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Preface

Cloud computing has gained significant traction in recent years. The proliferation of 
networked devices, Internet services, and simulations has resulted in large volumes 
of data being produced. This, in turn, has fueled the need to process and store vast 
amounts of data. These data volumes cannot be processed by a single computer or a 
small cluster of computers. Furthermore, in most cases, these data can be processed 
in a pleasingly parallel fashion. The result has been the aggregation of a large number 
of commodity hardware components in vast data centers. Among the forces that 
have driven the need for cloud computing are falling hardware costs and burgeon-
ing data volumes. The ability to procure cheaper, more powerful CPUs coupled 
with improvements in the quality and capacity of networks have made it possible to 
assemble clusters at increasingly attractive prices. By facilitating access to an elastic 
(meaning the available resource pool that can expand or contract over time) set 
of resources, cloud computing has demonstrable applicability to a wide range of 
problems in several domains. Among the many applications that benefit from cloud 
computing and cloud technologies, the data/compute-intensive applications are the 
most important. The deluge of data and the highly compute-intensive applications 
found in many domains, such as particle physics, biology, chemistry, finance, and 
information retrieval, mandate the use of large computing infrastructures and par-
allel processing to achieve considerable performance gains in analyzing data. The 
addition of cloud technologies creates new trends in performing parallel computing.

The introduction of commercial cloud infrastructure services has allowed users 
to provision compute clusters fairly easily and quickly by paying a monetary value for 
the duration of their usages of the resources. The provisioning of resources happens 
in minutes, as opposed to hours and days required in the case of traditional queue-
based job-scheduling systems. In addition, the use of such virtualized resources 
allows the user to completely customize the virtual machine images and use them 
with administrative privileges, another feature that is hard to achieve with tradi-
tional infrastructures. Appealing features within cloud computing include access 
to a vast number of computational resources and inherent resilience to failures. 
The latter feature arises because in cloud computing the focus of execution is not 
a specific, well-known resource but rather the best available one. The availability 
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of open-source cloud infrastructure software and open-source virtualization soft-
ware stacks allows organizations to build private clouds to improve the resource 
utilization of the available computation facilities. The possibility of dynamically 
provisioning additional resources by leasing from commercial cloud infrastructures 
makes the use of private clouds more promising. Another characteristic of a lot of 
programs that have been written for cloud computing is that they tend to be state-
less. Thus, when failures do take place, the appropriate computations are simply 
relaunched with the corresponding datasets. 

This book provides technical information about all aspects of cloud computing, 
from basic concepts to research grade material including future directions. It cap-
tures the current state of cloud computing and serves as a comprehensive source of 
reference material on this subject. It consists of 17 chapters authored by 50 experts 
from around the world. The targeted audience include designers and/or planners 
for cloud computing systems, researchers (faculty members and graduate students), 
and those who would like to learn about this field.

The book is expected to have the following specific salient features:

 ◾ To serve as a single comprehensive source of information and as reference 
material on cloud computing

 ◾ To deal with an important and timely topic of emerging technology of today, 
tomorrow, and beyond

 ◾ To present accurate, up-to-date information on a broad range of topics related 
to cloud computing

 ◾ To present the material authored by the experts in the field
 ◾ To present the information in an organized and well-structured manner

Although, technically, the book is not a textbook, it can certainly be used as a 
textbook for graduate courses and research-oriented courses that deal with cloud 
computing. Any comments from the readers will be highly appreciated.

Many people have contributed to this book in their own unique ways. First and 
foremost, we would like to express our immense gratitude to the group of highly 
talented and skilled researchers who have contributed 17 chapters to this book. All 
of them have been extremely cooperative and professional. It has also been a plea-
sure to work with Rich O’Hanley and Jessica Vakili of CRC Press; we are extremely 
grateful to them for their support and professionalism. Special thanks are also due 
to our families who have extended their unconditional love and support through-
out this project.

syed.ahson
Seattle, Washington

mohammad.ilyas
Boca Raton, Florida
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2  ◾  Cloud Computing and Software Services

1.1  Introduction
The goal of this chapter is to present an overview of three different structured 
views of the cloud computing landscape. These three views are the SPI cloud clas-
sification, the UCSB-IBM cloud ontology, and Hoff’s cloud model. Each one of 
these three cloud models strives to present a comprehension of the interdependency 
between the different cloud systems as well as to show their potential and limita-
tions. Furthermore, these models vary in the degree of simplicity and comprehen-
siveness in describing the cloud computing landscape. We find that these models 
are complementary and that by studying the three structured views, we get a gen-
eral overview of the landscape of this evolving computing field.

1.2  Cloud Systems Classifications
The three cloud classification models present different levels of details of the cloud 
computing landscape, since they emerged in different times of evolution of this 
computing field. Although they have different objectives—some are for academic 
understanding of the novel research area, while others target identifying and ana-
lyzing commercial and market opportunities—they collectively expedite compre-
hending some of the interrelations between cloud computing systems. Although 
we present them in this chapter in a chronological order of their emergence—
which also happens to reflect the degree of details of each model—this order does 
not reflect the relative importance or acceptance of one model over the other. On 
the other hand, the three models and their extensions are complementary, reflect-
ing different views of the cloud. We first present the SPI model in Section 1.2, 
which is the oldest of the three models. The second classification is the UCSB-
IBM ontology, which we detail in Section 1.3. We also present a discussion of a 
recent extension to this ontology in Section 1.4. The third classification is Hoff ’s 
cloud model, which we present in Section 1.5. We discuss the importance of these 
classifications and their potential impact on this emerging computing field in 
Section 1.6.

1.3  SPI Cloud Classification
As the area of cloud computing was emerging, the systems developed for the cloud 
were quickly stratified into three main subsets of systems: Software as a Service 
(SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS). Early 
on, these three subsets of the cloud were discussed by several cloud computing 
experts, such as in [24,30,31]. Based on this general classification of cloud systems, 
the SPI model was formed and denotes the Software, Platform, and Infrastructure 
systems of the cloud, respectively.
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1.3.1 Cloud Software Systems
This subset of cloud systems represents applications built for and deployed for the 
cloud on the Internet, which are commonly referred to as Software as a Service 
(SaaS). The target user of this subset of systems is the end user. These applications, 
which we shall refer to as cloud applications, are normally browser based with pre-
defined functionality and scope, and they are accessed, sometimes, for a fee per a 
particular usage metric predefined by the cloud SaaS provider. Some examples of 
SaaS are salesforce customer relationships management (CRM) system [33], and 
Google Apps [20] like Google Docs and Google SpreadSheets.

SaaS is considered by end users to be an attractive alternative to desktop applica-
tions for several reasons. For example, having the application deployed at the pro-
vider’s data center lessens the hardware and maintenance requirements on the users’ 
side. Moreover, it simplifies the software maintenance process, as it enables the soft-
ware developers to apply subsequent frequent upgrades and fixes to their applications 
as they retain access to their software service deployed at the provider’s data center.

1.3.2 Cloud Platform Systems
The second subset of this classification features the cloud platform systems. In this 
class of systems, denoted as Platform as a Service (PaaS), the provider supplies a 
platform of software environments and application programming interfaces (APIs) 
that can be utilized in developing cloud applications. Naturally, the users of this 
class of systems are developers who use specific APIs to build, test, deploy, and tune 
their applications on the cloud platform. One example of systems in this category is 
Google’s App Engine [19], which provides Python and Java runtime environments 
and APIs for applications to interact with Google’s runtime environment. Arguably, 
Microsoft Azure [26] can also be considered a platform service that provides an API 
and allows developers to run their application in the Microsoft Azure environment.

Developing an application for a cloud platform is analogous to some extent to 
developing a web application for the old web servers model, in the sense that devel-
opers write codes and deploy them in a remote server. For end users, the final result is 
a browser-based application. However, the PaaS model is different in that it can pro-
vide additional services to simplify application development, deployment, and exe-
cution, such as automatic scalability, monitoring, and load balancing. Furthermore, 
the application developers can integrate other services provided by the PaaS sys-
tem to their application, such as authentication services, e-mail services, and user 
interface components. All that is provided through a set of APIs is supplied by the 
platform. As a result, the PaaS class is generally regarded to accelerate the software 
development and deployment time. In turn, the cloud software built for the cloud 
platform normally has a shorter time-to-market. Some academic projects have also 
emerged to support a more thorough understanding of PaaS, such as AppScale [5].
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Another feature that typifies PaaS services is the provision of APIs for meter-
ing and billing information. Metering and billing permits application developers 
to more readily develop a consumption-based business model around their appli-
cation. Such a support helps integrate and enforce the relationships between end 
users, developers, PaaS, and any lower-level providers, while enabling the economic 
value of the developers and providers.

1.3.3 Cloud Infrastructure Systems
The third class of systems, according to the SPI classification model, provides infra-
structure resources, such as compute, storage, and communication services, in a 
flexible manner. These systems are denoted as Infrastructure as a Service (IaaS). 
Amazon’s Elastic Compute Cloud (EC2 [8]) and Enomalism elastic computing 
infrastructure [10] are arguably the two most popular examples of commercial sys-
tems available in this cloud category.

Recent advances in operating system (OS) Virtualization have facilitated the 
implementation of IaaS and made it plausible on existing hardware. In this regard, 
OS Virtualization technology enables a level of indirection with respect to direct 
hardware usage. It allows direct computer usage to be encapsulated and isolated in 
the container of a virtual machine (VM) instance. As a result, OS Virtualization 
enables all software and associated resource usage of an individual hardware user 
to be treated as a schedulable entity that is agnostic to the underlying physical 
resources that it is scheduled to use. Therefore, OS Virtualization allows IaaS 
providers to control and manage efficient utilization of the physical resources by 
enabling the exploitation of both time division and statistical multiplexing, while 
maintaining the familiar and flexible interface of individual standard hardware 
computers and networks for the construction of services using existing practices 
and software. This approach is particularly attractive to IaaS providers given the 
underutilization of the energy-hungry, high-speed processors that constitute the 
infrastructure of data centers. Amazon’s infrastructure service, EC2, is one exam-
ple of IaaS systems, where users can rent computing power on their infrastructure 
by the hour. In this space, there are also several academic open-source cloud proj-
ects, such as Eucalyptus [14] and Virtual Workspaces [38].

1.4  UCSB-IBM Cloud Ontology
The UCSB-IBM cloud ontology emerged through a collaboration effort between 
academia (University of California, Santa Barbara) and industry (IBM T.J. Watson 
Research Center) in an attempt to understand the cloud computing landscape. The 
end goal of this effort was to facilitate the exploration of the cloud computing area 
as well as to advance the educational efforts in teaching and adopting the cloud 
computing area.
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In this classification, the authors used the principle of composability from a 
Service-Oriented Architecture (SOA) to classify the different layers of the cloud. 
Composability in SOA is the ability to coordinate and assemble a collection of ser-
vices to form composite services. In this sense, cloud services can also be composed 
of one or more of other cloud services.

By the principle of composability, the UCSB-IBM model classified the cloud 
in five layers. Each layer encompasses one or more cloud services. Cloud services 
belong to the same layer if they have an equivalent level of abstraction, as evident 
by their targeted users. For example, all cloud software environments (also known 
cloud platforms) target programmers, while cloud applications target end users. 
Therefore, cloud software environments would be classified in a different layer than 
cloud applications. In the UCSB-IBM model, the five layers compose a cloud stack, 
where one cloud layer is considered higher in the cloud stack if the services it pro-
vides can be composed from the services that belong to the underlying layer. The 
UCSB-IBM cloud model is depicted in Figure 1.1.

The first three layers of the UCSB-IBM cloud are similar to the SPI classifica-
tion, except that the authors break the infrastructure layer into three components. 
The three components that compose the UCSB-IBM infrastructure layer are com-
putational resources, storage, and communications. In the rest of this section, we 
explain in more detail this ontology’s components.

