing instances at any time. Our system can also use public
remote storage services, such as Amazon S3 (Simple Storage Service) and Microsoft
Application-Based Storage, to store the intermediate or the final output of the
workflow execution. For easy-to-use access and management of data stored in the
remote services, we provide the web portal in our system.

13.3.3.1 Amazon Computing Clouds Services

The BioVLAB system uses Amazon’s EC2 and S3 as a computing cloud and a per-
sistent storage, respectively. EC2 provides a computing cloud service where a user

BioVLAB  ◾  319

can have any number of virtual computing instances in an on-demand manner,
and S3 supplies a persistent place to store user data. While the storage in EC2 is vol-
atile, S3 is persistent, reliable, and convenient to access with simple web interfaces.

In EC2, a user can create a customized virtual machine by using his own
machine image, called Amazon Machine Image (AMI). For our BioVLAB system,
we have created our own customized AMI that contains a Unix-based operating
system, all bioinformatics applications we used, and a set of services for workflow
execution. By sharing our customized AMI with others, any user can also create a
virtual machine with a fully pre-configured BioVLAB system.

13.4  Bioinformatics Applications
In this section, we describe three BioVLAB prototype systems.

13.4.1 BioVLAB-Protein
As the new sequencing technology enables rapid sequencing of many genomes, new
protein sequences are increasingly available; thus, there is an urgent need to decode
information of the raw sequences. Protein sequences can be analyzed, executing
various sources of applications in bioinformatics, such as Gibbs [4], ClustalW [5],
and ARCS [6]. Then, aligned residues can be graphically analyzed using WebLogo
[7]. In addition, functions of a protein can be determined by querying against
domain databases such as Prosite [8], Pfam [9], and Gene Ontology [10].

Figure 13.5 is a sample workflow for protein sequence analysis with cloud
computing. With an input file with multiple protein sequences, the sequences are
aligned with a multiple sequence alignment tool, ClustalW. Then, ARCS highlights
conserved regions among aligned biological sequences by measuring sequence char-
acteristics based on column correlations.

13.4.2 BioVLAB-Microarray
Microarray technology has been widely used in cell dynamics research. This high-
throughput technology can measure expression levels of hundreds of thousands of
genes in a single batch; thus, it gives a massive amount of valuable information of
how a certain cell reacts to cell conditions [11].

This technology is useful in various ways. It can help identify a function of gene
that was previously unknown, by inspecting genes with similar expression patterns.
Also, examining the co-expression pattern can help identify interaction partners
and correlation of genes. In addition, it can be used to detect genes related to a
certain disease, and thus possibly discover a target of new medicine.

A typical use case of microarray gene expression includes search for genes with
similar expression patterns, extraction of differentially expressed genes, clustering

320  ◾  Cloud Computing and Software Services

of genes based on expression patterns, component analysis, and protein–protein
interaction network by projecting the expression pattern onto an interaction data-
base, such as Database of Interacting Proteins (DIP) [12].

Figure 13.6 is an example workflow of a microarray gene expression analysis
in a cloud computing architecture. When the workflow in the figure is executed, a
microarray gene expression data is obtained remotely from the NCBI GEO database
using the R GEOquery package [13]. Biologists are often interested in statistically
differentially expressed genes in an experiment, and can extract such genes based
on a statistical test such as False Discovery Rate (FDR) [14], which is the second
step in the workflow. We used the limma package [15] to detect the differentially
expressed genes. In the next step, the display of the differentially expressed genes as
a heat map and various clustering methods can run in parallel. Grouping genes may
reveal functions of previously unknown genes, or a meaningful expression pattern.
Thus, various clustering methods have been widely used to search hidden informa-
tion in different views, in microarray experiments. We used several clustering meth-
ods, that is, k-means clustering [16], quality threshold clustering (QT clustering)
[17], and biclustering [18], appeared as nodes in the workflow. Built-in R functions
kmeans was used for k-means clustering. Additional clustering packages such as flex-
clust [19] and biclust [20] were used for QT clustering and biclustering, respectively.

A graphical summary of microarray gene experiments is shown in Figure 13.7,
where we used the GDS38 gene expression data set [21], a time-series gene expression
data set for measuring gene expressions in various cell cycle stages in Saccharomyces

GFac

XRegistry

Pub/sub

Gateway

Workflow

InputFileName

vlabClustalW_run

Cloud
computing

ClustalW

ARCS B

A

A

B

vlabArcs_run

OutputFileName
Config

Config

Username
Config

Figure 13.5  BioVLAB-protein architecture.

BioVLAB  ◾  321

cerevisiae yeast genome. The experimental setup was identical to our previous work
[1], and figures were taken from this work. Figure 13.7a is a heat map summary of
differentially expressed genes with a p value ≤0.05. Figure 13.7b shows the k-means
clustering result with a scatter plot and a heat map with a cluster size of 3. Figure
13.7c summarizes the result of QT clustering with a radius threshold of 1. The
biclustering summary is shown in Figure 13.7d, where the Cheng and Church
method [22] was used with a cluster size of 3.

13.4.3 BioVLAB-MMIA
MMIA [23] uses an inversely correlated expression pattern between miRNA and
mRNA for a combined analysis, since perfect seed-pairing between them is associ-
ated with mRNA destabilization [24]. MMIA provides two main results. The first
result gives disease information associated with dys-regulated miRNA expression
and common transcription factors in upstream regions of the miRNAs. The sec-
ond provides functional, pathological, and pathway information associated with
inversely correlated expressed target mRNAs of the miRNAs. Currently, MMIA
considers only humans.

NCBI
GEO

database

GFac

XRegistry

Pub/sub

Gateway

User_name

CEO_number BioVLAB_CEOdataHandler_run BioVLAB_SubsetExtractor_run

A B

p_value

Correlation_method BioVLAB_Heatmap_run

BioVLAB_KmeansClustering_run

BioVLAB_QTclustering_run

BioVLAB_biclustering_run

Clustering_method
F

E

D

C

Missing_data

Config

Config

Config

Config

Config

Config

Config

Config

Threshold

Picture_type

Number_of_clusters

Distance_method

Config

Config

Cloud
computing

A

B

C

D

E

F

Data
acqusition

Subset
extraction

Heatmap

k-Means
clustering

QT
clustering

Biclustering

Figure 13.6  BioVLAB-microarray architecture.

322  ◾  Cloud Computing and Software Services

(a)

(b)

(c)

(d)

Color Key

Color key

Color key

Color key

2

2

2

Value

Value

Value

G
SM

92
0

G
SM

86
3

G
SM

93
1

G
SM

85
9

G
SM

98
8

G
SM

98
0

G
SM

86
2

G
SM

86
1

G
SM

86
1

G
SM

92
4

G
SM

86
0

G
SM

92
3

G
SM

90
2

G
SM

98
9

G
SM

92
2

G
SM

92
2

G
SM

98
9

G
SM

90
2

G
SM

86
2

G
SM

92
3

G
SM

58
9

G
SM

92
4

G
SM

86
0

G
SM

93
1

G
SM

85
8

G
SM

85
8

G
SM

92
1

G
SM

92
1

G
SM

86
3

G
SM

92
0

G
SM

98
8

G
SM

98
0

G
SM

86
1

G
SM

92
2

G
SM

98
9

G
SM

90
2

G
SM

86
2

G
SM

92
3

G
SM

85
9

G
SM

98
0

G
SM

86
3

G
SM

92
0

G
SM

92
4

G
SM

86
0

G
SM

92
3

G
SM

86
2

G
SM

85
8

G
SM

98
9

G
SM

98
8

G
SM

92
4

G
SM

86
0

G
SM

93
1

G
SM

85
8

G
SM

92
1

G
SM

86
3

G
SM

92
0

G
SM

98
8

G
SM

98
0

0

0

0

0 1

YGR205W

YOL074C

3499

YDL231C

YOR285W
YNL124W
YKR018C
YKL221W
YJR147W
YER176W

YLR152C
YER080W
YDL020C

YLR339C
YKL046C
YPR021C

YNL269W

–1.5

–3

–3

–3

1

1

2

2

3

3

0

0

5 10 15
Gene

Expresion levels of conditions in bicluster 3
across their genes (genes = 17 conditions = 10)

GSM980Z

GSM980

–1

–1

–2

–2

–2

–2

–2

–3

–1

–1

–1

0

0

0

Ex
pr

es
sio

n
le

ve
l

G
SM

86
3

G
SM

86
3 1

1

1

2

2

2

3

3

3

Row Z-Score

Figure 13.7  Experimental results: (a) heat map, (b) k-means clustering (k = 3), (c) 
QT clustering (radius = 1), and (d) biclustering (cluster size = 3).

BioVLAB  ◾  323

We re-implemented the web-based MMIA in a cloud computing environ-
ment and named it BioVLAB-MMIA, as shown in Figure 13.8. It consists of five
modules. The first module (A in the figure) takes miRNA expression data or mis-
regulated miRNA gene list as an input. This module performs a statistical test for
identifying down- or up-regulated miRNAs. The second module (B in the figure)
finds enriched miRNA gene sets based on the mis-regulated miRNAs. The miRNA
gene set database contains two categories. One is the disease-related miRNA gene
set [25], and the other is for transcription binding factor sites in promoter regions
of miRNA genes [26]. For example, each disease entry has an annotated miRNA
gene list in the miRNA gene set database. The third module performs a significance
test for the mRNA microarray and reports dys-regulated mRNA genes. The fourth
module obtains computational mRNA targets by the mis-regulated miRNAs, and
it provides three algorithms: TargetScan version 4.2 [27], PITA [28], and PicTar
[29]. This module supports not only a single algorithm but also an intersection
between two different algorithms. The fifth module inspects the inversely cor-
related expression between the selected miRNAs and their previously identified
mRNA targets. It also performs a gene set analysis for the inversely expressed target
mRNAs of the miRNAs. The precompiled gene sets contain MIT MSigDB [30],
KEGG [31], and G2D [32], for functional, pathological, and pathway information,
respectively.

Gateway

User_name
Config

Filename
Config

Bicluster

MicroRNAExpressionAnalysis_run

Singletargetalgo

Isecttargetalgo1

Isecttargetalgo2

TargetGeneExtraction_run GeneSetEnrichmentAnalysis_run ExperimentSummary_run

Outputdirectory

E

D

C

B

A
MicroRNA
expression

analysis

mRNA
expression

analysisCloud
computing

miR2Disease

PicTar

KEGG MSigDB G2D

Targetscan PiTa
Gene set

enrichment
analysis

MicroRNA
gene set
analysis

Target gene
extraction

mRNAExpressionAnalysis_run

MicroRNAGeneSetAnalysis_run

B

C

D E

A

Config

Config

Config

Config

Config

Pub/sub

XRegistry

GFac

Figure 13.8  BioVLAB-MMIA architecture.

324  ◾  Cloud Computing and Software Services

Figure 13.9 is a graphical summary of the BioVLAB-MMIA experiment.
Figure 13.9a shows a heat map that displays significantly down-regulated genes
in an miRNA experiment on human genes. It was obtained after the execution
of the first module (node A in the workflow) in the example workflow. Figure
13.9b is a part of the summary table after node B is executed. The USCS genome
browser [26] result appearing in Figure 13.9b was obtained by clicking an entry in
the summary table. Figure 13.9c corresponds to node D, and shows an example of
mRNA target prediction and the details of gene from NCBI that were obtained by
clicking an entry. Figure 13.9d is a result of the combined analysis of microRNA
and mRNA, which is node E in the workflow. A KEGG map appearing in the
figure was obtained by clicking a pathway entry in the summary table. See more
details in [33].

(a) (b)

(c) (d)

Figure 13.9  BioVLAB-MMIA experimental results:  (a)  significantly down-regu-
lated microRNA, (b) microRNA gene set analysis, (c) mRNA targets prediction, 
and (d) combined analysis of microRNA and mRNA.

BioVLAB  ◾  325

13.5  Conclusion
We have shown that the approach of combining cloud computing and a graphi-
cal workflow composer could be a solution to computational analysis problems
in scientific domains such as bioinformatics. The most important outcome of this
approach is a possibility of soliciting a much broader participation of small research
labs for important data-driven scientific projects by reducing the burden of com-
puter system setup and administration and allowing flexible workflow manage-
ment. This approach has a potential to significantly speed up advances in scientific
domains, biology and medicine in this case. We are currently designing and build-
ing a larger system for biological pathway analysis based on our experience in build-
ing a web-based pathway system called ComPath [34].

References
 1. Y. Yang, J. Y. Choi, K. Choi, M. Pierce, D. Gannon, and S. Kim, BioVLAB-microarray:

Microarray data analysis in virtual environment, in Fourth IEEE International
Conference on eScience, Inidianapolis, IN, 2008, pp. 159–165.

 2. Case Studies, http://aws.amazon.com/solutions/case-studies/
 3. J. Alameda, M. Christie, G. Fox, J. Futrelle, D. Gannon, M. Hategan, G.

Kandaswamy, G. V. Laszewski, M. A. Nacar, M. Pierce, E. Roberts, C. Severance,
and M. Thomas, The open grid computing environments collaboration: Portlets and
services for science gateways: Research Articles, Concurr. Comput. Pract. Exp., 19,
921–942, 2007.

 4. W. Thompson, E. C. Rouchka, and C. E. Lawrence, Gibbs recursive sampler:
Finding transcription factor binding sites, Nucleic Acids Res., 31, 3580–3585, July 1,
2003.

 5. J. D. Thompson, D. G. Higgins, and T. J. Gibson, CLUSTAL W: Improving the
sensitivity of progressive multiple sequence alignment through sequence weight-
ing, position-specific gap penalties and weight matrix choice, Nucleic Acids Res., 22,
4673–4680, November 11, 1994.

 6. B. Song, J.-H. Choi, G. Chen, J. Szymanski, G.-Q. Zhang, A. K. H. Tung, J. Kang,
S. Kim, and J. Yang, ARCS: An aggregated related column scoring scheme for aligned
sequences, Bioinformatics, 22, 2326–2332, October 1, 2006.

 7. G. E. Crooks, G. Hon, J.-M. Chandonia, and S. E. Brenner, WebLogo: A sequence
logo generator, Genome Res., 14, 1188–1190, June 2004.

 8. N. Hulo, A. Bairoch, V. Bulliard, L. Cerutti, E. De Castro, P. S. Langendijk-Genevaux,
M. Pagni, and C. J. A. Sigrist, The PROSITE database, Nucleic Acids Res., 34, D227–
230, January 1, 2006.

 9. R. D. Finn, J. Mistry, B. Schuster-Bockler, S. Griffiths-Jones, V. Hollich, T. Lassmann,
S. Moxon et al., Pfam: Clans, web tools and services, Nucleic Acids Res., 34, D247–251,
January 1, 2006.

 10. M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P.
Davis et al., Gene ontology: Tool for the unification of biology, Nat. Genet., 25,
25–29, 2000.

326  ◾  Cloud Computing and Software Services

 11. Microarrays: Chipping away at the mysteries of science and medicine, in A Science
Primer. 2008: NCBI, http://www.ncib.nlm.nih.gov/About/primer/microarrays.html

 12. L. Salwinski, C. S. Miller, A. J. Smith, F. K. Pettit, J. U. Bowie, and D. Eisenberg,
The database of interacting proteins: 2004 update, Nucleic Acids Res., 32, D449–451,
January 1, 2004.

 13. S. Davis and P. S. Meltzer, GEOquery: A bridge between the gene expression omnibus
(GEO) and bioconductor, Bioinformatics, 23, 1846–1847, July 15, 2007.

 14. W. J. Ewens and G. R. Grant, Statistical Methods in Bioinformatics, 2nd Edition,
Springer, Heidelberg, Germany, 2005.

 15. G. K. Smyth, Linear models and empirical Bayes methods for assessing differential
expression in microarray experiments, Stat. Appl. Genet. Mol. Biol., 3, Article 3, Epub,
2004.

 16. J. A. Hartigan and M. A. Wong, A k-means clustering algorithm, Appl. Stat., 28, 100–
108, 1979.

 17. L. J. Heyer, S. Kruglyak, and S. Yooseph, Exploring expression data: Identification and
analysis of coexpressed genes, Genome Res., 9, 1106–1115, 1999.

 18. S. C. Madeira and A. L. Oliveira, Biclustering algorithms for biological data analysis:
A survey, IEEE/ACM Trans. Comput. Biol. Bioinform., 1, 24–25, 2004.

 19. F. Leisch, Flexclust: Flexible cluster algorithms, R package, 2005.
 20. S. Kaiser and F. Leisch, A toolbox for bicluster analysis in R, University of Munich

Department of Statistics: Technical Report, No. 28, 2008.
 21. GDS38: Cell cycle, alpha-factor block-release time course. vol. 2008: NCBI GEO, p.

http://www.ncbi.nlm.nih.gov/geo/gds/gds_browse.cgi?gds=38.
 22. Y. Cheng and G. M. Church, Biclustering of expression data, in Proceedings of the

Eighth International Conference on Intelligent Systems for Molecular Biology, La Jolla,
CA, 2000, pp. 93–103.

 23. S. Nam, M. Li, K. Choi, C. Balch, S. Kim, and K. P. Nephew, MicroRNA and
mRNA integrated analysis (MMIA): A web tool for examining biological functions of
microRNA expression, Nucleic Acids Res., 37, W356–362, May 6, 2009.

 24. W. Filipowicz, S. N. Bhattacharyya, and N. Sonenberg, Mechanisms of post-tran-
scriptional regulation by microRNAs: Are the answers in sight?, Nat. Rev. Genet., 9,
102–114, 2008.

 25. Q. Jiang, Y. Wang, Y. Hao, L. Juan, M. Teng, X. Zhang, M. Li, G. Wang, and Y. Liu,
miR2Disease: A manually curated database for microRNA deregulation in human dis-
ease, Nucleic Acids Res., 37, D98–104, January 1, 2009.

 26. D. Karolchik, R. M. Kuhn, R. Baertsch, G. P. Barber, H. Clawson, M. Diekhans, B.
Giardine et al.,The UCSC genome browser database: 2008 update, Nucleic Acids Res.,
36, pp. D773–779, January 11, 2008.

 27. B. P. Lewis, C. B. Burge, and D. P. Bartel, Conserved seed pairing, often flanked by
adenosines, indicates that thousands of human genes are microRNA targets, 120,
15–20, 2005.

 28. M. Kertesz, N. Iovino, U. Unnerstall, U. Gaul, and E. Segal, The role of site accessibil-
ity in microRNA target recognition, Nat. Genet., 39, 1278–1284, 2007.

 29. A. Krek, D. Grun, M. N. Poy, R. Wolf, L. Rosenberg, E. J. Epstein, P. MacMenamin
et al., Combinatorial microRNA target predictions, Nat. Genet., 37, 495–500,
2005.

BioVLAB  ◾  327

 30. A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert, M. A. Gillette,
A. Paulovich et al., Gene set enrichment analysis: A knowledge-based approach for
interpreting genome-wide expression profiles, Proc. Natl. Acad. Sci. USA, 102,15545–
15550, October 25, 2005.

 31. M. Kanehisa, S. Goto, S. Kawashima, Y. Okuno, and M. Hattori, The KEGG resource
for deciphering the genome, Nucleic Acids Res., 32, D277–280, January 1, 2004.

 32. C. Perez-Iratxeta, P. Bork, and M. A. Andrade-Navarro, Update of the G2D tool for
prioritization of gene candidates to inherited diseases, Nucleic Acids Res., W212–W216,
2007.

 33. MMIA, http://cancer.informatics.indiana.edu/mmia
 34. K. Choi and S. Kim, ComPath: Comparative enzyme analysis and annotation in path-

way/subsystem contexts, BMC Bioinformatics, 9, 145, 2008.
 35. V. Welch, F. Siebenlist, I. Foster, J. Bresnahan, K. Czajkowski, J. Gawor, C. Kesselman,

S. Meder, L. Pearlman, and S. Tuecke, Security for grid services, Twelfth International
Symposium on High Performance Distributed Computing (HPDC-12), Seattle, WA,
pp. 48–57, 2003.

 36. S. Perera, S. Marru, and C. Herath, Workflow infrastructure for multi-scale science
gateways, Proceedings of TeraGrid Annual Conference, Las Vegas, NV, 2008.

 37. Apache ODE, http://ode.apache.org
 38. WS-Eventing Specification, http://www.w3.org/Submission/WS-Eventing/

329

Chapter 14

Scale-Out RDF Molecule 
Store for Efficient, 
Scalable Data Integration 
and Querying

Yuan-Fang Li, Andrew Newman, and Jane Hunter

Contents
14.1 Introduction ...330

14.1.1 Proposed Architecture...331
14.1.2 Case Study ..332
14.1.3 Objectives ...333

14.2 Related Works ..334
14.2.1 Scale-Out Architecture ...334
14.2.2 RDF Modules ...336

14.3 Extended RDF Molecules ..337
14.3.1 Hierarchies ...338
14.3.2 Ordering ...339
14.3.3 Important Algorithms .. 340

14.4 Distributed RDF Molecule Store .. 343
14.4.1 Protein–Protein Interaction Test Bed ... 343
14.4.2 RDF Molecule Store .. 344

330  ◾  Cloud Computing and Software Services

14.1  Introduction
Resource Description Framework (RDF) and Web Ontology Language (OWL)
offer significant potential as technologies designed to support the integration of and
reasoning across heterogeneous disparate data sources. Comprehensive datasets from
many disciplines, including environmental sciences, biological sciences, social sci-
ences, and health sciences, have been semantically annotated using these languages
to facilitate data correlation, integration, and reasoning. The widespread adoption of
Semantic Web technologies is being driven by the need to answer complex queries
that demand the integration and processing of multiple related but disparate multi-
disciplinary datasets.

The research work presented in this chapter is part of a bioinformatics project
that is aimed at applying Semantic Web technologies to molecular biology data, to
enable in silico drug discovery and development by identifying candidate therapeu-
tic targets through the analysis of integrated datasets that relate molecular inter-
actions and biochemical pathways with physiological effects, such as compound
toxicology and gene–disease associations. Current protein–protein interaction
(PPI) data is distributed across a wide range of disparate, large-scale, publicly avail-
able databases and repositories. The integration of data in these datasets is required
before researchers can perform complex querying and analyses over the data to
reveal previously undetected pathways and new drug candidates.

Given the massive scale of the datasets, the wide variety of different nam-
ing conventions (Good and Wilkinson 2006), and the different syntactic and
semantic representations and descriptions, precise and efficient integration is a
very challenging problem. Current tools available for bioinformatics data integra-
tion and discovery vary widely in terms of quality, maintenance, and applicability.
Although there exist many different tools for performing operations on many dif-
ferent kinds of data (Merelli et al. 2007), there is also a general lack of standards
for representing data, and a slow uptake of existing data standards (Good and
Wilkinson 2006). In Newman et al. (2008a), we proposed a more standardized
approach to the integration of PPI data in RDF through the use of RDF blank
nodes, which are used to represent real-world entities such as proteins, interac-
tions, and pathways.

14.4.3 Graph Decomposition and Molecule Merging 344
14.4.4 Scale-Out Distributed Processing .. 344

14.5 Evaluation Results ..345
14.5.1 Graph Decomposition and RDF Molecule Merging345
14.5.2 MapReduce Performance ... 346
14.5.3 Distributed SPARQL Query Responses 348
14.5.4 Discussion on Scalability ..350

14.6 Conclusions ..350
References ...352

Scale-Out RDF Molecule Store  ◾  331

14.1.1 Proposed Architecture
Existing RDF databases have typically suffered from limited scalability, and poor
or inefficient inferencing and querying.* While some stores offer a high level of scal-
ability for a single node, there is little support for aggregation across multiple nodes.
Inferencing is typically limited to either basic operations across large amounts of
data or richer inferencing over small amounts of data—for our project, as well as
for many other scientific challenges, rich, complex inferencing over large amounts
of data† is required.

In addition, there are many other problems associated with scientific data anal-
ysis that require consideration. These include algorithm intensity, nonlinearity, and
limitations on computer component bandwidth (Gray et al. 2005). These issues
prevent interactive analysis over derived datasets. In order to overcome these dif-
ficulties, Gray recommended a number of mechanisms to expedite and improve
scientific data analysis (Gray et al. 2005):

 ◾ The use of standardized and precise metadata to describe units, names, accu-
racy, provenance, capture details, etc., in order to help tools compare and
process the data correctly

 ◾ The creation and adoption of common terminologies using Semantic Web
technologies (RDF and OWL)

 ◾ The use of set-oriented processing methods, such as Google’s MapReduce
(Dean and Ghemawat 2004)

So, while the use of ontologies and other Semantic Web technologies such as RDF
can provide the ability to integrate, reason, and process over datasets, the mag-
nitude of the processing required and the size of the datasets prevent a speedy,
efficient end-to-end solution. A distributed processing architecture developed by
Google, known as MapReduce (Dean and Ghemawat 2004), is becoming increas-
ingly popular. This data-processing technique provides a common way to solve
general processing problems and is closely aligned with the way data is acquired
from experiments or simulations (Gray et al. 2005). In a MapReduce system, a
map function takes input key, value pairs and transforms them to output key, value
pairs. The reduce function takes the values in each unique key and produces output
values. The advantages of this architecture are numerous (Dean and Ghemawat
2004, Yang et al. 2007), and include

 ◾ A programming model that is abstract, simple, highly parallel, powerful, easy
to maintain, and easy to learn

 ◾ An ability to efficiently leverage low-end commodity hardware

* http://esw.w3.org/topic/TripleStoreScalability
† http://esw.w3.org/topic/LargeTripleStores

332  ◾  Cloud Computing and Software Services

 ◾ Easy deployment across hundreds to thousands of nodes on internal or exter-
nal hosting services

 ◾ Robustness and ability to recover from data corruption or the loss of indi-
vidual nodes

Our hypothesis is that Semantic Web applications can benefit from the adoption
of a scale-out architecture together with MapReduce data processing, in order to
speed up querying, inferencing, and processing over large RDF triple stores of sci-
entific datasets. One such example is our project that focuses on the integration and
processing of large-scale PPI data.

14.1.2 Case Study
The primary aim of our project is to integrate data from protein datasets, such as
MPact (Güldener et al. 2006), the Database of Interacting Proteins (DIP) (Salwinski
et al. 2004), IntAct (Kerrien et al. 2007), and the Molecular INTeractions data-
base (MINT) (Chatr-aryamontri et al. 2007), using a common model for proteins
and PPI data to enable data harmonization. The common model is represented as
an OWL Description Logics (OWL-DL) ontology. This ontology was developed
by reusing vocabularies from well-established ontologies, such as Gene Ontology
(Ashburner et al. 2000), Cell-Type ontology (Bard et al. 2005), BioPAX (Bader and
Cary 2005), PSI-MI (Hermjakob et al. 2004), and others such as National Center
for Biotechnology Information (NCBI) taxonomy. Based on this ontology, protein
datasets are converted into RDF instances and stored in a distributed RDF triple
store, where they are available for subsequent analysis and querying.

Figure 14.1 shows a small RDF graph about a yeast protein with UniProt ID
“Q12522,” together with other information, such as host species, genomic sequence,
and external references, that represents a protein instance in our ontology.

It is one of the objectives of our project to achieve real-time, interactive SPARQL
Protocol and RDF Query Language (SPARQL) query response to queries such as
“Show me all the human kinases expressed in the liver that are strongly inhibited by
at least two compounds and are localized to the nucleus.” Such queries are very slow
to execute, as they involve many joins and may generate an RDF graph that exceeds
available memory. Hence, the bioinformatics application provides us with an ideal
test bed and an end-user group for evaluating our Scale-Out RDF Molecule Store.

Within the life sciences, the heterogeneity of naming conventions across datasets
is a major problem. Each dataset has its own method for protein identification. There
have been previous attempts at naming standardization, but they have had limited
effect (Good and Wilkinson 2006). In Newman et al. (2007), the authors proposed an
“identity reconciliation process” based on the use of RDF “blank” nodes, which pro-
vide the hub that links to the relevant entries in different (translated) datasets and cre-
ates a single representation encompassing all information about a particular protein,
and also enables all three levels of “attitudes” of knowledge representation (record,
statement, and domain) (Ruttenberg et al. 2006) pertaining to a particular protein.

Scale-Out RDF Molecule Store  ◾  333

Distributed processing necessitates the need to decompose RDF graphs into
smaller units. RDF blank nodes also introduce a number of associated problems that
arise during RDF graph decomposition and merging. The most significant prob-
lem is that RDF blank nodes are only uniquely identifiable within their enclosing
graph—they are not globally addressable. The implication is that arbitrarily break-
ing down an RDF graph that contains blank nodes will incur loss of information.
The concept of RDF molecules (Ding et al. 2005) was proposed to tackle the prob-
lem of addressing blank nodes by decomposing an RDF graph losslessly into a set of
molecules that distribute updates to graphs. Overcoming this problem will require a
number of extensions to RDF molecules that are described in detail in Section 14.3.

14.1.3 Objectives
The objectives of the work described in this chapter are to investigate solutions to
the problems of inefficient semantic querying and reasoning across large-scale triple
stores, and co-identification. These two issues hinder the adoption of Semantic Web
technologies across many disciplines and applications. The more specific objectives
of this work are to investigate and evaluate the following:

 ◾ Methods by which the MapReduce scale-out architecture can be used to
improve the performance of semantic querying and inferencing over large-
scale RDF triples

 ◾ The adoption of RDF molecules for decomposing and distributing RDF
graphs across computational nodes in the MapReduce architecture

“UniProt”

“CDC95”“Eukaryotic translation
initiation factor 6”

“eIF-6”

_Xref1

ShortName

FullName Synonym

CrossReference

Species

“Q12522”

Accession DataBase

“Saccharomyces
cerevisiae”

“eIF6”
Synonym

“MATR...”
Sequence

GeneSymbol

“TIF6”

“MIPS”

_Xref2

“YPR016C”

_Protein

Accession DataBase

CrossReference

Figure 14.1  RDF triples about a yeast protein.

334  ◾  Cloud Computing and Software Services

 ◾ The use of blank nodes to resolve the co-identification problem
 ◾ Extensions to RDF molecules to overcome problems of ambiguity, data loss,

and inefficiency introduced by blank nodes

In addition, the aim is to evaluate our proposed Scale-Out RDF Molecule Store in
the context of the querying and analysis of large-scale PPIs.

In Section 14.2, we describe related work. Section 14.3 describes the proposed
extensions to RDF molecules with hierarchy and ordering. In Section 14.4, we
describe the bioinformatics dataset, which will be used for evaluation in Section
14.5, and introduce important components of the system: (a) graph decomposi-
tion into molecules and molecule merging, (b) MapReduce-based data integra-
tion, and (c) SPARQL querying across cluster. In Section 14.5, we present the
initial results of the system’s performance of graph decomposition and merging,
distributed data integration, and SPARQL querying. Finally, we present our con-
clusions in Section 14.6.

14.2  Related Works
14.2.1 Scale-Out Architecture
For a relatively new architecture, scale-out MapReduce systems have already received
very promising and positive feedback and evaluation results. Benefits include better
price/performance, successful application to many different domains, and open-
source implementations.

The MapReduce programming framework (Dean and Ghemawat 2004) was
proposed and developed by Google to support distributed computation over a
large cluster of commodity-grade hardware. The MapReduce framework consists
of higher-order functions, map and reduce, found in the functional programming
language. The map function takes as input a (key, value) pair and produces inter-
mediate results, a set of (key, value) pairs. The reduce function takes as input the
intermediate results with the same (key, value) and produces the final result.

In the MapReduce framework, a large computation task is divided into a map
phase and a reduce phase, in which the map and reduce functions are executed
in parallel over a cluster of machines. The distribution of input/output files and
the map and reduce tasks, load balancing, and fault tolerance are managed by the
MapReduce framework and the underlying distributed file system, thus enabling
rapid development of parallelized user programs.