1.4.1 Applications (SaaS)
Similar to the SPI model, the first layer is the cloud application layer. The cloud 
application layer is the most visible layer to the end users of the cloud. Normally, 
users access the services provided by this layer through the browser via web 

Cloud applications
(e.g., SaaS)

Cloud software environments
(e.g., PaaS)

Cloud software infrastructures

Computational
resources (IaaS)

Storage
(DaaS)

Communications
(CaaS)

Software kernels & middleware

Firmware/hardware (HaaS)

Figure 1.1  UCSB-IBM Cloud Computing Classification Model depicted as five 
layers, with three constituents to the cloud infrastructure layer.
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portals, and are sometimes required to pay fees to use them. This model has been 
recently proven to be attractive to many users, as it alleviates the burden of soft-
ware maintenance and the ongoing operation and support costs. Furthermore, 
it exports the computational work from the users’ terminal to the data centers 
where the cloud applications are deployed. This in turn lessens the hardware 
requirements needed at the users’ end, and allows them to obtain superb perfor-
mance for some of their CPU-intensive and memory-intensive workloads with-
out necessitating large capital investments in their local machines. Arguably, 
the cloud application layer has enabled the growth of a new class of end-user 
devices in the form of “netbook” computers, which are less expensive end-user 
devices that rely on network connectivity and cloud applications for functional-
ity. Netbook computers often have limited processing capability with little or 
no disk drive-based storage, relying on cloud applications to meet the needs for 
both.

As for the providers of cloud applications, this model simplifies their work with 
respect to upgrading and testing the code, while protecting their intellectual prop-
erty. Since a cloud application is deployed at the provider’s computing infrastruc-
ture (rather than at the users’ desktop machines), the developers of the application 
are able to roll smaller patches to the system and add new features without disturb-
ing the users with requests to install updates or service packs. The configuration 
and testing of the application in this model is arguably less complicated, since the 
deployment environment, i.e., the provider’s data center becomes restricted. Even 
with respect to the provider’s profit margin, this model supplies the software pro-
vider with a continuous flow of revenue, which might be even more profitable on 
the long run. This SaaS model conveys several favorable benefits for the users and 
providers of the cloud application. The body of research on SOA has numerous 
studies on composable IT services, which have a direct application to providing 
and composing SaaS.

The UCSB-IBM ontology illustrates that the cloud applications can be devel-
oped on the cloud software environments or infrastructure components (as 
discussed in Sections 1.3.2 and 1.3.3). In addition, cloud applications can be com-
posed as a service from other services, using the concepts of SOA. For example, a 
payroll application might use another accounting system’s SaaS to calculate the 
tax deductibles for each employee in its system without having to implement this 
service within the payroll software. In this respect, the cloud applications targeted 
for higher layers in the stack are simpler to develop and have a shorter time-to-
market. Furthermore, they become less error prone, since all their interactions with 
the cloud are through pretested APIs. However, being developed for a higher stack 
layer limits the flexibility of the application and restricts the developers’ ability to 
optimize its performance.

Despite all the advantageous benefits of this model, several deployment issues 
hinder its wide adoption. Specifically, the security and availability of the cloud 
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applications are two of the major issues in this model, and they are currently 
addressed by the use of lenient service-level agreements (SLAs). Furthermore, cop-
ing with outages is a realm that users and providers of SaaS have to tackle, especially 
with possible network outage and system failures. Additionally, the integration of 
legacy applications and the migration of the users’ data to the cloud are slowing the 
adoption of SaaS. Before they can persuade users to migrate from desktop applica-
tions to cloud applications, cloud applications’ providers need to address end-users’ 
concerns about security and safety of storing confidential data on the cloud, users’ 
authentication and authorization, uptime and performance, as well as data backup 
and disaster recovery.

1.4.2 Cloud Software Environment (PaaS)
The second layer in the UCSB-IBM cloud ontology is the cloud software envi-
ronment layer (also dubbed the software platform layer). The users of this layer 
are cloud applications’ developers, implementing their applications and deploy-
ing them on the cloud. The providers of the cloud software environments supply 
the developers with a programming-language-level environment of well-defined 
APIs to facilitate the interaction between the environments and the cloud applica-
tions, as well as to accelerate the deployment and support the scalability needed 
by cloud applications. The service provided by cloud systems in this layer is com-
monly referred to as Platform as a Service (PaaS). Section 1.2 mentioned Google’s 
App Engine and Microsoft Azure as examples of this category. Another example is 
SalesForce’s Apex language [2] that allows the developers of the cloud applications 
to design, along with their applications’ logic, their page layout, workflow, and 
customer reports.

Developers reap several benefits from developing their cloud application for a 
cloud programming environment, including automatic scaling and load balanc-
ing, as well as integration with other services (e.g., authentication services, e-mail 
services, and user interface) supplied to them by the PaaS provider. In such a way, 
much of the overhead of developing cloud applications is alleviated and is handled 
at the environment level. Furthermore, developers have the ability to integrate other 
services to their applications on demand. This makes the development of cloud 
applications a less complicated task, accelerates the deployment time, and mini-
mizes the logic faults in the application. In this respect, a Hadoop [21] deployment 
on the cloud would be considered a cloud software environment, as it provides 
its applications’ developers with a programming environment, namely, the Map 
Reduce [7] framework for the cloud. Yahoo Research’s Pig [28] project, a high-
level language to enable processing of very large files in the Hadoop environment, 
may be viewed as an open-source implementation of the cloud platform layer. As 
such, cloud software environments facilitate the development process of cloud 
applications.
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1.4.3 Cloud Software Infrastructure
The third layer in the USCB-IBM ontology is the cloud software infrastructure 
layer. It is here that this ontology more distinctly departs from the SPI ontology. 
The USCB-IBM ontology takes a finer-grain approach to distinguishing the roles 
and components that provide the infrastructure to support SPI ontology’s PaaS 
layer. Specifically, it breaks the infrastructure layer down into a software layer that 
is composed of three distinct parts and places these on top of two additional layers. 
The three components, computational resources, storage, and communications, com-
posing the cloud software infrastructure layer are described below.

 a. Computational resources: VMs are the most common form for providing 
computational resources to cloud users at this layer. OS Virtualization is the 
enabler technology for this cloud component, which allows the users unprec-
edented flexibility in configuring their settings while protecting the physical 
infrastructure of the provider’s data center. The users get a higher degree of 
flexibility since they normally get super-user access to their VMs that they 
can use to customize the software stack on their VM for performance and 
efficiency. Often, such services are dubbed IaaS.

 b. Storage: The second infrastructure resource is data storage, which allows users 
to store their data at remote disks and access them anytime from any place. 
This service is commonly known as Data-Storage as a Service (DaaS), and it 
facilitates cloud applications to scale beyond their limited servers. Examples 
of commercial cloud DaaS systems are Amazon’s S3 [32] and EMC Storage 
Managed Service [9].

 c. Communication: As the need for guaranteed quality of service (QoS) for net-
work communication grows for cloud systems, communication becomes a 
vital component of the cloud infrastructure. Consequently, cloud systems are 
obliged to provide some communication capability that is service oriented, 
configurable, schedulable, predictable, and reliable. Toward this goal, the con-
cept of Communication as a Service (CaaS) emerged to support such require-
ments, as well as network security, dynamic provisioning of virtual overlays 
for traffic isolation or dedicated bandwidth, guaranteed message delay limits, 
communication encryption, and network monitoring. Although this model 
is currently the least discussed and adopted cloud service in the commercial 
cloud systems, several research papers and articles [1,11,13] have investigated 
the various architectural design decisions, protocols, and solutions needed to 
provide QoS communication as a service. One recent example of systems that 
belong to CaaS is the Microsoft Connected Service Framework (CSF) [25]. 
Voice over IP (VoIP) telephone systems, audio and video conferencing, as 
well as instant messaging are candidate cloud applications that can be com-
posed of CaaS and can in turn provide composable cloud solutions to other 
common applications.
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In addition to the three main layers of the cloud, the UCSB-IBM model includes 
two more layers: the software kernel and the firmware/hardware layer.

1.4.4 Software Kernel Layer
It provides the basic software management for the physical servers that compose 
the cloud. Unlike the SPI ontology, the UCSB-IBM ontology explicitly identifies 
the software used to manage the hardware resources and its existing choices instead 
of focusing solely on VM instances and how they are used. Here, a software kernel 
layer is used to identify the systems software that can be used to construct, man-
age, and schedule the virtual containers onto the hardware resources. At this level, a 
software kernel can be implemented as an OS kernel, hypervisor, VM monitor, and/
or clustering middleware. Customarily, grid computing applications were deployed 
and run on this layer on several interconnected clusters of machines. However, due 
to the absence of a virtualization abstraction in grid computing, jobs were closely 
tied to the actual hardware infrastructure, and providing migration, check-pointing, 
and load balancing to the applications at this level was always a complicated task.

The two most successful grid middleware systems that harness the physical 
resources to provide a successful deployment environment for grid applications are, 
arguably, Globus [15] and Condor [36]. The body of research in grid computing 
is large, and several grid-developed concepts are realized today in cloud comput-
ing. However, additional grid computing research can potentially be integrated to 
cloud research efforts. For example, grid computing microeconomics models [12] 
are possible initial models to study the issues of pricing, metering, and supply–
demand equilibrium of the computing resources in the realm of cloud computing. 
The scientific community has also addressed the quest of building grid portals and 
gateways for grid environments through several approaches [4,6,16,17,34,35]. Such 
approaches and portal design experiences may be very useful to the development 
of usable portals and interfaces for the cloud at different software layers. In this 
respect, cloud computing can benefit from the different research directions that 
the grid community has embarked for almost a decade of grid computing research.

1.4.5 Cloud Hardware/Firmware
The bottom layer of the cloud stack in the UCSB-IBM ontology is the actual physi-
cal hardware and switches that form the backbone of the cloud. In this regard, users 
of this cloud layer are normally big enterprises with large IT requirements in need 
of subleasing Hardware as a Service (HaaS). For this, the HaaS provider operates, 
manages, and upgrades the hardware on behalf of its consumers for the lifetime of 
the sublease. This model is advantageous to the enterprise users, since often they 
do not need to invest in building and managing data centers. Meanwhile, HaaS 
providers have the technical expertise as well as the cost-effective infrastructure 
to host the systems. One of the early HaaS examples is Morgan Stanley’s sublease 
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contract with IBM in 2004 [27]. SLAs in this model are stricter, since enterprise 
users have predefined business workloads with strict performance requirements. 
The margin benefit for HaaS providers materializes from the economy of scale of 
building data-centers with huge floor space, power, cooling costs, as well as opera-
tion and management expertise.

HaaS providers have to address a number of technical challenges in operating 
their services. Some major challenges for such large-scale systems are efficiency, 
ease, and speed of provisioning. Remote, scriptable boot loaders is one solution 
to remotely boot and deploy a complete software stack on the data centers. PXE 
[29] and UBoot [37] are examples of remote bootstrap execution environments 
that allow the system administrator to stream a binary image to multiple remote 
machines at boot time. Other examples of challenges that arise at this cloud layer 
include data center management, scheduling, and power and cooling optimiza-
tion. IBM Kittyhawk [3] is an example of a research project that targets the hard-
ware cloud layer. This project exploits novel integrated scalable hardware to address 
the challenges of cloud computing at the hardware level. Furthermore, the project 
attempts to support many of the software infrastructure features at the hardware 
layer, thus permitting a more direct service model of the hardware. Specifically, it 
provides an environment in which external users can obtain exclusive access to raw 
metered hardware nodes in an on-demand fashion, similar to obtaining VMs from 
an IaaS provider. The system allows the software to be loaded and network con-
nectivity to be under user control. Additionally, the prototype Kittyhawk system 
provides users with UBoot access, allowing them to script the boot sequence of the 
potentially thousands of Blue Gene/P nodes they may have allocated.

1.5  Jackson’s Expansion on the UCSB-IBM Ontology
The UCSB-IBM model was adapted by several computing experts to facilitate the 
discussions and conversations about other aspects of the cloud. One of these aspects 
was the cloud security. With a focus on supporting cloud computing for govern-
mental agencies, Jackson [23] adapted the original UCSB-IBM model and extended 
on it with the goal of supporting a more detailed view of the security aspects of the 
cloud computing field. By adding several additional layers to support cloud access 
management, workflow orchestration, application security, service management, 
and an explicit connectivity layer, Jackson highlighted several particulars of the 
security challenges for this emerging computing field. Specifically, he modified the 
original ontology to add the following three sets of layers:

 1. Access management layer: This new layer is added above the cloud application 
layer and is intended to provide access management to the cloud applications 
implementing SaaS. In the form of different authentication techniques, this 
layer can provide a simplified and unified, yet efficient, form of protection. In 
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turn, this can simplify the development and usage of the SaaS applications 
while addressing the security concerns for these systems. In this way, one of 
the security risks in the cloud could simply be contained and addressed in one 
high-level layer, thereby confining one of the main risk factors in the cloud 
applications.

 2. Explicit SOA-related layers: This set of layers offers several SOA features in 
a more explicit form that simplifies their utilization. Jackson added this set 
of layers between the application (Saas) and platform (Paas) layers in the 
original UCSB-IBM ontology. For example, one of the layers in this set is 
the workflow orchestration layer, which provides services for managing and 
orchestrating business-workflow applications in the cloud. Another layer in 
this set is the service discovery layer, which also facilitates the discovery of 
services available to an application and potentially simplifies its operation and 
composition of other services.

 3. Explicit connectivity Layers: The third set of layers in this extension was mainly 
added to support explicit networking capability in the cloud. Realizing that 
network connectivity in the cloud is an important factor in addressing the 
security of data, Jackson extended the model by adding extra network secu-
rity layers. These additional layers were placed between the cloud software 
infrastructure layers and their components. By analyzing the security of the 
“data in motion” and “data at rest,” Jackson’s model covered the security 
aspects of the data in the cloud at the network level as well.

1.6  Hoff’s Cloud Model
Inspired by the SPI model and the UCSB-IBM cloud ontology, Christofer Hoff [22] 
organized an online collaboration and discussion between several cloud computing 
experts to build an ontology upon the earlier models. Hoff’s Model, as shown in 
Figure 1.2, presented a new cloud ontology in more detail.

This model focused on analyzing the three main cloud services: IaaS, PaaS, 
and SaaS. The model dissects the IaaS layer to several other components. Data 
center facilities, which include power and space, is the first component. Hardware 
is the second component in the IaaS layer, which consists of compute node, data 
storage, and network subcomponents. Abstraction is the next component, which 
abridges the hardware through systems like VM monitors, grid, and cluster utili-
ties. The next component is the core connectivity and delivery, which provides the 
various services supporting the systems utilizing the IaaS layer, such as authenti-
cation services and DNS services. In this model, the abstraction component and 
the connectivity and delivery component are interleaving, since they are closely 
interdependent on each other’s services. The API component presents the manage-
ment services as well as a simplified interface to the next layer in the cloud. One 
system, for example, that implements this API sub-layer is the GoGrid CloudCenter 
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API [18]. This next layer in Hoff’s model, which is the PaaS, is composed of one 
sub-layer that provides the integration services in the cloud. This sub-layer provides 
several services, such as authentication, database, and querying services.

The SaaS layer in Hoff’s model is also further broken down into several sub-
layers and components. The cloud application data sub-layer is shown to consist of 
the actual data, the metadata describing the real data, and its content, which can 
be in a structured or unstructured form. The application component in the SaaS 
layer is categorized into three categories: native applications, web applications, 
and embedded applications. A native application can be a desktop application 
that uses a cloud service. A web application is a cloud application that is accessed 
via the web browser. Finally, an embedded application is a cloud application that 
is embedded into another application. The final two sub-layers in the SaaS layer 
in Hoff’s model are the applications’ API and the presentation sub-layers. Hoff’s 
model further decomposed the presentation sub-layers into data presentation, 
video presentation, and voice presentation, recognizing the different forms of 
cloud data presentations.
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Figure  1.2  Hoff’s  cloud  ontology,  which  emerged  as  an  online  collaboration 
and discussion between different cloud computing experts to further analyze the 
cloud components.



Understanding the Cloud Computing Landscape  ◾  13

As portrayed in Figure 1.2, Hoff’s model addresses more details of the compo-
sition of the cloud. The increased detail reveals additional aspects and challenges 
to cloud computing; however, it comes at the cost of simplicity. Nevertheless, the 
three cloud models presented in this chapter are regarded complementary and rep-
resent different viewpoints of the new emerging cloud computing field.

1.7  Discussion
As the cloud computing technology continues to emerge, more cloud systems are 
developed and new concepts are introduced. In this respect, a fundamental under-
standing of the extent to which cloud computing inherits its concepts from various 
computing areas and models is important to understand the landscape of this novel 
computing field and to define its potentials and limitations. Such comprehension 
will facilitate further maturation of the area by enabling novel systems to be put 
in context and evaluated in the light of existing systems. Particularly, an ontologi-
cal, model-based approach encourages new systems to be compared and contrasted 
with existing ones, thus identifying more effectively their novel aspects. We con-
tend that this approach will lead to more creative and effective cloud systems and 
novel usage scenarios of the cloud. With this in mind, our approach has been to 
determine the different layers and components that constitute the cloud, and study 
their characteristics in light of their dependency on other computing fields and 
models.

An ontology of cloud computing allows better understanding of the interrela-
tions between the different cloud components, enabling the composition of new 
systems from existing components and further recomposition of current systems 
from other cloud components for desirable features like extensibility, flexibility, 
availability, or merely optimization and better cost efficiency. We as well postulate 
that understanding the different components of the cloud allows system engineers 
and researchers to deal with hard technological challenges. For example, compre-
hending the relationship between different cloud systems can accentuate opportu-
nities to design interoperable systems between different cloud offerings that provide 
higher-availability guarantees. Although high availability is one of the fundamental 
design features of every cloud offering, failures are not uncommon. Highly avail-
able cloud applications can be constructed, for example, by deploying them on two 
competitive cloud offerings, e.g., Google’s App Engine [19] and Amazon’s EC2 [8]. 
Even in the case that one of the two clouds fails, the other cloud will continue to 
support the availability of the applications. In brief, understanding the cloud com-
ponents may enable creative solutions to common cloud system problems, such as 
availability, application migration between cloud offerings, and system resilience. 
Furthermore, it will convey the potential of meeting higher-level implementation 
concepts through interoperability between different systems. For example, the 
high-availability requirement may be met by formulating an inter-cloud protocol, 
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which enables migration and load balancing between cloud systems. Resilience in 
the cloud, for example, can also be met through concepts of self-healing and auto-
nomic computing. The broad objective of this classification is to attain a better 
understanding of cloud computing and define key issues in current systems as well 
as accentuate some of the research topics that need to be addressed in such systems.

Not only can an ontology impact the research community, but it also can sim-
plify the educational efforts in teaching cloud computing concepts to students and 
new cloud applications’ developers. Understanding the implications of developing 
cloud applications against one cloud layer versus another will equip developers with 
the knowledge to make informed decisions about their applications’ expected time-
to-market, programming productivity, scaling flexibility, as well as performance 
bottlenecks. In this regard, an ontology can facilitate the adoption of cloud com-
puting and its evolution. Toward the end goal of a thorough comprehension of the 
field of cloud computing, we have introduced in this chapter three contemporary 
cloud computing classifications that present cloud systems and their organization 
at different levels of detail.
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2.1  Science Gateways—Background and Motivation
Nancy Wilkins-Diehr

The pursuit of science has evolved over hundreds of years from the development of 
the scientific method to the use of empirical methods. This evolution continues today 
at an increasingly rapid pace. Scientific pursuit has always been marked by advances 
in technology. Increasingly powerful microscopes and telescopes have led to new 
discoveries and theories; access to sensor data improves the ability to analyze and 
monitor events and understand complex phenomena, such as climate change, and 
advances in sequencing technologies will very soon result in personalized medicine.

The evolution of science with technology continues today as well. The 1970s and 
1980s saw the significant development of computational power. Computer simula-
tions were considered a third pillar of science in addition to theory and experiment.

One of the biggest impacts in modern times has been the release of the Mosaic 
browser in 1992. This ushered in the modern information age and an explosion of 
knowledge sharing not seen since the invention of the printing press. The impact on 
science has been tremendous, but we contend that the extent of this impact is just 
beginning. The availability of digital data continues to grow and access and sharing 
mechanisms continue to evolve very quickly. Early Web 3.0 ideas are outlining how 
we move from information sharing on social Web sites and wikis to programmatic 
data sharing via standards (Resource Description Framework) and database queries 
(SPARQL query language) [1].

In the 1990s, scientists were beginning to develop and rely heavily on the 
Internet and communication technologies. The National Center for Biotechnology 
Information’s BLAST server provided scientists with an early sequence alignment 
tool that made use of remote computing capabilities [2]. Queries and results were 
exchanged via e-mail. This service was later made available on the Web and contin-
ues to operate today.
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In 1995, the headline was “International Protein Data Bank Enhanced by 
Computer Browser” [3]. The Protein Data Bank (PDB), first established in 1971, is 
the worldwide repository for three-dimensional structure data of biological macro-
molecules. Over time, technology developments have changed many aspects of the 
PDB. Structures are determined by different methods and much more quickly, the 
number of new structures per year has increased nearly three orders of magnitude 
from 1976 to 2008. The expectations of the community have changed as well. Text 
files including structure descriptions were originally available for download via ftp. 
Today the PDB features sophisticated data mining and visualization capabilities, as 
well as references to PubMed articles and structure reports [4].

A report from a 1998 workshop entitled Impact of Advances in Computing and 
Communications Technologies on Chemical Science and Technology [5] takes an early 
look at the impact of computing and communications technology on science. The 
authors point out that before the advent of the Internet, the practice of chemis-
try research had remained largely unchanged. They saw the Internet improving 
access to scarce instruments and removing the constraints of time and distance 
previously imposed on potential collaborators. They believed these advances would 
fundamentally change both the types of scientific problems that can be tackled 
(the best minds can be brought to bear on the most challenging problems) and 
the very way in which these problems are addressed. They were accurate in their 
assessment.

Against this backdrop, the TeraGrid Science Gateway program was initiated in 
2003. Previously, supercomputers were accessed by a small number of users who 
were members of elite research groups. TeraGrid architects recognized that the 
impact of high-end resources could be greatly increased if they could be coupled 
onto the back end of existing web portals being developed prolifically by scientists.

Today, gateways span disciplines and provide very diverse capabilities to 
researchers. The Social Informatics Data Grid (SIDGrid) provides access to mul-
timodal data (voice, video, images, text, numerical) collected at multiple times-
cales. SIDGrid users are able to explore, annotate, share, and mine expensive data 
sets with specialized analysis tools. Computationally intensive tasks include media 
transcoding, pitch analysis of audio tracks, and fMRI image analysis. Researchers 
utilize SIDGrid, but are unaware of the computational power performing these 
calculations behind the scenes for them. PolarGrid provides access to and analy-
sis of ice sheet measurement data collected in Antarctica. Linked Environments 
for Atmospheric Discovery (LEAD) will allow researchers to launch tornado 
simulations on demand if incoming radar data display certain characteristics. The 
Asteroseismic Modeling Portal is ingesting data from NASA’s Kepler satellite mis-
sion, which was launched in March 2009. The portal allows researchers to deter-
mine the size, position, and age of a star by doing intensive simulations using the 
observed oscillation modes from satellite data as input. In all of these examples, 
the gateway interfaces allow scientists to focus on their work while providing the 
required computing power behind the scenes.
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Technology continues to evolve with increasing rapidity. In 2009, cloud com-
puting and “Software as a Service” (SaaS) were examples of virtualized access to 
high-end resources that enable science. This chapter highlights several activities in 
these areas, with a focus on the scientific application of the technologies. First, an 
overview of cloud computing and SaaS are presented. Next, two approaches to cloud 
deployment (Eucalyptus and NIMBUS) are described in some detail. Examples of 
scientific applications using virtualized services are provided throughout.