Google’s initial work using these MapReduce scale-out techniques has included
indexing the Web, statistical analysis of Web site usage, general data storage and
querying, map and satellite imagery processing, and social networking (Chang et al.
2006). Similarly, Yahoo has been applying MapReduce to “search and information
retrieval, machine learning and data mining, microeconomics, community sys-
tems and media experience and design” (The Yahoo! Research Team 2006). Other

Scale-Out RDF Molecule Store  ◾  335

successful applications include indexing and searching Web documents (Khare
et al. 2004), natural language processing (Pantel 2007), learning algorithms for
multicore systems (Chu et al. 2007), and simulation (McNabb et al. 2007).

The Hadoop* project provides an open-source implementation of Google’s
scale-out MapReduce, a system including the Hadoop Distributed File System
(HDFS), MapReduce, and HBase (a BigTable clone).

The MapReduce scale-out architecture has been used in Oren et al. (2008) to
index documents for open linked data.† There have also been initial implemen-
tations and research into similar, overlapping areas, including RDF stores using
“shared-nothing” clustering, extending MapReduce higher-level operations, and
column databases for storing and querying RDF.

The YARS2 federated RDF repository and the SWSE (Semantic Web Search
Engine) architecture use a “shared-nothing” approach to achieve scalability (Harth
et al. 2007). This has some conceptual similarities to our data acquisition architec-
ture. However, it is still bound to indexing and querying, and does not share the
attributes of a MapReduce scale-out solution with its ability to perform arbitrary
processing and indexing schemes.

The designs of BigTable and HBase are similar to column databases such as
Sybase IQ, LucidDB, Metakit, KDB, C-Store (Stonebraker et al. 2005), and Monet
(Boncz 2002). These databases were specifically designed to obtain the best per-
formance from modern hardware architecture. There is also some initial research
currently underway investigating the use of C-Store and MonetDB (Muster 2007)
for storing and querying RDF data as well as using these databases to handle sci-
entific data (Ivanova et al. 2007). Our approach differs from these approaches in a
number of ways:

 ◾ We create a generic store for triples of any predicate, rather than creating one
table per predicate.

 ◾ Our clustered approach differs substantially from their database architecture.
 ◾ We do not support ACID (Atomicity, Consistency, Isolation and Durability)

database transactions.
 ◾ Column databases do not have a MapReduce-like processing framework, and

do not combine processing and data management in the same way.

To the best of our knowledge, the work described in this chapter represents the first
attempt to apply a scale-out distributed computing approach to expedite the query-
ing and processing of data in a large scale-out RDF triple store. Although in this
chapter we use specifically PPI data for performance evaluation, there are undoubt-
edly many other suitable applications that require the integration and processing
of large-scale distributed datasets (e.g., climatology, geosciences, and astronomy).

* http://hadoop.apache.org/
† http://linkeddata.org/

336  ◾  Cloud Computing and Software Services

14.2.2 RDF Modules
The concept of RDF molecules was first proposed in Ding et al. (2005) as a method
that provides the optimum level of granularity between RDF graphs and triples.
Given an RDF graph G, the set of molecules are the smallest sets of triples into
which G can be decomposed without loss of information.

Figure 14.2 shows the different granularity levels of various RDF constructs.
There has been previous relevant work in the area of RDF graph decomposi-

tion. Below we provide an analysis of three possible approaches to RDF graph
decomposition:

 ◾ Named Graphs (Carroll et al. 2005) enable the specification of an RDF graph
through a set of RDF statements. The division of statements into subgraphs
is arbitrary in the sense that the ontology author is responsible for manually
constructing the subgraphs and naming them. Hence, no automated process
is available.

 ◾ Concise Bounded Description (CBD) (Stickler 2005) is a subgraph of triples
about a particular resource R and a chain of triples with blank nodes consist-
ing of matching object to subject nodes (ignoring the special case for reifica-
tion). All triples in a graph where the resource R is the subject are added to
the subgraph. Next, it recursively adds any triples with blank node subjects
already in the subgraph. A drawback of CBD is that it only looks at subject
nodes in RDF triples and a CBD created for a resource node may not include
all of the information.

 ◾ Minimum Self-Contained Graphs (MSGs) (Tummarello et al. 2005) is a pro-
posal for the decomposition of an RDF graph into self-contained subgraphs.
Given an RDF triple, its corresponding MSG includes (a) the triple itself
and, recursively, (b) for all the blank nodes involved in the MSG so far, all
the triples of MSGs containing these blank nodes. Compared to CBD, MSG
looks for statements to be included in the MSG in both directions. Hence, it
results in a lossless decomposition.

Universal graph

RDF document
Named graph

Molecule

Triple

Figure 14.2  Relative granularity levels of RDF constructs. (Adapted from Ding, L. 
et al., Tracking RDF Graph Provenance Using RDF Molecules, UMBC, Baltimore, 
MD, 2005.)

Scale-Out RDF Molecule Store  ◾  337

Based on the above analysis, we believe that RDF molecules provide the best
approach for our MapReduce RDF store, as they ensure automated, unambiguous,
and lossless decomposition and an optimal level of granularity.

Formally, given an RDF graph G and a background ontology W, a pair of oper-
ators (d, m) are defined for decomposition and merging:

M d G W

G m M W

=

=

(,)

(,)

where M is the set of molecules as the result of the decomposition of G with regard
to W using the decomposition operator d. The merging operator m merges M back
to the same graph G, also with respect to the background ontology W. The set of
molecules M are mutually independent in the sense that no blank node is shared
among them. Hence, they can be individually processed and later merged to con-
struct the RDF graph G losslessly.

Two types of decomposition were defined: naïve decomposition, in which no
background ontology is consulted, and functional decomposition, in which an OWL
ontology is queried for functional dependency between nodes.

The diagram shown in Figure 14.3 consists of six triples (in N3 format) that
model a physical interaction between two proteins (_ :3 and _ :4), represented
as blank nodes.

The naïve decomposition results in a single molecule consisting of all the above
triples, since they are connected by blank nodes.

14.3  Extended RDF Molecules
In order to maintain maximal compatibility with other datasets, we decided not
to put any restriction on the format of data, hence allowing blank nodes in RDF

‘p32379’

Experimental
observation

hasUniproID hasUniproID

Type

Participant Participant

observedInteraction

‘p46949’

:4:2_:3

_:1

Figure 14.3  A simple RDF graph modeling a PPI.

338  ◾  Cloud Computing and Software Services

documents. This decision presents a challenge for the distributed processing of
RDF documents, as blank nodes are only addressable locally within a document.
As stated in Section 14.2.2, RDF molecules provide a mechanism for decomposing
an RDF graph into a set of self-contained molecules, each of which contains all
(transitively) connected blank nodes. This enables an RDF graph to be losslessly
decomposed, distributed for processing, and subsequently merged, as depicted in
Figure 14.4.

The original definition of RDF molecules (Ding et al. 2005) has a number of
inherent limitations that need to be overcome in order to be used for the RDF
graph decomposition and merging, without loss of data or integrity. As can be seen
in Figure 14.3, on the top, the absence of hierarchy in the original RDF molecule
definition makes it difficult or even impossible to distinguish triples [_ :2 par-
ticipant _ :3] and [_ :2 participant _ :4]. Moreover, the absence of
ordering prevents certain important performance benefits, such as rapid retrieval of
triples, to be leveraged.

In Sections 14.3.1 through 14.3.3, we present our extensions of RDF molecules
that mitigate these problems.

14.3.1 Hierarchies
In the original definition, molecules are flat and each molecule contains a set of
RDF triples. We believe that having hierarchical molecules helps to better reflect
the structure of the underlying RDF document. These extensions to molecules
accurately reflect a structure found in biological and other data, and represent rela-
tionships found in databases similar to where one relation refers to another via a
foreign key.

Another important reason for adding hierarchies is to be able to identify equiv-
alent blank nodes based on context instead of on internal identifiers. Given the
same context, we can determine blank node equivalence and remove redundant
information.

1 1

2 2

3 3

4 4 44

3

2

1

Logical

RDF graph Node 1 Node 2 Node 3

Physical

Figure 14.4  An RDF graph decomposed into molecules that are distributed in a 
cluster.

Scale-Out RDF Molecule Store  ◾  339

Extended with hierarchies, a molecule is defined recursively as shown in
Figure 14.5. An RDF molecule is defined as a (possibly empty) set of submol-
ecules, each of which consists of a root triple and an optional molecule pointed to
by this triple. The root triple is an RDF triple. For a given molecule, we define the
head triple to be lexicographically the largest, as defined in Section 14.3.2, from
the set of root triples.

As described in Section 14.2.2, a molecule in the original definition contains
triples, all of which are on a single level. We believe that the incorporation of hierar-
chies as shown above helps to capture the structure of the underlying RDF triples.
Moreover, as RDF graphs capture knowledge, usually there is an inherent structure
about the data being represented. Hierarchical RDF molecules allow the represen-
tation of this structure explicitly as well.

14.3.2 Ordering
The other major extension to molecules that we implemented is ordering.
Maintaining ordering is important for the efficient comparison of molecules and
triples for graph and molecule merging.

Molecule ordering is defined over triple ordering. The “less-than” relationship
between two triples is based on the comparison between their subjects, predicates,
and objects, in turn.

For two nodes, the ordering is determined by the following rules:

 1. Node type
 a. Blank node type, which is less than
 b. URI reference node type, which is less than
 c. Literal node type
 2. Node value
 a. Comparison of string value of the nodes

The ordering of two triples is based on the comparison of their nodes in turn. If
subject nodes are equal, predicate nodes are compared. If predicate nodes are equal,
then the object nodes must be compared.

The ordering of two molecules is defined over all root triples, and submolecules,
recursively.

Example. Based on the extended molecule definition, the graph in Figure 14.3 is
decomposed into the molecule shown in Figure 14.6. Note that this molecule has

Molecule       ::=    (‘[‘ Submolecule ‘]’)*
Submolecule      ::=    RootTriple (Molecule)?|NIL
RootTriple      ::=    Subject Predicate Object

Figure 14.5  Abstract syntax of RDF molecules extended with hierarchies.

340  ◾  Cloud Computing and Software Services

three hierarchies and the second root triple contains two submolecules. The blank
nodes (_ :3 and _ :4) in these two submolecules are distinguishable because of
the hierarchies.

14.3.3 Important Algorithms
In this section, we present algorithms for molecule-related operations, such as naïve
graph decomposition (no background ontology) and molecule merging. There are
a number of advantages associated with this approach compared to the functional
approach:

 ◾ Less duplication across molecules—functional decomposition will generally
result in blank nodes shared across multiple molecules, whereas naïve decom-
position will generate one molecule containing all such blank nodes.

 ◾ As the decomposition and processing do not need to consult an ontology, it is
generally faster and is easier to implement.

As described in Ding et al. (2005), the naïve graph decomposition algorithm
decomposes a graph into a set of molecules. The decomposition of a local
RDF graph into a set of molecules is described in the pseudocode shown in
Figure 14.7. We rely on the equality of the blank node identifiers (a combination
of a Universally Unique Identifier (UUID) and a surrogate numeric identifier)
when decomposing triples from a local graph.

There are three cases to consider when identifying submolecules:

 ◾ If the head triple is a link triple and the triple to add has a subject that is equal
to its object, then the triple is added to the head triple.

 ◾ If the identified submolecule contains a triple that links to the head of the
current molecule, then the current molecule is added to the submolecule and
the molecule used from then on is the submolecule. In other words, the con-
tents of the molecule are added to the submolecule, which becomes the mol-
ecule used in future operations.

 ◾ If the identified submolecule does not contain a triple that links to the current
molecule, then it is added to the current molecule.

{ _ :1 type ExperimentalObservation}
{ _ :1 observedInteraction _ :2}
 { _ :2 participant _ :3 }
 { _ :3 hasUniprotID ‘p32379’}
 { _ :2 participant _ :4 }
 { _ :4 hasUniprotID ‘p46949’’}

Figure 14.6  RDF molecule decomposition of the graph shown in Figure 14.3.

Scale-Out RDF Molecule Store  ◾  341

The complexity of the above graph decomposition algorithm can be analyzed as
follows. Assume that all basic operations, such as adding one triple to a molecule,
comparison between two nodes, getting the subject/object node from a triple,
testing whether a triple is a blank node, and creating a molecule, take constant
time O(1). The complexity of the algorithm depends on the number of blank
nodes of the graph being decomposed. For example, suppose we have a graph G
with n triples:

 ◾ The best case is when no triple contains blank nodes. In this case, both the
subject and object nodes of each triple are tested for blank node. The triples
are subsequently added to a new molecule. Four constant-time operations
are performed for n triples. Hence, the complexity is linear to the size of the
graph O(n).

 ◾ The worst case is when all triples share, recursively, some blank nodes and
they end up in one molecule with n levels (one triple at a level). In this case,

AT is the set of added triples (initially empty).
LGT is a sorted set (order as defined above) of triples from a local
graph.
FOR EACH Triple T from LGT not in AT
 Create a new molecule M adding T.
 IF T is Grounded THEN
 Add T to AT.
 ELSE
 findEnclosedTriples(M).
 END IF
END FOR
findEnclosedTriples(M)
 T is the HeadTriple of M.
 BTS is a set of all triples which contain T’s blank nodes.
 FOR EACH Triple BT from BTS not in AT
 Create a new molecule SM adding BT.
 Add BT to AT.
 findEnclosedTriples(SM)
 IF BT is a Link Triple THEN
 IF BT’s object node equals M’s subject node THEN
 Add M to SM.
 SM becomes M.
 ELSE
 Add SM to M.
 END IF
 ELSE
 Add BT to M.
 END IF
 END FOR
 Add all triples found to the set AT.
END findEnclosedTriples

Figure 14.7  Graph decomposition algorithm.

342  ◾  Cloud Computing and Software Services

the molecule is a chain of triples. As a triple is only added to a (sub)molecule
once, it is only compared to the head triple of the enclosing molecule once.
Hence, only a constant number of basic operations are performed for adding
each triple. Hence, the time complexity is still O(n).

Therefore, the complexity of the decomposition algorithm is O(n), linear to the size
of the graph. Also note that three indices are maintained for subject (s), predicate
(p), and object (o): (s p o), (p o s), and (o s p), where all the triples in the graph are
stored in all three indices. By storing these indices in hash maps, the retrieval of
triples takes constant time.

The merging of molecules depends on the presence of a one-to-one correspon-
dence between blank nodes. Next, we present the algorithm for finding the map-
ping between molecules m1 and m2, shown in Figure 14.8.

For each root triple, get the submolecules of m1 and compare them to the triples
of m2. If the two triples are equal (using the blank node ID), then the correspond-
ing blank nodes of the two triples are added to the map. This process stops when all
levels of one molecule have been considered.

The complexity of the findBlankNodeMap algorithm depends on the num-
ber of comparisons between triples of the two molecules. Note that having hierar-
chies helps to greatly reduce the number of comparisons, as comparisons are only
made for submolecules on the same level.

Without loss of generality, let us assume that m1 has fewer levels of submolecules.
Let the number of levels of m1 be m and the number of triples on level i be n1

i. For the

findBlankNodeMap(m1, m2)
 BM is a map of blank nodes from m1 to m2 (initially empty).
 FOR EACH root triple t1 in m1
 Find the root triple t2 from m2 that corresponds to t1.
 LET sm1 = m1.submolecule for t1.
 LET sm2 = m2.submolecule for t2.
 IF sm1 != null AND sm2 != null THEN
 nm = findBlankNodeMap(sm1, sm2).
 IF nm = empty THEN
 return empty map.
 ELSE
 add nm to BM.
 END IF
 ELSE IF t1.submolecule = null AND t2.submolecule = null THEN
 add map between blank nodes in t1 and t2.
 ELSE
 return empty map.
 END IF
 END FOR
 return BM.
END findBlankNodeMap

Figure 14.8  Algorithm for finding blank node mappings between two molecules.

Scale-Out RDF Molecule Store  ◾  343

first m levels, let the number of triples of molecule m2 be n2
i. Thus, the complexity of

the findBlankNodeMap algorithm is

C n n n n n nm m i i

m

2
1

1
1

2
1

1 2 1 2

1

= × + + × = ×∑� ()

The merging algorithm for the original molecule definition would require the

comparison of all proteins, resulting in the complexity n ni

i

m i

i

m

1
1

2
1= =∑ ∑× , which

is strictly larger than the above complexity result and the difference is greater with
the increase in the number of levels.

The extended molecules are an important component of the Scale-Out RDF
Molecule Store. Together with the scale-out architecture, the molecule store will
enable efficient storage, retrieval, querying, and analysis of integrated biomolecular
data. In Section 14.4, we give a brief account on the performance evaluation of
molecule-related algorithms and the integration process.

14.4  Distributed RDF Molecule Store
In this section, we describe the actual test-bed system and the distributed RDF
molecule store that we have implemented based on the open-source software proj-
ect Java RDF Binding (JRDF).* We also describe key system components, includ-
ing graph decomposition, RDF molecule merging, distributed graph creation, and
SPARQL querying across the cluster.

14.4.1 Protein–Protein Interaction Test Bed
For the purpose of performance evaluation in the context of our project, we initially
selected datasets from DIP, IntAct, MINT, and MPact. In Newman et al. (2008b),
an integration process was proposed to (a) represent the datasets as RDF instances
compliant with the common ontology and (b) integrate the PPI RDF instances to
form new RDF graphs based on UniProt IDs and genomic sequences of proteins,
which are represented as RDF blank nodes. In Section 14.4.2, we demonstrate our
implementation of the above integration framework using the MapReduce frame-
work as a means of distributing RDF molecules across a cluster. We evaluate its
performance.

In PPI networks, a protein has a number of identifiers, external references, a
genomic sequence string, and a host organism. The protein may also participate
in interactions with other proteins. As discussed in Section 14.1.2, blank nodes

* http://jrdf.sourceforge.net/

344  ◾  Cloud Computing and Software Services

are used to represent proteins, interactions, external references, etc. Hence, each
protein and all of its associated information will belong to a single molecule.

A number of queries have been identified that may reveal previously unrecog-
nized PPIs. For instance, the query “Find all yeast protein–protein interactions that
are known to be localized to the endosomal system” helps biologists to filter PPIs
integrated across the Gene Ontology, the NCBI taxonomy, and PPI datasets. Given
the size of the PPI data and associated datasets (well over 1 billion triples), only a
distributed processing environment is capable of performing integration and query-
ing tasks on this scale.

14.4.2 RDF Molecule Store
Each node in the cluster contains a local, persistent RDF molecule store that
responds to SPARQL queries. Our indexing scheme takes each permutation of an
RDF triple (subject, predicate, and object) with an additional molecule ID (m) and
its parent molecule ID (i): (spomi, posmi, ospmi, and imspo) to create four ordered
indices. This indexing scheme supports efficient addition, retrieval, and removal
of molecules and triples in the molecule store. An RDF molecule API defines an
indexing adaptor to provide SPARQL query functionality.

14.4.3 Graph Decomposition and Molecule Merging
In our approach, we adopted the naïve decomposition algorithm for its simplic-
ity, efficiency, and robustness. This algorithm computes connected components
only through edges that connect two blank nodes. Given an RDF graph, the naïve
decomposition algorithm decomposes it into a set of RDF molecules, which do not
share blank nodes and are therefore mutually independent.

The molecule store merges two molecules if one molecule contains all the prop-
erties (or more) of another molecule. In this way, as more molecules are added,
redundant molecules are removed (or never added), allowing results from multiple
nodes from a query to be merged.

14.4.4 Scale-Out Distributed Processing
A MapReduce-style task was developed to transform input datasets into RDF mol-
ecules and persist them in the RDF molecule store, in a distributed fashion. A
map task takes each data file as input and converts it into a local RDF molecule
graph. The reduce task collects RDF molecules from the cluster and puts them in
the persistent, distributed molecule store. Developed based on the Hadoop project,
this Scale-Out RDF Molecule Store is able to efficiently integrate large amount of
source data. This scale-out processing environment has been designed in a way to
achieve better load balancing for distributed query answering.

Scale-Out RDF Molecule Store  ◾  345

We have implemented a Representational State Transfer (REST)-style
 distributed SPARQL query engine for RDF molecules based on the JRDF proj-
ect. One node in the cluster is designated as the distributed query server, which
issues queries to each individual local query-answering server. A SPARQL query
is executed in parallel on each local server in the cluster. Local servers compute
query results against local indices and return results to the distributed server, which
combines the results to provide the final query answer. The overall query-answering
time depends on the longest local query-answering time, plus a small round-trip
network latency and its own processing overhead.

In Section 14.5, we provide the results of the detailed performance evaluation
of the system.

14.5  Evaluation Results
In this section, we provide initial performance evaluation results for the critical
steps in our methodology: (a) RDF graph decomposition and RDF molecule merg-
ing, (b) MapReduce-based integration of PPI data and the distribution of RDF
molecules into the cluster, and (c) distributed SPARQL query answering.*

14.5.1 Graph Decomposition and RDF Molecule Merging
The graph decomposition and merging algorithms described in Section 14.4 are
critical components of the distributed RDF molecule store. Applied sequentially,
the two algorithms can decompose an RDF graph into a set of RDF molecules, and
then merge them back to form an equivalent graph. In this section, we evaluate the
performance of these algorithms by comparing them with Jena (McBride 2002).
Jena is, to the best of our knowledge, the only RDF triple store that provides similar
functionality, and hence an ideal candidate for performance comparison purposes.

A set of RDF graphs was created for comparison, and the time taken to deter-
mine equivalence was measured. The graphs contain triples that have chaining
blank nodes, for example, _ :1 p1 _ :2, _ :2 p2 _ :3, _ :3 p3 _ :4. For
example, Table 14.1 shows that Jena takes 0.05 s to perform the graph equivalence
test when the chain depth is 3 and the chain size is 10 (total graph size is 30). Note
that DNF stands for “Did Not Finish” (>900 s).

The RDF molecule approach is faster as the number of chains reaches 100.
Moreover, the RDF molecule implementation gives consistently superior perfor-
mance, as both the number of chains and the chain depth increase. When the
chain depth is at least 10 and the number of chains is at least 100 (i.e., graph size is
at least 1000), the molecule implementation performs orders of magnitude better
than Jena, with Jena not being able to determine equivalence for graph sizes over

* All computers used in the experiments in this section have identical setup: Intel Xeon 1.86 GHz
with 2 GB main memory running JDK 1.5 on top of Linux (CentOS 5).

346  ◾  Cloud Computing and Software Services

20,000. Also note that with the increase of chain size and depth, the performance
of molecule implementation exhibits linear degradation, which is in line with our
complexity analysis of the algorithms.

14.5.2 MapReduce Performance
As mentioned earlier, we employ the MapReduce framework for the integration of
PPI (and associated) data and the distribution of RDF molecules across a cluster of
computers. A series of tests were performed to evaluate the integration and loading
time of the distributed molecule store on both a 2-node and a 3-node cluster.

The MapReduce tasks were run multiple times using 11 input files (a total of
4,164,271 triples and 224,299 molecules). Table 14.2 summarizes the dataset sizes
and performance of the various tasks on the two clusters. Note that the last two
columns represent the time taken (in s) on the 2-node and the 3-node cluster,
respectively.

A number of observations are worth discussing:

 ◾ Tasks 2 and 3 take roughly the same time, despite the fact that task 3 handles
48% more triples and 14% more molecules than task 2.

 ◾ There is a 100% increase in the time taken from task 3 to task 4, although
task 4 only handles 44% more triples.

Table 14.1  Time Measurement of Jena 
and Molecule on Graph Equivalence (in s)

Chain
Size

Depth

3 5 10 20

Jena

10 0.05 0.07 0.1 0.3

100 0.2 0.4 1.8 9.2

1,000 13.1 37.7 197.7 DNF

10,000 DNF DNF DNF DNF

Molecules

10 0.06 0.0 0.1 0.2

100 0.2 0.3 0.4 0.7

1,000 0.9 1.3 2.5 5.0

10,000 7.7 13 26.4 57.4

Scale-Out RDF Molecule Store  ◾  347

 ◾ On the 3-node cluster, tasks 4, 5, 6, and 7 take comparable amount of time
to complete, although there is a significant increase in the sizes of the tasks.

The above performance characteristics are due to the nature of the MapReduce
framework, in which the map and reduce phases execute in sequence: no reduce
task can start unless all map tasks have been finished. Therefore, a very large single-
input file in the map phase in tasks 4, 5, 6, and 7 dominated their running time.
Preprocessing of large input files to break them into smaller chunks is a viable
solution to help reduce the time taken by the map phase. Figure 14.9 gives a more
intuitive view of the running time of the different tasks. The horizontal axis repre-
sents the number of triples (in millions), and the vertical axis represents time (in s).
It can be seen that the slope of the 3-node cluster is much more moderate compared
to that of the 2-node cluster.

As shown in Figure 14.9, with the increase of data size, the 3-node cluster shows
greater scalability. When the triple number exceeds 2 million, the 3-node cluster
exhibits a constant rate of slowdown, whereas the 2-node cluster slows down con-
siderably when processing 4 million triples. It shows that small clusters do not take
full advantage of the MapReduce framework as performance suffers from commu-
nication overhead and node balancing. We expect that a larger cluster will amortize
these overheads and be much more scalable.

The distributed RDF molecule store takes up around 0.5 GB disk space per mil-
lion triples. This is due to the fact that more indexing information is maintained
for RDF molecules (Section 14.4.2) and no compression or other space-saving opti-
mizations have been applied at this time. Previous modeling (Moreira et al. 2007)
has shown that the response time of Nutch is essentially constant as the number of
servers reaches 2000 nodes with up to 40 GB of data per node. We expect that our
implementation of the on-disk, distributed RDF molecule store will conservatively

Table 14.2  Time Measurements of Various MapReduce Tasks 
on Two Clusters (in s)

Task No. # Triples # Molecules
2-Node
Cluster

3-Node
Cluster

1 363,308 10,387 201 165

2 1,164,446 73,357 899 829

3 1,727,754 83,744 995 895

4 2,488,024 138,675 1,872 1,784

5 2,851,332 149,062 2,041 1,789

6 3,652,470 212,032 2,098 1,883

7 4,164,271 224,299 3,819 2,589

348  ◾  Cloud Computing and Software Services

reach 160 billion triples with a similar setup. Improving indexing efficiency will
easily boost cluster capacity.

14.5.3 Distributed SPARQL Query Responses
As mentioned in Section 14.4.4, our SPARQL query engine has been developed by
adapting the indexing structure of our RDF molecule store, so that it is compat-
ible with the indexing structure of the JRDF triple store. Hence, comparable query
performance and memory usage is expected.

To test the distributed query performance, we ran a mix of five queries about
the PPI data on the 2-node and 3-node clusters. These queries have a large range of
selectivity (from 0 results to around 2000 results per query), and hence are able to
represent the general performance characteristics of the distributed RDF molecule
store using real-world data. For example, the SPARQL query in Figure 14.10 returns
the full names and UniProt IDs of human (ncbi:ncbi _ taxo _ 9606 _ ind)
proteins (biopax:physicalEntity) that are known to be localized at the
nucleus (cc:GO _ 0005634 _ ind). Such a query requires the integration of the
NCBI organisms’ taxonomy, the Cellular Component Gene Ontology, the UniProt
protein database, and other PPI databases that contain human data.

Table 14.3 summarizes the average query-answering performance of the 2-node
and 3-node clusters (the same clusters used in Section 14.5.2) on the same data-
set (task 7 in Table 14.2). As a baseline comparison, the same set of queries is
executed against a native Sesame2 RDF triple store.* To make the comparison
fair, the Sesame triple store only contains about 33% of the triples of the 3-node
cluster (basically, the triples stored on a single compute node in the 3-node cluster,

* http://www.openrdf.org/

5000

4000

3000

2000

1000

0
0 1 2

2-Node cluster
3-Node cluster

3 4 5

Figure 14.9  Time measurement of MapReduce conversion tasks.

Scale-Out RDF Molecule Store  ◾  349

totaling 1,384,496 triples), as the Sesame triple store runs on a single machine only.
Also note that the Sesame query engine was terminated after running for 1800 s for
queries 4 and 5* without completion.

Figure 14.11 illustrates that Sesame outperforms both clusters for query 1 and
query 2. However, the performance is not significantly different from that of the
3-node cluster. For query 3, both clusters are faster than Sesame. For queries 4 and
5, both clusters are able to complete the computation while the Sesame engine runs
for 1800 s before being terminated. Also note that both clusters perform relatively

* Each of the local query servers and the Sesame query engine is allocated 1.6 GB of memory.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX biopax: <http://www.biopax.org/release/biopax-level2.owl#>
PREFIX biomanta: <http://biomanta.sourceforge.net/2007/07/biomanta _

extension _ 02.owl#>
PREFIX ncbi: <http://biomanta.sourceforge.net/2007/10/ncbi _ taxo.

owl#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX cc: <http://www.imb.uq.edu.au/biomanta/dev _ ontology#>
SELECT ?name ?id
WHERE {
 ?x rdf:type biopax:physicalEntity.
 ?x biomanta:fromNCBISpecies ncbi:ncbi _ taxo _ 9606 _ ind.
 ?x biomanta:subcellularLocation cc:GO _ 0005634 _ ind.
 ?x biomanta:hasFullName ?name.
 { ?x biomanta:hasPrimaryRef ?y.
 ?y biopax:DB ?db.
 FILTER (str(?db) = “uniprotkb”^^xsd:string)
 }.
 ?y biopax:ID ?id.
}

Figure 14.10  An example SPARQL query about PPI.

Table 14.3  Performance Statistics for RDF Stores Over Different 
Queries (in s)

Query
Performance Query 1 Query 2 Query 3 Query 4 Query 5

Answer # 2 203 203 0 1762

Single-node
Sesame

4.0 0.2 284.9 1800 1800

2-Node
cluster

19.5 2.8 5.6 6.1 19.6

3-Node
cluster

13.4 2.3 4.3 4.7 13.0

350  ◾  Cloud Computing and Software Services

consistently, whereas there is a great variability in Sesame’s performance. Hence, as
the cluster size increases, we anticipate that the distributed RDF molecule store will
exhibit much greater performance advantage over conventional RDF triple stores.

14.5.4 Discussion on Scalability
The scale-out-style MapReduce and Hadoop frameworks were designed for very
large-scale data processing that usually involves petabytes of data and thousands of
compute nodes. Hence, only larger clusters of at least 10 or 20 nodes are able to enjoy
the full benefits of MapReduce. The 2-node and 3-node clusters we used to perform
the above experiments are for development and testing purposes only. However, even
at this small scale, they show very promising results and exhibit good scalability that
would improve further as the cluster size grows. As discussed in Section 14.5.2, a
large cluster is able to hold a tremendous amount of RDF triples. Therefore, the ben-
efits of the distributed SPARQL query answering would become more prominent.

14.6  Conclusions
Efficient querying and inferencing across large-scale integrated datasets drawn
from many distributed, disparate sources is a challenge facing many communities.

Semantic Web technologies, such as RDF, OWL, and SPARQL, are ideal can-
didates for the task of data integration, as they offer open, unambiguous, and
extensible solutions. At the same time, distributed processing paradigms, such
as MapReduce, have demonstrated economic and practical ways to index and
process massive amounts (petabytes) of data. Hence, the synergistic combination

0.1

1

10

100

1,000

10,000

Query 1 Query 2 Query 3 Query 4 Query 5

Sesame 2-node cluster 3-node cluster

Figure  14.11  Performance  comparison  on  five  SPARQL  queries  (logarithmic 
scale).

Scale-Out RDF Molecule Store  ◾  351

of MapReduce and Semantic Web technologies appears to offer a perfect solu-
tion to the problem of large-scale heterogeneous data integration, querying, and
reasoning.

However, the co-identification problem (Guha 2004), particularly within disci-
plines such as life sciences, introduces additional complications. Attempts to stan-
dardize naming conventions have had limited impacts. RDF blank nodes, on the
other hand, provide a novel way of referring to entities of common interest without
creating new names or coming up with new naming conventions. But RDF blank
nodes introduce complications when attempting to distribute RDF graphs across
a distributed architecture, as they are only locally addressable within the enclosing
RDF graph. It has been proposed that the use of RDF blank nodes be banned. We
believe that banning the use of a very common language feature in RDF, OWL,
and Semantic Web Rule Language (SWRL) (Horrocks et al. 2004) has a detrimen-
tal effect on data integration abilities and interoperability.

In a MapReduce framework, it is a necessary first step to decompose large data-
sets into smaller units for processing. With the ubiquitous presence of blank nodes,
RDF graphs provide too coarse a granularity for effective processing, as the context
of an entire graph is needed to disambiguate RDF blank nodes. A finer granular-
ity is required to support the distributed integration and processing of RDF data.
We believe that RDF molecules provide a finer-grained solution to the semantic
integration and distribution/decomposition problem. As such, we have developed
optimized algorithms to losslessly decompose an RDF graph into a set of smaller
“molecules” and subsequently merge them, enabling MapReduce-style processing
of RDF graphs. However, this process revealed that the presence of RDF blank
nodes can cause problems of data loss, integrity loss, ambiguity, and slow perfor-
mance. Consequently, we have had to extend the definition of RDF molecules to
include hierarchy and ordering. By incorporating hierarchy, originally flat RDF
molecules now contain explicit structural information that is beneficial in enabling
more intelligent processing. More importantly, a hierarchy makes it possible to
disambiguate blank nodes within a single molecule. The ordering of molecules also
provides an efficient way of cross-checking data integrity during the processing of
molecules.

In this chapter, we present a MapReduce-based RDF molecule store based on
the MapReduce framework. This system supports efficient processing of RDF data
by generating and indexing RDF molecules in a clustered, scale-out environment.
Critical algorithms for decomposing an RDF graph, and merging RDF molecules
and their respective computational complexity are described, implemented, and
evaluated for performance. We have compared RDF graph decomposition and
merging steps with the graph equivalence algorithm in Jena and obtained promis-
ing results. Performance evaluation of distributed data integration has been con-
ducted on a 2-node and a 3-node cluster. Even on this small scale, improvements in
the performance and efficiency of SPARQL queries have been shown. We have run
a number of SPARQL queries over the distributed RDF molecule store containing

352  ◾  Cloud Computing and Software Services

more than 4 million triples and compared performance against the Sesame triple
store. Comparable performance has been obtained in most cases. And in some
cases, the distributed RDF molecule store demonstrates performance orders of
magnitude better than Sesame. As greater numbers of triples are loaded into the
RDF molecule store and as the size of the cluster grows, we can expect the perfor-
mance advantage to further increase over traditional RDF triple stores.

Future plans include testing the approach over larger compute clusters using
Amazon’s Elastic Compute Cloud (EC2).* SPARQL query engine optimization
(Stocker et al. 2008) is an important task to boost overall system performance. Future
development of additional indexing adaptors would also allow query engines from
other RDF triple stores, such as Jena, Sesame, and OpenLink Virtuoso, to be used.

Recently, a number of SPARQL performance benchmarks (Bizer and Schultz
2008, Schmidt et al. 2009) have been proposed. These benchmarks use syntheti-
cally, statistically generated datasets to evaluate the performance (query response
time) of various SPARQL query engines. Although the data used in these bench-
marks are not real-world data, they still provide valuable information about the effi-
ciency of query engines and suggest potential performance improvement avenues.
We will conduct proper evaluation of our distributed query engine against these
benchmark systems.

An efficient underlying indexing scheme for RDF molecules is vital to the
SPARQL query-answering performance. The current indexing scheme extends
that of the traditional RDF triple store by appending two molecule indices (parent
molecule ID and current molecule ID) to the triple IDs. More efficient indexing
schemes, such as the works proposed by Weiss et al. (Weiss et al. 2008), are an
important area to work on.

Another important future research direction is the development of a distrib-
uted processing environment for the extended RDF molecule store with inference
capabilities. We believe that such an environment will greatly enhance our ability
to query and reason across large amounts of data efficiently.

References
Ashburner, M., Ball, C., Blake, J. et al. (2000) Gene ontology: Tool for the unification of

biology. Nature Genetics, 25, 25–29.
Bader, G. D. and Cary, M. P. (2005) BioPAX—Biological pathways exchange language

Level 2, Version 1.0 Documentation. BioPAX.
Bard, J., Rhee, S. Y., and Ashburner, M. (2005) An ontology for cell types. Genome Biology,

6: R21.
Bizer, C. and Schultz, A. (2008) Benchmarking the performance of storage systems that

expose SPARQL endpoints. Fourth International Workshop on Scalable Semantic Web
Knowledge Base Systems (SSWS2008), Karlsruhe, Germany.

* http://aws.amazon.com/ec2/

Scale-Out RDF Molecule Store  ◾  353

Boncz, P. A. (2002) Monet: A next-generation DBMS kernel for query-intensive applica-
tions. PhD thesis, Universiteit van Amsterdam, Amsterdam, the Netherlands.

Carroll, J. J., Bizer, C., Hayes, P., and Stickler, P. (2005) Named graphs, provenance and
trust. Proceedings of the 14th International Conference on World Wide Web, Chiba, Japan.
ACM, NewYork.

Chang, F., Dean, J., Ghemawat, S. et al. (2006) Bigtable: A distributed storage system
for structured data. USENIX’06: Proceedings of the Seventh Conference on USENIX
Symposium on Operating Systems Design and Implementation, Seattle, WA.

Chatr-aryamontri, A., Ceol, A., Palazzi, L. M. et al. (2007) MINT: The molecular INTeraction
database. Nucleic Acids Research, 35, 572–574.

Chu, C. T., Kim, S. K., Lin, Y. A. et al. (2007) Map-Reduce for Machine Learning on Multicore.
MIT Press, Vancouver, Canada.

Dean, J. and Ghemawat, S. (2004) MapReduce: Simplified data processing on large clus-
ters. Proceedings of the Sixth Conference on Symposium on Operating Systems Design and
Implementation, San Francisco, CA. USENIX Association, Berkeley, CA.

Ding, L., Finin, T., Peng, Y., da Silva, P. P., and McGuinness, D. L. (2005) Tracking RDF
Graph Provenance Using RDF Molecules. UMBC, Baltimore, MD.

Good, B. M. and Wilkinson, M. D. (2006) The life sciences semantic web is full of creeps!
Briefings in Bioinformatics, 7, 275–286.

Gray, J., Liu, D. T., Nieto-Santisteban, M. et al. (2005) Scientific data management in the
coming decade. ACM SIGMOD Record, 34, 34–41.

Guha, R. (2004) Object co-identification on the semantic web. 13th World Wide Web
Conference, New York.

Güldener, U., Münsterkötter, M., Oesterheld, M. et al. (2006) MPact: The MIPS protein
interaction resource on yeast. Nucleic Acids Research, 34, 436–441.

Harth, A., Umbrich, J., Hogan, A., and Decker, S. (2007) YARS2: A federated repository for
searching and querying graph structured data. DERI, Galway, Ireland.

Hermjakob, H., Montecchi-Palazzi, L., Bader, G. et al. (2004) The HUPO PSI’s molecular
interaction format—A community standard for the representation of protein interac-
tion data. Nature Biotechnology, 22, 177–183.

Horrocks, I., Patel-Schneider, P. F., Boley, H. et al. (2004) SWRL: A semantic web rule lan-
guage combining OWL and ruleML. W3C Member Submission. W3C.

Ivanova, M., Nes, N., Goncalves, R., and Kersten, M. (2007) MonetDB/SQL meets sky-
server: The challenges of a scientific database. Proceedings of the 19th International
Conference on Scientific and Statistical Database Management, Banff, Canada.

Kerrien, S., Alam-Faruque, Y., Aranda, B. et al. (2007) IntAct—Open source resource for
molecular interaction data. Nucleic Acids Research, 35, D561–565.

Khare, R., Cutting, D., Sitaker, K., and Rifkin, A. (2004) Nutch: A flexible and scalable
open-source web search engine, CommerceNet Labs Technical Report 04.

McBride, B. (2002) Jena: A semantic web toolkit. IEEE Internet Computing, 6, 55–59.
McNabb, A. W., Monson, C. K., and Seppi, K. D. (2007) MRPSO: MapReduce parti-

cle swarm optimization. Proceedings of the Ninth Annual Conference on Genetic and
Evolutionary Computation, London, U.K., p. 177.

Merelli, E., Armano, G., Cannata, N. et al. (2007) Agents in bioinformatics, computational
and systems biology. Briefings in Bioinformatics, 8, 45.

Moreira, J. E., Michael, M. M., Da Silva, D. et al. (2007) Scalability of the Nutch search
engine. Proceedings of the 21st Annual International Conference on Supercomputing.
Seattle, WA. ACM Press, NewYork.

354  ◾  Cloud Computing and Software Services

Muster, P. (2007) Quantitative and qualitative evaluation of a SPARQL front-end for
MonetDB. Department of Informatics, University of Zurich, Zurich, Switzerland.

Newman, A., Hunter, J., Li, Y.-F., Bouton, C., and Davis, M. (2007) BioMANTA ontol-
ogy: The integration of protein–protein interaction data. Interdisciplinary Ontology
Conference (InterOntology08), Tokyo, Japan.

Newman, A., Hunter, J., Li, Y.-F., Bouton, C., and Davis, M. (2008a) BioMANTA ontol-
ogy: The integration of protein–protein interaction data. Proceedings of Interdisciplinary
Ontology Conference 2008 (InterOntology08), Tokyo, Japan.

Newman, A., Hunter, J., Li, Y.-F., Bouton, C., and Davis, M. (2008b) A scale-out RDF mol-
ecule store for distributed processing of biomedical data. Semantic Web for Health Care
and Life Sciences Workshop (HCLS’08) at the 17th International Conference on World
Wide Web (WWW’08), Beijing, China.

Oren, E., Delbru, R., Catasta, M. et al. (2008) Sindice.com: A document-oriented lookup
index for open linked data. International Journal of Metadata, Semantics and Ontologies,
3, 37–52.

Pantel, P. (2007) Data catalysis: Facilitating large-scale natural language data processing.
Proceedings of the International Symposium on Universal Communication (ISUC-07),
Kyoto, Japan.

Ruttenberg, A., Rees, J., and Zucker, J. (2006) What BioPAX communicates and how to
extend OWL to help it. OWL: Experiences and Directions Workshop, Athens, GA.

Salwinski, L., Miller, C. S., Smith, A. J. et al. (2004) The database of interacting proteins:
2004 update. Nucleic Acids Research, 32, D449–451.

Schmidt, M., Hornung, T., Lausen, G. and Pinkel, C. (2009) SP2Bench: A SPARQL perfor-
mance benchmark. IEEE 25th International Conference on Data Engineering (ICDE’09),
Shanghai, China.

Stickler, P. (2005) CBD—Concise Bounded Description. http://www.w3.org/Submission/
CBD/, W3C Member Submission.

Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C., and Reynolds, D. (2008) SPARQL
basic graph pattern optimization using selectivity estimation. Proceeding of the 17th
International Conference on World Wide Web. Beijing, China. ACM, NewYork.

Stonebraker, M., O’Neil, E., O’Neil, P. et al. (2005) C-store: A column-oriented DBMS.
Proceedings of the 31st International Conference on Very Large Data Bases, Trondheim,
Norway, pp. 553–564.

The Yahoo! Research Team (2006) Content, metadata, and behavioral information:
Directions for yahoo! research. IEEE Data Engineering Bulletin, 29, 10–18.

Tummarello, G., Morbidoni, C., Puliti, P., and Piazza, F. (2005) Signing individual frag-
ments of an RDF graph. Special Interest Tracks and Posters of the 14th International
Conference on World Wide Web, Chiba, Japan. ACM, NewYork.

Weiss, C., Karras, P. and Bernstein, A. (2008) Hexastore: Sextuple indexing for semantic web
data management. Proceedings of the VLDB Endowment, 1, 1008–1019.

Yang, H.-C., Dasdan, A., Hsiao, R.-L., and Parker, D. S. (2007) Map-reduce-merge:
Simplified relational data processing on large clusters. Proceedings of the 2007 ACM
SIGMOD International Conference on Management of Data, Beijing, China.

355

Chapter 15

Enabling XML 
Capability for Hadoop 
and Its Applications 
in Healthcare

Jianfeng Yan, Jin Zhang, Ying Yan, and Wen-Syan Li

Contents
15.1 Introduction ...356
15.2 Query Patterns for Healthcare Informatics.. 360
15.3 System Architecture of Xbase ...361
15.4 Indexing .. 364

15.4.1 Content and Structures of EMR .. 364
15.4.2 Types of Indexes .. 366
15.4.3 Building Index ..370

15.5 Query Processing ...371
15.5.1 Query Rewriting ...371
15.5.2 Plan Generation ..373
15.5.3 Plan Execution ..374
15.5.4 Result Consolidation and Data Retrieval375

356  ◾  Cloud Computing and Software Services

15.1  Introduction
Current analytics is limited to structured data (i.e., relational); however, many
advanced applications rely on semi-structured data, such as XBRL (eXtensible
Business Report Language) for finance and accounting, reporting applications and
NewsML (News Markup Language) for publishing and news/media content man-
agement. Among these applications that require management of semi-structured
data, healthcare is one of the areas that truly relies on XML (Extensible Markup
Language) to store and exchange medical and healthcare information. For exam-
ple, HL7 CDA (Health Level Seven Clinic Document Architecture) has been a
standard for electronic interchange of clinical information among healthcare pro-
viders, and it has been adapting XML technology in its newer release to extend its
capability. Moreover, XML technology is being adapted in modeling and storing
medical records in the past decade, as computers are widely used in all systems and
laboratories in modern hospitals and clinical centers.

An electronic medical record (EMR) is a computerized legal medical record
(i.e., patient record) created in an organization that delivers care, such as hospitals
and clinical centers. An EMR has three parts, as illustrated in Figure 15.1 and as
follows:

 1. Patient data: It stores basic information of a patient, such as name, address,
date of birth, and insurance information. The patient data is usually struc-
tured and can be stored in relational tables.

 2. Patient profile: It usually includes a summary of the medical history of a patient’s
family, such as if the family members have cancers or high blood pressures,
as well as the lifestyle of a patient, such as if he or she smokes, drinks, and
exercises, and if a patient is under heavy pressure at work. The patient pro-
file data is usually structured; however, depending on how many details
need to be collected and recorded for the patient profiles, it could also be
semi-structured.

15.6 Experimental Evaluations ...375
15.6.1 General Setup ...375

15.6.1.1 Hardware and Software Configurations375
15.6.1.2 Data Sets, Query Patterns, and Solutions376

15.6.2 Effects of Data Scales ..377
15.6.3 Effects of Query Complexity ..379
15.6.4 Effects of Hadoop-Specified Configurations382

15.7 Related Work ...383
15.8 Conclusion ...385
References ...385

Enabling XML Capability for Hadoop  ◾  357
Pa

tie
nt

 re
co

rd
s

Pa
tie

nt
 ID

 =
 0

00
01

Ba
sic

 in
fo

Fa
m

ily
 h

ist
or

y

D
ia

be
te

s
Fo

od
 h

ab
its

Re
la

tio
ns

hi
p

Re
la

tio
na

l

Pa
tie

nt
 d

at
a

Cl
in

ic
al

 d
at

a

W
el

l-s
tu

di
ed

 p
ro

bl
em

s w
so

lu
tio

ns

D
ep

en
di

ng
 o

n
co

m
pl

ex
ity

 o
f i

nf
or

m
at

io
n

re
qu

ire
d

(d
ise

as
e d

ep
en

de
nt

)
XM

L

XM
L

is
a n

at
ur

e s
ty

le
 fo

r p
at

ie
nt

 cl
in

ic
al

 d
at

a
G

oo
d

fo
r f

le
xi

bl
e m

od
el

in
g

an
d

sin
gl

e-
en

tr
y a

cc
es

s
Bu

t n
ot

 g
oo

d
fo

r O
LA

P
qu

er
ie

s

Sl
ee

p

D
at

e=
20

00
.3

.2
0

Sy
m

pt
om

s
D

ia
gn

os
is

Tr
ea

tm
en

t

D
at

e=
20

00
.3

.2
7

D
at

e=
20

09
.6

.2
5

Li
fe

st
yl

e
M

R1
M

R2

N
am

e

H
ao

41
01

02
19

78
...

Ch
in

a,
sh

50
F

M
at

he
r

Fr
y

Sp
ic

y
8h

/d
...

...
...

...

...
...

...

...

ID
A

dd
re

ss
A

ge
Se

x

Fi
gu

re
 1

5.
1 

Ex
am

pl
e 

of
 E

M
R

.

358  ◾  Cloud Computing and Software Services

 3. Clinical data: It stores clinical informatics, including symptoms, diagnosis,
and treatments of each hospital visit by a patient. The clinical data is usually
semi-structured because of the nature of its diverse data types, possible evolv-
ing schema, and tree-like diagnosis and treatment classifications.

A patient record has a unique identifier (Pid, patient ID), usually a social secu-
rity number or a citizen identification card number. Patient data is documented
once when a patient registers at a hospital the first time and it is modified only when
his/her personal information or insurance information changes. A patient profile
is created when the patient first registers at the hospital and the patient profile is
augmented as the patient visits the hospital. A single clinical record, uniquely iden-
tified by a unique identifier (CRid, clinical record ID), is used to store symptoms,
diagnosis, and treatment of a hospital visit. CRid is usually a number automatically
generated by computer systems. Clinical data of a patient is stored in multiple clini-
cal records.

XML is a more desirable format for modeling and storing semi-structured
clinical data in EMR applications for its extendibility to model complexity and
diverse formats of clinical data; however, EMR systems are usually built on top
of the RDBMS (relational database management system) or file systems. Few
advanced database systems support native XML storage and retrieval capability,
such as IBM DB2 [3]; however, their capability supporting complex healthcare
applications on a large set of EMRs is very limited. These complex healthcare
applications could include interactive queries that provide diagnosis and treat-
ment assistance to doctors and batched jobs that analyze EMRs to measure treat-
ment effectiveness and to define treatment standard procedure. The complexity
arises when the system needs to deal with query conditions on semi-structured
parts of EMRs and a potentially large number of query conditions. The response
time of query processing on a large EMR database could be tens of minutes to
hours for RDBMS-based implementations, or native XML-based implementa-
tions if indexing is not designed properly or query processing is parallelized across
a cluster of servers.

These applications demand a healthcare informatics system with high usability
(i.e., supporting healthcare-specific style of query, search, and analytics), flexibility
(i.e., supporting semi-structured/XML data modeling dealing with evolving data
types, schemas, and terminologies), reliability (i.e., fault tolerance), performance
(i.e., fast response time, automated load balance, and the ability to scale up the
system when needed), and extendibility (i.e., system’s capability to be scaled up as
needed). To meet these requirements, it requires a novel data management system
since XML presents a different set of challenges to query processing, indexing,
parallelism, and distributed computing.

SAP Technology Lab, China, is developing a clouds-enabled information appli-
ance, Xbase, supporting search and analytics on XML-based EMR databases. In

Enabling XML Capability for Hadoop  ◾  359

light of many recent comparisons of approaches to large-scale data analysis, such
as in [22] and existing XML indexing and query processing techniques, we take
a hybrid approach to building Xbase. Xbase is the first healthcare-specific ana-
lytic engine to be built on top of existing cluster/cloud infrastructure Hadoop [24]
(for semi-structured data and search/indexing requiring massive parallelism) and
RDBMS (for metadata and structured data). Our implementation of Xbase runs on
a large cluster of commodity machines to achieve high scalability in a cost-effective
manner.

XML and distributed computing present a different set of challenges to query
processing, indexing, and parallelism using existing Hadoop APIs as well as its
storage, Hadoop Distributed File System (HDFS) [25], and MapReduce distrib-
uted computing framework [8].

In this chapter, we present the architectural design and features of Xbase to
meet the requirements of advanced healthcare applications. The key features of
Xbase include

 ◾ Native XML storage with support of distributed file systems
 ◾ Query processing and indexing applied directly to native XML structure and

content
 ◾ Parallel query processing and index building on top of emerging Hadoop

cloud computing infrastructure
 ◾ Being built natively on emerging cloud computing infrastructure Hadoop

to achieve almost unlimited distributed storage capability and computation
capability

We also describe how our indexing and query processing designs are mapped into
the Hadoop infrastructure and MapReduce distributed computing framework
as well as why we select Hadoop over other candidates, including Hbase [26],
Google’s Bigtable [5], Hive [27], and existing column-oriented DBMS, such as
Trex [23] and Vertica [29], as the framework for implementation, storage, and
computation. The main contribution of this work is sharing the design and engi-
neering experience of our efforts building the first XML database, Xbase, on the
emerging and popular cloud computing infrastructure, Hadoop. Xbase is experi-
mentally evaluated, and preliminary results are presented to validate the applica-
bility of our approach.

The rest of this chapter is organized as follows. In Section 15.2, we describe
query patterns in healthcare informatics. In Section 15.3, we describe the system
architecture of Xbase. In Section 15.4, we describe the index design and indexing
phase in Xbase based on available Hadoop computing infrastructure. In Section
15.5, we describe query processing in Xbase. In Section 15.6, we present evaluation
results that experimentally validate effectiveness of our system. In Section 15.7, we
discuss related work, and conclude the chapter in Section 15.8.

360  ◾  Cloud Computing and Software Services

15.2  Query Patterns for Healthcare Informatics
Queries in healthcare applications have certain patterns. A healthcare informat-
ics system needs to support both interactive and report-generating/analytic que-
ries. It also needs to incorporate domain knowledge bases, such as classifications of
diagnosis, medical terms, treatment procedures, medicine ingredients, and doctors’
expertise and their access control lists, in query processing. Another pattern is that
there could be a large number of attributes involved in queries, especially for com-
plicated diseases. In real-world cases studied, we observed that there are potentially
more than 100 attributes in queries related to heart-related diseases and more than
200 attributes for cancer-related diseases; however, usually a relatively small subset
of attributes (i.e., 10%–20%) are specified in a single query. Thus, column-based
storage is preferred to save I/O bandwidth. The complexity of queries and analytics
is disease/function dependent.

We categorize queries over healthcare informatics into the following four types:

 1. Interactive, similarity-based ad hoc queries, such as searching possible diag-
nosis and treatment of other patients with similar symptoms and profiles

 2. BI style analytics, such as batched jobs that analyze cost efficiency for all
hospitals in a city grouping by types of diseases, analyze EMR databases to
measure treatment effectiveness, and define treatment standard procedure

 3. Queries for topic-focused browsing and navigation with aggregation/sum-
marization of information, similar to roll-up and drag-down interactions in
typical data warehousing applications

 4. Data mining style analytics, such as medical insurance fraud detection and
biomedicine-related pattern exploration

In this chapter, we focus on describing our system design aspects related to sup-
porting the first two categories of queries: (1) interactive, similarity-based ad hoc
queries and (2) batched report-generating BI style analytics. Xbase is currently built
specifically for healthcare applications; thus, we support query syntax commonly
used for the two types of queries. For example, a query finding possible diagnosis by
searching patients with similar symptoms and profiles ranked by clinical diagnosis
code standard may include the following types of conditions:

 ◾ Range, such as 30 < age < 40
 ◾ Category, such as manifestations = {nephrosis, blindness, polyneuropathy}
 ◾ Boolean, such as sex = female
 ◾ In set, such as if a patient has one or more chronic kidney disease symptoms

or if a set of keywords are in a free style doctor notes
 ◾ Path expression, such as /Pid/emr/treatment [medicine = aspi-
rin]/medicine (i.e., a query selecting medicine nodes with the medicine

Enabling XML Capability for Hadoop  ◾  361

name “aspirin”) and /Pid/emr/diagnose [enteritis] [diabe-
tes] (i.e., a query selecting diagnosed children of the context nodes that
have both an enteritis child element and a diabetes child element)

Furthermore, healthcare-related queries are record oriented around Pid and EMRid
(i.e., EMR ID). Here, we describe query patterns of healthcare applications. In
Section 15.4, we formally define the scope of query syntax and conditions sup-
ported in Xbase.

15.3  System Architecture of Xbase
As Xbase is designed as an information appliance for healthcare applications, it
needs to support EMR-oriented queries and analytics on both content and struc-
ture data of EMRs. We utilize RDBMS for patient data and patient-profile-related
query conditions, and Hadoop for patient-clinical-data-related query conditions.
In this section, we describe the architectural design of Xbase starting with an over-
view of Hadoop [24].

The Apache Hadoop project develops open-source software for reliable, scal-
able, and distributed computing. Hadoop includes the following subprojects:

 ◾ HBase [26]: A scalable, distributed database that supports structured data
storage for large tables.

 ◾ HDFS [25]: HDFS is the primary storage system used by Hadoop applica-
tions. HDFS creates multiple replicas of data blocks and distributes them
on compute nodes throughout a cluster to enable reliable, extremely rapid
computations.

 ◾ Hive [27,28]: A data warehouse infrastructure that provides data summariza-
tion and ad hoc querying.

 ◾ MapReduce [8]: A software framework for distributed processing of large
data sets on compute clusters.

 ◾ Pig [9,20]: A high-level dataflow language and execution framework for par-
allel computation.

MapReduce is a programming model and an associated implementation for
processing and generating large data sets. Users specify a map function that pro-
cesses a key–value pair to generate a set of intermediate key–value pairs, and a
reduce function that merges all intermediate values associated with the same inter-
mediate key. Programs written in this functional style are automatically parallel-
ized and executed on a large cluster of commodity machines. The run-time system
of Hadoop takes care of the details of partitioning the input data, scheduling the
program’s execution across a set of machines, handling machine failures, and man-
aging the required inter-machine communication.

362  ◾  Cloud Computing and Software Services

Xbase utilizes Hadoop’s HDFS as storage for EMRs and their indexes (exclud-
ing those indexes associated with content range conditions of a patient), and
MapReduce for indexing EMRs and query processing for semi-structured data alone
with RDBMS for structured data. We do not utilize Hbase, Hive, and Pig due to
their lack of capability to handle structural information of XML. Comprehensive
analysis is provided later in Section 15.7 as well as why we select Hadoop over other
candidates, including Hive, Google’s Bigtable, and some sophisticated XML index
techniques. The system architecture of Xbase is illustrated in Figure 15.2, and the
functionality of each component is as follows.

 1. Connectors for applications: Xbase currently supports XQuery with online
analytic process (OLAP), data mining, and high-level programming API sets
for application development.

 2. Metadata: It stores operational information for Xbase including the following
four parts:

 a. KDB (Knowledge Database): This is used to store healthcare-domain-
specific knowledge, such as diagnosis classification, medical terms, treat-
ment procedure, medicine ingredient names, and doctors’ expertise. This

Processing
Manager

Transaction Manager

Hadoop ExecutorSQL Executor

Query
Manager Query Executor

Parser Scheduler

Index
Manager

I/O
Manager

Partitioning
Manager

Storage
Manager

RDBMS
Distributed file system (HDFS)Raw

storage

Connectors (XQuery with OLAP, data mining, and API extensions)

Healthcare-specific applications Enterprise applications

Encoding
logic

Catalog
info.

Metadata

KDB Query Rewriter

Xbase

Physical
Design
Advisor

Log

Figure 15.2  System architecture of Xbase.

Enabling XML Capability for Hadoop  ◾  363

KDB is needed for query relaxation, personalized result summarization,
and access control as well as data cleansing and terminology homogeniza-
tion during the EMR loading phase.

 b. Catalog information: It stores metadata of indexes and EMR schema in
Xbase. It also stores the statistics of EMRs, both content- and structure-
wise, and query workloads. The statistics is used by the Physical Design
Advisor when it recommends indexing strategies and by the Query
Manager when it processes queries.

 c. Encoding logic: Content and path information of EMRs is encoded into
characters and numbers when they are stored and indexed instead of
being in their initial forms. The purpose of such encoding is to reduce
the footprint of EMRs and their indexes on storage and in the memory.
The results and EMRs are converted into their original forms before they
return to the querying applications. Encoding logic is derived by the
Physical Design Advisor.

 d. Log: It stores the log of workload execution, index usage, and history
of indexing strategies recommended. This log is later used by Physical
Design Advisor.

 3. RDBMS: RDBMS is used to store, index, and retrieve metadata and patient
data of EMRs. RDBMS is also used to index and retrieve content by range
conditions of EMRs, which can be patient data, patient profile, and clinical
data. Currently, MySQL is used in Xbase. In the current default deployment,
a single instance of the stand-alone version of MySQL is deployed. Multiple
instances of MySQL RDBMS or a cluster version of MySQL RDBMS may
be deployed if RDBMS becomes a bottleneck.

 4. Query Manager: This component is built specifically for Xbase and has three
subcomponents as follows:

 a. Parser: It converts the input queries to an Xbase internal form and passes
the queries to the Query Rewriter.

 b. Query Rewriter: It looks up metadata (i.e., KDB, catalog information,
and encoding logic) and rewrites the queries into sub-queries for RDBMS
and Hadoop, respectively, and marks query trees with proper indexes, if
available.

 c. Scheduler: It examines the serializability of all predicates of each query
tree and generates an execution schedule in Xbase (in RDBMS and in
Hadoop, respectively, and across these two components). Details of the
scheduling logic are described in Section 15.5.

 5. Processing Manager: Since queries are processed by both RDBMS and Hadoop,
the Processing Manager is responsible for dispatching sub-queries to RDBMS
and Hadoop as well as for coordination, including passing intermediate result
sets across RDBMS and Hadoop and merging results. The SQL Executor
and the Hadoop Executor correspond to the query processor in RDBMS and
the workers in Hadoop, respectively. Since a transaction on a single EMR is

364  ◾  Cloud Computing and Software Services

actually carried out across multiple components in RDBMS and Hadoop, the
Transaction Manager is responsible for ensuring that the transaction on the
EMR is committed only when all sub-transactions are committed.

 6. Storage Manager: This component is a part of the standard distribution from
Hadoop without enhancement. It has three subcomponents, namely, I/O
Manager, Partitioning Manager, and Index Manager. The Storage Manager
of Hadoop is in charge of the actual placement of physical indexes and EMRs.
We store EMRs and their indexes into Hadoop via its APIs, and the actual
nodes where the EMRs and indexes are stored and how replicas are synchro-
nized is determined by Hadoop. In the current implementation, we use the
default value, 3, as the total number of replicas automatically created when a
physical block is stored in Hadoop. Replicas are created for load balance and
fault tolerance. How we map our logical design to the physical deployment
in Hadoop and how we map our query processing to the MapReduce frame-
work are described in Sections 15.4 and 15.5 in detail.

 7. Raw storage: We use the standard distribution of HDFS to store EMRs and
structure-related indexes.

 8. Physical Design Advisor: It takes application statistic information and rec-
ommended indexing strategies for both RDBMS and Hadoop parts. The
Physical Design Advisor has two main components (not shown in the figure)
as follows:
• Placement Manager: It is responsible to prepare and store the content

(including keys, data guide, raw clinical data, Bloom filter indexes,
etc) that will be actually stored as a “physical block” on HDFS under
Hadoop. The content structure of a physical block in Xbase over Hadoop
is described in Section 15.5.3.

• Indexing Manager: It is responsible for creating indexes for all semi-
structured data and then passing the indexes to the Placement Manager
to place them on Hadoop. Details of the Indexing Manager are presented
in Section 15.4.