Finally, several detailed science examples are featured. Scientists can run 
sequence alignment codes from an iGoogle web page via gadgets provided by the 
Open Life Sciences Gateway. They have 120 different bioinformatics packages at 
their fingertips through the RENCI science portal. In both examples, software is 
offered truly as a service. The back-end high performance and high throughput 
computing, which makes the most rigorous computations possible, is completely 
hidden from the scientist. The final project looks at data subsetting and database 
distribution using clouds with high resolution topographic data as a driver. Future 
directions in all areas are summarized at the conclusion of the chapter.

2.2  Clouds and Software Services
Dennis Gannon

The term “cloud computing” means using a remote data center to manage scalable, 
reliable, on-demand access to applications. The concept has its origins in the early 
transformation of the World Wide Web from a loose network of simple web servers 
into a searchable collection of over 100 million Web sites and 25 billion pages of 
text. The challenge was to build such a searchable index of the Web and to make 
it usable and completely reliable for tens of thousands of concurrent users. This 
required massive parallelism to handle user requests and massive parallelism to sort 
through all that data. It also required both data and computational redundancy 
to assure the level of reliability demanded by users. To solve this problem, the web 
search industry had to build a grid of data centers that today have more comput-
ing power than our largest supercomputers. The scientists and engineers who were 
working on improving search relevance algorithms or mining the Web for criti-
cal data needed to use these same massively parallel data centers because that is 
where the data was stored. The most common algorithms they used often followed 
the “MapReduce” [6] parallel programming pattern. They shared algorithms and 
designs for distributed, replicated data structures and developed technology that 
made it simple for any engineer to define a MapReduce application and “upload it 
to the cloud” to run. Google was the first to use this expression and publicize the 
idea. Yahoo later released an open-source version of a similar MapReduce frame-
work called Hadoop [7]. Microsoft has a more general technology based on the 
same concepts called Dryad/LINQ.
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A programming model has evolved that allows a developer to design an applica-
tion on a desktop and then push it to a data center for deployment and execution. 
Google had released AppEngine, which allows a programmer to build a Python 
program that accesses the Google distributed cloud storage when pushed to the 
cloud. Microsoft has introduced Azure, which allows developers to build highly 
scalable parallel cloud web services. Together these software frameworks for build-
ing applications are referred to as Platform as a Service (PaaS) models for cloud 
computing.

If we take a closer look at the data center system architecture that lies at the 
heart of systems like Azure, we see another model of cloud computing based on 
the use of machine virtualization technology. The most transparent example of 
this is the Amazon EC2 [8] and S3 [9] clouds. The idea here is very simple. The 
application developer is given a machine OS image to load with applications and 
data. The developer hands this loaded image back to EC2 and it is run in a virtual 
machine (VM) in the Amazon data center. The critical point is that the image may 
be replicated across multiple VMs so that the application it contains may scale 
with user demand. The developer is only charged for the resources actually used. 
In this chapter, we describe several significant variations on this “Infrastructure as 
a Service” (IaaS) concept.

While IaaS and PaaS form the foundation of the cloud technologies, what the 
majority of users see is the application on their desktop or phone. The client appli-
cation may be a web browser or an application that is connected to a set of services 
running in the cloud. Together, the application and the associated cloud services 
are often referred to as SaaS. There are many examples. Social networks provide 
both web and phone clients for their SaaS cloud application. Collaboration and 
virtual reality is provided in the cloud by second life. Photo sharing tools that allow 
users to upload, store, and tag images are now common features shipped with new 
phones and cameras. Microsoft’s LifeMesh is a cloud-based software service that 
allows the files and applications on your PC, laptop, and Mac to be synchronized.

Science gateways are tools that allow scientists to conduct data analysis and 
simulation studies by using the resources of a remote supercomputer rather than a 
remote data center. They share many of the same scalability and reliability require-
ments of SaaS tools but they have the additional requirement that the back-end 
services need to be able to conduct substantial computational analysis that require 
the architectural features not supported by large data centers.

Supercomputers and data centers are very similar in many respects: they are 
both built from large racks of servers connected by a network. The primary differ-
ence is that the network of a supercomputer is designed for extremely low latency 
messaging to support the peak utilization of each central processing unit (CPU). 
Data centers are designed to maximize application bandwidth to remote users and 
are seldom run at peak processor utilization so that they can accommodate surges 
in demand. Data center applications are also designed to be continuously running 
services that never fail and always deliver the same fast response no matter how large 
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the load. But failure is constant in large systems, so data center applications tend 
to be as stateless as possible and highly redundant. Supercomputer applications are 
design for peak performance, but they fail frequently. In these cases, checkpointing 
and restart is the only failure recovery mechanism.

The challenge for science gateways is to meet the requirements of both SaaS 
cloud applications for reliability and scalability and the high performance require-
ments of their scientific analysis components. The ideal architecture for science 
gateways would be a hybrid of the externally facing, data-rich data center with a 
supercomputing capability in the back end. An alternative would be a data cen-
ter architecture where server nodes could be dynamically clustered into small but 
highly powerful computational clusters that could operate as a small supercom-
puter for short periods of time. This is an area of research that is currently underway 
in several locations.

2.3  Science Clouds, Public and Private
Rich Wolski

Cloud computing [10,11] has emerged as a new paradigm for providing program-
matic access to scalable Internet service venues.* While significant debates continue 
with regard to the “optimal” level of abstraction that such programmatic interfaces 
should support (cf., SaaS versus PaaS versus IaaS [12–14]), the general goal is to 
provide users or “clients” with the ability to program resources within a very-large-
scale resource “cloud” so that they can take advantage of the potential performance, 
cost, and reliability benefits that access to scale makes possible.

Notice that from a technology perspective, the way in which users account 
for their usage is independent of the cloud computing model itself (although it is 
by no means independent of the usage models employed by those users). That is, 
users may be able to use a “pay-as-you-go” billing methodology or alternatively 
one where quota-limited and/or time-limited access is enforced by the cloud sys-
tem. Thus “billing” (or more properly user accounting) is one way to differentiate 
between public and private clouds. A public cloud is one in which a fee is charged 
to each user account by the cloud provider, either for recorded usage or by quota-
controlled subscription. In a private cloud, typically, a quota of usage (possibly time 
limited) is assigned by the administrative organization (to which both the cloud 
provider and the users belong) to each user account or to groups of user accounts. 
Technologically however, the systems otherwise present the same interface to their 
users.

* The term “cloud computing” is considered by some to be synonymous with the terms “elastic 
computing,” “utility computing,” and occasionally “grid computing.” For the purposes of this 
chapter, we will use the term “cloud computing” to refer to cloud, elastic, or utility computing 
but not to grid computing.
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In a cloud providing IaaS, this interface is as follows:

 ◾ Self-service—Users are granted resources allocations from the cloud (or 
denied an allocation) automatically without human intervention. In addi-
tion, users can choose pre-fabricated configurations that have been previously 
published within the cloud and can also generate and save their own custom-
ized configurations, again without intervention by a human administrator or 
programmer.

 ◾ Quality-of-service aware—Users are able to specify a quality of service (QoS) 
to be associated with each allocation request. The QoS level associated with 
each granted request adjusts the “charge” (either in terms of cost or quota 
depletion) assigned to the user account.

Perhaps the best known example of an IaaS-style cloud is Amazon.com’s AWS [15]. 
Through either a simple command-line interface or through a “RESTful” program-
matic one, users can request rental of computing capacity (EC2) and storage capac-
ity (S3 and EBS [16]). The interface is self-service, and a fixed number of discrete 
QoS levels are supported.

2.3.1 Eucalyptus—Open-Source IaaS
Eucalyptus (Elastic Utility Computing Architecture Linking Your Programs to 
Useful Systems) [17–19] is an open-source infrastructure developed in the Computer 
Science Department of the University of California, Santa Barbara that implements 
IaaS-style cloud computing using local machine and cluster resources. The software 
components that make up a Eucalyptus cloud are based on web services (SOAP, 
WSDL, etc.) and are implemented using only freely available software packages, 
many of which are part of the common Linux distributions.

In addition, while the infrastructure itself is modularized so that a variety 
of interfaces can be supported, we have included an initial interface module to 
Eucalyptus that conforms to the Amazon AWS interface specification. Thus, once 
installed and running, a Eucalyptus cloud supports the same programmatic and 
user interfaces that AWS does with respect to IaaS provisioning.

We chose AWS as an initial interface for several reasons. First, Eucalyptus is 
the product of a research effort in which we, the researchers, were interested in 
the viability of AWS as a scientific computing platform. Thus, as a local cloud 
infrastructure compatible with AWS, Eucalyptus is designed to function as an 
instrumentable development platform that provides transparent and controlled 
experimentation prior to AWS deployment. Second, the AWS compatibil-
ity allows scientists to leverage the rich ecosystem of tools and services that is 
emerging from the AWS community (e.g., the RightScale [20] and CohesiveFT 
[21] management platforms, rPath [22] compatibility, etc.). Third, Eucalyptus is 
designed to foster greater usage of cloud computing in general, and AWS (as the 
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de facto standard) in particular, as a way of stimulating and accelerating the 
development of the paradigm. Open-source projects such as AppScale [23,24] 
and dotCloud [25] use it as a high-performance cloud platform, both for their 
own development and for application support. Thus, AWS interface compatibil-
ity has proved essential to promoting greater AWS usage and thus greater cloud 
computing uptake.

2.3.2 Engineering Challenge
In designing Eucalyptus, we had to ensure that it would be able to deploy and execute 
in hardware and software environments specified not by us, but by the installer and/
or maintainer of the cloud. This requirement is distinct from public cloud offerings 
in which the software can be written only to exploit the specific features engineered 
into the hardware platform that has been procured. Put another way, the designers 
of public cloud software need only consider the hardware that they know their orga-
nization has procured (or will procure) and not any hardware platform that might 
become available. In a scientific computing setting, the software platform typically 
cannot dictate the hardware configuration. Rather, each cluster or machine set-
ting is unique making it necessary for the cloud platform to be able to conform to 
the local infrastructure. Because IaaS requires fairly low-level control of hardware 
resources, this need for portability strongly influences the design of Eucalyptus.

To make Eucalyptus available as open-source software with the smallest possi-
ble engineering effort, we leverage existing open-source software components to the 
greatest extent possible. We tried to identify the most commonly used package or 
system for each constituent functionality Eucalyptus requires as a way of selecting 
the most robust and reliable “building blocks” to use as a foundation. Nonetheless, 
there is considerable variation among the non-Eucalyptus software components 
upon which Eucalyptus depends. Much of the engineering effort has focused on 
developing a high-quality, reliable, and predictable cloud computing platform that 
depends, in part, upon community-contributed, freely available software.

In the same vein, we wish to encourage greater adoption of open-source soft-
ware in production computing settings. While software quality is certainly a fac-
tor we took seriously, we have also focused on developing an internal architecture 
that enables customization and tuning. In particular, we have chosen a modularity 
and service decomposition that admits the replacement or modification of internal 
components, the addition of new services and different interfaces, and the possibil-
ity for considerable (but potentially nonportable) performance tuning.