15.4  Indexing
Xbase is a record-oriented system that manages healthcare information with record
IDs. Each patient, EMR, and clinical record have IDs; thus, Xbase manages all
XML documents with a key and its value. Each document has a global unified ID
as the key. All the other data is regarded as the value. In this section, we describe
how we apply four types of indexes to content and structural information.

15.4.1 Content and Structures of EMR
An example of the tree-structured EMR is illustrated in Figure 15.3. The tree value
of EMR contains patient data, patient profile, and clinical data from the left to the

Enabling XML Capability for Hadoop  ◾  365

right. In our current implementation, the patient data is structured, which is stored
as relational data, and the patient profile and clinical data are semi-structured data,
stored as XML data. The EMR consists of two types of information—content and
structure, as follows:

 1. Content:
• Fine-structured content (FC), as shown in Figure 15.3a: In an EMR, only

patient data, such as Pid, patient age, name, and address, is FC and
can be stored in RDBMS to utilize its indexing and query processing
capabilities.

• Numerical value content (NC), as shown in Figure 15.3b: NC has numeri-
cal values. Range queries usually are issued over NC. NC, separated from
path structures, can be stored in RDBMS to utilize B+tree indexes for
efficient query processing.

• Set value content (SC), as shown in Figure 15.3c: Each SC contains a set
of values following the same tag. An example of SC is symptom. Usually,
the query over SC also contains a set of values. For fast query processing,
the index structure for set operation should be applied over SC. In our
system, we use Bloom-filter-based index [4].

• Frequently accessed path content (PC): In Figure 15.3d, some paths, for
example, /patient profile/smoking and /patient pro-
file/exercise, are frequently accessed together. Given that each
path can also be considered as a value, Bloom filter indexes, instead of
data guide indexes [10], are applied to a set of paths to facilitate efficient
query processing.

EMR

Name

Age

Jeff

33

Clinical record

Date

Department

Symptom
Diagnose Treatment

7/27/09
Digestion

5

Diarrhoea

Frequency

Watery

Status

10

Blood

Leukocyte

200

Lymphocyte

Enteritis

Berberine

Medicine

2/2/day

Appendix

Enteroscope

Scope

20

Inflammation

Size

Surface

Degree

Injection

Penicillin

2/2/day

4
Fever

CRid

1

Clinical record

CRid

2

…

1

(a)

(c)

(b)

(e)

Cough
Headache

Pid

Patient profilePatient data

History

Exercise

NoNo

Smoking

Father Depression

High blood pressure

Yes

Yes
(d)

General

(c)

Figure 15.3  Tree-structured EMR.

366  ◾  Cloud Computing and Software Services

 2. Structure (S), as shown in Figure 15.3e: S represents the structure of
each clinical record. Through the path in S we can find the content of
the data including SC and NC. XML path index techniques, such as in
[10,15,16,19,30], can be applied here.

Note that the design decision of applying Bloom filter indexes or data guide
indexes for XML structures are based on the analysis of the Physical Design
Advisor. The Physical Design Advisor first examines the occurrence frequency of a
path in all records. It recommends indexing the path using FC-Indexes if it occurs
in all records, using Bloom filter indexes if it occurs in the majority of records,
and using data guide indexes if it occurs in a small portion of records. In this
chapter, we do not discuss the details of the recommendation process due to space
limitations.

15.4.2 Types of Indexes
In order to directly apply indexing schemes to native XML structures and content,
we deployed four types of indexes in Xbase as follows:

 1. Fine-structured data content index (FC-Index): With Pid as the primary key,
FC is stored in relational tables. Traditional RDBMS indexes can be utilized
for retrieving a proper ID set according to the query’s predicates. We call the
index structure of this part FC-Index. An example of FC-Index is shown in
Figure 15.4a. The metadata contains FC’s prefix path and its correspond-
ing address. FC-Index structure is built over all the patient records without
partitioning.

 2. Numerical value content index for range query (R-Index): Xbase builds sev-
eral special B+ tree indexes for range queries over NC. One metadata table
holds the pairs of each path and its corresponding R-Index address. For each
address, a relational table is built to store all pairs of Pids or CRids and their
content. An example of FC-Index is shown in Figure 15.4b. R-Index is built
over all the patient records.

 3. Set value content index with Bloom filter (BF-Index): In the patient records,
some attributes are described by tens, even hundreds, of data values. For
example, a query including 20 symptoms can be issued over all the patient
records, and there are more than 200 symptoms for each disease. Because the
data value is a string (numerical values in SC and path value, for example,
emr/patient profile can also be considered as strings) in essence,
large-scale string matching is not trivial. We use the Bloom filter [4] signa-
ture and the Bloom filter tree index structure (BF-Index) to speed up the set
query filtering process.

Enabling XML Capability for Hadoop  ◾  367

The Bloom filter signature is a bit vector that represents a set of objects
and is often used as an approximate filter for supporting membership query.
Its advantages like very quick comparison, easy maintenance, and none false
negatives lead to its wide adoption in various applications [7,11]. A Bloom-
filter-based signature consists of a vector of m bits and k independent hash
functions ranging from 1 to m. According to the formula p = (1 − e−kn/m)k [4], n
is the distinct number of elements. We can observe that the size m of the vec-
tor varies with the false positives rate. A Bloom filter applies to set values that
do not consider the order. However, since we are assuming a single schema for
XML, the order does not matter.

The signature of a value set is built through (1) hashing each data to k
values fi1, fi2 … fik, by k hash functions h1, h2,… hk ; and (2) setting the cor-
responding positions of these hash values to 1 on the m-bit vector. (For exam-
ple, if a particular hash value equals to 4, we should set the fourth position of
the vector to 1.) Based on the individual data signatures, a set signature can
be computed over them with an “OR” bit operation. As soon as a query with
a value set condition comes, its signature, sq, is constructed at first, and com-
pared with the data set signature, sd. If sq ∧ sd = sq, query q may be potentially

Metadata for FC-Index

Metadata for BF-Index

Metadata for BF-Index

BF-Index stored in sequence files

BF-Index stored in sequence files

Physical structure for each data block on hadoop
Keys <CRid, Offset>

<1,0×0000>
<2,0×0400>

DG+-Index Clinical records Keys
4

6

5

3

2

1

7
N

Y
≥64 M

Hadoop nodes
for storing data

Hadoop nodes for
storing BF-Index

DG+ Records
Clinical records1...
Clinical records8

Path Bloom Index Bloom signature [CR IDs] {Content}
[1, 2, 3, 8] {headache, fever, ...}
[4, 6, 7] {high blood sugar}, ...

.......

0111110101010101
1100000101011111

Bloom signature [CR IDs] {Content}
[4, 5, 6] {$path1...}
[1, 7, 8] {$path2...}

.......

0110000101010
1100010000011

emr/clinical record/symptom/general BF-Index file1

emr/.....

Path
emr/patient profile

emr/.....

.......

Bloom Index
BF-Index file 57

.......

(a) (b)

(c)

(d)

(e)

Pid
Path
emr/.../size

Range index
R-index

Metadata for R-Index
R-Index over

relational tables

CRid Size
1 20
2 10

Name Age CR IDs
1 Jeff 33 1, 2, 3
2 Gene 32 4, 5

FC-Index over relational tables

Path
emr/patient data

FC-Index
FC-Index

Figure 15.4  Indexes for Figure 15.3. (a) FC data. (b) NC data. (c) SC data. (d) PC 
data. (e) S data.

368  ◾  Cloud Computing and Software Services

contained in the data. Otherwise, q can be pruned safely. Benefited from the
bit operation, all computations among signatures are extremely efficient.

BF-Index is built over the SC part and some path value set PC of all
the patient records. As shown in Figure 15.4c, one metadata table holds all
paths that have set content. Each path is associated with a BF-Index file
name, as shown in the relationships ① and ② in Figure 15.4c and d. The
BF-Index file is organized as key–value pairs and stored as a sequence file
on Hadoop. The value includes a set of CRids and the raw data content in
those IDs to be indexed, while the key is the Bloom filter signature for the
raw data content. ① points to the BF-Index file PC set data. For example, if
a record CR1 contains the paths with the prefix emr/patient profile,
P = {emr/patient profile/smoking, emr/patient profile/
exercise, emr/patient profile/history …}, the Bloom fil-
ter signature, which is the key, is built over the tree paths set P. The value
includes the CRids whose PC signature is the same with CR1 and the con-
tent is the tree paths. While ② indicates SC data, through testing the query
signature with the data signature, large number of unqualified records will
be pruned. However, the resultant CRids passing the Bloom filter are still
not accurate, although we can adjust the false positives to be very small.
Therefore, we also store the data contents in order to ensure the corrections.
For example, if the clinical records 1, 2, 3, and 8 all have emr/clini-
cal Record/symptom/{fever, cough and headache} whose
BF signature is 0111110101010101, then, in the BF-Index file, there is a pair
<0111110101010101, [1, 2, 3, 8] {fever, cough, headache}>. When building
the BF-Index structure, Hadoop would partition the BF-Index file of each
path into small file blocks and store them on different Hadoop index nodes,
as shown in the process of ③ in Figure 15.4c.

 4. Structure index based on DataGuide (DG+-Index): For the structure predicates
of the query, Xbase uses the DG+-Index structure, which is shown in Figure
15.5. DG+-Index is designed based on the DataGuide index technique [10],
which is a typical XML structural index for path expressions. To enhance the
pruning power, DG+-Index also stores the CRid set on each internal indexing
node indicating the clinical records that include the prefix path from the root
to the current node. For example, in Figure 15.5, there is a CRid set {1, 2, 8}
attached on the node “medicine.” Therefore, the path clinical Record/
treatment/medicine is only contained in the clinical records 1, 2, and
8. Given a DG+-Index and a CRid, Xbase can also find the paths that are
contained in that clinical record.

As illustrated in Figure 15.4d, each index is stored in a DG+-Index file on
HDFS and the file is divided into blocks by HDFS. We further divide each block
into three parts: the key part, the DG+-Index part, and the data part. The key part
contains the CRids and the offset of the clinical records that are stored in the data

Enabling XML Capability for Hadoop  ◾  369

part. The DG+-Index part contains the index structure for all the clinical records in
the data part, while the data part stores the actual clinical records assigned to this
block. Given a CRid, we can decide whether a clinical record is located in that data
block or not. Given a path, the DG+-Index part is accessed and the related CRid is
obtained or NULL is returned if no CRid can be found. With the CRid and the
offset, we can further locate the clinical record in the block.

We store the clinical records that belong to the same patient on the some node
in the index building phase. Before inserting a clinical record, the index manager
would check the potential size of the current index after the insertion. If the size is
bigger than the size of the block (we use 64M as an example block size), then the
index file is flushed to Hadoop data nodes as a block appending to the DG+-Index
file, which is shown in process ⑦ in Figure 15.4d. Otherwise, the clinical record
and its key are inserted, as illustrated in processes ⑥ ④, and the DG+-Index is also
updated, as shown in process ⑤ in Figure 15.4d.

Query processing for XML path information with DG+-Index requires tree tra-
versal from the top down to the nodes where no match of prefix path can be found.
It is considered a relatively costly step in query processing. In Xbase, we parallelize
this step by partitioning the structural content into multiple nodes, and a DG+-
Index is built for structural content stored in a single node; thus, the DG+-Index
search is distributed and parallelized among all nodes.

The four types of indexes have different inputs and outputs, as illustrated in
Figure 15.6. As FC-Index and R-Index are in RDBMS, they are built over both
keys and values. Xbase can use clinical report IDs (CRids) to probe both of the
indexes and get the corresponding values. Also, values can be used for probing the
index to obtain their clinical report IDs.

Clinical record

ID
Date

1, 2, 3, 4, 5, 6, 7, 8

1, 2, 3, 4, 5, 6, 7, 8

1, 2, 3

2, 3

1, 3

1, 2, 3, 4, 5, 6, 7, 8

6, 7, 8

6, 7

1, 2, 8

2, 8

3, 4, 5,

3, 4, 5

3, 4, 5 4, 5

3, 4

1, 2, 3, 4, 5, 6, 7, 8

Department Symptom
Diagnose

Enteritis

Medicine Injection

PenicillinBerberineScope

EnteroscopeBlood

Leukocyte

Lymphocyte Inflammation

Size Degree

Treatment

Figure 15.5  Index for Figure 15.3e.

370  ◾  Cloud Computing and Software Services

For BF-Index, it only accepts a set of values. After the filtering process, CRids
are returned. Among the four indexes, all the indexes can take advantages of serial-
chain-style execution, except BF-Index. As we have introduced above, on each
node of DG+-Index, the clinical report IDs that contain their prefix paths are also
indexed. Therefore, either paths or CRids can be used to probe DG+-Index. The
same set of CRids used as inputs for probing DG+-Index need to be distributed over
all nodes; each node can return qualified CRids as soon as there is no matching.

15.4.3 Building Index
For every piece of information in the patient records, the Xbase Indexing Manager
will automatically determine which index structure should be used. For each
path in the patient records, the Indexing Manager would determine which index
structure should be selected for indexing. To build the index structures, there are
two-phases as follows.

First, rule generation: The Xbase Indexing Manager first generates a set of rules
according to the query workload and the knowledge of the structure characters
from sampling the patient records. The rules for FC-Index are determined by the
fine-structured data parts. The rules for R-Index are generated based on the char-
acters of the NC data with frequently issued queries for a certain range. Given
a workload threshold α, those NC data whose query workload is bigger than α
would be indexed by R-Index. The paths with set values should be included into the
BF-Index. From the sampling, Xbase collects the information of different number
of values Dit under a certain tag T over all the sample records, and average number
of values Avg under the same tag T in each record. If Dit is bigger than β and Avg
is bigger γ, then the path over tag T should be indexed by BF-Index. Otherwise,
DG+-Index is better than BF-Index for reducing the overhead in the index struc-
ture. If a path cannot be included into any of the above rules, it would be indexed
by the DG+-Index structure. The parameters α, β, and γ vary with different system
settings and application requirements. The index structures are different with dif-
ferent α, β, and γ.

Second, index building: As shown in Figure 15.7, if a path can satisfy FC-Index
rules, it should be indexed by FC-Index. Else, it is tested with R-Index rules. If it

CRid/value CRid/value Value Value/CRid

Value/CRid

FC-Index R-Index BF-Index
DG+-Index

Value/CRid CRid CRid

Figure 15.6  Input/output of index structures.

Enabling XML Capability for Hadoop  ◾  371

cannot satisfy both FC-Index and R-Index, it should continue testing against the
rules for BF-Index. If there are still no matches, DG+-Index will be selected for
indexing that path.

15.5  Query Processing
Query processing in Xbase has several steps. When a query is submitted to Xbase,
it is sent to the parser to be converted into an Xbase-specific internal format and
then is passed to the Query Rewriter. A query with multiple conditions is divided
into several sub-queries. Through the metadata of different index structures, the
sub-queries can find their proper index addresses. Then, each subquery is rewrit-
ten into SQL or XQuery accordingly, depending on whether it runs at RDBMS or
Hadoop. All the well-written sub-queries are then sent to the query plan genera-
tor for developing index-probing orders. After probing the index structure, each
sub-query may obtain a set of CRids that satisfy the individual predicates. Then,
the Result Consolidator will calculate the CRids for all the sub-queries. With the
resultant CRids as the keys, the patient records will be retrieved and returned to
the query. The details of each step are introduced in Sections 15.5.1 through 15.5.4.

15.5.1 Query Rewriting
Followed by the query parser, the Query Rewriter partitions each issued query into
multiple sub-queries. For example, a query such as “Find the clinical records with
age between 20 and 40, having the enteroscope check with inflammation of appendix

Patient
records

Indexing Manager

emr/name
emr/age
...

FC-Index R-Index BF-Index
DG+-Index

YesYesYes

No No Noemr/.../size
emr/.../temp
...

emr/symptom/x
...

Figure 15.7  Indexing Manager.

372  ◾  Cloud Computing and Software Services

within 25 square mm and with the symptoms of headache, fever and cough” will be
rewritten into the following four sub-queries:

S1:emr/symptom/enteroscope/scope = appendix
S2:emr/symptom/enteroscope/inflammation/size < 25
S3:emr/symptom/headache, fever, cough
S4:age >20 and <40

After probing the metadata tables, the sub-queries would find their own index
types and index’s addresses. Then, each sub-query will be translated into SQL and
XQuery. In this simple example, we can find that S1 is suitable for FC-Index or
DG+-Index, S2 for R-Index or DG+-Index, S3 for BF-Index, and S4 for FC-Index. A
more complex example is as follows.

“Find the top 2 frequently occurred diseases in all the clinical records which
belong to Diabetes mellitus in ICD-9 family.” The ICD-9 code stands for the
International Classification of Diseases, 9th Revision [1]. In ICD-9, each disease
has an unique code. The code of Diabetes mellitus is 250. An example is shown in
Figure 15.8, where the path 250-250.1-585.1 indicates a detailed disease belonging
to category 250. To answer the query, for each path in the ICD-9 code rooted at
the sub-root 250, we need to calculate the number of patients whose clinical records
include that path. Then, the top two paths are selected as the result. The query
is rewritten as follows, and the queries (and sub-queries) are executed in the way
described in Section 15.5.2:

<Result>
 for $x in doc (ICD9.xml)/root/250/*
 for $y in $x/*
 for $z in $y/*
 <condition path=$x/$y/$z>
 for $pid in doc(patients.xml/*
 for xy$z in $pid//*
 count $number

ICD9

Diabetes mellitus

Diabetes with ketoacidosis

250
Chronic kidney disease

585. . .

.

. . .

. . .

250.1

Chronic kidney disease
585.1

Figure 15.8  ICD-9 example.

Enabling XML Capability for Hadoop  ◾  373

 order by $number
 count $count
 while $count < 2
 return <number>$number</number>
 </condition>
</Result>

15.5.2 Plan Generation
The query plan in Xbase is the order of index probing. Xbase’s four index structures
can be parallel-probed, as shown in Figure 15.9a. Using the example in Section
15.5.4, the sub-queries S1, S2, S3, and S4 can probe the four index structures at the
same time, respectively. Each sub-query can get the results from one of the index
structure. For example, the result of sub-query S4 is outputted through FC-Index
and the result of S1 is obtained from probing DG+-Index. Alternatively, the four
index structures can be probed in the serial-chain manner, such as in Figure 15.9b.
Sub-query S3 can probe BF-Index first and get the result (a set of Pids). Then, the
result of S1 together with the other sub-queries S2 and S4 can probe FC-Index and
R-Index in a parallel manner. In the last step, the results of S2, S3, and S4 probe the
last index, DG+-Index, with S1 to obtain the final result.

Considering the example in Figure 15.9, suppose that the selectivity of sub-
query S4 is much bigger than that of S1. If the parallel plan is adopted, after S1 gets
the result, Xbase should wait for S4’s result before doing consolidation. However,
if the serial-chain plan is chosen, S3’s result, which are a small number of Pids, is
used to probe FC-Index and check the predicate of S4. In this way, the result can
be generated faster if the selectivity of S3 is small. The plan of whether to choose
parallel or serial-chain index probing and how to serialize the sub-queries should be
calculated according to the selectivity of the sub-queries.

Xbase’s task scheduler has the responsibility for generating sub-queries’ execu-
tion orders. Since DG+-Index has higher cost than the other three index structures,

Query

Query

S4 S2 S3

S3

S1

FC-Index R-Index FC-Index R-IndexBF-Index

BF-Index

CRid

CRid(a) (b)

Result of S3 and S4 Result of S3 and S2

Result of S2, S3, S4 and S1

DG+-Index

DG+-Index

Figure 15.9  Parallel versus serial-chain execution. (a) Parallel index probing. (b) 
Serial-chain index probing.

374  ◾  Cloud Computing and Software Services

it is better to be probed in the end of the plan. BF-Index can only accept a value,
and it is very fast due to bit operations during query probing. Therefore, Xbase
prefers to put BF-Index at the front of the plan. For the other two index structures,
FC-Index and R-Index, different parallel and serial plans can be selected by apply-
ing many of the traditional optimization rules in the RDBMS.

algorithm.15.1.Query.Processing.in.xbase

input: Query Q.
output: Clinical Record ID (CRid).
 1: Parser Q into internal format;
 2: Partition Q into sub-queries Q = {S1, S2…Sm} and find proper index structure

for each query I = {I1, I2…Im};
 3: Rewrite each sub-query into Xpath Query or SQL;
 4: for each sub-query Si do
 5: if Ii ≠ DG+-Index then
 6: P ← Si;
 7: end.if
 8: end.for
 9: Task Scheduler ← P;//Sub-queries with DG+-Index are scheduled at the end

of serial chain
10: Sort Q according to the plan.
11: for each sub-query Si do
12: if Ii ∞ {FC-Index, R-Index} then
13: Fetch result CRids from RDBMS through JDBC;
14: else
15: Create Map-Reduce job to get CRids;
16: end.if
17: end.for
18: Result CRid set ← Join the result from different sub-queries;
19: Data Retrieval from different Hadoop nodes.

15.5.3 Plan Execution
The query plan is then sent to Xbase’s Processing Manager. For those sub-queries
that require probing indexes, such as FC-Index or R-Index, the central relational
DB is searched through the JDBC interface. For those sub-queries that need to
probe indexes, like DG+-Index or BF-Index, we create a MapReduce job (or distrib-
uted tasks). Through the map function, the partial results are obtained.

We deploy BF-Index and DG+-Index on Hadoop to utilize its MapReduce
computing framework. When a search on BF-Index is initiated, a MapReduce job
is started where the mapper function is to check the compatibility between the
given signature (generated based on the query) and each signature in the sequence

Enabling XML Capability for Hadoop  ◾  375

file. If a signature is found to be compatible, the value (actual content of the clini-
cal record) is further checked to see if it matches the query in order to eliminate
false positives. The CRids of the matching clinical records are returned by the
mapper function, and the reducer function collects all the CRids and sorts them.
In the case of DG+-Index, similarly, a MapReduce job is created for each probe
on DG+-Index. A hint CRid set (i.e., the partial result generated by previous sub-
queries) may be an additional input to the mapper function. The mapper function
first checks the key part to see if this block is compatible with the given hint CRid
set. If not, then the task is completed with an empty result. If it is compatible, a
further search through the DG+-Index is conducted to identify matching clinical
records in the data part. The reducer function is the same as that in the probing
BF-Index.

In Xbase’s implementation, what we need is a distributed storage and pro-
cessing framework, so that BF-Index and DG+-Index can be distributed into
multiple nodes. And the process code is also replicated and distributed to these
nodes for processing local data. The final results are gathered into the Query
Executor.

15.5.4 Result Consolidation and Data Retrieval
After probing the index structure, each sub-query should obtain a set of IDs as a
temperate result. The result Consolidator will perform the “AND” or “OR” opera-
tion over these IDs to develop the final ID set and calculate the statistic informa-
tion over the result set, such as “Find the percentage of” in our example query. For
some of the queries, the original clinical records need to be retrieved. Based on the
ID as the key, the requirement is propagated to data stores in the Data Retrieval
step. In Xbase, the data are stored over Hadoop nodes. The query processing pro-
cess is summarized in Algorithm 15.1.

15.6  Experimental Evaluations
We have conducted evaluations of two prototype EMR database systems: (1) Xbase,
which is a hybrid implemented on both Hadoop and RDBMS, and (2) a proposed
RDBMS-based solution as a strawman implementation to compare with Xbase.
We start with the general setup for the experiments and then the evaluation results.

15.6.1 General Setup

15.6.1.1 Hardware and Software Configurations

The experiments were conducted on a Hadoop cluster of 12 desktop-level comput-
ers. Each computer has an Intel Core 2 Duo 2.66 GHz CPU, 2G memory, 160G

376  ◾  Cloud Computing and Software Services

hard disk, and Ubuntu 9.04. The computers are connected via a 100 M fast eth-
ernet switcher. The version 0.20.0 of Hadoop is used in our experiments, with the
configuration of 1 name node, 1 job tracker, and 10 slave nodes (i.e., data nodes and
task trackers). The replication factor is set to 3, while the maximum number of map
and reduce tasks that will run simultaneously triggered by a task tracker is set to 2.
As we use a single reduce task for each query job in our experiments, the number of
reduce tasks per job is set to 1. The Hadoop cluster is used by Xbase only.

Additionally, an 8-core server (2 Intel Xeon X5460 processors, 4 cores in each
CPU package, 12 MB L2 cache shared by 2 cores, 16 GB globally shared DRAM,
and SUSE 10.0) with MySQL Cluster 5.1 installed is employed to store the rela-
tional data for Xbase and the strawman RDBMS implementation for the EMR
application.

The prototype system is written in Java (JDK 1.6) and has two parts: index
builder and query processor. The index builder scans source schema and XML
documents (i.e., clinical records), and then creates corresponding index structures
on the database and/or the Hadoop cluster. The source XML documents are also
stored as part of the DG+-Index on Hadoop. The query processor receives queries
from the clients, composes query plans, and then executes them on the database (as
SQL queries) and the Hadoop cluster (as MapReduce jobs).

In the experiments, we vary the following parameters: (1) the volume of data,
(2) the complexity of the queries, and (3) the size of HDFS file blocks in Hadoop
to measure their impacts on the query response time.

15.6.1.2 Data Sets, Query Patterns, and Solutions

Our data generator is based on XMLgen from XMark [2] with our own DTD
designed for clinical records. We generate the clinical records with sizes vary-
ing from 5K to 625K records with a depth around 10 and the largest fanout
around 50.

The distribution of the queries’ predicates used in the experiments are sum-
marized in Table 15.1. Three queries with predicates that utilize mixed types of
indexes are denoted as Query 4, Query 8, and Query 16. Each of them contains
different number of predicates requiring different sets of indexes. We also prepare
two queries, one requiring paths with BF-Index while the other with DG+-Index.
We also list the numbers of MapReduce jobs required to initiate for each query.
Please note that all predicates requiring DG+-Indexes can be combined into a single
MapReduce job as a single job can check multiple conditions at the same time. On
the other hand, each predicate requiring BF-Indexes needs to invoke a MapReduce
job separately, since BF-Indexes cannot be shared nor combined. Other predicates
requiring no DG+-Index nor BF-Index will be used on RDBMS, and thus do not
need to invoke a MapReduce job.

To compare the query processing time, we develop a pure RDBMS-based
EMR database system to compare with the Xbase solution. We implement the

Enabling XML Capability for Hadoop  ◾  377

RDBMS-based strawman EMR database using MySQL Cluster 5.1 on an 8-core
server. The schema is designed as one content table with three columns: #CR_id,
#PATH, and #VALUE. For each XML-formatted clinical record, all the leaf
nodes are extracted and stored in the content table together with its path and the
clinical record identifier as triple tuples. An example of storing an XML clini-
cal record in a relational table with the (#CR_id, #PATH, #VALUE) schema is
illustrated in Figure 15.10. Table 15.2 lists the statistics of the relational tables in
different data scales. As we can see, relational tables are not suitable for storing
XML documents in terms of both space efficiency and query processing effi-
ciency. The table shows to store 700,000 clinical records, which will result in
more than 1 billion rows in the table. In the experiments presented in the later
subsections, we show that such RDBMS-based implementation is far less effi-
cient than Xbase, which is a hybrid system that consolidates the advantages of
both RDBMS and Hadoop.

15.6.2 Effects of Data Scales
We first conducted experiments for different data volumes with a DG+-Index block
size of 64M and BF-Index block size of 1M, which is denoted as the pair (64M,
1M). Figure 15.11 shows the average query processing time of the same queries on
various volumes of data sets.

From Figure 15.11, we can see that the query processing time increases sublin-
early with the increase of the data volume. This is because the number of blocks
needed to be accessed grows with the increase of data volume, given the same
block size. Therefore, the number of map tasks to be processed in one MapReduce
job also increases. This impacts the performance of searching on DG+-Index and
BF-Index. With the increase of query complexity, the number of MapReduce jobs
to be submitted for one query also increases. To this end, the overall query process-
ing time becomes larger.

Table 15.1  Query Complexity

No. of
Predicates

Predicates
Requiring
FC-Index

Predicates
Requiring
R-Index

Predicates
Requiring
DG+-Index

Predicates
Requiring
BF-Index

No. of
MapReduce

Jobs

Query 4 4 1 1 1 1 2

Query 8 8 1 2 2 3 4

Query 16 16 2 6 4 4 5

Query-BF 4 0 0 0 4 4

Query-DG+ 4 0 0 4 0 1

378  ◾  Cloud Computing and Software Services

Figure 15.12 shows the processing time of queries with mixed conditions on
various volumes of data by the strawman RDBMS-based solution. Obviously,
the increases of time consumption follow the trend of over-linear increases. And,
with the increase of complexity of query conditions, the processing time of the
strawman RDBMS-based solution increases over-linearly. It suggests that for a

Clinical record

Department Symptom

Diagnosis Treatment
1 Digestion section

Diarrhoea Cough Fever

Frequency Status

5 Watery

Headache

Blood

Leukocyte

Enteroscope

Scope

Enteritis

4

Medicine Injection Auto refill

NoPenicillin

2/2/day 2/2/day

Berberine

Appendix
20010

Lymphocyte

CRid Path

1

1

1

1

1

1

1

1

1

1

1

1

1

Clinical record/department

Clinical record/symptom/diarrhoea/frequency

Clinical record/symptom/diarrhoea/status

Clinical record/symptom

Clinical record/symptom

Clinical record/symptom

Clinical record/symptom/blood/leukocyte

Clinical record/symptom/blood/lymphocyte

Clinical record/symptom/enteroscope/scope

Clinical record/diagnosis/enteritis

Clinical record/treatment/medicine/berberine

Clinical record/treatment/injection/penicillin

Clinical record/treatment/auto refill

Value

Digestion section

5

Watery

Cough

Headache

Fever

10

200

Appendix

4

2/2/day

2/3/day

No

CRid

Figure 15.10  Example of RDBMS-based XML clinical record implementation.

Table 15.2  Data Statistics of Pure 
RDBMS Solution

Number of Records Number of Rows

5K 7.5M

25K 37.5M

125K 187.5M

625K 937.5M

Enabling XML Capability for Hadoop  ◾  379

centralized database system, loading and query processing over large-scaled data
involves high cost.

15.6.3 Effects of Query Complexity
To show the differences between Xbase and pure RDBMS solutions, we compare
the processing time of Query 16 on various volumes of data. The results shown
in Figures 15.13 through 15.15 indicate that under the small data scales, less than

 0

 2,000

 4,000

 6,000

 8,000

 10,000

 12,000

 14,000

 16,000

 18,000

5K 25K 125K 625K

Pr
oc

es
sin

g
tim

e (
s)

Number of records

Query 4
Query 8
Query 16

Figure 15.12  Effects of pure RDBMS solution under different data scales.

0
200

400
600

800

1000
1200

1400
1600

1800

2000

5K 25K 125K 625K

Pr
oc

es
sin

g
tim

e (
s)

Number of records

Query 4
Query 8
Query 16

Figure 15.11  Effects of Xbase solution under different data scales.

380  ◾  Cloud Computing and Software Services

25K records, the Xbase and pure RDBMS solutions have similar query process-
ing times. With the increase of size of data scale, the processing time of the pure
RDBMS increases much faster than the Xbase solution. It is because that, tradi-
tionally, a centralized database system lacks the ability of scaling up. To process
the queries over large-scaled data, even with a powerful server, the bottleneck of
the system is in the I/O layer, data loading, and memory access. Since Xbase’s
XML processing capability is built on top of Hadoop, such a bottleneck can be
solved by load distribution across a large number of smaller servers by the Hadoop
infrastructure.

 0

 2,000

 4,000

 6,000

 8,000

 10,000

 12,000

 14,000

 16,000

 18,000

5K 25K 125K 625K

Pr
oc

es
sin

g
tim

e (
s)

Number of records

Xbase Q8
RDBMS Q8

Figure 15.14  Effects of Query 8 under different data scales.

 0

 2,000

 4,000

 6,000

 8,000

 10,000

 12,000

 14,000

 16,000

 18,000

5K 25K 125K 625K

Pr
oc

es
sin

g
tim

e (
s)

Number of records

Xbase Q4
RDBMS Q4

Figure 15.13  Effects of Query 4 under different data scales.

Enabling XML Capability for Hadoop  ◾  381

We also conducted experiments to evaluate queries with predicates requiring only
BF-Indexes and DG+-Indexes, respectively. In these experiments, we set a relatively
small size for the BF-Index file. This is because we expect a rather small size of
key–value pairs for each Bloom filter. This is true if the parameters of the Bloom
filter signature are selected appropriately. However, if the false-positives rate of such
a signatures is high, the size of each key–value pair could be very large. In such a
case, if the block size of the BF-Index file is smaller than the size of each key–value
pair, the performance of probing BF-Index will be substantially impacted because
the locality of the mapper task is violated and considerable amount of data have to
be transferred among nodes.

Figure 15.16 gives the average query processing time of queries requiring only
DG+-Index and BF-Index, respectively. The experiment shows that the DG+-
Index-related condition check is much more expensive than the Bloom-filter-
related condition check. The reason is that for BF-Index, after the coded query
condition is sent to map function, most blocks are filtered by the Bloom filter
mechanism. Thus, the total block search time consumed decreases. As for DG+-
Index, it can be applied only to the path-related conditions, but not to the values
of the leaf nodes along the paths. As a result, raw XML-formatted clinical records
have to be loaded to check conditions related to leaf nodes’ values. In the worst
case, when most clinical records contain such paths, the bodies of most blocks
have to be loaded and checked sequentially throughout the whole block. Thus,
the processing time is high even when DG+-Index is applied. Additional improve-
ment can be done by clustering structurally similar clinical records and placing
them on the same blocks in order to reduce the processing time of path-related
conditions.

 0

 2,000

 4,000

 6,000

 8,000

 10,000

 12,000

 14,000

 16,000

 18,000

5K 25K 125K 625K

Pr
oc

es
sin

g
tim

e (
s)

Number of records

Xbase Q16
RDBMS Q16

Figure 15.15  Effects of Query 16 under different data scales.

382  ◾  Cloud Computing and Software Services

15.6.4 Effects of Hadoop-Specified Configurations
Given the fixed data volume, Figure 15.17 shows the query processing time when
different block sizes are configured for index files on HDFS over 25K records. We
can see from Figure 15.17 that with the increase of index file block size, the number
of blocks per file and the number of tasks per MapReduce job decrease. Though
each mapper task spends relatively more time to process a bigger block, since the

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120
 130
 140
 150

(16M, 256K) (32M, 512K) (64M, 1M)

Pr
oc

es
sin

g
tim

e (
s)

Different block size (DG, BF)

Query-BF
Query-DG

Figure 15.17  Effects of different block sizes.

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 1800

 2000

5K 25K 125K 625K

Pr
oc

es
sin

g
tim

e (
s)

Number of records

Query-BF
Query-DG

Figure 15.16  Effects of different data volumes.

Enabling XML Capability for Hadoop  ◾  383

initialization of a mapper task also takes some time, the overall processing time
per job drops from (16M, 256K), (32M, 512K), to (64M, 1M). Thus, the experi-
ments suggest that a larger block size will lead to a comparatively lower overhead of
Hadoop job invocation. However, a larger block size will only be beneficial if the
number of mapper tasks per job is bigger than the number of available processing
slots in the Hadoop cluster; otherwise, the computing resources of the system may
be underutilized. To this end, selecting a block size that optimizes the system per-
formance is quite complex and almost unfeasible given many parameters involved,
such as the number of concurrent Hadoop workloads, the distribution of data skew,
and the QoS of network transformation. A formal study of this subject would be
left for future research work.

15.7  Related Work
XML is emerging as a de facto standard for information exchange among various
applications on the World Wide Web. There has been a growing need for develop-
ing high-performance techniques to query large XML data repositories efficiently.
One important problem in XML query processing is twig pattern matching, that is,
finding in an XML data tree all matches that satisfy a specified twig (or path) query
pattern. The survey in [12] classifies and compares major techniques for twig pat-
tern matching. It considers two classes of major XML query processing techniques:
the relational approach and the native approach. The relational approach directly
utilizes existing relational database systems to store and query XML data, which
enables the use of all important techniques that have been developed for relational
databases. We build one prototype system of this kind (as shown in Figure 15.10)
as a strawman implementation to compare with Xbase. In the native approach, spe-
cialized storage and query processing systems tailored for XML data are developed
from scratch to further improve XML query performance.

As implied by existing work reviewed in [12], XML data querying and manage-
ment are developing in the direction of integrating the relational approach with the
native approach, which could result in higher query processing performance and
also significantly reduce system reengineering costs. We call this a hybrid approach
to XML database system. Xbase presented in this chapter can be considered such a
hybrid system, while Xbase utilizes the Hadoop infrastructure to implement XML
structural information repository and search capability.

Hive [27,28] is a data warehouse infrastructure built on top of Hadoop that
provides tools to enable easy data summarization, ad hoc querying, and analysis
of large datasets’ data stored in Hadoop files. It provides a mechanism to put
the structure on this data, and it also provides a simple query language called
QL, which is based on SQL and which enables users familiar with SQL to query
this data. At the same time, this language also allows traditional MapReduce

384  ◾  Cloud Computing and Software Services

programmers to be able to plug in their custom mappers and reducers to perform
more sophisticated analysis, which may not be supported by the built-in capabili-
ties of the language.

Bigtable [5] is a distributed storage system for managing structured data that
is designed to scale to a very large size: petabytes of data across thousands of com-
modity servers. Many projects at Google store data in Bigtable, including web
indexing, Google Earth, and Google Finance. These applications place very dif-
ferent demands on Bigtable, both in terms of data size (from URLs to web pages
to satellite imagery) and latency requirements (from back-end bulk processing to
real-time data serving). Despite these varied demands, Bigtable has successfully
provided a flexible, high-performance solution for all of these Google products.
In this chapter, we describe the simple data model provided by Bigtable, which
gives clients dynamic control over data layout and format, and we also describe the
design and implementation of Bigtable.

In order to store and retrieve XML documents efficiently, dozens of research
and industrial works were carried out in the last two decades. Targeting the com-
plexity of Xpath, many proposals on XML structural indexes express paths of an
XML document as a set of equivalent node classes, which include DataGuide [10],
1-index [19], and F&B Index [15] and its disk-based extension [30]. Generally
speaking, their basic idea is to match the path of query conditions with the precal-
culated skeleton of XML repository, and then, check the value by indexed nodes.
The DG+-Index proposed in this chapter is just an extension of them, based on the
observations that long and complex paths tend to be uninteresting. Some work
like A(k)-index [16], which is a family of indices by the extension of 1-index [19],
exploits the similarity of short paths to reduce the size of the structure. Similar work
includes D(k)-index [6] and M(k)-index [14]. Actually, the research works above
can be involved into our framework without too much effort, which is because the
DG+-Index we proposed is the abstracted structure of them, which can be extended
without any conflict with other index mechanisms.

Aiming to the variety of XML contents, several other related works focus on
indexing values in XML [18], building indexes for XML range queries [17], and
indexing XML fragments in RDBMS [21]. Though the other three index structures
we proposed are extended from works above, one distinguished difference is that we
build different index structures according to well-known data types, respectively,
rather than general XML data. In the further, the XML data we aimed to is the
application-specified EMR data.

New approaches were proposed in [22] and [13] to large-scale data analysis and
a uniform data repository for mixed data types. These approaches tried to solve the
similar problem addressed in this chapter; but our work is more healthcare specific
and different system architectures are developed, especially our system on top of
Hadoop enjoys distributed computing and fault tolerance provided by the Hadoop
infrastructure itself.

Enabling XML Capability for Hadoop  ◾  385

15.8  Conclusion
XML is a more desirable format for modeling and storing clinical data in EMR
applications for its extendibility; however, EMR systems are usually built on top
of RDBMS or file systems. Few advanced database systems support native XML
storage and retrieval capability; however, their capability supporting complex
healthcare applications on a very large set of EMRs is very limited. We point out
that complex healthcare applications demand usability, flexibility, reliability, per-
formance, and extendibility.

We are developing a clouds-enabled information appliance, Xbase, supporting
analytics on XML-based EMR databases. Here, we summarize how we design
Xbase to meet these requirements.

 ◾ Usability: Xbase is designed and built specifically to support healthcare-
specific style of query, search, and analytics, which involve a potentially large
number of conditions, and query relaxation is built into the query processing
scheme to incorporate terminologies in the KDB, such as diagnosis and treat-
ment classification, doctors’ areas of expertise, and access control list.

 ◾ Flexibility: Xbase supports data modeling and native physical storage for
semi-structured data dealing with evolving data types and flexible schemas
required in healthcare applications.

 ◾ Reliability: HDFS creates multiple replicas of data blocks and distributes
them on compute nodes throughout a cluster to enable reliable, extremely
rapid computations.

 ◾ Performance: In Xbase, query processing and indexing is applied directly to
the native XML structure and content to ensure fast response time, while the
Hadoop infrastructure provides automated load balance.

 ◾ Extendibility: Xbase is built natively on the emerging cloud computing infra-
structure, Hadoop, to achieve almost unlimited distributed storage capabil-
ity and computation capability. The extendibility of Xbase is enabled by and
embodied in the Hadoop infrastructure.

References
 1. http://icd9cm.chrisendres.com
 2. http://www.xml-benchmark.org
 3. K. S. Beyer, R. Cochrane, M. Hvizdos, V. Josifovski, J. Kleewein, G. Lapis, G. M.

Lohman et al. Db2 goes hybrid: Integrating native XML and XQuery with relational
data and SQL. IBM Systems Journal, 45(2):271–298, 2006.

 4. B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM, 13(7):422–426, 1970.

386  ◾  Cloud Computing and Software Services

 5. F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T.
Chandra, A. Fikes, and R. E. Gruber. Bigtable: A distributed storage system for struc-
tured data. In Proceedings of the Seventh Symposium on Operating System Design and
Implementation, Seattle, WA, 2006.

 6. Q. Chen, A. Lim, and K. W. Ong. D(k)-index: An adaptive structural summary for
graph-structured data. In SIGMOD, San Diego, CA, pp. 134–144, 2003.

 7. Y. Chen. On the signature trees and balanced signature trees. In ICDE, Tokyo, Japan,
pp. 742–753, 2005.

 8. J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters.
In Proceedings of the Sixth Symposium on Operating System Design and Implementation,
San Fransisco, CA, 2004.

 9. A. Gates, O. Natkovich, S. Chopra, P. Kamath, S. Narayanam, C. Olston, B. Reed,
S. Srinivasan, and U. Srivastava. Building a highlevel dataflow system on top of
mapreduce: The pig experience. Proceedings of the VLDB Endowment, 2(2):1414–
1425, 2009.

 10. R. Goldman and J. Widom. Dataguides: Enabling query formulation and optimiza-
tion in semistructured databases. In VLDB, Athens, Greece, pp. 436–445, 1997.

 11. X. Gong, Y. Yan, W. Qian, and A. Zhou. Bloom filter-based XML packets filtering for
millions of path queries. In ICDE, Tokyo, Japan, pp. 890–901, 2005.

 12. G. Gou and R. Chirkova. Efficiently querying large XML data repositories: A survey.
IEEE Transactions on Knowledge and Data Engineering, 19(10):1381–1403, 2007.

 13. M. N. Gubanov, L. Popa, C. T. H. Ho, H. Pirahesh, J.-Y. Chang, and S.-C. Chen.
IBM UFO repository. Proceedings of the VLDB Endowment, 2(2):1598–1601, 2009.

 14. H. He and J. Yang. Multiresolution indexing of XML for frequent queries. In ICDE,
Boston, MA, pp. 683–694, 2004.

 15. R. Kaushik, P. Bohannon, J. F. Naughton, and H. F. Korth. Covering indexes for
branching path queries. In SIGMOD Conference, Madison, WI, pp. 133–144, 2002.

 16. R. Kaushik, P. Shenoy, P. Bohannon, and E. Gudes. Exploiting local similarity for
indexing paths in graph-structured data. In ICDE, San Jose, CA, pp. 129–140,
2002.

 17. H.-G. Li, S. A. Aghili, D. Agrawal, and A. E. Abbadi. Flux: Fuzzy content and struc-
ture matching of XML range queries. In WWW, Edinburgh, U.K., pp. 1081–1082,
2006.

 18. J. McHugh and J. Widom. Query optimization for XML. In VLDB, Edinburgh, U.K.,
pp. 315–326, 1999.

 19. T. Milo and D. Suciu. Index structures for path expressions. In ICDT, Jerusalem,
Israel, pp. 277–295, 1999.

 20. C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig latin: A not-so-
foreign language for data processing. In J. T.-L. Wang, editor, SIGMOD Conference,
Vancouver, Canada, pp. 1099–1110. ACM, New York, 2008.

 21. S. Pal, I. Cseri, G. Schaller, O. Seeliger, L. Giakoumakis, and V. V. Zolotov. Indexing
XML data stored in a relational database. In VLDB, Toronto, Canada, pp. 1134–1145,
2004.

 22. A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden, and M.
Stonebraker. A comparison of approaches to large-scale data analysis. In U. Çetintemel,
S. B. Zdonik, D. Kossmann, and N. Tatbul, editors. Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD 2009, Providence, RI,
June 29–July 2, 2009, pp. 165–178, 2009.

Enabling XML Capability for Hadoop  ◾  387

 23. H. Plattner. A common database approach for oltp and olap using an in-memory col-
umn database. In U. Çetintemel, S. B. Zdonik, D. Kossmann, and N. Tatbul, editors.
Proceedings of the ACM SIGMOD International Conference on Management of Data,
SIGMOD 2009, Providence, RI, June 29–July 2, 2009, pp. 1–2, 2009.

 24. The Apache Software Foundation. Information available at http://hadoop.apache.org
 25. The Apache Software Foundation. Information available at http://hadoop.apache.

org/hdfs
 26. The Apache Software Foundation. Information available at http://hadoop.apache.

org/hbase
 27. The Apache Software Foundation. Information available at http://hadoop.apache.

org/hive
 28. A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wyckoff, and

R. Murthy. Hive - a warehousing solution over a map-reduce framework. Proceedings of
the VLDB Endowment, 2(2):1626–1629, 2009.

 29. Vertica Systems. Information available at http://www.vertica.com
 30. W. Wang, H. Wang, H. Lu, H. Jiang, X. Lin, and J. Li. Efficient processing of

XML path queries using the disk-based f&b index. In VLDB, Trondheim, Norway,
pp. 145–156, 2005.

389

Chapter 16

Toward a QoS-Focused 
SaaS Evaluation Model

Xian Chen, Abhishek Srivastava, and Paul Sorenson

Contents
16.1 Motivation ...390
16.2 Service System Quality Management ...390
16.3 SaaS Maturity Models ..391

16.3.1 Microsoft SaaS Maturity Model ...391
16.3.2 Forrester SaaS Maturity Model ...392

16.4 Quality in SaaS Business Relationship ...394
16.4.1 Quality Definitions...394
16.4.2 Quality Management in an SaaS Business Relationship395

16.5 Co-Creation of Business Value in a Service Relationship397
16.6 Specifications of a QoS-Focused SaaS Evaluation Model399

16.6.1 SaaS Maturity Levels ..399
16.6.1.1 Ad Hoc Service ...399
16.6.1.2 Defined Service...401
16.6.1.3 Managed Service ..401
16.6.1.4 Strategic Service ..401

16.6.2 QoS-Value Graphs—An Instrument for the QoS-Focused
SaaS Evaluation Model ...402

390  ◾  Cloud Computing and Software Services

16.1  Motivation
In the past decade, the growth of web service technologies and the emergence of
service-oriented architectures (SOAs) have added tremendously to the increasing
maturity of the Internet and the software industry. These advancements make it
possible for software vendors to deliver effective software applications as web-based
services using a new delivery model called Software-as-a-Service (SaaS). In simple
terms, SaaS is a model of software deployment where an application is hosted as
a service provided to customers across the Internet [1]. By eliminating the need
to install and run the application on the customer’s computer, SaaS alleviates the
burden of software maintenance, ongoing operation, and client support for the cus-
tomer. Conversely, customers relinquish control over software versions or changing
requirements. Moreover, costs to use the service become a continuous expense,
rather than a single expense at the time of purchase. SaaS applications are generally
charged on a per-user basis and are shared by multiple independent customers [2].
Under SaaS, the service customer receives the benefits of the software, with clearly
understandable costs, at a contractually defined service level [3].

While successful commercial SaaS applications like Salesforce.com and Google
Apps are now deployed, tools and approaches to assist organizations in evaluat-
ing and planning for SaaS opportunities are not yet widely available. This chapter
provides a model framework for evaluating SaaS applications based on quality-
of-service (QoS) characteristics, and forms the basis for a toolset to assist the IT
planning process.

16.2  Service System Quality Management
In studying SaaS evaluation, our focus on quality management is motivated by two
basic assumptions about the nature of service system delivery:

 1. Service systems operate most effectively when both the service customer and
the service provider understand and actively engage in the co-creation of
value [4].

 2. Service system improvement is best achieved when the major service quality
factors are mutually agreed upon, tracked, managed, analyzed, and acted
upon by the service customer and the service provider.

The goal of service quality management is to provide lower cost, better products
and services, and higher customer satisfaction. Traditionally, if a service provider

16.7 Related Work in Service Delivery and Management 404
16.8 Conclusion and Future Work ...405
Acknowledgments ...405
References ...405

Toward a QoS-Focused SaaS Evaluation Model  ◾  391

understands what a customer wants from a service (typically defined with detailed
specifications based on the customer requirements), manages the variables in the
service delivery process that can lead to deviation from specifications, and deliv-
ers the service in accordance with the customer’s stated requirements, the ser-
vice system is properly managing with respect to service quality [5]. In practice,
however, a dynamic approach must be used in managing service quality due to
continuous changes in the cost of service delivery, customer requirements, and
the emergence of new technologies. When existing customer expectations are not
met, a new expectation benchmark must be set and service reevaluation under-
taken. The need is growing for evaluation models to assess service quality on an
ongoing basis and to improve/accelerate decision making related to the adoption
of software services in general and SaaS applications in particular, given their
rapidly increasing adoption [6].

Unfortunately, most current quality management approaches for SaaS services
focus on the perspective of service providers, and thus do not fully take into con-
sideration the collaborative nature of the two basic assumptions given at the begin-
ning of this section. Approaches such as SERVQUAL [7], American Customer
Satisfaction Indices (ACSI) [8], and Balanced Scorecard [9] incorporate the view-
point of customers, but often not in combination with the provider’s viewpoint.
What is not present in the existing literature is an approach that adequately com-
bines the perspectives of both provider and customer together with the nature of
their ongoing business relationship. Therefore, at a general level, we are interested
in addressing the following research problems: (1) the exploration of an integrated
model that takes into account the shared nature of service quality in SaaS systems
and (2) how to best track and improve the service quality effectively by applying
the model.

16.3  SaaS Maturity Models
In the process of developing the foundation of our SaaS evaluation model, we
explored a number of related models for assessing service system delivery and man-
agement. These are characterized as Service Delivery Models, and their approaches
are summarized later in Section 16.7. These models are relevant and complemen-
tary to SaaS evaluation; however, their scope is broader than SaaS systems and
is primarily concentrated on service delivery from the perspective of the service
provider. In this section, we review the two main SaaS maturity models that have
been proposed to date.

16.3.1 Microsoft SaaS Maturity Model
Microsoft introduced the first widely published SaaS maturity model in 2006
[8]. A four-level SaaS maturity model was proposed mainly to assess the maturity

392  ◾  Cloud Computing and Software Services

of single-packaged SaaS applications. According to the model description, SaaS
applications can be classified by three key attributes of architectures: configurabil-
ity, multi-tenant efficiency, and scalability. Each level in this model is distinguished
from the previous one by the addition of one key attribute. A brief explanation of
each level is as follows [10]:

 ◾ Level 1—Ad hoc/custom: Each customer has a customized version of the appli-
cation and runs its own instance of the application on the servers hosted
by the provider. Migrating a traditional non-networked or client-server
application to this level typically requires the least development effort and
cuts down operating costs primarily by consolidating server hardware and
administration.

 ◾ Level 2—Configurable: The second maturity level provides greater application
flexibility through configurable metadata that enable customers to use sepa-
rate instances of the same application code. This allows the provider to meet
the different needs of each customer through detailed configuration options,
while simplifying maintenance and updating a common code base.

 ◾ Level 3—Configurable, multi-tenant efficient: At the third maturity level, the
provider adds multi-tenancy support to the second-level capabilities, enabling
a single-application instance to service all customers. This approach allows
better use of the provider’s server resources without any apparent difference
to the customer.

 ◾ Level 4—Scalable, configurable, multi-tenant efficient: Better overall scal-
ability for the provider’s service delivery is the goal at the fourth level.
This is typically achieved through a multitier architecture supporting a
load-balanced farm of identical application instances, running on a vari-
able number of servers. Effectively, a “cloud computing” [11,12] approach
is adopted by the provider to support a set of application instances. The
capacity of the provider’s system can be increased or decreased dynamically
to match the demand by adding or removing servers, without requiring
changes to the application software.

16.3.2 Forrester SaaS Maturity Model
Forrester’s model, the other major SaaS maturity model, provides guidance on
strategy transformations to software vendors working with service providers who
consider an SaaS business model. This model classifies the maturity of SaaS solu-
tions on five levels, according to the way an SaaS system is delivered [13].

 ◾ Level 0—Outsourcing: In outsourcing, a service provider operates one appli-
cation or a suite of applications for a large customer organization. Typically,
an outsourcing provider is obligated under contract to one customer and

Toward a QoS-Focused SaaS Evaluation Model  ◾  393

cannot directly leverage this customer’s application for a second customer.
Because of this restriction, outsourcing does not qualify as SaaS; thus, this
level is not considered a formal maturity level. It is included as level 0 because
SaaS providers often launch their business operations through outsourcing
arrangements with a few preferred customers.

 ◾ Level 1—Manual ASP (application service provider) service: The model at this
level is mainly targeting midsize companies. An ASP hosts packaged applica-
tions (e.g., system analysis and program development [SAP] and PeopleSoft
enterprise resource planning [ERPs]) for multiple customer organizations.
Typically, the service provider allocates to each customer a dedicated server
running that customer’s instance of the application. This allows, as deemed
necessary, the ability for a provider to customize the installation in the same
way as self-hosted applications.

 ◾ Level 2—Industrial ASP service: At this level, an ASP introduces advanced
IT management software to provide an identical packaged application with
customer-specific configuration options to many small-to-medium-sized cus-
tomer organizations. A key element of the industrial ASP service is that the
core elements of the software package are the same for all customers, and
therefore a significant amount of the operating costs can be shared among
multiple customers.

 ◾ Level 3—Single-app SaaS: From this level on, SaaS capabilities become built
into the business applications. These include web-based user interface access
to all services and the ability to service a great number of customers with one
scalable infrastructure. Single-application SaaS adoption focuses on small-
to-medium-sized businesses. Like the industrial ASP service of level 2, the
only way to customize the application is through configuration. Salesforce.
com’s customer relationship management (CRM) application initially
entered the market at this level [13].

 ◾ Level 4—Business-domain SaaS: At this level, the SaaS provider offers not
only well-defined business applications but also a platform supporting addi-
tional business logic. This allows the single-app SaaS of level 3 to be aug-
mented with third-party packaged SaaS solutions and optional customized
extensions. The model can now satisfy some of the requirements of large
enterprises by migrating a whole business domain like “customer care” to an
SaaS solution.

 ◾ Level 5—Dynamic business Apps-as-a-service: At this level, Forrester’s model
claims that a new Dynamic Business Application imperative “design for peo-
ple, build for change” is embraced. Advanced SaaS providers coming from
level 4 will offer a comprehensive application as well as an integration plat-
form on demand, and pre-populate the platform with business applications
or business services. Customer-specific and even user-specific business appli-
cations on various levels can be composed dynamically. The resulting process
agility should be attractive to everyone, including large-enterprise customers.

394  ◾  Cloud Computing and Software Services

There are similarities and some distinct differences between the two SaaS maturity
models from Microsoft and Forrester. Both models describe a set of greater capa-
bilities needed by the SaaS provider to manage common software architectures
and infrastructure as the levels of maturity increase. Microsoft’s model focuses on
the increased capabilities of an SaaS deployment through the re-architecting of
single-application packages delivered on a common infrastructure. These capabili-
ties are embodied in three key attributes: configurability, multi-tenant efficiency,
and scalability. Forrester’s model takes an evolutionary approach that provides
prescriptive guidance to software vendors and service providers in the transforma-
tion of enterprise-wide software. If we restrict our attention to single-application
deployment of SaaS, levels 1 through 3 have significant similarities in the two
models. The major difference at level 4 is the support for software across an entire
business domain in Forrester’s model. Level 5 of Forrester’s model appears to have
no counterpart in Microsoft’s model. A scan of the SaaS literature indicates that
there is likely no SaaS implementation in existence today that would be rated at
Forrester’s level 5.

An important observation of these SaaS maturity models is that neither focuses
on quality of service. Without the ability to assess quality-of-service delivery, the
decision makers (i.e., the customers and the providers) will have a difficult time
planning and managing service improvements. In addition, these models largely
ignore the perspective of service customer, and only emphasize what the service
provider can do. It is our strong belief, based on the two fundamental assumptions
about service systems identified in Section 16.2, that it is necessary to incorporate
the perspectives of both service provider and service customer in any SaaS evalua-
tion model.

16.4  Quality in SaaS Business Relationship
In this section, we introduce the notion of quality as it applies to service delivery,
and then discuss how quality is often expressed or realized as part of an ongoing
SaaS business relationship.

16.4.1 Quality Definitions
The definition of “quality” has been addressed and debated for a long time in a
number of academic and industrial publications [14–18]. Of these, we have chosen
to focus on the one developed by David Garvin [16], in which he identified five
major perspectives to the definition of quality: transcendental, product based, user
based, manufacturing based, and value based. We have found that for software
services it is difficult to separate product (the software system) from service (the
deployment or actual “manufacturing” of the system as a service). For quality of
service, we only consider the following four perspectives.

Toward a QoS-Focused SaaS Evaluation Model  ◾  395

 ◾ Conformance quality: This is equivalent to many aspects of a combination
of Garvin’s product-based and manufacturing-based perspectives focusing
on conformance to specifications. Typically, the focus is internal and on
determining that performance matches original design specifications often
expressed in service-level agreements (SLAs). Approaches that can be applied
to manage conformance quality include (1) QoS specification languages [19],
in which quality requirements, quality capabilities, and quality agreements
are expressed; and (2) service-level standards, such as IT Service CMM (IT
Service Capability Maturity Model) [18] and ITIL (Information Technology
Infrastructure Library) [19].

 ◾ Gap quality: This is equivalent to Garvin’s user-based perspective focusing
on whether customer expectations are met or exceeded. This is the most per-
vasive definition of quality, particularly as applied to business management.
Most approaches on gap quality use the Gaps Model of Service Quality [22],
which measures the gaps explicitly by considering both customer perceptions
and expectations. These approaches include SERVQUAL [7], ACSI [8], and
TechQual+ [23].

 ◾ Value quality: This is equivalent to Garvin’s value-based perspective focusing
on the direct benefits (value) to the customer. It is a universal measure for
widely different types of objects, and can be an appropriate guideline for con-
tinuous quality improvement. Approaches on value quality introduce more
business-oriented measurements, such as productivity, Return on Investment
(ROI), and risk estimate, and provide greater insight into business goals.

 ◾ Excellence quality: This is equivalent to Garvin’s transcendent perspective
focusing on recognition of excellence. It stresses the features and character-
istics of quality, but it may change dramatically and rapidly. In IT services,
excellence quality is marked by uncompromising standards and high perfor-
mance, and can be used directly as promise and advertisement. Therefore, it
is usually externally defined and hard to relate to quality improvement.

Because of the difficulty in using excellence quality to identify quality improve-
ment opportunities, we focus only on the first three definitions of quality in our
work [24,25].

16.4.2 Quality Management in an SaaS
Business Relationship

Basic to any SaaS deployment are business relationships between the provider orga-
nization and the various customer organizations to which the provider delivers its
services. Two of these relationships, presented from a provider organization’s view,
are shown in Figure 16.1. The relationships, labeled conformance quality and gap
quality, are depicted as measures in the diagram. These are measures that should

396  ◾  Cloud Computing and Software Services

be managed by the SaaS provider as part of their business relationship with their
customers. In most service arrangements, conformance quality is expressed as ser-
vice levels agreed to with the client. With SaaS, service levels are often advertised
in advance as part of the provider’s marketing strategy and finalized under contract
when a service sales agreement is reached with the customer. Therefore, in SaaS, the
focus on conformance quality aspects, such as volume (transactions per minute),
response time, and availability of service, is usually negotiated and agreed to up
front between the production department (responsible for running service support)
and the marketing and sales departments of the provider organization.

Providers are also involved in gap quality measurements with customer orga-
nizations. Typically, quality concerns related to ease of use, response to failures,
and user training are determined by the provider using survey tools involving the
customers. This form of user input identifies gaps between what the customers are
experiencing in using a service and what they would like to be experiencing. This
feedback is critical if a provider wishes to improve their service.

The view of SaaS business relationships from the customer’s perspective is shown
in Figure 16.2, in which two relationships are depicted. The first, named functional
needs, expresses the user requirements for supporting their workplace activities in
the customer organization. The business units of the customer organization usu-
ally consult with their users to determine if these service requirements can be met
through a service offering by one or more SaaS providers.

The second relationship, labeled value quality, captures the value the customer
organization places on deploying a service using an SaaS. Although there is no
universally accepted definition of value quality, common approaches for measuring

Conformance quality

Gap quality Other customer
organizations

Customer
organization

Provider
organization

Production

Marketing

Clients

Figure 16.1  Provider organization view of an SaaS business relationship.

Toward a QoS-Focused SaaS Evaluation Model  ◾  397

value quality include cost-benefit analysis [26], ROI analysis [27], risk management
[28], or combinations of these approaches using a balance scorecard [9].

16.5   Co-Creation of Business Value 
in a Service Relationship

The discussion in Section 16.4 on value quality was from the perspective of the cus-
tomer organization. But one of the fundamental definitions from the merging area
of service science [4] is that a “… service system is a value co-production configura-
tion of people, technology, other internal and external service systems and shared
information.” The question that arises is how is the notion of co-creation of value
in an SaaS offering supported in value quality measures.

Let us explore this question by considering the possible co-value situations that
can exist between a service provider and a service customer organization. These
situations can be represented in Figure 16.3, where we express the customer and
provider values, respectively, on simple x–y axes, each axis ranging in scale from
a low to a high value. In general, the value measures for the provider and the cus-
tomer are dependent on the nature of the service offering. For the purpose of this
discussion, let us assume simplistically that the customer value is determined pri-
marily by ROI analysis and the provider value is determined by the total profit
(income after all expenses) from providing the service. In the diagram, we have
characterized the five regions with names that reflect the relative maturity of the
service offering [29]. When a service is first developed, it is typically done as a lim-
ited offering (or research prototype) based on research of market opportunities and
the innovative application of new or advanced technologies or processes. From the

Other provider
organizations

Marketing

Functional needs

Value quality

Provider
organization

Business
units

Customer
organization

Users

Production

Figure 16.2  Customer organization view of an SaaS business relationship.