2.3.3 Eucalyptus Architecture
Eucalyptus is designed to function as a collection of cooperating web services that 
can be deployed in environments where network connectivity is not necessarily 
symmetric. Academic research groups (who must be supported by Eucalyptus) 
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have access to small clusters, pools of workstations, and various server/desktop 
machines. Public IP addresses, however, are usually scarce and the security rami-
fications of allowing complete access from the public Internet can be daunting so 
system administrators commonly deploy clusters as pools of “worker” machines 
on private, unroutable networks with a single “head node” responsible for routing 
traffic between the worker pool and a public network. Although this configuration 
provides security while using a minimum of publicly routable addresses, it also 
means that worker machines can initiate connections to external hosts but external 
hosts cannot typically connect to worker machines running within each cluster. 
Thus, Eucalyptus adopts a hierarchical design (Figure 2.1). Logically, there are four 
service components within a functioning Eucalyptus installation: the client API 
translator, the cloud controller, one or more cluster controllers, and one or more 
node controllers. The interfaces between these components are described by indi-
vidual WSDL specifications so that any functional component may be replaced or 
modified. Client requests are translated to a canonical Eucalyptus-internal protocol 
before they are passed to the cloud controller. The cluster controllers act as message 
proxies between the publically routed networks to which each head node is attached 
and the internal private networks that worker nodes can access. Cluster controllers 

Eucalyptus architecture

Client-side API
translator

Cloud controller

Cluster controllers

Worker
nodes

Node controllers

Head
nodes

Figure 2.1  The service architecture within a Eucalyptus installation is hierarchi-
cal to cope with multiple clusters and asymmetric network connectivity.
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also implement a scalable scheduling protocol for VM assignment although this 
scheduling module can be replaced as a plug in. Finally, each machine within a 
cloud that is expected to contribute resources (CPU, memory, or disk) to user allo-
cations must run a node controller.

2.3.4 User Experience
In addition to making the software available for download, we maintain a small, 
publically available persistent cloud at the University of California, Santa Barbara 
called the Eucalyptus Public Cloud (EPC) [26]. The purpose of the EPC is three-
fold. First, it permits users to preview the quality of the Eucalyptus software by 
experimenting with a “live” installation. Second, it provides a test facility for fea-
tures and/or engineering upgrades that will ultimately be packaged into a future 
Eucalyptus release. Finally, it permits us to observe the performance and stability 
of the cloud under a controlled user load.

The EPC is a small system that is vastly under-provisioned for the load it will 
support: the SLA scheduler installed on the EPC will schedule as many as four 
VMs per processor. In this way, user load “stresses” the internal Eucalyptus subsys-
tems so that we can observe worst-case performance scenarios. Table 2.1 shows a 
comparison of the average instance start times in seconds for the same small image 
in both AWS and the EPC.

In addition to the average start time, we also show the 95% confidence bound 
on the average. The first column compares a one instance start, and the second col-
umn compares the time to start eight instances in a single user request. Notice that 
on average Eucalyptus is faster, but also experiences more variation (i.e., the confi-
dence bounds are wider). From a user perspective, then, an EPC user experiences 
similar instance start-up performance to that provided by AWS. It is important to 
realize, however, that AWS is able to achieve this level of performance at a massive 
scale, while the EPC is (by design) a small, under-powered system. That is, while 
Eucalyptus provides a similar user experience to AWS at a much smaller scale, it 
complements rather than replaces AWS.

2.3.5 Notes from the Private Cloud
While a great deal has been written and discussed with respect to public clouds, 
comparatively little discussion of private clouds and their usage has yet emerged. 

Table 2.1  Small Instance Start Time

One Instance Eight Instances

AWS 18.6 s (±6.5 s) 23.4 s (±5.14 s)

EPC 11.4 s (±7.6 s) 17.9 s (±10.8 s)



Science Gateways  ◾  27

The Eucalyptus project maintains a public discussion board and a set of e-mail 
reflectors as a way of engaging community contributions, and from time to time 
contributors discuss their usage scenarios. While these anecdotes are far from defin-
itive, we believe that they provide insight into how private clouds are being used.

In the science community, one common use for Eucalyptus appears to be as 
an application development platform in advance of a public cloud deployment. 
Eucalyptus is transparent in that while it is running a cloud application, that appli-
cation can be interrogated and monitored both from inside and outside the cloud 
that implements it. Often, familiarity with local hardware and software configura-
tion characteristics is an invaluable debugging aid. By knowing how the application 
functions outside the cloud on local hardware, it is possible to isolate problems that 
arise strictly because of cloud deployment.

A second usage scenario that we have observed is one in which Eucalyptus 
serves as a locally controllable and protected execution platform for application 
software that is also executing in a public cloud. Cloud applications, once debugged 
and tuned, tend to be quite robust and scalable. It is often advantageous to be able 
to leverage the engineering investment that has gone into a successful public cloud 
application deployment within the confines of a local data center where physical 
security permits these applications to access more sensitive data.

Notice that these private cloud scenarios are, in fact, hybrid cloud scenarios 
in which the private cloud augments the capabilities offered by a public cloud. 
Eucalyptus makes this hybridization with AWS possible through its interface com-
patibility. We believe that the trend will be toward greater use of the public clouds, 
and that this trend is greatly accelerated by the ability to use private and public 
clouds as a hybrid. In the same vein, it is our view that this hybrid cloud model is 
how enterprise cloud computing will be implemented in the future. While public 
clouds make it possible to outsource some aspects of enterprise IT, doing so makes 
it possible to use local infrastructure more cost effectively and efficiently.

2.3.6 Leveraging the Ecosystem
Because Eucalyptus supports the AWS interface, commercial and open-source tools 
designed for use with the AWS public cloud also work with Eucalyptus in scientific 
computing settings. This “ecosystem” allows scientists to leverage the considerable 
investment in public cloud technologies for their own applications on-premise and 
in the public clouds.

One such example is the free cloud management services offered by RightScale. 
RightScale is a company that provides cloud users with a management dashboard 
for developing, deploying, and controlling their applications and machine images. 
Originally developed for Amazon. AWS, it now supports the RackSpace, GoGrid, 
and FlexiScale public cloud platforms and Eucalyptus as a private cloud. In an 
analogy to free software, RightScale offers users a basic management capability 
as a “free service.” When installed, a Eucalyptus cloud administrator can choose 
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to register his or her cloud with the RightScale service venue that is hosted in 
Amazon’s AWS. Users of the Eucalyptus cloud can then use the RightScale dash-
board offering to manage their private cloud allocations. Notice that the RightScale 
dashboard operates as SaaS and not downloadable open-source code. However, 
combining RightScale’s free SaaS with open-source Eucalyptus clouds creates a 
new and powerful tool combination for science cloud users.

Eucalyptus also enables other open-source cloud platforms to coexist with its 
interface. AppScale [18,19] implements a scalable, on-premise version of the Google 
AppEngine [27] PaaS using either AWS or Eucalyptus as a lower-level cloud plat-
form. Thus, by installing AppEngine, a scientist can leverage the AppEngine or 
AWS APIs on his or her local machines and also execute the applications in both 
the Amazon and Google public clouds without changing the application code 
modification. Thus, for science, these open-source platforms provide a new applica-
tion development environment that allows a single application to combine multiple 
public clouds using only standard APIs.

2.3.7 Future Growth
We anticipate that the open-source cloud ecosystem will continue to grow as 
new platforms and new free SaaS offerings become available. In our view, the 
utility computing model implemented by the public clouds will continue to 
reduce the cost of IT. We also believe that local infrastructure will continue 
to be necessary, but to amplify the cost savings offered by the public clouds, 
open-source cloud platforms like Eucalyptus and free SaaS will become critical 
technologies.

2.4  Cloud Computing for Science
Kate Keahey

The access to remote resources offers many benefits to scientific applications: it 
“democratizes” computing for many communities, allowing them to leverage 
economies of scale as well as use remote resources in times of increased demand. 
While grid computing pioneered remote resource usage on a large scale, two chal-
lenges—(1) the inability to control the configuration of environments provided on 
remote resources and (2) the inability to negotiate flexible modes of access to those 
resources—provided a significant barrier to many applications.

The first challenge reflects the fact that many scientific applications are complex 
and hard to port across different environments. Even minor differences in operat-
ing system support, libraries, and tools may cause these applications to fail. More 
importantly, even if the applications do run, the same minor differences in the 
environment can cause them to produce results that are inconsistent across runs 
executed on different sites or even at different times on the same site. Resolving 
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these dependencies on a remote platform can take weeks or months of work. 
Furthermore, this work has to be repeated for multiple remote sites and over time 
as systems on these sites are upgraded.

Once obtained, the access to the remote sites is often of limited use. Access 
to grid resources is typically provided via remote interfaces to batch schedulers 
(e.g., by using such mechanisms as GRAM [28]) that run jobs according to 
implicit and often nonnegotiable site priorities. A job may languish in a sched-
uler queue for many hours or days making this mode of resource provisioning 
unsuitable for communities where resource need is dynamic e.g., the processing 
needs of experiments. In addition, in many instances, scientists simply need 
access to a resource (e.g., to log in and debug an application) rather than just 
running a job.

Our work on overcoming these challenges gave rise to the development of the 
Nimbus toolkit and contributed toward a computing paradigm that we call IaaS 
cloud computing.

2.4.1 Nimbus Goals and Architecture
The challenges described above led us to define the abstraction of a “workspace”: 
a user-defined environment that can be dynamically overlaid on remote resources 
with specific availability constraints. Our first attempts to implement this abstrac-
tion focused on the management and configuration of physical resources [29] 
before we focused on virtualization [30,31] in 2003. The Workspace Service, first 
released in September 2005, allowed users to deploy and terminate VMs on remote 
resources, providing functionality similar to Amazon’s Elastic Compute Cloud 
(EC2) [6] released in August 2006. Over the years, our work with the scientific 
communities motivated many revisions of the Workspace Service as well as the 
development of additional services such as the Context Broker [32] and an IaaS 
protocol adapter. In mid-2008, we started using the name “Nimbus Toolkit” to 
describe the growing collection of cloud services.

Today, Nimbus is an extensible, open-source toolkit built around the following 
three goals:

 1. Allow providers to build compute clouds. This functionality continues to 
be provided by the Workspace Service [33] component of Nimbus, which 
orchestrates VM deployment on a cluster based on remote requests. The 
Workspace Service provides two sets of interfaces: one based on the Web 
Service Resource Framework (WSRF) [34] set of protocols and another based 
on Amazon’s EC2. The deployment request processed by these interfaces can 
be combined with a choice of two Nimbus back-end implementations: (a) the 
workspace resource manager, which provides EC2-style VM deployment but 
requires the “ownership” of a cluster or (b) the “workspace pilot” [35] that 
extends popular schedulers to deploy VMs as a glidein. The workspace pilot 
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does not require a special cluster configuration and allows jobs and VMs 
to coexist, but provides weaker deployment semantics (VMs are deployed 
batch-style). The Workspace Service has been deployed by several academic 
institutions forming the Science Clouds test bed [36].

 2. Provide tools allowing users to use clouds. IaaS providers, such as EC2 or the 
Science Clouds, allow users to deploy groups of unconnected VMs, whereas 
scientists typically need a ready-to-use “turnkey” cluster whose nodes share 
a common configuration and security context. The Nimbus Context Broker 
[28] bridges this gap by securely orchestrating an exchange of deployment-time 
information for groups of deployed VMs, potentially among VMs deployed 
across different clouds. Examples of Context Broker applications are described 
in Section 2.4.2. Another service geared toward the end-user is the Nimbus 
gateway, which serves as both a protocol adapter allowing users to move between 
clouds and provides account management for the use of commercial clouds.