398  ◾  Cloud Computing and Software Services

perspective of value quality, the service provider sees low value (little or no profit)
and the customer also sees low value, because the prototype service is limited in
functionality with little commitment to sustainability because of the trial nature
of its deployment.

Assuming that the service is well received for its initial functionality and respon-
siveness, and its user base increases, the value (as determined by ROI) will increase
for the customer. During the early stages of growing the service from prototype to
an initial release in the marketplace, the value to the provider (profit) remains low
or at best increases slightly.

Once the service takes hold in a marketplace and large numbers of custom-
ers acquire the service, the value for the provider (profit) increases substantially in
proportion to the number of customers. The value to the customer (ROI) is very
dependent on the costs associated with the delivery of the service within a grow-
ing marketplace. If there is little or no competition for the provider, we move to
a monopoly service situation typically generating higher costs and, therefore, lower
relative value for the customer (ROI). Alternatively, the marketplace could quickly
yield a healthy set of service providers that should lead to an increase in value for
customers (ROI), because cost of service should not rise substantially if at all. This
stage, labeled mature service, represents the situation when the co-value of the ser-
vice business relationship for providers and customers is at its peak (we refer to it as
a “win-win” value situation).

Note that it is rare for a software service marketplace to remain in a monop-
oly situation for an extended period, because the capital investment for new
providers to develop competitive services is usually not extensive. Therefore,

Mature
serviceCommodity

service

Research
prototype

Low

Lo
w

High

H
ig

h

Provider
value

Cu
st

om
er

va
lu

e

Monopoly
service

Initial
release

Figure 16.3  Phases of service delivery based on co-value to the customer and 
the provider.

Toward a QoS-Focused SaaS Evaluation Model  ◾  399

generally for SaaS, a monopoly service should quickly transition to a mature
service situation.

A fifth stage that can occur is when service competition increases for the pro-
vider and marketplace adoption becomes so widespread that the service becomes
commoditized. At this commodity service stage, the value to the provider (profit) can
decrease significantly because of decreased profit margins on a per customer basis.
The value to the customer can also decrease at this stage because the commoditized
service is no longer a strategic advantage for customer organization, which may
have its own set of competitors.

The transition from a commodity service to a research prototype is repre-
sented as a dotted line to show that often a new provider organization creates a
new service innovation that impacts the commoditized marketplace. This new
service will begin its own service maturation process that can displace the com-
modity service in that marketplace. An example of this is the rise of e-mail ser-
vices in the last decade to replace much of the standard mail services that had
been commoditized.

Of course, not all service offerings follow this form of “life cycle.” Many new
services do not make it past the prototype stage or linger in the initial release stage
without garnering significant market presence. Some services, given the nature of
their potential marketplace, may never be commoditized. Ideally, both service pro-
vider and service customer continue to seek ways of maintaining a “win-win” busi-
ness relationship, where new or added co-value is continually being created for a
service offering. At the core of the SaaS QoS model that we present in Section 16.6
are the characteristics of the business relationships between the service customer
and the service provider.

16.6   Specifications of a QoS-Focused 
SaaS Evaluation Model

In this section, we present our initial version of an SaaS QoS evaluation model
and illustrate its features using existing SaaS applications. This model prescribes
the quality-of-service approaches for four service classes based on the business rela-
tionships between the service provider and the service customer: Ad hoc, Defined,
Managed, and Strategic. The model is summarized in Table 16.1.

16.6.1 SaaS Maturity Levels

16.6.1.1 Ad Hoc Service

An SaaS service is called Ad hoc if it is used by a customer on an as-needed basis in
response to business requirements. The goal of the service customer is to ensure that

400  ◾  Cloud Computing and Software Services

Table 16.1  Maturity Levels of Business Relationship in SaaS Services

Maturity
Level

Characteristics
of Business

Relationships
Service

Customer Goals
Service

Provider Goals
Quality

Approaches

Level 1 Ad hoc Functionality
needs
achieved

Service
delivery on an
“as-needed”
basis

Some quality
measures
may be in
place

Level 2 Defined Functionality
needs
achieved with
reliability and
other desirable
quality
requirements
guaranteed

Service
delivery on a
regular
(defined)
basis with
defined
capability

Conformance
quality
measures
(SLAs
defined and
tracked)

Level 3 Managed Goals of Level 2
plus
agreement on
monitoring of
service quality
assurance

Service
delivered
with
configurable
capability;
shared
responsibility
to monitor
and manage
service
quality factors

Conformance
plus gap
quality
measures

Level 4 Strategic Proper
governance of
service to
ensure value
goals defined
and achieved
using
approaches
such as
cost-benefit
analysis, ROI
analysis, and
risk
management

Dynamic
delivery with
the shared
goal of
service
improvement
with
customer

Conformance,
gap, and
value quality
measures

Toward a QoS-Focused SaaS Evaluation Model  ◾  401

the service meets the critical needs of its users. Typically few, if any, QoS attributes
are tracked by the provider on behalf of the customer. Examples of Ad hoc services
are Amazon.com and Expedia.com when used widely in an organization to facili-
tate book and travel purchases, respectively.

16.6.1.2 Defined Service

An SaaS service is called Defined if it is described in a contract or an agreement that
outlines service usage and guarantees the service-level capabilities typically through
service level agreements (SLAs). The QoS concerns focus on measurable, perfor-
mance-oriented factors, such as availability and responsiveness. A good example of
a Defined service is Google Apps [30] Enterprise Edition, which has a defined SLA
focusing on availability. Another example is SAP’s Business ByDesign [31], which
provides SaaS capabilities for ERP-level applications (integrated accounting, supply
chain, HR, CRM, etc). SAP also provides an SLA focused on availability.

16.6.1.3 Managed Service

An SaaS service is called Managed if it is a Defined service with additional agreed-
upon commitments by both the customer and the provider to share the responsibili-
ties of managing the service. Examples of shared responsibilities include monitoring
the service quality and refining the service to meet changing quality requirements.
A good example of a Managed service is Salesforce.com’s CRM service. They pro-
vide customization and integration capabilities that allow customers to set up their
own unique CRM service and share customer-developed applications. Salesforce.
com also supports tracking of service issues and commitments.

16.6.1.4 Strategic Service

An SaaS service is called Strategic if it is a Managed service in which both the
customer and the provider are able to identify the common, agreed-upon business
value of deploying the service. Typically, the decision to adopt a strategic service
is based on business value analyses, such as cost-benefit analysis, ROI, and/or risk
analysis. We have not found any good example of a Strategic service in today’s SaaS
solutions, since we do not see the application of business value analyses in SaaS
services management.

Fundamental to our model is the increasing role that service quality measures
play in the business relationship as this relationship moves from Ad hoc to Strategic.
In an Ad Hoc service, there is little or no emphasis on QoS measures. A Defined
service includes conformance quality measures, a Managed service adds gap qual-
ity to conformance quality measures, and a Strategic service includes value quality
measures as well as conformance and gap quality measures. The goal of both SaaS
providers and customers is to increase the depth of their business relationship as the
service offering moves from Ad hoc to Strategic.

402  ◾  Cloud Computing and Software Services

16.6.2 QoS-Value Graphs—An Instrument for the
QoS-Focused SaaS Evaluation Model

For our model to be used effectively in the planning of IT services, it must be more
than just descriptive. In particular, instruments must be available to support the
definition, tracking, and analysis of the value quality for each QoS attribute that
is agreed upon by the provider and the customer. Let us consider the following
example scenario to illustrate how one such instrument, QoS-value graph, can
assist in a key element of the model for the determination of co-value using QoS
attributes.

Assume that an agreed-upon QoS attribute is the average response time for a
set of five important service components of a service offering. We can represent
in a QoS-value graph the relative value of different average response times for the
customer and the provider. From this graph, the customer is prescribing that the
response rates of less than 15 ms have highest values. The customer value decreases
in a linear fashion for average response times between 15 and 30 ms, dropping
to zero value for average response times greater than 30 ms. For the provider, the
value related to response time performance is primarily determined by their capa-
bility to meet response time demands with their delivered service. The value curve
in Figure 16.4 indicates that it is impossible for the provider to deliver an average
response time of less than 10 ms for the current service offering. From 10 and
17 ms, the provider value increases rapidly, representing a technology space that
could be achieved if significant costs were invested in improving the current ser-
vice system. For greater than 17 ms, the provider value continues to increase in a
linear fashion, representing decreasing response-time requirements for the SaaS
provider.

Customer

Provider

10 20 30 40
QoS attribute

(average response time)

Va
lu

e

Figure 16.4  QoS-value curve with QoS attribute of average response time.

Toward a QoS-Focused SaaS Evaluation Model  ◾  403

By using an instrument such as a QoS-value curve, the provider and the cus-
tomer can share important information to assess co-value opportunities and arrive
at an agreement over average response time commitments. In the case depicted in
Figure 16.4, one could imagine the provider and the customer arriving at a decision
to use 17 ms as the basis for an ongoing SLA.

These curves can be used across all QoS attributes that are deemed most impor-
tant in any business relationship involving a Strategic service. As another example
of the QoS-value curve instrument, consider the use of cost-benefit analysis, a value
quality attribute, as part of a Strategic service partnership. Figure 16.5 represents
the situation where the benefits to cost ratio is adopted as a QoS attribute that
would be defined and tracked. Note that we have decided in this example to inverse
the normal ratio of cost to benefits to benefits to cost, because it is easier to conceive
of an increase in customer or provider value as the QoS attribute increases. For
an SaaS service offering, the customer benefits are the funds saved by deploying a
service, and the costs are primarily the funds as defined in the service contract with
the SaaS provider. For the SaaS provider, the benefits would be primarily based on
the funds received from the customer for delivering the service, and the costs would
be the funds required to operate the service. The QoS-value curve shows that for
the provider there is a narrow region (1.6–1.8) of the benefits to cost ratio in which
the value increases significantly. This represents the situation in which the benefits
outweigh the costs by a comfortable margin—enough to ensure that the service
relationship yields real value for the provider.

For the customer, a benefits to cost ratio is of no value until it reaches slightly
above 1. The customer value then increases somewhat until a ratio of 1.8, at
which point it increases significantly in a linear fashion. Assuming that a strategic
service relationship is sought and, therefore, co-value creation is an over-riding
goal, the provider and the customer can share their QoS-value curves to assist

Customer

Provider

QoS attribute
(benefits to cost ratio)

1 2 3 4

Va
lu

e

Figure 16.5  QoS-value curve with QoS attribute of benefits to cost ratio.

404  ◾  Cloud Computing and Software Services

in determining what is a viable cost range for the service offering that allows the
provider to make a reasonable profit and the customer to garner significant value
from the service.

Additional tools and capabilities for our QoS-focused SaaS evaluation model
are being planned, and these are outlined in the Section 16.8.

16.7   Related Work in Service Delivery 
and Management

In the past decade, there has been growing interest in the definition of maturity
models and specifications of best practices in the general area of IT service manage-
ment and delivery. This work is relevant and complementary, but does not apply
directly to our narrower focus on SaaS evaluation presented in this chapter. For
completeness, we include a summary of this work in this section.

Frank Niessink et al.’s IT Service CMM [20] is a service maturity model that
enables IT service providers to assess and further improve their capabilities with
respect to the IT service delivery. The structure of this model is similar to that
of Carnegie Mellon University (CMU)/Software Engineering Institute’s (SEI’s)
Software CMM with five maturity levels: Initial, Repeatable, Defined, Managed, and
Optimizing; yet the contents are focused on key process areas needed for provision-
ing mature IT services. The model also introduces suitable and practical assessment
approaches to determine and improve the maturity of the organization. However,
this approach only aims at the implementation of service processes within IT orga-
nizations, and largely ignores the other important roles of the service customer.

The OGC’s (Office of Government Commerce) ITIL [21] is a framework of
best practices in information technology, primarily focusing on IT service strat-
egy, design, transition, operation, and improvement. In the past decade, ITIL has
been adopted worldwide as one of the most popular service-level standards in IT
organizations. Instead of using ordered levels and process areas, ITIL organizes the
processes as areas of best practices and describes the details of process implementa-
tion and activities. The emphasis in ITIL is on the delivery of IT services in-house
by the Information Technology department. ITIL provides some general guidance
to outsourcing strategies and externally delivered services.

The adoption of SOA solutions in IT requires more specific maturity mod-
els to assess the SOA implementation and identify the SOA business value. Sonic
Software’s SOA Maturity Model (SOA MM) [32] is one such model, defining
maturity levels with key business impact within the organization. The model was
extended to include five aspects by Inaganti and Sriram’s Model [33]: Scope of SOA
Adoption, SOA maturity levels, SOA expansion stages, return on SOA investment,
and SOA cost-effectiveness and feasibility. Other SOA maturity models specialized
in different areas of IT services include IBM’s SOA integration model [34] and
HP’s SOA domain model [35].

Toward a QoS-Focused SaaS Evaluation Model  ◾  405

16.8  Conclusion and Future Work
This chapter provides the basis for a QoS-focused SaaS evaluation model. The key
contributions are the definition of a four-level SaaS system maturity model and the
inclusion of a QoS-value graph instrument when using this model. The important
aspects of this work include the recognition that SaaS evaluation must take into
account the generation of co-value by both the provider and the customer, and that
additional tools are needed to assist both the provider and the customer in assessing
and improving the service quality on an ongoing basis.

Further research is needed into tools that can be adapted to SaaS service offer-
ings, to automatically collect many of the QoS attributes that are agreed to as part
of a provider/customer SaaS agreement. The evaluation model should also support
regular reporting of QoS nonconformances and trends in service support (both
positive and negative). Effort is also needed to integrate our work on SaaS evalu-
ation with the evaluation of other service offering approaches, including in-house
services and other forms of external services such as outsourcing. Finally, we are
also investigating evaluation support for selecting the best (or currently most viable)
SaaS offering among similar offerings by multiple providers. This work involves
a weighted multi-QoS-attribute approach that could potentially allow the service
selection decision to be delayed until just before the service is needed.

Acknowledgments
Paul Sorenson would like to thank Norm Pass and Jim Spohrer of the IBM Almaden
Research Center for several interesting discussions on co-value creation and ser-
vice innovation that took place during a fall 2008 visit to Almaden. These discus-
sions helped to form the basis of our QoS-value graph instrument. We also wish
to acknowledge NSERC (National Science and Engineering Research Council) of
Canada for funding support of this research.

References
 1. SaaS.com, Improving human productivity through software as a service, www.SaaS.

com
 2. B.J. Lheureux, R.P. Desisto, and M. Maoz, Evaluating software-as-a-service providers:

Questions to ask potential SaaS providers, Gartner RAS Core Research Note, April 2006.
 3. B. Waters, Software as a service: A look at the customer benefits, Journal of Digital Asset

Management, 1(1), 32–39, January 2005.
 4. J. Spohrer, P. Maglio, J. Bailey, and D. Gruhl, Steps towards a science of service sys-

tems, Computer, 40(1), 71–77, January 2007.
 5. V.J. Peters, Total service quality management, Managing Service Quality, 9(1), 6–12,

1999.

406  ◾  Cloud Computing and Software Services

 6. M. Alvarez, Gartner predicts great growth in SaaS adoption, October 2008, www.ate-
lier-us.com/e-business-and-it/article/gartner-predicts-great-growth-of-saas-adoption

 7. A. Parasuraman, V.A. Zeihaml, and L.L. Berry, SERVQUAL: A multi-item scale for
measuring consumer perception of service quality, Journal of Retailing, 64(1), 12–40,
1988.

 8. C. Fornell, M.D. Johnson, E.W. Anderson, J. Cha, and B.E. Bryant, The American
customer satisfaction index: Nature, purpose, and findings, Journal of Marketing,
60(4), 7–18, October 1997.

 9. R.S. Kaplan and D.P. Norton, The Balanced Scoreboard: Translating Strategy into Action,
Boston, MA: Harvard Business School Press, August 1996.

 10. F. Chong and G. Carraro, Architecture strategies for catching the long tail, Microsoft
Corporation, Software as a Service Architectural Guidance Series, April 2006, http://
msdn.microsoft.com/en-us/library/aa479069.aspx

 11. G. Gruman and E. Knorr, What cloud computing really means, InfoWorld, April 2008,
http://www.infoworld.com/article/08/04/07/15FE-cloud-computing-reality_1.html

 12. P. Gaw, What’s the difference between cloud computing and SaaS? Web 2.0 Journal,
July 2008, http://web2.sys-con.com/node/612033

 13. S. Ried, J.R. Rymer, and R. Iqbal, Forrester’s SaaS maturity model: Transforming ven-
dor strategy while managing customer expectations, Forrester, August 2008.

 14. P. Hernon and D.A. Nitecki, Service quality: A concept not fully explored, Library
Trends, 49(4), 687–708, March 2001.

 15. C.A. Reeves and D.A. Bednar, Defining quality: Alternatives and implications, MIT
Academy of Management Review, 19(3), 419–445, Jul. 1994.

 16. D.A. Garvin, What does “product quality” really mean? Sloan Management Review,
Fall, 25–43, October 1984.

 17. A. Parasuraman, V.A. Zeithaml, and L.L.Berry, A conceptual model of service quality
and its implications for future research, Journal of Marketing, 49(4), 41–50, 1985.

 18. B.W. Tuchman, The decline of quality, New York Times Magazine, 2, 38–41, 104, Nov.
1980.

 19. G. Dobson, Quality of service in service-oriented architectures, 2004, http://digs.
sourceforge.net/papers/qos.pdf

 20. F. Niessink, V. Clerc, T. Tijdink, and H. van Vliet, IT Service CMM Version 1.0
Release candidate 1, 2005, http://www.itservicecmm.org/

 21. Office of Government Commerce, Service Delivery, IT Infrastructure Library, The
Stationery Office, 2001, http://www.itil-officialsite.com/home/home.asp

 22. V.A. Zeithaml and A. Parasuraman, and L.L. Berry, Delivering Quality Service:
Balancing Customer Perceptions and Expectations, New York: The Free Press, 1990.

 23. T. Chester, F. Miller, and D.A. Trinkle. Service quality assessments with higher educa-
tion TechQual+, Educause Annual Conference, Seattle, WA, 2007.

 24. X. Chen and P.G. Sorenson, Towards TQM in IT services, Proceedings of the 2007
Workshop on Automating Service Quality (held in conjunction with Automated Software
Engineering), Atlanta, GA, pp. 42–47, November 2007.

 25. X. Chen and P.G. Sorenson, A QoS-based service acquisition model for IS services,
Proceedings of the Sixth Workshop on Software Quality (workshop held in conjunction
with ICSE 2008), Leipzig, Germany, pp. 41–46, May 2008.

 26. Cost/benefit analysis: Evaluating quantitatively whether to follow a course of action,
http://www.mindtools.com/pages/article/newTED_08.htm

Toward a QoS-Focused SaaS Evaluation Model  ◾  407

 27. CIO Council, The value of IT investments: It’s not just return on investment, http://
www.cio.gov/documents/TheValueof_IT_Investments.pdf

 28. VOSE Software, Introduction to risk analysis, http://www.vosesoftware.com/
 29. Marketing Teacher, The product life cycle, http://www.marketingteacher.com/Lessons/

lesson_plc.htm
 30. Google Corporation, Google apps service level agreement, 2009, http://www.google.

com/apps/intl/en/terms/sla.html
 31. SAP AG, SAP business bydesign: The most complete and adaptable on-demand busi-

ness solutions, 2008, http://www.sap.com/solutions/sme/businessbydesign/overview/
index.epx

 32. Sonic Software Corporation, A new service-oriented architecture (SOA) maturity
model, 2005, http://www.sonicsoftware.com/solutions/service_oriented_architecture/
soa_maturity_model/index.ssp

 33. S. Inaganti and S. Aravamudan, SOA maturity model, BP Trends, Apr. 2007.
 34. A. Arsanjani and K. Holley, Increase flexibility with the service integration maturity

model (SIMM): Maturity, adoption, and transformation to SOA, IBM developer-
Works, September 2005, http://www.ibm.com/developerworks/webservices/library/
ws-soa-simm/

 35. HP SOA Maturity Model, 2007, https://roianalyst.alinean.com/calculators/hp/hpsoa/
HP_SOA_Maturity_Assessment.html

409

Chapter 17

Risk Evaluation-based 
Selection Approach 
for Transactional 
Services Composition

Hai Liu, Kaijun Ren, Weimin Zhang, and Jinjun Chen

Contents
17.1 Introduction ...410
17.2 Formalized Model ..411
17.3 Evaluation of Failure Risk Losses ... 415

17.3.1 Formation of Failure-Causing Tree ... 415
17.3.2 Losses Evaluation of Failure Risk for Tasks418

17.4 Selection Algorithm .. 423
17.5 Experiments and Evaluation ...425
17.6 Related Work ...425
17.7 Conclusions ... 428
References ...429

410  ◾  Cloud Computing and Software Services

17.1  Introduction
With the rapid development of the Internet and information technologies, web
services has de facto become one of the most significant technologies in the
domains of both academia and industry [1]. Web services is a modular, self-
organized, and loosely coupled software that can be advertised and accessed
programmatically across the Internet. It has changed the ways of traditional pro-
gramming, such as object-oriented programming, which is based on the underly-
ing layer, while the web services technology mainly focuses on the abstraction
of the higher level. Therefore, compared to traditional programming, it is more
convenient and faster for application designers to construct new softwares based
on existing applications according to users’ increasing requirements. Nowadays,
more and more applications have been wrapped into web services, which are
so-called SaaS (Software as a Service), introduced in the cloud area [1,19,20].
However, a single web service does not have to satisfy the requirements of users.
Therefore, how to effectively integrate several web services into a composite one
has been a challenge and is attracting more and more attention from the corre-
sponding research area.

Web services composition (WSC) is a complex process involving several steps.
One of the most significant steps is the process of web services selection for each
task in WSC. Recently, lots of quality of service (QoS)-driven web services selec-
tion approaches [2–4] have been presented. Nevertheless, few of them consider the
impact of failure risk in transactional WSC, especially in the scientific comput-
ing environment with transaction, where it possibly leads to losses such as wasted
time and execution resources. To address this issue, we propose a risk-driven selec-
tion approach for transactional WSC, with which we can spend the same cost on
the dimension of reliability, but reduce average losses for composition web services
(CWS). Specifically, we first use a failure-causing tree based on failure atomicity
to evaluate probable risk losses for each task in the transactional execution path.
Then, a different relative impact is assigned to each task based on its risk losses,
to specify reliability requirements. Finally, a modified QoS-driven web services
selection method is presented. The experiment presented in this chapter proves the
feasibility of our work.

The rest of this chapter is organized as follows. In Section 17.2, we give a
detailed formal representation of our model on WSC with transactional prop-
erties. A specific scenario in the scientific computing domain is described. In
Section 17.3, we introduce the method of risk evaluation for participant tasks
based on our presented failure-causing tree and propose two algorithms, which
are used to obtain the relative impact on each task. In Section 17.4, we bring forth
a modified web services selection algorithm based on the common QoS-driven
web services selection method presented as our former work. In Section 17.5, a
simulating experiment has been performed to verify our solution, and then a per-
formance comparison between our method and other related methods has been

Transactional Services Composition  ◾  411

demonstrated. Section 17.6 provides the summary of related work. Finally, we
conclude our idea and indicate the future direction in Section 17.7.

17.2  Formalized Model
In order that our work is well expressed, we first formalize the model of our solu-
tion to transactional WSC. According to the literature [5], the authors proposed
that the process of WSC should be divided into two phases, which consist of
application-level composition and concretion-level composition, respectively. The
first phase mainly supports the abstract-level composition based on the types of
web services, focusing on functional satisfaction for predefined user requirements.
This generates the optimal workflow to satisfy users’ functional requirements.
The second phase assigns each task of the plan composed in the first phase with
concrete instances of candidate web services based on nonfunctional properties.
Accordingly, our work is based on the second-phase composition, assuming that
it works after the first phase. This means that our work in this chapter has the
precondition finished the first-phase composition. In our work, we formalize our
model of WSC based on the assignment of specific instances of candidate web
services that are based on nonfunctional properties. We also refer to the concepts
proposed in the literature [2], where a path for a specific workflow or a kind of
type-based composition is called for, and a plan for an executable path is named.
For the sake of facility to represent our problem later, we distinguish between the
concepts of task and instance of web service, where the latter will be assigned to
the former so that the former can be executed in the plan. Actually, this concept
of task is an abstract web service or a service class defined in the literature [2].

In the transactional aspect, we have the precondition that the transactional
property of each task in CWS has been defined in advance by specific application
designers. Therefore, the transactional property of the corresponding candidate
web service should be in compliance with its assigned task.

Definition.17.1 We define each task in a path as a seven tuple t = <tid,I,O,F,Q,e,tp>,
where the notation tid represents the identifier of task t; notations I and O represent
the input parameters set and the output parameters set on this task t, respectively;
notation F denotes requirements of all functional properties of task t; and notation
Q expresses requirements of nonfunctional properties, such as QoS parameters,
involved cost, executing time, and availability. Meanwhile, notation e denotes the
relative degree of impact in the entire path, which would be calculated based on
our evaluation method presented in Section 17.3 for failure risk of task t in a spe-
cific path. This attribute is explained in Section 17.4. The last notation, tp, defines
transactional properties specified by application designers according to the features
of business application, where tp denotes the transactional properties TP = {r, c, nr,
nc, rc, nrc, nrnc, rnc}. The description for each element in TP is given in Table 17.1.

412  ◾  Cloud Computing and Software Services

In order to understand these transactional properties, we use a state transition
diagram, as illustrated in Figure 17.1. There are five regular states for each task in a
transactional CWS. Following is the process of these state transitions.

When one candidate instance of web service has been assigned to the task,
the web service would be initiated. Correspondingly, the state of this task will
change to start. After completing the initial process, the state will reach the active
state, in which the task runs its assigned web service instance. Finally, the state
of the task will reach the completed state. Certainly, there exist some uncom-
mon states, such as abort/cancel and failed. The abort/cancel state is transferred
from the start state or the active state. When a task with the transactional prop-
erty ‘r’ is in the failed state, it can be transferred to the active state by replacing
another alternative web service to retry, as demonstrated in Figure 17.1a. In the
meanwhile, a task with the transactional property ‘c’ in the completed state can
be transferred to the compensated state by compensating this task using the cor-
responding compensation operation, as shown in Figure 17.1b. In the nature of
things, in case that a task with the transactional property ‘cr,’ which is the combi-
nation of the transactional property ‘c’ and the transactional property ‘r,’ is in the
failed state or the completed state, its state can be changed to the active state or
the compensated state according to Figure 17.1a and b, respectively, as shown in
Figure 17.1c. Finally, Figure 17.1d illustrates the state transition for the task with
the transactional property ‘nrnc.’ When it comes to the failed state, the active
state cannot be reached because of the transactional property ‘nr’; likewise, while
it is in the completed state, it cannot be compensated because of its transactional
property ‘nc.’

Table 17.1  Semantic Description for Each Transactional Property

Property Semantic Description

r It could be retried with another instance of candidate web
services when the task t executing with the current assigned
instance of web service causes a failure or an exception.

c It denotes that task t can be compensated by a predefined
process.

nr It represents task t does not own the transactional property r.

nc It represents task t does not own the transactional property c.

rc The combination between property r and property c.

nrc The combination between property nr and property c.

nrnc The combination between property nr and property nc.

rnc The combination between property r and property nc.

Transactional Services Composition  ◾  413

Definition.17.2 We define a quarter tuple s=<sid,tid,Q,R> for each instance of
web service that is a member of the candidate services list for being assigned to a spe-
cific task, as defined in Definition 17.1. In this definition, notation sid represents the
identifier of service s. Notation tid denotes the identifier of the task whose candidate
services list includes service s. Notation Q represents a set of nonfunctional proper-
ties that should be advertised by the provider of service s. It is very similar with the
notation Q defined in the task. Finally, notation R denotes the current reliability
parameter of service s. This parameter can be advertised in the extended description
language of the web service, such as the prevalent WSDL [21], by the provider.

Definition.17.3 We assume that notation P denotes an execution path. In the
meanwhile, according to the literature [6], P could be represented in the form of
workflow patterns. In this chapter, three typical patterns are considered for our
execution path, because the other workflow patterns can be reduced to these three
patterns [4]. Now, we introduce some corresponding operators to denote these
workflow patterns as follows:

 1. Sequence pattern, which is represented by the notation ‘;’. For example, the
execution path (t1;t2) means that task t2 should be invoked after task t1 is
completed.

 2. Parallel pattern, which is represented by the notation ‘|’. The execution
path (t1|t2) means that task t1 and task t2 can execute simultaneously.

Start Active Completed

Abort/cancel Failed

Start Active Completed

Abort/cancel Failed

Start Active Completed

Abort/cancel Failed

Replacing the
alternative web
service to retry

Start Active Completed

Abort/cancel Failed Compensated

State Transition Explanation for transition

Compensate

Compensated

As 1.a As 1.b

(d)

(b)

(c)

(a)

Figure 17.1  State transition diagram for task with different kinds of transactional 
properties. (a) State transition for task with transactional property ‘r.’ (b) State 
transition  for  task  with  transactional  property  ‘c.’  (c)  State  transition  for  task 
with  transactional property  ‘rc.’  (d) State  transition for  task with transactional 
property ‘nrnc.’

414  ◾  Cloud Computing and Software Services

 3. Alternative pattern, which is represented by the notation ‘+’. The execu-
tion path (t1 + t2 + … + tm)n means that at least n tasks need selecting to
execute parallelly from the task set {t1, t2, …, tm}. On the condition n
equals to 1, we say that the alternative pattern becomes the single selec-
tion pattern.

Figure 17.2 shows a typical execution path that is our motivation application in the
domain of scientific computing called the ensemble prediction business process. It
is a new, interesting, and hot research technology in the area of numerical weather
forecast, and includes several steps, which contain preprocess, perturbation genera-
tion, model forecasting for ensemble members, postprocessing, product generation
and visualization, and so on [22]. In this figure, the whole of tasks t1 and t2 denotes
the preprocess step; meanwhile, tasks t3–t7 that should be executed concurrently
belong to the perturbation generation step. After the completion of the perturba-
tion generation step, several initial samples will be produced, which are used as
input data for tasks denoting the model forecasting step from t8 to t12. When all
tasks in the model forecasting step have been performed successfully, task t13 rep-
resenting the postprocessing step can be started. For the product generation step,
there are several candidate ways represented by tasks t14–t16; however, only one
candidate task can be selected for execution. Finally, when task t17 denoting the
visualization step is performed completely, the entire execution path will be ended
successfully.

In this application, each of the tasks has its own transactional properties for the
inherent characteristics of this business process. Once a task encounters failures,
in order to guarantee atomic consistency, forward recovery methods such as retry-
ing operations, or backward recovery methods such as compensation operations
are required to be executed. In this business process environment, the execution
of each task needs a very long execution time and high execution cost. Therefore,
the web services selection for each task needs to consider the impact of failure risk.
Otherwise, it will waste huge cost in re-executing and recovering corresponding
tasks in case several tasks cause exception or failure. In Section 17.3, a new evalua-
tion method based on transactional CWS is presented.

t1

t7

t8

t12

t13
t17

t2
t3

t16

t14

Figure 17.2  Process of ensemble prediction formalized as (t1;t2;((t3;t8)|(t4;t9)|
(t5;t10)|(t6;t11)|(t7;t12));t13;(t14 + t15 + t16)1;t17).

Transactional Services Composition  ◾  415

17.3  Evaluation of Failure Risk Losses
17.3.1 Formation of Failure-Causing Tree
The authors of literature [7] put forth the concept of failure risk; they proposed that
failure risk was a characteristic considering the probability that some faults would
occur and lead to an impact on the composite service. Distinguished from their
work, our work just evaluates the losses caused by failure, so that we can obtain
the relative degree of impact for each task in an execution path of transactional
composition. We do not regard the probability that some fault will occur at a spe-
cific task or at a specific web service instance. Our method only needs to evaluate
the causing losses in the event that a task encountered failures or exceptions. In
order to evaluate failure-causing losses for all tasks in a specific execution path
defined above, not only should we delve into the execution cost of each task in his-
tory, but we should also consider dependency among tasks in that specific execu-
tion path, especially in a transactional composition environment. Based on this
idea, we first look into the dependency among tasks. In literature [17], the authors
made Dependencies Management (DM) coordinate the execution of transactional
workflow with Dependencies Rules (DR), which was composed of all kinds of
formal dependencies rules. However, they did not detail these dependencies-related
transactional aspects. Literature [17] also presented some dependencies between the
services in transactional composition service (TCS) to guarantee failure atomic-
ity requirement for transactional composition service. It gives four dependencies
related to transactional properties in TCS. In this chapter, we mainly consider two
dependencies, which are failure-causing dependency and compensation-causing
dependency, respectively, on the basis of recovery policies of transactional CWS to
obtain possible losses caused by the failure of individual tasks. In the following, we
give the two dependencies based on our WSC environment defined in Section 17.2.

Definition.17.4 Failure-causing dependency (from task ti to task tj): It can be
denoted as ti tjfailure → . This dependency represents that task tj would be canceled
or compensated in case of failure of task ti. In other words, the failure of task ti will
affect task tj in order to preserve transactional correctness for the whole of the pro-
cess. How to perform actions for task tj is decided by its state, and these actions will
be in support of the evaluation algorithm presented in Section 17.3.2. There exist
three cases. In order to express well, we define function P(e) in view of the possibil-
ity of event e arising. Function occur(e) represents that event e has been triggered.
Char ‘*’ denotes any transactional property ‘nr’ or ‘r.’

Case 1:
Precondition:

[(()) (,)] (P occur ti.state failed tj.state completed tj= = ∧ = = ∈ ∧0 1 ..tp c ti tjfailure= = ∗ ′ ∧ →′) ().

416  ◾  Cloud Computing and Software Services

Event: occur (ti.state == failed).
Actions for task tj: Abort (tj) ∨ Compensate (tj).

Case 2:
Precondition:

 [())] (P occur ti.state failed tj.state completed tj.tp= = ∧ = = = = ∧ =0 == ∗ ′∗ ∧ →′) ti tjfailure

Event: occur (ti.state == failed).
Action: Abort (tj).

Case 3:
Precondition:

[(())] (P occur ti.state failed tj.state completed tj.t= = ∧ = = = = ∧1 pp c ti tj.failure= = ∗ ′ ∧ →′)

Event: occur (ti.state = = failed).
Action: Compensate (tj).

Going back to Figure 17.2, there is one failure-causing dependency from task
t8 to task t3. Namely, there is a condition t tfailure8 3 → . Since task t8 and task
t3 exist in a sequence pattern, the condition [P (occur (t8.state = = failed) ∧ t3.
state = = completed) = = 1] ∧ (t8.tp = = ′*c′) is true. Finally, according to case
3, task t3 will be compensated when task t8 causes failure. In the same way,
there exists the condition t3 t4failure → , and the value of Boolean expression
P(occur (t3.state = = failed) ∧ t4.state = = completed) ∈ (0,1)] ∧ (t4.tp = = ′*c′) is also
true. Obviously, according to case 1, we have the conclusion that task t4 may be
aborted or compensated when task t3 causes failure.

Definition. 17.5 Compensation-causing dependency (from task ti to task tj):
There is a compensation-causing dependency from task ti to task tj if the compensa-
tion of task ti causes task tj’s compensation. This kind of dependency is caused indi-
rectly by failure of one task in an execution path. We denote by ti tjcompensation →
the compensation-causing dependency from task ti to task tj, which means task tj
needs to be compensated after task ti is compensated.

There is a big difference between the two dependencies defined above. In the
failure-causing dependency ti tjfailure → , the state of task ti must not be the com-
pleted state, and it may arise from two cases, which are its own failure and the
situation that it is aborted by another task, respectively. In the compensation-
causing dependency ti tjcompensation → , however, the precondition that the states of
both task ti and task tj should be in the completed state must be satisfied.

Theorem. 17.1 Compensation-causing dependency has transitivity: It means
supposing ti tjcompensation → and tj tkcompensation → to be true, we can obtain that
ti tjcompensation → is true.

Transactional Services Composition  ◾  417

Proof: Let the compensation-causing dependencies ti tjcompensation → and
tj tkcompensation → be true. If task ti has been compensated, then it exists in which
task tj needs to be compensated according to the dependency of compensa-
tion causing ti tjcompensation → ; now it exists in task tj that will be compensated.
Therefore, we can understand that task tk needs to be compensated in terms of the
compensation-causing dependency tj tkcompensation → ; thus, it means that the con-
dition of compensation of task ti can lead to the conclusion that task tk needs to be
compensated. In other words, we can get the result of which compensation-causing
dependency ti tkcompensation → is true.

Definition.17.6 Failure-causing tree (let the root of the tree be task t): This kind
of tree is very similar to a fault tree. It consists of nodes and links, where nodes con-
tain two types, which are operator and task, respectively, while links also contain
two kinds, which are links based on dependencies defined above. In the failure-
causing tree of task t, the links connected immediately with task t or with operators
that are connected directly with task t represent failure-causing dependency, and
the others denote compensation-causing dependency. Following are several rules
used for the formation of this kind of tree:

Rule 1: If task t is retriable, as we know, in case of caused failure, it can be
recovered by the mechanics of forward recovery, such as by restarting this
task with other similar-function web services. Therefore, it need not com-
pensate any other completed tasks. There is only one node representing the
self of task t in its failure-causing tree.

Rule 2: If there is a parallel pattern or a condition pattern in the original
execution path, and the failure-causing tree of task t includes those nodes
representing tasks in a parallel pattern or in a condition pattern and con-
tains one node representing a task before these tasks, we should append
these nodes representing the task to every offset representing a parallel
pattern or a condition pattern in the failure-causing tree.

Rule 3: Otherwise, all nodes in the failure-causing tree should conform to the
tasks’ structure corresponding to the original execution path.

Figure 17.3 shows an example on several dependencies correlating to the busi-
ness transaction requirement in the execution path of ensemble prediction, and a
typical failure-causing tree with the root node of task t13. Figure 17.3a illustrates
failure-causing dependency and compensation-causing dependency, which are
represented by two different kinds of dotted arrows, respectively. Due to lim-
ited space, we only outline the dependencies corresponding to task t13, while
the others are not shown. It can be known from this figure that there are five
failure- causing dependencies between task t13 and from task t8 to task 12. It

418  ◾  Cloud Computing and Software Services

also shows that there are five pairs of compensation-causing dependencies. Figure
17.3b illustrates a failure-causing tree according to dependencies showed by
Figure 17.3a, where task t13, and task t8 to task t12 are connected with the opera-
tor AND, which represents that they have a parallel relationship in the failure-
causing tree; the label on the side of each failure-causing dependency denotes
possibility, as given in Definition 17.4. From this diagram, we can see P(occur
(t13.state = = failed) ∧ ti.state = = completed) = 1, i ∈ {8, 9, 10, 11, 12}, since there
is a sequence pattern between task ti and task t13 in the original execution path.
Meanwhile, the existing operator NULL that has been omitted between task t8
and t3 represents that they have a sequence relationship in the failure-causing
tree. (Note: There are three kinds of operators corresponding to the workflow pat-
tern defined above, which are SEQ, AND, and OR)

Theorem.17.2 All of the completed nodes except for the root node in the failure-
causing tree need to be compensated when the root node encounters failure.

Proof: According to Theorem 17.1, and Definitions 17.4 and 17.5, we can prove
it directly.

17.3.2 Losses Evaluation of Failure Risk for Tasks
We postulate that these two dependencies have been established during the first
level of WSC. So we can evaluate losses of each task with the help of these depen-
dencies and historical execution information of individual tasks. In the following,
we show our losses evaluation algorithms based on the failure-causing tree for each
task in a specific execution path.

(a) (b)

Failure causing dependency Compensation causing dependency OperatorFlow

t13

AND

t8

t3 t4 t5 t6

t11t10t9 t12

t7

1 1 1 1 1

(t3,nrc)

(t7,nrc)

(t8,nrc)

(t12,nrc)

(t13,nrnc)
(t2,rc)

(t16,nrc)

(t14,nrc)

(t17,rc)

(t1,rc)

Figure 17.3  An example of failure-causing tree. (a) Several dependencies in the 
execution path of ensemble prediction. (b) Failure-causing tree of task t13.

Transactional Services Composition  ◾  419

According to Theorem 17.2, we can infer that the losses caused by the failure
of a specific task should involve two parts, which are compensation cost part and
execution cost part along the failure-causing tree. We consider the cost metric as
two dimensions that are execution time dimension and execution cost dimension,
respectively. We define the following formula to evaluate the cost-taken of a specific
execution path or sub-path:

U u f T v f E

u v

c
p

t time
p

e e
p= +

+ =

* () * ()

1
(17.1)

In this formula, functions f Tt time
p() and f Ee e

p() represent two different utility
functions based on the parameter of time dimension and the parameter of execu-
tion cost dimension for path p, respectively. These two functions can be defined
to unify metrics based on users’ preferences. For example, we can transform
the time metric and the execution cost metric into the universal metric such as
money. Variables u and v are weight values specified by the user. Therefore, in
order to evaluate the losses of a failure task, we should evaluate the total execu-
tion time and execution cost spent by tasks according to its failure-causing tree.
However, there are different computing ways between execution time and execu-
tion cost due to different structures existing in the failure-causing tree, which
makes us evaluate them based on its inherent structure separately. In the follow-
ing, we show the respective ways to evaluate these two parameters based on three
different structures corresponding to the operators in the failure-causing tree.
Without loss of generality, we postulate that task t is the root node of the failure-
causing tree, and let variables Ttime

p and Ee
p represent the total losses of time and

execution cost in a sub-tree p of the failure-causing tree. From the computing
methods perspective, sub-trees with the same structure in the failure-causing
tree may have different computing ways for different kinds of dependencies. In
order to use a uniform evaluation method based on the structure of the failure-
causing tree covering both kinds of dependencies, we lend the function P(e) as
defined above to represent the possibility of event e arising. We can obtain P(e)
as follows:

P(e)

P(e) if dependencies belong to
failure-causing dependency

=

;

1;; if dependencies belong to
compensation-causing dependency

(17.2)

420  ◾  Cloud Computing and Software Services

Case 1: If there is an operator SEQ between t1 and t2 in a path as illustrated in
Figure 17.4a, we can evaluate their total time and cost consumed as follows:

T T T T P(e)

T

time
p

time
pt1

exectime
t2

cptime
t2

2

exectime
t2

= + +

+ ′

()*

** (

()*

1−

= + +

+ ′

P(e))

E E E E P(e)

E

2

e
p

e
pt1

execCost
t2

cpCost
t2

2

execCoost
t2

2P(e))* (1−

(17.3)

Case 2: If there is an operator AND between t1 and t2–t3 as illustrated in Figure
17.4b, we can evaluate their total time and cost consumed as follows:

T T Max T T P(e)time
p

time
pt1

i
execTime
t

cpTime
t

i
i i= + +

+ ′

∈{ , }
(()*

2 3

TT P(e)))

E E E E P

execTime
t

i

e
p

e
pt1

execCost
t2

cpCost
t2

i * (

()*

1−

= + + ((e)

E P(e))

E E P(e)

2

execCost
t

2

cpCost
t3

cpCost
t3

3

2+ ′ −

+ +

+ ′

* (

()*

1

EE P(e))execCost
t

3
3 1* (−

 (17.4)

Case 3: If there is an operator OR between t1 and t2–t3 as showed in Figure 17.4c,
where t2 and t3 have execution probabilities p2 and p3, respectively, we can evalu-
ate their total time and cost consumed as follows:

(b) (c)

t1

t2

AND

t1

t2 t3

p3p2

t3

t1

t2

OR

(a)

Figure 17.4  Several probable sub-trees in a failure-causing tree. (a) A sub-tree 
with  operator  NULL.  (b)  A  sub-tree  with  operator  AND.  (c)  A  sub-tree  with 
operator OR.

Transactional Services Composition  ◾  421

T T p T T P(e)

T

time
p

time
pt1

exectime
t2

cptime
t2

2

execti

= + +

+ ′

2 * (()*

mme
t2

2

exectime
t3

cptime
t2

3

exect

P(e)))

p3 T T P(e)

T

* (

* (()*

1−

+ +

+ ′ iime
t3

3

e
p

e
pt1

execCost
t2

cpCost
t2

P(e)))

E E p2 E E P(e

* (

* (()*

1−

= + + 22

execCost
t2

2

execCost
t3

cpCost
t3

)

E P(e)))

p3 E E P(

+ ′ −

+ +

* (

* (()*

1

ee)

E P(e)))

3

execCost
t

3+ ′ −

 3 1* (

 (17.5)

Case 4: If there is only one node in the failure-causing tree, it means that task t just
needs an executing forward recovery mechanism, such as retrying this task when
it encounters a failure. Therefore, we can evaluate its total time and cost consumed
as follows:

T Rty t

E Rty t

time
p

time

e
p

cost

=

=

()

()
 (17.6)

For the evaluation methods defined above, we use a superincumbent and recursive
approach to compute cost and time for each kind of sub-tree. Two new variables,
Ttime

pt1 and Ee
pt1, are introduced to represent evaluation time and evaluation cost for

the sub-tree pt1, which is generated from the corresponding failure causing tree
with algorithm of deep first searching (DFS) ended in task t1. TexecTime

ti and TcpTime
ti

denote the execution and compensation times of task ti. Meanwhile, EexecCost
ti and

EcpCost
ti represent the execution and compensation costs of task ti. Variables ′TexecTime

ti
and ′EexecCost

ti are used to represent possible execution time and cost spent when task ti
running is aborted by failure causing dependency. Variables Rtytime(t) and Rtycost(t)
denote the execution time and cost taken by retrying an operation that may be
replaced by another candidate web service instance. All the variants proposed above
can be predicted by the history execution information of individual tasks. We use
the method of mean value on history information [2] or other history-based meth-
ods. For instance, presuming that task t has been executed five times in history,
each of which has spent a cost of 50, 65, 70, 65, and 80, respectively, we can come
to a conclusion with the following expression:

 TcpTime
t = + + + + =50 65 70 65 80

5
66.

422  ◾  Cloud Computing and Software Services

We show our method of evaluating losses-taken for a specific task of the failure-
causing tree in Algorithm 17.1, as shown in Figure 17.5, where step 3 is a function
to compute the total execution time and cost with the failure-causing tree T(t).
However, there are some overlapped nodes generated in the failure-causing tree
T(t) existing due to several patterns before them in the original execution path
such as parallel pattern, since these nodes need to be appended to every offset for
the formation of the failure-causing tree T(t). Meanwhile, step 4 attains the set of
overlapped nodes; step 5 obtains the eventual result of both execution time and cost
considering overlapped nodes; step 7 represents the condition of the existing one
node in the failure-causing tree. Finally, the algorithm obtains the losses for the
task t with Formula (17.1) in step 9.

As mentioned by Algorithm 17.1, we can get the loss-taken for a specific task
according to its related failure-causing tree. However, its precondition is that the
execution path can be recovered by the backward or forward method. We also need
to consider the situation that it exists in a task-assigned web service class with no
compensated property. For this situation, in order to ensure failure consistency for
executing in the execution path, for tasks after these tasks with no compensated
property, we need to keep them with a retriable property or assign them the high-
est level of impact in the execution path so that we can select a higher, reliable web
service to execute. For instance, we can set the reliability requirement for these
kinds of tasks near to1.

Algorithm 17.2, as shown in Figure 17.6, gives the approach for attaining the
failure impact of the entire tasks in a specific execution path P formalized as in
Section 17.2. Step 1 finds the first task with no compensated transactional property.
Step 2 initializes a set used for marking such tasks with the non-retriable property;
therefore, steps 3–7 find these tasks with the non-retriable property after task t to

Algorithm 17.1: Evaluating losses-taken for Task t (ELT)
Input: Head node T (t); // A failure causing tree of a task t
Output: RealLossescFT t() ;
Begin:
1 if T (t).child!= ∅ ;
2 then do
3 ER(T(t),Time,Cost);
4 CaculateOvlapNodes(T(t),OvlapNodeSet);
5 EvaCosideringOvlapNodes(tempTime,tempCost,OvlapNodeSet, Losses Etime

FT t
e
Tr t() (),);

6 else do

7
Ttime

FT()

()
cos

()

()
;

t
time

e
FT t

t

Rty t

E Rty t

=

=

8 end if
9 Losses u f T f Ec

FT t
t time

FT t
e e

FT t() () ()() ();= +∗ ∗v
10 return ();()LossescFT t

End

Figure 17.5  Algorithm 17.1 for evaluating losses.

Transactional Services Composition  ◾  423

store in set P1. Because these tasks found in steps 3–7 must not encounter any fail-
ures for ensuring correctness, we should set the failure impact value for these tasks
higher than others, and the value is μ at step 9, which is input by the user. For other
tasks in the execution path P, we first evaluate losses for these tasks using Algorithm
17.1, and then uniformly scale losses evaluated for these tasks in the domain [0,1]
in steps 10–13. Finally, we return the array of failure impacts for all tasks in the
execution path P. Currently, we have evaluated the failure impacts for all tasks in a
specific execution path. In Section 17.4, a modified QoS-driven web services selec-
tion algorithm would be given based on the failure impact.

17.4  Selection Algorithm
Now we propose our web services selection approach that is very similar to the
selection methods based on QoS constraints [2,8]. Our approach differs from these
methods in that we specify firstly the requirement on the reliability dimension that
is one dimension of QoS dimensions according to the failure impact of each task.
Certainly, in the field of QoS-driven WSC, the higher the reliability requirement,
the more efficient the performance. However, let us consider the situation with the
same total cost constrained by the user. We need to constrain different require-
ments of reliability for a task base on its failure impact evaluated above, so that
we can reduce average losses for the related execution path as well as save costs for
users. Hence, what we first need to do is to decide the requirement of reliability
dimension for each task in the execution path. In the following, we will give our
optimization solution model with linear programming [9].

Algorithm 17.2: Calculating Impact for each Task (CIT)
Input: P;//An execution path with transactional properties generated at the first level composition),
which could be formalized as defined in section two.
Output: impact[t1..tn]: the impact for each task’s failure risk
Begin
1 t=findFirstNCTask(P);//find t.TP not in {nc,rnc,nrnc}
2 P1={};//initialize set P1
3 while (t.next!=null) do
4 t’=t.next;
5 if (t’.TP=nr*) //’*’ represents c or nc or null.
6 Add(t’,P1); add task t’ to Set P1.
7 End do
8 for each task ti in P1
9 impact[ti]=µ;//specified by user;
10 for each task ti in (P-P1)
12 Losses[ti]=ELT(T(ti));//get the losses-taken of task t.
13 impact[t1..tN]=scale(losses[t1..tN]);
14 return impact[t1..tn]
End

Figure 17.6  Algorithm 17.2 for calculating impact.

424  ◾  Cloud Computing and Software Services

Let set constant ei represent the equivalent weight between cost dimension and
cost-taken for reliability dimension from the user’s prospect, which can be statis-
tically calculated in terms of QoS information of candidates for task i. In other
words, it will increase the cost-taken ei units for task i when we want to enhance the
requirement of reliability by one unit for task i. Let set variant ri represent the reli-
ability requirement for task i, on which standard task i will select the web service,
and these kinds of variants will be computed by our linear programming later. The
array impact[i] is calculated by our Algorithms 17.1 and 17.2 defined above. The
constant Ruser and Cr represent two values that are the lowest requirement of reli-
ability for composition service and the cost constraint spent on reliability dimen-
sion specified by the user, respectively. The function Reliabilitypath(r1, r2, …, rn)
calculated based on the control construct of the execution path, by Jorge Cardoso
et al. in literature [10], denotes the method of computing reliability dimension for a
composition service that contains task t1, task t2, …, and task tn. In order to ensure
the minimizing losses and to keep the same cost spent on reliability dimension, we
will use the following minimum objective function:

 Impact r impact ipath i

i

n

= −
=

∑() * []1
1

 (17.7)

For the purpose of keeping the same cost and to guarantee the lowest reliability
requirement from the global prospect, the following constraints should be satisfied:

 (r e Ci i

i

n

r*)
=

∑ ≤
1

 (17.8)

 Reliability r r r Rpath 2 n user(, , ,)1 … ≥ (17.9)

0 1

0 1 2

0

< ≤

> =

>

ri user

i

r

R

e

C

,

, , , ,i n… (17.10)

In terms of defining variants, functions, and constraints above, we can compute
the values r1, r2, …, rn.

Based on the steps above, we can modify the web services selection algorithm
such as Multi-dimension Multi-choice 0–1 Knapsack Problem (MMKP) that has
been proved an np-hard problem[11,12] solved in our former work in literature
[8], while one kind of constraint that the requirement on reliability dimension for

Transactional Services Composition  ◾  425

each task i is ri should be added to [8] so as to assist the selection of candidate web
services for each task in a specific execution path.

17.5  Experiments and Evaluation
To prove the feasibility for our method in this chapter, we perform the simula-
tive experiment using our Algorithms 17.1 and 17.2 and the selection algorithm
proposed in Section 17.4. We use the execution path of CWS, as illustrated in
Figure 17.1 in Section 17.2. We assume that the compensation cost or retrying cost
of each task is evaluated based on history information. We also presume that the
communication cost is far less than the cost of compensation and execution in our
application of ensemble prediction. So we can ignore the impact of communication
between tasks. Our experiments were carried out on a Intel• machine with 1.86
GHz and 1.5 GB RAM running Microsoft Windows XP. We used lp_solve_5.5.0
to solve the integer planning model. All implementations were done in Java.

Table 17.2 shows the relative cost and impact obtained by Algorithms 17.1
and 17.2 for each task. In this table, symbol α represents the lowest impact factor
specified by users or designers. The blank cell represents that the cost related to the
task is very large comparing to other tasks. The last row of this table represents the
impact for each task in CWS. Finally, we perform the simulative experiment to
measure the average losses caused by the failure of tasks for CWS. For each task,
we respectively limit the candidate web services providers from 5 to 12, whose reli-
ability parameters advertised can be implemented by a random function defined
in JAVA. For the sake of simplification, we postulate that each variable ei for task
i has the same value. The lowest requirement of initial reliability for CWS is 0.5.
Meanwhile, the domain of ri is divided into discrete values, which are constrained
in the set {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1}, and then they are amplified ten
times so as to become integers. For the moment, we can make use of the Integer
Programming–based method to get the requirement value of ri for each task i; then
the method in literature [8] is applied to get the optimal execution plan.

The result of this experiment, as demonstrated in Figure 17.7, with the increas-
ing number of execution times of CWS, is that the average losses with our method
are always lower than the method [8] of QoS-based web services selection without
considering the impact of failure risk. We also can see from this figure, with the
number of execution times growing larger, that the gap of average losses between
these two methods becomes more stable.

17.6  Related Work
In this section, we overview the major techniques related to our approach. To the
best of our knowledge, few literatures discuss the full similar topic as our work
to predict the relative impact based on the evaluation of risk cost for each task

426  ◾  Cloud Computing and Software Services

Ta
bl

e 
17

.2
 

Se
ve

ra
l K

in
ds

 o
f C

os
ts

 fo
r 

Ea
ch

 T
as

k 
in

 t
he

 E
xe

cu
ti

on
 P

at
h 

of
 E

ns
em

bl
e 

Pr
ed

ic
ti

on

C
o

st
Ta

sk

t1
t2

t3
t4

t5
t6

t7
t8

t9
t1

0
t1

1
t1

2
t1

3
t1

4
t1

5
t1

6
t1

7

R
et

ry
20

15
30

C
o

m
p

en
sa

ti
o

n
30

40
20

20
20

20
20

30
30

30
30

30
25

25
25

15

Ex
ec

u
ti

o
n

30
40

35
35

35
35

35
40

40
40

40
40

50
20

20
20

10

Lo
ss

-t
ak

en
20

15
80

80
80

80
80

35
5

35
5

35
5

35
5

35
5

70
5

30

Im
p

ac
t (

%
)

0.
7

α
9.

48
9.

48
9.

48
9.

48
9.

48
49

.6
4

49
.6

4
49

.6
4

49
.6

4
49

.6
4

10
0

10
0

10
0

10
0

2.
19

Transactional Services Composition  ◾  427

in CWS with transactional properties, which provides a policy in support of web
services selection for CWS. Wu and Yang [13] studied an approach to predict QoS
parameters for the composition of web services with transaction, and a specifica-
tion model was defined to specify the execution processes of CWS according to the
exception handling policies of transactions. This algorithm can reduce the error
rate. However, our work involves a few differences. First, what we discuss is on
evaluating failure risk losses for individual tasks, while their work focuses on the
entire execution process. Second, our work is based on the selection of individual
web services, while their work is based on the selection of execution processes.

Currently, there are several works proposed to evaluate the risk cost for the
execution process of WSC. Kokash et al. [7,14] explored a method for evaluating
the risk cost for WSC according to the probability of each candidate service. With
evaluating the risk cost for all combinations of WSC, they selected optimal plans
that lead to the least probable risk losses. Obviously, they can get optimal plans
from the risk losses perspective by considering the risk probability for each can-
didate web service. However, the complexity of their method will increase greatly
as the number of combinations for WSC becomes large, and its complexity rises
by the exponent function. Meanwhile, it is very hard to calculate the accurate risk
cost for CWS because of the uncertainty of each single web service hosted on the
Internet. And our method to evaluate the risk cost for CWS is not based on a
single web service. Since our method is based on Algorithms 17.1 and 17.2 and the
selection algorithm from literature [8], our complexity is the largest among these
three algorithms, which is the selection algorithm from literature [8]. Obviously,
the complexity for our method is polynomial. What we use is only the historical
execution information for each task participating in the WSC evaluated. Therefore,
our complexity is lower than their complexity. At the same time, our method can
be in support of the web services selection for each task in the specific composition
service. Kokash in the literature [14] also proposed a means of service selection
based on failure risk evaluation of composition to improve composition reliability.

Our method

1100
1000

900
800

A
ve

ra
ge

 lo
ss

es

700
600
500
400

10 20 30 40 50 60
Execution times

70 80 90 100

QoS-based method without risk evaluation

Figure 17.7  Results for different selection methods.

428  ◾  Cloud Computing and Software Services

The main distinctions of our work from his work consist of the following two
points. First, our method for evaluating the failure risk cost is in terms of our pro-
posed failure-causing tree that is in the context of transactional service composi-
tion. Second, our method for evaluating the failure risk cost does not consider the
probability of individual service anticipating in the composition service, so that we
need not consider all combinations for the composition service. Asnar et al. [15]
refined the Goal-Risk framework introducing the notion of trust for assessing risks
on the basis of the organizational setting of the system. The assessment process
was enhanced to analyze risks along trust relations among actors. This method of
evaluating risks is qualitative, and it does not provide a quantitative risk analysis,
while our method provides a technique of quantitative failure risk assessment for
each participating task in the composition service.

More recently, a lot of work has emerged on WSC with transactional support.
El Haddad et al. [16] studied a QoS-driven web services selection approach in
combination with the transactional property. In terms of the transactional behav-
ior characteristic of the composition service, they defined two risk levels that are
risk0 and risk1. Therein the risk0 level guarantees the successful execution of
the system, whose completed results can be compensated by the user, while the
risk1 level does not guarantee the system’s successful execution. But if it achieves
the results, the system cannot be compensated by the users. The selection algo-
rithm proposed in that literature need check the requirement of the transactional
behavior of composition services first, and then execute based on QoS-driven web
service selection approach proposed by Zeng and Benatallah in [2]. It is distin-
guishable from our work in that we focus on the evaluation of risk cost for each
task in the composition service in order to assign each task to the corresponding
reliability requirement, and we have predefined transactional properties for each
task according to specific business requirements. In the literature [17], the authors
proposed a transactional approach for reliable WSCs by ensuring the failure ato-
micity required by the designers. A set of transactional rules had been defined
to assist designers to compose a valid composite web service with regard to the
specified accepted termination state (ATS). Its failure atomicity theory paves the
way for our proposed formation rules of the failure-causing tree, which supports
the evaluation of risk cost. In the literature [18], the authors explored WSC with
transactional support. They orchestrated web services based on rules including
both transactional behaviors and composition patterns.

17.7  Conclusions
Current QoS-driven service selection methods for WSC ignore the failure risk
impact of each task, and few works focus on WSC with transactional proper-
ties. In this chapter, we have presented a risk-driven services selection method for
WSC with transactional properties. In our method, a failure-causing tree has been

Transactional Services Composition  ◾  429

proposed based on failure atomicity of CWS to evaluate risk losses for each task and
attain the relative impact of each task in the transactional execution path of CWS.
Then, a linear programming method based on the impact of each task in the execu-
tion path can be used to decide the requirement of reliability dimension for each
task to support the selection of concrete web services. Actually, our method reaches
the result proved by our experiment that can reduce average losses caused by fail-
ures of tasks in scientific computing applications, such as the ensemble prediction
application. In future, we will apply our methods to the practical application of the
Chinese Ensemble Prediction Application Grid to prove our conclusion further.

References
 1. L. J. Zhang and H. Cai, Services Computing. Springer Verlag and Tsinghua University

Press, Beijing, China, 2007.
 2. L. Zeng and B. Benatallah, QoS-Aware middleware for web services composition,

IEEE Transactions on Software Engineering, 30(5), 311–327, 2004.
 3. T. Yu and K. Lin, Service selection algorithms for composing complex services

with multiple QoS constraints, in ICSOC, Amsterdam, the Netherlands. Springer,
Heidelberg, Germany, pp. 130–143, 2005.

 4. D. Ardagna and B. Pernici, Global and local QoS constraints guarantee in web ser-
vice selection, in ICWS, Orlando, FL, IEEE Computer Society, Washington, DC,
pp. 805–806, 2005.

 5. V. Agarwal, G. Chafle, K. Dasgupta, A. Kumar, S. Mittal, and B. Srivastava, Synthy:
A system for end to end composition of web services, Journal of Web Semantics, 3(4),
311–339, 2005.

 6. W. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A. P. Barros, Workflow
pattern, Distributed and Parallel Databases, 14(3), 5–51, 2003.

 7. N. Kokash and V. D’Andrea, Evaluating quality of web services—A risk-driven
approach, in BIS 2007, Poznañ, Poland, 2007.

 8. K. Ren, N. Xiao, J. Chen, and J. Song, A reverse order-based QoS constraint correction
approach for optimizing execution path for service composition, in 16th International
Conference on Cooperative Information Systems (Coopis 2008), Monterrey, Mexico, 2008.

 9. H. Karloff, Linear Programming. Birkhauser, Berlin, Germany, 1991.
 10. J. Cardoso, A. Sheth, J. Miller, J. Arnold, and K. Kochut, Quality of Service for work-

flows and web service processes, Journal of Web Semantics, 1(3), 281–308, 2004.
 11. D. Ardagna and B. Pernici, Adaptive service composition in flexible processes, IEEE

Transaction on Software Engineering, 33(6), 369–383, 2007.
 12. X. Gu and K. Nahrstedt, On composing stream applications in environments, IEEE

Transactions on Parallel and Distributed Systems, 17(8), 824–837, 2006.
 13. J. Wu, F. Yang, QoS prediction for composite web services with transactions, in ICSOC

Workshops, Chicago, IL, 2006.
 14. N. Kokash, A service selection model to improve composition reliability, in International

Workshop on AI for Service Composition, University of Trento, Trento, Italy, pp. 9–14,
2006.