 3. Allow researchers and developers to extend and experiment with Nimbus. Nimbus 
is designed as a set of APIs that allow developers to extend it for research 
and development purposes. For example, a group of scientists at the Vienna 
University of Technology implemented research extensions to Nimbus to pro-
vide functionality that would ensure data privacy for the biomedical commu-
nities [37]. An example of production extensions are monitoring components 
provided by the high-energy physics group at the University of Victoria.

These three goals are reflected in Nimbus production services and implementation, 
Nimbus documentation, research projects ranging from efficient VM deployment 
and service levels [38–40] to configuration management [28], and projects with the 
various application communities. This set of goals allows us to address the full set of 
challenges from workspace deployment to its eventual use and gives us the flexibility 
to adapt our infrastructure across the stack as new requirements become understood.

2.4.2 Science Clouds Applications
The Science Clouds test bed [32] comprises multiple small clouds in the academic 
space with access granted to science-related projects on a voluntary basis. All 
clouds are configured with the EC2-compatible Nimbus, making it possible to 
easily move or replicate environments between clouds including EC2 resources 
as needed for large-scale deployments. At the same time, each cloud may pro-
vide slightly different service levels to the user. Thus, apart from providing a 
platform on which scientific applications explore cloud computing, the Science 
Cloud test bed is a laboratory in which different IaaS providers use compatible 
technologies to provide different service offerings allowing us to experiment with 
interoperability.

This section presents three Science Clouds applications that have been selected 
to illustrate different ways in which cloud resources were provided to the application 
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and different scenarios in which they were used. The first application describes a 
simple but impactful integration that consists of extending the application test bed 
by a dynamically provisioned virtual cluster. The second application goes one step 
further and describes an ecosystem around the provisioned resources that allows the 
user to leverage them through existing mechanisms. The third application exploits 
the fact that cloud computing changes our assumptions about remote resources to 
create a distributed site.

2.4.2.1 Nimbus Helps Meet STAR Production Demands

STAR is a nuclear physics experiment associated with the Relativistic Heavy Ion 
Collider (RHIC) at the Brookhaven National Laboratory that studies nuclear mat-
ter under unique conditions of extremely high energy densities and temperature. 
Such conditions, which existed only shortly after the big bang, allow us to study 
fundamental properties of nuclear matter.

STAR computations rely on a complex software stack that can take months 
to configure on remote resources. This motivated STAR scientists to turn to vir-
tualization: VM images can be configured and validated for STAR production 
runs and then deployed on many different resources. To implement this vision, 
STAR started collaborating with the Nimbus team contributing requirements for 
the development of the Workspace as well as the Context Broker Services. The lat-
ter allows them to dynamically and repeatably combine deployed VMs into fully 
configured virtual Open Science Grid (OSG) clusters with one command. Once 
such an OSG cluster is deployed, the STAR job scheduler can simply submit jobs 
to it, elastically extending the test bed available to STAR.

The STAR team started out by using a small Nimbus cloud at the University 
of Chicago. However, since STAR production runs require hundreds of nodes, the 
collaborating teams soon started moving those clusters to Amazon’s EC2, which 
hosted the first STAR production run in September 2007. In March 2009, the 
advantages and potential of cloud computing for the community were dramatically 
illustrated [41] with a late-coming request to produce simulation results needed for 
Quark Matter, a major physics conference. Normally, this would not have been 
possible to do: there was roughly 1 week to produce the results and all the available 
computational resources—both local and distributed—were either committed to 
other tasks or did not support the environment needed for STAR. However, by this 
time, the STAR scientists had developed validated VM images and trusted Nimbus 
to deploy them. The deployed images—300 virtual nodes at a time—were used to 
elastically extend the resources available to STAR. As the simulation progressed, 
the images were upgraded to more powerful EC2 instances to speed the calcula-
tions and ensure meeting the deadline.

This deployment marks the very first time cloud computing has been used in 
nuclear physics for significant scientific production work with full confidence in 
the results. It also illustrates that cloud computing can be used not only to provide 
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a consistent environment for computations to run but also successfully provide 
an environment for time-critical simulations. At the same time, the experiments 
demonstrated a need for a wider “ecosystem” needed to support the use of cloud 
computing: to be efficient and reliable, image development needs to be a part of the 
application production process to ensure seamless migration from local to resource 
elastically provisioned in the cloud.

2.4.2.2 Building a Cloud Computing Ecosystem with CernVM

A Large Ion Collider Experiment (ALICE) is one of the four experiments associ-
ated with the Large Hydron Collider (LHC) device at CERN whose focus is on 
heavy ion simulations. The scientists wanted to explore dynamically provisioning 
cloud resources and integrating them into the global pool of resources available to 
ALICE—managed by ALICE’s AliEn scheduler [42]—to provide for the time-
varying needs of their applications. The important objectives of this integration 
were to (1) make the process transparent to the end-user so that they do not need 
to change the ways in which they use the system and (2) make the integration so 
that no changes are required to the existing components of the infrastructure (e.g., 
the AliEn scheduler). This required the development of an ecosystem that not only 
supplied the images, but estimated the need for additional resources and automated 
provisioning them without the user’s involvement.

Like the STAR scientists, LHC is working with applications requiring com-
plex and consistent environment configurations and investigated virtualization 
as a potential solution. This resulted in the development of the CernVM project 
[43], which provides production environments supporting all four LHC experi-
ments in VM images of various formats. The CernVM technology was originally 
started with the intent of supplying portable environments that scientists could eas-
ily deploy on their laptops and desktops for development work. However, flexible 
technology choices ensured support for a variety of VM formats, including the Xen 
images used by the Amazon EC2 as well as Science Clouds; the developed produc-
tion images were also available for cloud computing.

The remaining challenge was to find a way to deploy these images so that they 
would dynamically and securely register with the AliEn scheduler and thus join the 
ALICE resource pool. This was achieved using the Nimbus Context Broker, which 
allows a user to securely provide context-specific information to a VM deployed on 
remote resources and vice versa. The resulting system [44] first dynamically deploys 
CernVM virtual machines on the Nimbus cloud at the University of Chicago. The 
deployed VMs then join the pool of resources available to AliEN as orchestrated by 
the Context Broker. Finding a new available resource, the AliEn scheduler sched-
ules jobs on it. With the addition of a queue sensor that deploys and terminates 
VMs based on demand (as evidenced by the presence of jobs in the queue), the 
researchers can experiment with ways to balance the cost of the additional resources 
against the need for them.
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The integration succeeded in achieving its objective of leveraging cloud 
resources while retaining a job management interface familiar to the end-user and 
using unmodified middleware. In this specific integration example, virtual nodes 
provisioned in the cloud are treated as remote resources requiring a grid scheduler 
(AlieEN) to manage. But these resources are different from the usual grid resource 
in that they now have a configuration that can be trusted—a feature that could 
potentially be leveraged to produce a simpler system.

2.4.2.3 CloudBLAST: Creating a Distributed Cloud Platform

To date, users have typically treated resources available in the distributed environ-
ment as untrusted and developed special ways of interacting with them. Cloud 
computing introduces an important innovation in that it allows users to fully con-
figure remote resources (contained in VMs) so that their configuration can now be 
trusted. If we also manage to secure the network traffic between sites, we can create 
a platform where a collection of distributed resources can have the same level of 
trust a site has.

To build such a platform, we combined Nimbus with the ViNE overlay [45], 
an efficient network overlay implementation developed at the University of Florida. 
The resulting platform allows the user to select IaaS allocations from a few differ-
ent cloud providers, potentially offering different service levels. We built a secure 
environment on top of those allocations using a provider-independent network 
overlay and the Context Broker for configuration exchange. The advantage of this 
approach is that it creates an environment with site-level trust, so that applications 
can be ported to it directly for ease of experimentation and use.

The Distributed Cloud Platform has been used for computer science experi-
ments with latency-sensitive tools such as the Hadoop [6] implementation of 
MapReduce [6] and the Message Passing Interface [46] conducted across 
resources provisioned in multiple, widely distributed clouds [47]. They have 
shown that distributed cloud resources can provide a viable platform for appli-
cations using those tools (in the investigated case: the bioinformatics BLAST 
application).

2.5  Gadgets and OpenSocial Containers
Wenjun Wu and Marlon Pierce

One way science gateways and others are providing SaaS is through the use of 
portlets or gadgets. Both portlets and gadgets are web components that can be 
used to aggregate dynamic web contents. But the design concepts of portlets 
and gadgets are very different. Portlet frameworks achieve web content aggrega-
tion on the server side, while gadget frameworks enable client-side aggregation 
following the Web 2.0 paradigm. A gadget can be regarded as a miniature web 
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application and can define its content and control logic in client-side JavaScript 
and HTML. In this way, it has less dependence on its container than a portlet. 
Many science gateways projects have already built their web portals based on the 
JSR-168 portlet framework. Currently, Google gadgets are becoming an increas-
ingly popular way of delivering customized web content and accessing cloud 
computing services. This new approach can leverage science gateway portals in 
terms of rich user interface and social network capability, which will promote the 
adoption of science gateways for advanced education and the next generation of 
young scientists.

A standardized gadget framework is necessary for the development and deploy-
ment of gadgets. The Google-led OpenSocial [48] consortium defines a framework 
that standardizes the practices of gadget and social-networking sites, enabling web 
developers to write gadgets that can run in any OpenSocial compliant container. 
Many social networking sites have adopted the OpenSocial framework and have 
opened their containers to developers. For example, an OpenSocial gadget can be 
easily added into the iGoogle sandbox [49]. Moreover, the Apache Shindig [50] 
incubator project provides a reference implementation of the OpenSocial container 
for PHP and Java. It can be used as a platform for gateway developers to understand 
the internals of the OpenSocial framework and test their gadgets before deploying 
the gadgets to commercial social networking sites.

The Open Grid Computing Environments (OGCE) project has undertaken 
a pilot project to test the feasibility of using the Open Social framework for sci-
ence gateways. We have developed a set of gadgets for both Open Life Science 
Gateway (OLSG) [51] and the SIDGrid [52]. OLSG is a computational por-
tal that integrates a group of bioinformatics applications and data collections. 
SIDGrid provides a cyber-infrastructure to help social and behavioral scientists 
collect and annotate data, collaborate and share data, and analyze and mine large 
data repositories.

The OLSG includes three gadgets (Figure 2.2): ClustalW, BLAST, and 
JobHistory, which can be loaded in iGoogle or any compatible container. Both 
BLAST and ClustalW are very commonly used sequence alignment tools in 
bioinformatics. Through these two gadgets, users can post DNA or protein 
sequences and run the OLSG’s alignment services. The JobHistory gadget allows 
users to check the status of their computing tasks and retrieve the result reports 
from the finished tasks. We also built a SIDGrid Preview Gadget (Figure 2.3) 
that can visualize social experiment data including video, audio, and annotation 
in a synchronized way.

OpenSocial gadgets are associated with OAuth [53], an emerging standard for 
Web security. To support OAuth in our gadgets, we have developed an OAuth 
provider that consists of a group of Java Servlets. By using OAuth tokens, an 
OpenSocial container and our science gateway build up their mutual trust so 
that the science gateway can authorize requests from the container to access the 
restricted data and services.
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Based on our initial experiments, we conclude that OpenSocial and related 
standards like OAuth are a suitable platform for building science gateways. Code 
originally developed for the OLSG and SIDGrid have been contributed back to the 
OGCE, and we are examining ways to generalize these contributions for new gate-
ways. The current research in OpenSocial gadgets will eventually lead to a “social 

Figure 2.2  Three OLSGW Gadgets running on the iGoogle page.

Figure  2.3  SIDGrid  Flash  Preview  Gadget  running  on  the  Orkut  social  net-
working site.
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cloud” that can support collaborative computing and data analysis through world 
wide OpenSocial platforms and cloud computing infrastructure. In this “social 
cloud,” cross-domain researchers will be able to easily build up their communities 
based on their existing social connections in the science domains and share their 
computational workflows, analysis data results, and even cloud computing cycles in 
a secured and collaborative environment.