 15. Y. Asnar, P. Giorgini, F. Massacci, and N. Zannone, From trust to dependability
through risk analysis, in ARES 2007, Vienna, Austria.

430  ◾  Cloud Computing and Software Services

 16. J. El Haddad, M. Manouvrier, G. Ramirez, and M. Rukoz, QoS-driven selection of
web services for transactional composition, in ICWS, Salt Lake City, UT, pp. 653–660,
2007.

 17. S. Bhiri, O. Perrin, and C. Godart, Ensuring required failure atomicity of composite
web services, in Proceedings of 14th International Conference on WWW 2005, Chiba,
Japan, 2005.

 18. L. Li, C. Liu, and J. Wang, Deriving transactional properties of composite web services,
in ICWS, Salt Lake City, UT, 2007.

 19. L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Linder, A break in the clouds:
Towards a cloud definition, ACM SIGCOMM Computer Communication Review,
39(1), 50–55, 2009.

 20. M. Armburst, A. Fox, R. Griffith, A. D. Joseph et al., Above the clouds: A Berkeley
view of cloud computing, 2009.

 21. G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Concepts, Architectures and
Applications, Springer Verlag, Berlin, Germany, 2004.

 22. C. Liu, W. Zhang, Z. Luo, and Y. Zhong, A scientific-workflow-based execution
 environment for ensemble prediction, in Proceedings of the 3rd International Conference
on Grid and Pervasive Computing Workshops, Kunming, China, May 2008.

431

Index

A

Abstract DAG model, 314–315
Abstraction

all-pairs
application, biometrics, 159
CalculateIrisSimilarity program, 160
iris codes, 160

Condor, cloud computer
layered system, 157
multiple abstractions, 156
time variation, 155
Work Queue software, 156

DAG, 167
definition, 154
directed graph

Makeflow language, 165–167
Make tool, 164
workflow languages, 164

map
applications, biometrics, 158
definition, 157
iris code, 158

Map-Reduce, 154
resource allocation, 153–154
sparse-pairs

vs. all-pairs abstraction, 162
genome assembly, 161
Sorghum bicolor genome, 162

wavefront
bioinformatics, 163–164
dynamic programming, 164
game theory, 163–164
multicore processor, 163

workloads, 167–168
Abstract Workflow Language (AWL), 242
ACGT language, 162
Algorithm 17.1, evaluating losses, 422

Algorithm 17.2, impact calculation, 422–423
All-pairs abstraction

biometrics, 159
CalculateIrisSimilarity program, 160
iris codes, 160

Amazon Elastic Compute Cloud
infrastructure cloud, 91
on-demand computing, 311
system architecture and components, 312
virtual machines, 141

Amazon Machine Image (AMI), 319
Application programming interface (API)

asynchronous GridRPC control functions, 258
asynchronous GridRPC wait functions, 258
error reporting functions, 258–259
function handles and session IDs, 257
GridRPC call functions, 258
initializing and finalizing functions, 257
network-enabled servers, 259
remote function handle management

functions, 257
standardization, 256

Application service provider (ASP) service, 393
Azure, 311

B

Basic linear algebra subroutines (BLAS),
264–265

BioVLAB
Amazon computing clouds services,

318–319
architecture, 310–312, 323
bioinformatics applications

microarray, 319–322
MMIA (see MicroRNA and mRNA

integrated analysis)
protein, 319–320

432  ◾  Index

cloud computing, 310–311
experimental results, 324
generic factory (GFac), 311
middleware services, 317–318
user interaction layer

web portal, 316–317
workflow composer and execution

engine, 312–313
XBaya workflow system, 313–316

XRegistry, 312
Block-level operator (BLO), 106–107
Bloom filter

EMR, 366
set value content, 366–367

Business Process Execution Language (BPEL),
236

C

Cannon’s Algorithm, 285–286
CAP3

mRNA sequence assembling, 222–223
and particle physics, 290–293
performance measurements, 290–291
sequence assembly program, 283–285

Cartesian operator, 103
Catalog information, 363
CGL-MapReduce, 279–280
C++ language, 215–217, 219–220, 222
Cloud computing

benefits, 179–180
cloud security, 64–67
collective intelligence, 49–50
definition, 178
deployment phase, 70
in development/test

cost reduction, 71
ensuring project information security,

72–73
new project environment, 71–72
reusing equipment, 72

disadvantages, 179
EKC (see Enterprise knowledge clouds)
EKM (see Enterprise knowledge

management)
emerging infrastructures, 48–49
high-performance computing (HPC)

center
combination with traditional

management technology, 74–75
virtualized computing resources, 74

IaaS layer, 178–179
infrastructure for IDC

cloud example, 79–80
development bottleneck, 75–76
in 3G era, 80–81
making fixed costs variable, 79
new infrastructure solution, 76–77
value for IDC users, 78–79
value for service providers, 77–78

intelligent enterprise, 50–51
IT service, 62–64
large-scale data processing

computation profile, 91
GridBatch (see GridBatch)
higher-level programming languages,

136
MapReduce (see MapReduce)

multiple data center enterprise
ERP, 86
platform design, 86–87

PaaS and SaaS layer, 178
reliability modeling

mean, 149
MTTF, 148–149
partition reliability, 150–151
virtual machine, 148
Weibull distribution, 148–149

SaaS cloud, 87–88
for science

Eucalyptus infrastructure (see Elastic
Utility Computing Architecture
Linking Your Programs to Useful
Systems)

gadgets and opensocial containers (see
Gadget framework)

large-scale scientific datasets, 38–41
MapReduce parallel programming

pattern, 20
Microsoft’s LifeMesh, 21
Nimbus toolkit (see Nimbus toolkit)
SaaS gateway architecture (see Software

as a Service)
service load modeling

availability discussion, 146–147
computational nodes, 145
dimensioning curve, multiple resource

classes, 146–147
hot-spare nodes, 143–144
multiclass Erlang loss model, 145
node occupancy, 145–146
Poisson process, 145

Index  ◾  433

resources requisition and allocation
framework, 142–143

synthetic workload, 141
virtual machine technology, 141
workload classes, 144
workload measurement, 141–142

for software parks
cloud computing architecture, 83–84
outsourcing demonstration plot benefits,

83
outsourcing service companies benefits,

83
outsourcing software research and

development platform, 84–85
software outsourcing ecosystems, 82

strategy planning phase, 67–69
tactics planning phase, 69
virtualization, 178–179
vs. volunteer and HPC computing, 182–183

Cloud hardware/firmware, 9–10
Cloud operating system, 114–115
Cloud OS MapReduce implementation

advantage
incremental scalability and

heterogeneity, 118
robust and scalable, 116
shear scale, 116
simplicity, 117–118
symmetry and decentralization, 118

architecture, 119–121
challenges

duplicate message, 122
eventual consistency model, 117
horizontal scaling, 117, 122
indeterministic eventual consistency

window, 122–123
long latency, 121
potential node failure, 122
queue creation, 122

computation time, 125
configuration, 130
disk paging, 131
failure detection/recovery and conflict

resolution, 124–125
failure handling, 130
file system comparison, 129
finer grain job assignment, 131
incast problem, 131–134
locality optimization, 130
Map and Reduce interfaces, 126–128
master/slave communication, 130

parallelize processing and copying, 131
performance evaluation, 134–136
scalability evaluation, 134
slow nodes, 130
sorting, 129–131
staging, 131
status tracking, 123–124
word count

application run time, 135
200 MB data set, 132

working with SQS
duplicate detection, 126
hide access latency, 125–126

Cloud software infrastructure, 8–9
Cloud system classifications

Hoff’s cloud model, 11–13
SPI cloud classification

cloud infrastructure systems, 4
cloud platform systems, 3–4
cloud software systems, 3

UCSB-IBM cloud ontology
applications (SaaS), 5–7
classification model, 5
cloud hardware/firmware, 9–10
cloud software environment (PaaS), 7
cloud software infrastructure, 8–9
Jackson’s expansion on, 10–11
software kernel layer, 9

Cluster machines, 217–218
Combiner function, 96–97
Compensation-causing dependency, 416–417
Computer algebra systems (CASs), 242–243
Computer clusters/grids, 311
Computing environments

cloud computing
benefits, 179–180
definition, 178
disadvantages, 179
IaaS layer, 178–179
PaaS and SaaS layer, 178
virtualization, 178–179
vs. volunteer and HPC computing,

182–183
external resources application, 183–184
highly parallel applications

climate modeling, 184–185
molecular docking, 184

institutional grid, 174
benefits, 176–177
drawbacks, 177
layers and services, 175–176

434  ◾  Index

variety of scientific applications,
175–176

virtual organization (VO), 175
programming models, 183–184
scientific workflows

definition, 186–187
high-throughput technology (SIPHT)

workflow, 187–188
Montage workflow, 187, 189
Taverna workflow, 189–191

selection criteria, 191–195
tightly coupled application, 185–186
volunteer computing, 175

benefits, 181
disadvantages, 181–182
vs. HPC and cloud computing,

180–183
platform structure, 180
World Community Grid, 181

Concise Bounded Description (CBD) graph, 336
Condor, cloud computer

layered system, 157
multiple abstractions, 156
time variation, 155
Work Queue software, 156

Configurable metadata, 392
Conformance quality, 395
ConvertIrisToCode program, 158

D

DARPA Agent Markup Language for Services
(DAML-S), 240

Desktop computing, see Volunteer computing
DG+-index, 368–369
Directed acyclic graph (DAG)

abstract model, 314–315
Dryad, 216, 278
execution pipeline, 211
Montage workflow, 187, 189
NDVI simplified solution, 231–232
vertices communications, 97
vs. wavefront, 167

Directed graph abstraction
Makeflow language, 165–167
Make tool, 164
workflow languages, 164

Disco, 216
Distributed environments

automation, 229
data integrity and failure handling, 237

discovery mechanism, 238
dynamic evolution, 229
grid vs. cloud computing, 229
present workflow solutions

classic approaches, 239–240
ECA-based approaches, 240–242
orchestration engines, 238

scientific workflows, 242–243
workflow construction, 247–248
workflow modeling

DAG, 231–232
GCD, 230
integer division, two numbers, 232
LCM solution tree, 230–231
logic schemes/textual algorithms, 230
NDVI computation, 231–232
NDVI solution tree, 231
task implementation model, 234–236
task semantics, 236–237
workflow decomposition, 230,

232–235
workflow orchestration engine, 229

Distributed Interactive Engineering Toolbox
(DIET) project, 259

Distributed workflow approach, 238
Distribute operator, 100–101
DryadLINQ

“homomorphic Apply” operation, 285
vs. MPI technologies, 294
vertex hierarchy, 288–289

Dryad programming model, 216–218

E

EBI ClustalW2 workflow, 189–191
EC2, see Amazon Elastic Compute Cloud
ECA workflow formalism

abstract workflow, 245
concrete workflow, 245
evolution function/rule, 245–246
GiSHEO project, 244
ontologies, 244
synchronization, 246

Elastic Utility Computing Architecture Linking
Your Programs to Useful Systems
(Eucalyptus)

architecture, 24–26
engineering challenge, 24
eucalyptus public cloud (EPC), 26
leveraging the ecosystem, 27–28
notes from the private cloud, 26–27

Index  ◾  435

Electronic medical record (EMR)
Bloom filter, 366
clinical data, 358
fine-structured and numerical value content,

365
patient data, 356–357
patient profile, 356–357
Physical Design Advisor, 366
set value and path content, 365
storage, HDFS, 364
structure, 365–366
transaction, RDBMS, 363–364
tree-structure, 364–365
Xbase, 359
XML, 358–359

Encoding, 363
Enterprise knowledge clouds (EKC)

abstracted business enterprise architecture,
55–57

collective intelligence, 49–50
emerging cloud computing infrastructures,

48–49
intelligent enterprise, 50–51

Enterprise knowledge management (EKM)
applications, 55
architectural view, 53
artificial intelligence and heuristics, 52
back-end portals, 54
business intelligence, 52
content, 55
core layer, 53
enterprise workflow system, 54
front-end portals, 53
infrastructure, 54
IT deployment domains, 51–52
system evolution, 58
users, 55

Enterprise Resource Planning (ERP) system, 236
Erlang functional programming language, 216
Erlang loss station model, 144–145
Eucalyptus, see Elastic Utility Computing

Architecture Linking Your Programs
to Useful Systems

Event-condition-action (ECA) paradigm, 234
Eventual consistency model, 117
Excellence quality, 395
Execute() method, 213
Expressed Sequence Tag (EST) assembly,

222–223
Extensible Markup Language (XML)

Bigtable, 384
complex healthcare applications, 358

de facto standard, information exchange, 383
EMR, 356–358
experimental evaluations

data scale effects, 377–379
data sets, query patterns, and solutions,

376–378
Hadoop-specified configurations,

382–383
hardware and software configurations,

375–376
query complexity effects, 379–382

healthcare informatics system, 358
indexing

building index, 370–371
EMR content and structures, 364–366
fine-structured data content (FC) index,

366–367
hash functions, data signatures,

367–368
input/output, index structures,

369–370
numerical value content index, range

query, 366–367
set value content, Bloom filter,

366–368
structure index, DataGuide, 368–369

query patterns, healthcare informatics,
360–361

query processing
plan execution, 374–375
plan generation, 373–374
result consolidation and data retrieval,

374–375
rewriting, 371–373

Xbase
features, 359
Hadoop, 361–362
healthcare-specific analytic engine, 359
information appliance, 361
MapReduce, 361
system architecture, 362–364

F

Failure-causing dependency, 414–416
Fanning process, 233
Fibonacci recursive function, 231
Forrester SaaS maturity model, 392–394
Forward recovery mechanism, 421
Framework for adaptive orchestration

(FARAO), 241
Function handle management, 257

436  ◾  Index

G

Gadget framework
OAuth standard, 34
OLSG gadget, 34–35
OpenSocial framework, 34
vs. portlet frameworks, 33–34
SIDGrid preview gadget, 34–35

Gap quality, 395
Generic factory (GFac), 311, 317–318
GiSHEO project, 242–243
Google file system (GFS), 94
Granules

benchmarks
data driven, 221–222
information retrieval, 218–219
k-means algorithm, 219–220
mRNA sequences, 222–224
periodic scheduling, 220–221
streaming substrate, 217–218

cloud computing, 202–203
computational task

finite-state machine (FSM), 207–208
instance and task identifiers, 206
interleaving execution, 208
processing functionality, 205

datasets and collections, 206
deploying applications

communications and resource discovery,
214

initialization phase, 214–215
InstanceDeployer, 214–215
tracking/steering, 215

developing applications
initialization, 213
MapReduceBase class, 212–213
processing logic, 213
scheduling strategy, 213

diagnostics, 208–209
Hadoop, 216
Map-Reduce framework

advantages, 209
computational pipeline creation, 211–212
graph setup, 211
intermediate results, 209–210
life-cycle observer, 212
results generation, 210

NaradaBrokering
broker network, 203–204
reliable and secure streaming, 204

runtime, 205
scheduling strategy specification, 206–207

Greatest common divisor (GCD), 230
GridBatch

BLO, 106–107
Cartesian operator, 103
DFS extension, 98–99
distribute operator, 100–101
join operator, 101–102
map operator, 100
median computation

finding medians, algorithm, 110
GridBatch approach, 112–113
MapReduce approach, 111–112
MapReduce vs. GridBatch, 113–114
traditional enterprise approach, 108–109

neighbor operator, 105–106
recurse operator, 103–105

Grid computing system, 141–142
GridRPC

API
asynchronous GridRPC control

functions, 258
asynchronous GridRPC wait functions,

258
error reporting functions, 258–259
function handles and session IDs, 257
GridRPC call functions, 258
initializing and finalizing functions, 257
NES, 259
remote function handle management

functions, 257
standardization, 256

binding, servers, 269
data representation, 270
exception handling and fault tolerance,

269–270
GridSolve

agent scheduling, 263–264
client scheduling, 266–267
computational resources, server-proxies,

265–266
definition, 259–260
overview and architecture, 260–261
server performance prediction, 264–265
task graph scheduling, 267–268
transparency and ease of use, 261–263

network-based software services
Cedar project, 255
client–server interaction, 255
data marshaling, 255–256
high-performance computing, 256
library procedure, 254–255
stub procedure, 255

Index  ◾  437

parameter passing, 268–269
performance, 270–271
security, 272
transparency, 272

GridSolve
agent scheduling, 263–264
client scheduling, 266–267
computational resources, server-proxies,

265–266
definition, 259–260
overview and architecture, 260–261
server performance prediction, 264–265
task graph scheduling, 267–268
transparency and ease of use, 261–263

GridSolve Interface Definition Language
(gsIDL) file, 261–262

H

Hadoop Distributed File System (HDFS), 129,
216, 361

Haskell functional programming language, 216
High-energy physics (HEP), 285, 290, 292
High-order chemical language (HOCL), 244
High-performance computing (HPC)

combination with traditional management
technology, 74–75

virtualized computing resources, 74
High-performance parallel computing

benchmarks and results
concurrent wave equation solver, 298,

302
different hardware/VM configurations,

296, 298
dom0 and domU communication, 303
EC2 cloud infrastructure, 305
Eucalyptus infrastructure, VM image,

296
k means clustering, 298–301
LAM vs. OMPI, 303–304
matrix multiplication application,

298–299
speedups and overheads calculation, 296
virtualization, 303

Cloud technologies, 277
Apache Hadoop, 278–279
CGL-MapReduce, 279–280
DAG, 278
Dryad and DryadLINQ, 279
MPI, 280–281

computation and communication
complexities, 296–297

data analyses applications
Alu clustering problem, 287
CAP3, sequence assembly program,

283–285
Dryad implementation, 288–289
high-energy physics (HEP), 285
iterative MapReduce, k means

clustering and matrix multiplication,
285–287

MPI implementation, 289–290
O(N 2) factor of 2, 288
Smith–Waterman dissimilarities, 287

evaluations
CAP3 and particle physics, 290–293
different computation clusters, 290–291
k means and matrix multiplication,

292–293
Smith–Waterman–Gotoh algorithm,

294
threaded implementation, 294–295

programming models
data/compute-intensive analyses, 283
Disco, 283–284
Dryad, 283
Hadoop, 281, 283
map and reduce tasks, 281
Sphere, 284
task communication, 284
three basic execution units, 281, 283

Hoff’s cloud model, 11–13

I

ICD-9 code, 372
Indexing process

building index, 370–371
EMR content and structures, 364–366
fine-structured data content (FC) index,

366–367
hash functions, data signatures, 367–368
input/output, index structures, 369–370
numerical value content index, range query,

366–367
set value content, Bloom filter, 366–368
structure index, DataGuide, 368–369

Infrastructure as a Service (IaaS)
Eucalyptus, open-source

architecture, 24–26
engineering challenge, 24
Eucalyptus Public Cloud (EPC), 26
leveraging the ecosystem, 27–28
notes from the private cloud, 26–27

438  ◾  Index

IaaS layer, 178–179
Nimbus toolkit

CernVM, cloud computing ecosystem,
32–33

CloudBLAST, 33
context broker, 30
EC2-style VM deployment, 29
meeting STAR production demands,

31–32
WSRF interface, 29

quality-of-service aware interface, 23
self-service interface, 23

Institutional grid computing
benefits, 176–177
drawbacks, 177
layers and services, 175–176

Interlacing detection, 106
Internet Data Center (IDC) infrastructure

cloud example, 79–80
development bottleneck, 75–76
in 3G era, 80–81
making fixed costs variable, 79
new infrastructure solution, 76–77
value for IDC users, 78–79
value for service providers, 77–78

Inter-processes communication, 185

J

Java database connectivity (JDBC), 206
Java Virtual Machine (JVM), 217
JobLifecycleObserver interface, 215
Job scheduling system, 95
Job Submission Description Language (JSDL),

240
Join operator, 101–102

K

Kaufman–Roberts algorithm, 145
Knowledge database (KDB), 362–363

L

Large-scale data processing
computation profile, 91
GridBatch

BLO, 106–107
Cartesian operator, 103
DFS extension, 98–99
distribution operator, 100–101
join operator, 101–102
map operator, 100

median computation, 107–114
neighbor operator, 105–106
recurse operator, 103–105

higher-level programming languages, 136
MapReduce

cloud OS implementation (see Cloud OS
MapReduce implementation)

Dryad model, 97
failure handling, 95–96
optimization, 96–97
programming model, 93–94
sketch implementation, 94–95

Large-scale scientific dataset, dynamic
provisioning

cloud computing and data, 39–41
science gateways for data, 39
storage factors, 38–39

Least common multiple (LCM), 230
LifecycleMetrics, 215
Linked Environments for Atmospheric

Discovery (LEAD) workflow system,
19, 310

Linpack benchmark, 265
Loosely coupled application, see Scientific

workflows

M

Map abstraction
biometrics, 158
definition, 157
iris code, 158

Map operator, 100
Mapping process, 233–234
MapReduce, 154

cloud OS implementation (see Cloud OS
MapReduce implementation)

computational pipeline creation, 211–212
definition, 331, 334
Dryad model, 97
failure handling, 95–96
graph setup, 211
life-cycle observer, 212
map and reduce role, 210
optimization, 96–97
parallel execution, cluster of machines, 334
performance

conversion tasks, 347–348
integration and loading time evaluation,

346
two clusters, time measurements,

346–347

Index  ◾  439

programming model, 93–94
scale-out techniques, 334–335
sketch implementation, 94–95
system architecture, Xbase, 361

Matrix-based computations, 186
Matrix multiplication, 221–222
Mean time to failure (MTTF), 148–149
Message aggregation techniques, 125
Message-passing infrastructures (MPIs)

cloud technologies, 278
computation and communication

complexities, 296–297
de facto standard, parallel programming,

280
implementation, 289–290
parallel programming runtimes, 281–282
performance, clouds

concurrent wave equation solver, 298,
302

different hardware/VM configurations,
296, 298

dom0 and domU communication, 303
EC2 cloud infrastructure, 305
Eucalyptus infrastructure, VM image,

296
k means clustering, 298–301
LAM vs. OMPI, 303–304
matrix multiplication application,

298–299
speedups and overheads calculation,

296
virtualization, 303

Messenger Ribonucleic acid (mRNA), 222
Metadata, 362–363
Microarray gene expression analysis, 320–321
MicroRNA and mRNA integrated analysis

(MMIA)
BioVLAB

architecture, 323
experimental results, 324

disease information, dys-regulated miRNA
expression, 321

functional, pathological, and pathway
information, 321

Microsoft SaaS maturity model, 391–392, 394
Minimum completion time algorithm,

263–264
Minimum self-contained graphs (MSGs), 336
Molecular docking, 184
Montage workflow, 187, 189
M45 test bed, 311
Multi-threading techniques, 125–126

N

NaradaBrokering
broker network, 203–204
reliable streaming, 204
secure streaming, 204

Neighbor operator, 105–106
NEOS server, 259
Network-enabled servers (NES), 259
Network weather service (NWS), 266–267
Nimbus toolkit

CernVM, cloud computing ecosystem,
32–33

CloudBLAST, 33
context broker, 30
EC2-style VM deployment, 29
meeting STAR production demands,

31–32
WSRF interface, 29

Node reliability
mean, 149
MTTF, 148–149
partition reliability, 150–151
virtual machine, 148
Weibull distribution, 148–149

Normalized differential vegetation index
(NDVI), 231–232, 243

O

Office of Government Commerce (OGC’s)
ITIL, 404

Ontology Web Language for Services
(OWL-S), 240

Open Grid Computing Environments (OGCE),
34, 310, 317

Open Life Science Gateway (OLSG) gadget,
34–35

P

Parallel programming, 157
Pass-by-reference procedure, 268
Pass-by-value procedure, 268
Petri nets, 238
Phoenix, 216
Platform-as-a-Service (PaaS), 7, 178
Process-oriented workflows, 235–236
ProgressTracker, 215
Protein Data Bank (PDB), 19
Public computing, see Volunteer computing
Push iterator interface, 127

440  ◾  Index

Q

QoS-focused SaaS evaluation model
applications, 390
business relationship

customer organization view, 396–397
maturity levels, 399–400
provider organization view, 395–396
quality definitions, 394–395

co-creation, business value
commodity service, 399
phases, service delivery, 397–398
ROI, 398
service system, 397

Forrester SaaS maturity model, 392–394
Microsoft SaaS maturity model, 391–392,

394
quality management, 390–391
service delivery and management, 404
specifications

ad hoc service, 399, 401
Defined service, 401
Managed service, 401
QoS-value graphs, 402–404
Strategic service, 401

Qt Concurrent, 216
Query processing

plan execution, 374–375
plan generation, 373–374
result consolidation and data retrieval,

374–375
rewriting, 371–373

R

RDF, see Resource description framework
Recurse operator, 103–105
Reduce process, 233–234
Relational database management system

(RDBMS), 363
RENCI science gateway, 36–38
Request blocking probability modeling

computational nodes, 145
dimensioning curve, multiple resource

classes, 146–147
Erlang loss station model, 144–145
Kaufman–Roberts algorithm, 145
node occupancy, 145–146
Poisson process, 145

Resource description framework (RDF)
blank nodes, 333
distributed SPARQL query responses

performance statistics, 348–349
PPI, 348–349
Sesame’s performance, 349–350

graph decomposition and molecule
merging

equivalent graph, 345
Jena, 345–346
naïve decomposition algorithm, 344

graph, yeast protein, 332–333
identity reconciliation process, 332
MapReduce performance, 346–348
modules

CBD graph, 336
complexity, time, 341–342
decomposition and merging operators,

337
findBlankNodeMap algorithm,

342–343
hierarchies, 338–339
MSGs, 336
naïve graph decomposition algorithm,

340
ordering, 339–340
PPI, 337–338
pseudocode, 340–341
relative granularity levels, 336

molecule store, 344
objectives, 333–334
ontologies, 332
proposed architecture, 331–332
protein–protein interaction test bed,

343–344
scalability, 350
scale-out architecture, 334–335
scale-out distributed processing, 344–345

Resources requisition and allocation framework,
142–143

Reverse index application, 135
Ripple down rules (RDR) approach, 239–240
Risk evaluation-based selection approach

assessment process, 428
CWS, 427
experiments and evaluation, 425–426
formalized model

alternative pattern, 414
business process environment, 414
concretion-and abstract-level

composition, 411
ensemble prediction process, 414
parallel pattern, 413
quarter tuple, 413
semantic description, 411–412

Index  ◾  441

sequence pattern, 413
state transition diagram, task, 412–413
transactional aspect, 411

risk losses failure
failure-causing tree formation, 415–418
task, 418–423

selection algorithm
array impact, 422–424
constraints satisfaction, 424
minimum objective function, 424
reliability dimension, 423–424

WSC process, 410, 427

S

Sawzall programming language, 215
Scientific computing environments (SCEs),

262
Scientific workflows

application, bioinformatics, 187
communication, file transfer, 189
definition, 186–187
Montage workflow, 187, 189
SIPHT workflow, 187–188
Taverna workflow, 189–191

Scufl language, 240
Semantic contract, 236–237
Semantic Web Search Engine (SWSE)

architecture, 335
Sequential and conditional process chaining,

235
Server administration, 262–263
Service level agreements (SLAs), 401
Service-oriented architecture (SOA), 236
Service-oriented workflow, 236
Shared-nothing approach, 335
Simple queue service (SQS), 115
Single-app SaaS, 393
Single program/process, multiple data (SPMD)

model, 203, 216
Skynet, 217
Social Informatics Data Grid (SIDGrid)

access, multimodal data, 19
SIDGrid preview gadget, 34–35

Software as a Service (SaaS)
layer, 178
science gateway architecture, 36–38
UCSB-IBM cloud ontology, 5–7

Software kernel layer, 9
Software parks

cloud computing architecture, 83–84
outsourcing demonstration plot benefits, 83

outsourcing service companies benefits, 83
outsourcing software research and

development platform, 84–85
software outsourcing ecosystems, 82

Sparse-pairs abstraction
genome assembly, 161
Sorghum bicolor genome, 162

SPI cloud classification
cloud infrastructure systems, 4
cloud platform systems, 3–4
cloud software systems, 3

sRNA identification protocol using high-
throughput technology (SIPHT)
program, 187–188

Status tracking mechanism, 123–124
Stubless clients, 261–262
Syntactic contract, 236

T

Task discovery mechanism (TDM), 237–238
Taverna workflow, 189–191, 240
TeraGrid, 175
TeraGrid Science Gateway program, 19
Transactional composition service (TCS), 415
Twister, iterative MapReduce runtime, see

CGL-MapReduce

U

UCSB-IBM cloud ontology
classification model, 5
cloud hardware/firmware, 9–10
cloud software environment (PaaS), 7
cloud software infrastructure, 8–9
Jackson’s expansion on, 10–11
SaaS applications, 5–7
software kernel layer, 9

V

Value quality, 395
Vienna distributed rules engine (VIDRE), 241
Virtual machine technology, 141, 148
Volunteer computing, 175

benefits, 181
disadvantages, 181–182
platform structure, 180–181
World Community Grid, 181

442  ◾  Index

W

Wavefront abstraction
bioinformatics, 163–164
dynamic programming, 164
game theory, 163–164
multicore processor, 163

Wave simulation, 186
Web Service Description Language (WSDL),

236
Web Service Resource Framework (WSRF), 29
Web Services, 236, 238–239
Web services composition (WSC)

process, 410
Weibull distribution, 148–149
Workflow decomposition, 230

conditional construct, 233–234
iterative constructs, 233
join construct, 233–234
map-reduce workflow pattern, 233, 235
parallelism approach, 234
sequence construct, 232–233
split construct, 233
trivial constructs, 234
well-defined workflow, 234

Work Queue software, 156, 164–165, 169
WS-BPEL 2.0 language, 239

X

Xbase
BF-index and DG+-index, 375
design, 385
features, 359
Hadoop, 361–362
healthcare-specific analytic engine, 359
information appliance, 361
MapReduce, 361
parallel vs. serial-chain execution, 373
system architecture, 362–364
task scheduler, 373–374

XBaya workflow system
components, 313
management, authentication and

authorization, 313
monitoring, 316
orchestration, 315–316
workflow composition, 313–314

XML, see Extensible Markup Language
XRegistry service, 312, 314
XScufl language, 240

Y

Yet another workflow language (YAWL), 239

View publication statsView publication stats

https://www.researchgate.net/publication/49513694

	Contents
	Preface
	Editors
	Contributors
	Chapter 1: Understanding the CloudComputing Landscape
	Chapter 2: Science Gateways:Harnessing Cloudsand Software Services for Science
	Chapter 3: Enterprise KnowledgeClouds: NextGeneration KnowledgeManagement Systems?
	Chapter 4: Real Cases andApplications of Cloud Computing
	Chapter 5: Large-Scale Data Processing
	Chapter 6: Toward a Reliable Cloud Computing Service
	Chapter 7: Abstractions for CloudComputing with Condor
	Chapter 8: Exploiting the Cloud of Computing Environments: An Application’s Perspective
	Chapter 9: Granules: A Lightweight Runtime for Scalable Computing with Support for Map-Reduce
	Chapter 10: Dynamic and Adaptive Rule-Based Workflow Engine for Scientific Problems in Distributed Environments
	Chapter 11: Transparent Cross-Platform Access to Software Services Using GridSolve and GridRPC
	Chapter 12: High-Performance Parallel Computing with Cloud and Cloud Technologies
	Chapter 13: BioVLAB: Bioinformatics Data Analysis Using Cloud Computing and Graphical Workflow Composers
	Chapter 14: Scale-Out RDF Molecule Store for Efficient,Scalable Data Integration and Querying
	Chapter 15: Enabling XML Capability for Hadoopand Its Applications in Healthcare
	Chapter 16: Toward a QoS-Focused SaaS Evaluation Model
	Chapter 17: Risk Evaluation-based Selection Approach for Transactional Services Composition
	Index