2.6  Architecture of an SaaS Science Gateway
John McGee

The RENCI science gateway [54] is one example of providing scientific SaaS with 
a supercomputing capability on the back end. The vision for this gateway is to pro-
vide multiple means of access to a large and growing number of scientific applica-
tions that will run on high performance (HPC) and/or high throughput (HTC) 
compute systems. To achieve this vision, we have developed a highly scalable pro-
cess for creating, deploying, and hosting services that are backed by national scale 
HPC/HTC resources.

A variety of different access mechanisms for the software services is desirable 
to accommodate different usage models with varying levels of capability and cor-
related ease of use. The gateway provides synchronous services for simpler scenarios 
where the service client can be expected to maintain a connection to the gateway 
for the lifetime of the service interaction. This is a simple way for an SaaS client to 
test or probe the functions of the scientific software systems on the other side of the 
service interface. It is not, however, useful in a case where the service invocation 
results in a large amount of compute activity that will be scheduled on an HPC 
resource or distributed among a large number of systems in an HTC solution. In 
this case, an asynchronous service interface will be required to handle the long run-
ning job(s) and the programming of the client to interact with the service is slightly 
more complicated. Having both of these interfaces for each scientific application on 
the back end enables the gateway to support a broad range of cases, such as calling 
the service on a range of cells in an Excel spreadsheet or running BLAST against 
100,000 DNA sequences.

Providing and maintaining a large number of applications via multiple service 
interfaces can be challenging from a management and maintenance perspective. 
The RENCI Science Portal currently has 120 such scientific applications available. 
In addition to the interfaces themselves, additional components must be main-
tained for each application, for example documentation, a portlet, information 
for web service registries, and information needed to launch these applications 
into the HPC/HTC systems. To achieve the desired scale, we have implemented 
a process where all of the required information per application is collected in 
the form of metadata for that application. From the metadata for a given science 
application, we then generate all of the service interfaces and other components 
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described above. Another benefit to this approach is that we can more easily add 
entirely new access mechanisms (e.g., Google Gadgets or other Web 2.0 client 
technologies) across all science applications, simply by adding new modules to 
the generator.

By definition, the science gateway is a value layer in between the large HPC/
HTC national resources and the researchers using the software services. Figure 2.4 
shows the architecture of this value layer for the RENCI science gateway. The back-
end computational and data analysis capabilities are scalable due to the use of a local 
Condor pool to cache, manage, and match the jobs with HPC/HTC resources. 
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Jobs known to have a short runtime are easily directed to local resources avoiding 
queue wait time on the in-demand national resources, and a submission of a very 
large number of jobs can be spread across many back-end HPC/HTC resources. 
Additional back-end engines such as Amazon EC2 or Microsoft Azure could also 
be added based on demand.

The hosting infrastructure for this SaaS solution is scalable in terms of sup-
porting high volumes of simultaneous access via the deployment architecture as a 
result of using enterprise class features and industry standard technologies, such as 
message queuing (Java Message Service), enterprise middleware (JBoss), web ser-
vice framework (Apache Axis2), application framework (Spring), and distributed 
computing (Condor). The core components of this architecture can be deployed 
on separate dedicated hardware systems or VMs and support clustering for load 
balancing and failover.

2.7   Dynamic Provisioning of Large-Scale 
Scientific Datasets

Chaitan Baru

Scientific data management systems are faced with a deluge of data from a vari-
ety of sources, from large-scale simulations to data from various instruments and 
observing platforms [55]. These systems need to be capable of managing very large 
data volumes and serving them in useful ways to a community of users. Thus far, 
resource constraints and assumptions from previous generations of technology have 
constrained these systems to adopt a relatively static, “one size fits all” approach to 
managing data, even as they serve communities of users with a wide and varying 
range of access and processing requirements. New approaches are required to effec-
tively and efficiently serve these data to end users and applications. Given advances 
in sensor, processor, storage, and networking technologies, the data deluge can only 
be expected to increase with time.

A number of new factors have now come to the fore and provide opportunities 
to rethink the approaches to storage, including the following:

 ◾ Availability of very large clusters with fault resilient software environments. 
Systems like Apache Hadoop, which was inspired by Google’s MapReduce 
and the Google File System (GFS) [56], now make it easier to manage and 
process large data sets using large clusters.

 ◾ Increasing awareness of the total cost of acquisition and ownership, with 
emphasis being placed not only on the acquisition cost, but also on personnel 
costs for programming applications and for system management, as well as 
ownership costs, including in terms of power consumption. Data manage-
ment solutions ought to keep all these costs in mind.
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 ◾ Changing software environments. Service-oriented architectures (SOA) pro-
vide more opportunities to observe user access patterns and workloads and 
correspondingly optimize the system for better performance. Traditionally, 
providers have made data available as files—sized typically according to what 
may have been convenient for the data acquirer or provider—to be shipped on 
media or downloaded via ftp. Users download data and work with them on 
their own systems, thus missing the opportunity for the data center to opti-
mize data management based on the community’s use of the data. Common 
data repositories and portal-based environments not only help amortize 
costs, but also provide the opportunity for observing and optimizing user 
access patterns. Furthermore, workflow-based systems also make it possible 
to more easily provide alternative, or customized, processing strategies.

2.7.1 Science Gateways for Data
Science gateways for data provide users with easy, online access to very large data 
sets with the ability to perform basic queries and subsetting operations on the data 
as well as invoke processing and visualization operations. An example of such a 
gateway is the OpenTopography.org portal that provides Web-based access to high-
resolution LiDAR topographic data, allowing users to process these data to generate 
custom digital elevation models (DEMs) or access pre-computed, “derived” data 
products [57,58]. The OpenTopography portal allows users to subset remote sens-
ing data (stored as “point cloud” data sets), process it using different algorithms, 
and visualize the output. About 5 TB (∼13.5 billion points) of data are hosted by 
the system using IBM’s DB2 database system implemented on an eight-node clus-
ter with extensions to support spatial data. In the LiDAR data collection, different 
data sets are of different sizes. The smaller datasets are distributed (declustered) 
across fewer nodes (three nodes) while the larger datasets are declustered across 
all nodes. Implementing the system using DB2 provides powerful capabilities for 
spatial indexing of the data as well as for subsetting the data using SQL.

2.7.2 Cloud Computing and Data
For very large scientific data archives, there is the opportunity to provision the data 
differently based on the frequency and nature of access to data. A “provisioning 
strategy” is a resource allocation strategy that a system employs in order to provide 
the best possible qualities of service, such as response times, quality of data, and the 
range of available capabilities. Resources may include the number of nodes, number 
of processors, number of disks, disk layout, and software used. Cloud computing 
is predicated on the ability to dynamically allocate resources to a given computa-
tional problem. In the case of large data sets, this requires the ability to dynamically 
and efficiently load data sets into the system and to serve the data to the user or 
application. Large Hadoop clusters provide one possible solution for serving such 



40  ◾  Cloud Computing and Software Services

data. For example, Amazon has introduced the Elastic MapReduce service, which 
allows data sets to be dynamically loaded into a system and processed using the 
MapReduce-style processing [59].

A number of storage abstractions and models are being proposed in the context 
of cloud computing. Microsoft Azure, for example, provides abstractions such as 
Table, Blob, and Queue. Amazon provides the Simple Storage Service [7], Elastic 
Block Storage [15], and a key/blob store [60]. MapReduce itself depends on the 
Google File System [56] and the corresponding Hadoop implementation uses the 
Hadoop Distributed File System [61]. Several database abstractions have been 
developed for MapReduce and Hadoop, such as HIVE [62], CloudBase [63], and 
BigTable [64]. HIVE is a data warehouse infrastructure built on top of Hadoop that 
provides tools to enable easy data summarization, ad hoc querying, and analysis of 
large datasets data stored in Hadoop files. It provides a mechanism to put structure 
on this data and it also provides a simple query language called QL, which is based 
on SQL and enables users familiar with SQL to query this data. At the same time, 
this language also allows traditional map/reduce programmers to be able to plug in 
their custom mappers and reducers to do more sophisticated analysis, which may 
not be supported by the built in capabilities of the language. CloudBase is also built 
on top of the MapReduce architecture and provides the ability to query flat log files 
using an implementation of ANSI SQL. BigTable is also a distributed storage sys-
tem built on GFS that is designed to scale to very large databases. The data model is 
a sparse, distributed, persistent, multidimensional sorted map indexed by row and 
column keys and a time stamp.

Amazon’s Elastic MapReduce supports processing of vast amounts of data utiliz-
ing a hosted Hadoop framework running on the web-scale infrastructure of Amazon 
EC2 and S3. Using Elastic MapReduce, one can provision as much or as little capac-
ity as needed to perform data-intensive tasks. Elastic MapReduce automatically 
spins up a Hadoop implementation of the MapReduce framework on Amazon EC2 
instances, subdividing the data in a job flow into smaller chunks so that they can 
be processed (the “map” function) in parallel and eventually recombining the pro-
cessed data into the final solution (the “reduce” function). Amazon S3 serves as the 
source for the data being analyzed and as the output destination for the end results.

The CloudStor Project [65] at the San Diego Supercomputer Center is studying 
trade-offs between parallel database systems, such as DB2 and Oracle in a cluster, 
versus Hadoop and Hadoop-based storage systems, for dynamically provisioning 
data-intensive applications. Standard database implementations can provide high 
performance access to the data using spatial indexes and supports rich functionality 
using SQL and spatial extensions to SQL. To do so, the data must be loaded into a 
database system and indexed for efficient access. Optimizing data load times is an 
important consideration since we are interested in dynamic data serving strategies 
where only a part of the data may be loaded into the database, based either on user 
request or by observing workload patterns. Load times can be improved by parti-
tioning the set of input data files into distinct table partitions and then loading each 
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partition in parallel across all nodes of the clustered database. In some cases, data-
base systems are also designed to directly access data in external files without going 
through a load phase. The various alternatives need to be evaluated for performance.

The DB2 architecture is well suited for clusters since it is able to exploit cluster 
(shared-nothing) parallelism by partitioning databases across the nodes of a cluster. 
The optimal number of nodes for a database depends on the database size and the 
specified workload. The speeds of data loading, indexing, and query processing 
are important considerations in supporting the capability to create databases on-
demand. Such databases will have a “residence time” that is determined by the 
user or by the system, after which time they may be deleted or dropped from the 
system. The time to create a database should be much shorter than the residence 
time of the database, e.g., 1 day to create/load a database versus 2 months of resi-
dence time. The output of a SQL query in a clustered database can be generated in 
parallel so that each node of the cluster outputs its part of the result as a separate 
file. Thus, a particular user request could generate parallel output, represented by 
a set of files. This is useful in cases where the output is then processed by another 
parallel program.

The database performance can be compared with the performance of “pure” 
Hadoop-based solutions where the data are kept in flat files in GFS or HDFS, 
and the data subset operation is performed using MapReduce. The MapReduce 
implementations can be tuned in many ways. By default, MapReduce automati-
cally splits the input files into M pieces for the map phase and the intermediate files 
into R partitions for the reduce phase. Both M and R can be controlled via optional 
parameters. One can optimize the values of M and R for the data sizes and compute 
cycles available on the cluster. Furthermore, the default partitioning function may 
not always be the best option. Custom splitting routines that take the nature of 
data and the type of applications into account may perform better. For example, a 
range partitioning scheme based on certain key values may result in better overall 
performance than a random, hash-based partitioning.

Cloud computing is promising as an approach for the dynamic provisioning 
of data-intensive applications. However, rigorous performance testing is needed to 
determine the best implementation for a given application and for tuning of system 
parameters. The CloudStor Project at SDSC is engaged in such performance stud-
ies using a variety of cloud computing platforms, including the Google-IBM CluE 
cluster and the newly acquired Triton Shared Resource Cluster at UC San Diego.

2.8  Future Directions
The pursuit of science will continue to be shaped by technology developments in 
new and important ways. Our ability to gain insights from the increasingly numeri-
cal scientific world of environmental sensors, particle accelerators, individualized 
DNA sequencing, and the like depends on our ability to intelligently interpret 
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these data. Cloud computing and SaaS provide the type of flexible, demand-driven 
technologies that can help with such analysis.

Some scientific computing algorithms, traditionally run on tightly coupled 
supercomputers, require access to thousands of processors simultaneously and 
depend on low latency network connections and an environment where all pro-
cessors stay up for the length of a run. These seem less suited to a cloud architec-
ture than applications that require millions of single processor jobs. However, new 
trends in very high processor count supercomputer systems are driving algorithmic 
development, which may in fact improve the ability of some scientific algorithms to 
run effectively in a cloud environment.

Cloud computing can be a time saver for scientists in several regards. Wolski 
notes that “Cloud applications, once debugged and tuned, tend to be quite robust 
and scalable.” This could significantly reduce the time spent on software mainte-
nance for scientists, though as hardware developments continue, software should 
still be occasionally tuned so as not to miss significant performance benefits. 
Reproducible results should be much easier to achieve using clouds as well. Wolski 
also notes that IT investments can be significantly reduced through the use of 
clouds. This can make the ability to analyze all that incoming data more realistic 
for small science teams and can reduce the dependence on graduate students for 
system administrator duties within a research group.

The Nimbus environment is designed as a set of APIs and as such will be well 
suited to the many directions scientists may want to explore with this technology. 
Early extensions to Nimbus include data privacy and monitoring components for 
the biomedical and high-energy physics communities, respectively. Nimbus has 
also been used successfully under deadlines to produce results for a major confer-
ence. Experiences such as these will continue to increase confidence in the technol-
ogy and reduce the perception that “I need my own cluster to meet my deadlines.” 
We see tremendous growth in this area.

SaaS also holds great promise for science. The analysis required for the increas-
ingly digital nature of science will be carried out by software on computers. The 
ability to abstract both the software and the computing will clearly benefit scien-
tists. The ability to fit these capabilities into a young scientist’s lifestyle will benefit 
science even further. Seventy-five percent of 18 to 24 year olds have social network-
ing Web sites [66].

Work with the OLSG and the SIDGrid indicates that some science applications 
can be adapted to the social networking environment. This exponentially increases 
the potential for collaboration—both within and between disciplines—on the 
most challenging science problems. All of today’s social networking infrastructures 
can be leveraged to connect scientists doing similar work. Computational work-
flows, data, and even cloud computing cycles will be shared in a secured and col-
laborative environment.

For groups wanting to deploy very large numbers of software packages as 
a service, an automated approach such as that outlined by the RENCI team is 



Science Gateways  ◾  43

absolutely essential. Coupling this level of organization with the availability of flex-
ible cloud computing resources delivers valuable capabilities to biologists who rely 
on many different software packages. Through the use of such a framework, soft-
ware interfaces can easily be adapted to changing technologies—from web services 
to OpenSocial interfaces.

Finally, in the data-intensive world of today’s science, the ability of clouds to 
effectively handle data provisioning is key to their relevance to the scientific com-
munity. Science and engineering applications are often data intensive and the abil-
ity to adapt data delivery and analysis methods to this new infrastructure are very 
promising. Commercial enterprises can dynamically and efficiently load data sets 
into the system to serve the data to the user or application. A variety of database 
strategies in particular have been developed. The CloudStor Project at the San Diego 
Supercomputer Center is studying the trade-offs between parallel database systems, 
such as DB2 and Oracle in a cluster versus Hadoop and Hadoop-based storage sys-
tems, for dynamically provisioning data-intensive applications. Provisioning data 
via clouds and sharing it programmatically with others via Web 3.0 are some very 
exciting directions for science.
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3.1  Introduction
The field of knowledge management (KM) has been through several cycles of hype 
and disappointment and has created important disputes along the lines of “knowl-
edge” being the philosophical discourse and science and “management” being the 
empirical and experiential teaching. In reality, it has created a booming business for 
technologists, consultants, and a wide variety of technology vendors. Seen today, 
after a few decades, it still seems that the term “knowledge management” remains 
undefined, fuzzy, and disputed. Indeed, the very definition of “knowledge” and the 
distinction between data, information, and knowledge is poorly defined and still 
not well understood by many. Still, we are all aware of the rudimentary elements 
of “knowledge reuse” in a wide variety of business operations. Some will even hint 
that the contemporary Internet is a type of “knowledge bazaar” where individuals 
and corporations can shop for all manner of “knowledge consumables.” In this 
chapter, we discuss the possibility that the treatment of knowledge management 
systems (KMS), which represent an intricate part of many business enterprises, has 
yet another chance of reappearing in totally new technological, market, and social 
circumstances.

In Section 3.2, we sketch the context in which we see the emergence of massive, 
globally dependable infrastructure(s) used by several hundreds of millions of users 
across the globe. We position business aims and interest in this subject and narrow 
those into enterprise needs for knowledge to operate. We then outline a generic 
knowledge management architecture within contemporary business enterprises, 
which typically appears in the form of the enterprise stack application, hosted in 
data centers.

After observing the current deficiencies and projecting future developments, we 
depict a high-level architecture for the Enterprise Knowledge Cloud (EKC) as a col-
laborative, cooperating, competing mega-structure providing computing, network-
ing, and storage services to various “knowledge producers and consumers”—such 
as devices, people, and applications. Some architectural and design landscapes are 
provided for illustration. We conclude with a no-nonsense list of things we expect to 
observe happening as a sign of the mega-shift from the industrial to post-industrial 
world of the twenty-first century. We believe that EKCs are potential breakthrough 
applications marking an enterprise technology transition all the way from main-
frame computers to networked PCs, to grids and emerging computing clouds.

3.1.1 Emerging Cloud Computing Infrastructures
The U.S. National Institute of Standards and Technology (NIST) draft definition 
of cloud computing is as follows:

Cloud computing is a model for enabling convenient, on-demand 
network access to a shared pool of configurable computing resources 
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(e.g., networks, servers, storage, applications, and services) that can be 
rapidly provisioned and released with minimal management effort or 
service provider interaction. (Mell and Grance 2009)

Based on this definition, it can immediately be seen that cloud computing encom-
passes infrastructure, which to some extent at least already exists today in the form 
of the World Wide Web (“the Web”) providing a wide variety of information tech-
nology (IT) services that can be purchased on-demand (computing cycles, storage, 
and network) in a highly simplified procedure. Over time, just as “the Internet” has 
evolved into “the Web,” the Web will evolve into “the cloud” (Figure 3.1).

We predict future growth in which we will see a huge number of common 
devices interconnected and totally new applications emerging. It will most likely 
emerge as a hugely re-scaled version of today’s Internet. This growth will likely be 
stimulated via innovative applications starting to proliferate: a well-known social 
network has provided a platform for 4,000 applications written by 80,000 devel-
opers in just 6 months; the Amazon Elastic Compute Cloud (Amazon EC2) has 
330,000 registered application developers.

We observe that the cloud infrastructure is global, highly dependable, and sup-
ports innovative business models and new types of social phenomena such as blogs, 
MySpace, Facebook, YouTube, and Twitter, not to mention the myriad multiplayer, 
role-playing games and virtual reality sites.

3.1.2 Collective Intelligence
Collective intelligence is a phenomenon that emerges from the interaction—either 
collaboration or competition—of many individuals. By some estimates, today there 
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Figure 3.1  The Internet evolving into the cloud. (Adapted from Delic, K.A. and 
Walker, M.A., ACM Ubiquity, 9, 31, 2009.)
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are 80 million people worldwide writing weblogs (“blogs”). The blogs are typically 
topic-oriented and some attract important readership. Authors range from large 
company CEOs to housewives and young children. When taken together, the cloud 
computing infrastructure that hosts blogospheres looks like a big social agglomera-
tion providing a kind of “collective intelligence.” But it is not just blogs that form 
the collective intelligence—the phenomenon of collective intelligence is nurtured 
and enhanced by the social and participatory culture of the Internet, so all content 
developed and shared on the Internet becomes part of the collective intelligence. 
The Internet then, and the content available there, appears as an omnipresent, omni-
scient, cloud-like giant infrastructure—as a new form of “knowledge management.” 
Today this represents a massive collaboration of mostly people only, but very soon in 
the future we may envisage intelligent virtual objects and devices collaborating with 
people—this is already beginning to happen to some extent with Internet-attached 
devices starting to proliferate. Thus, rescaling from the actual ∼1.2 billion users to 
tens or hundreds of billions of real-world objects having a data representation in the 
virtual world is probably realistic. A real danger, and a real problem to be solved by 
knowledge management practitioners, is how to sort the wheat from the chaff—or 
the knowledge from the data and information—in an environment where the sheer 
amount of data and information could be overwhelming.

3.1.3 Intelligent Enterprise
Business enterprises today use the existing Internet infrastructure to execute vari-
ous business operations and provide a wide variety of services. As we see the shift of 
all nonphysical operations versus the Internet, we observe a new type of enterprise 
emerging: we call it the Intelligent Enterprise (Delic and Dayal 2002).

The Intelligent Enterprise is able to interact with its environment and change 
its behavior, structure, and strategy—behaving actually as an intelligent entity. 
It is able to adapt to rapid changing market circumstances, gradually change its 
business model, and survive into the next market cycle. The Intelligent Enterprise 
as we see it is characterized by its ability to learn from and adapt to changes in 
its environment and reinvent itself, sometimes with surprising results. In order to 
keep up with the rapidly changing demands of doing business, most enterprises 
implement increasingly complex IT solutions. Although implemented to make 
the enterprise more efficient, coupled with the organizational complexity of such 
large enterprise business, the technical complexity introduced by the many and 
varied IT solutions helps create pockets of inefficiencies within the organization. 
We see future Intelligent Enterprises deriving efficiencies through the automation 
of their core business processes and the exploitation of knowledge inherent in their 
organization. Their ability to respond quickly to changes will improve significantly 
as the knowledge base and “intelligence density” within the enterprise grows and 
problem-solving capabilities improve dramatically. Intelligent Enterprises will form 
dynamic partnerships with other enterprises to create dynamic business ecosystems, 
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which will be self-managed, self-configured, and self-optimized. In short, future 
enterprises will become smarter—more intelligent—and by doing so will evolve 
automatically into organizations more suited to their changing environment.

We postulate that the emergence of collective intelligence in the cloud comput-
ing infrastructure will influence markets and established businesses, allowing—
even encouraging—Intelligent Enterprises to emerge and reshape the contemporary 
approach to enterprise knowledge management (EKM). Next, we describe the cur-
rent state of EKM.

3.2   Enterprise Knowledge Management: 
Architecture and Technologies

Constantly evolving markets exercise pressure on business enterprises to continu-
ally evolve and improve. One of the most widely used business paradigms is about 
EKM—as a means to capture and express tacit human knowledge into an explicit 
form (externalized knowledge or content) that could be later (hopefully) reused. 
Various schools of thought were proposed, several assistive technologies were devel-
oped, and an important number of successful EKM stories were reported. From 
our experience, the best domain for EKM is in the enterprise IT domain (Delic and 
Dayal 2000, Noël and Delic 2002, Delic and Douillet 2004)—as it is a domain 
under huge cost pressure, but one which is essential for strategic development.

From a highly abstracted view, the EKM IT domain consists of problem solv-
ing, monitoring, tuning and automation, business intelligence reporting, and 
decision-making tasks (Figure 3.2).

Enterprise knowledge management 
IT deployment domains 

Problem 
solving 

Decision 
making 

Monitoring 
tuning 

automation 

Business 
intelligence 
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Knowledge 

Figure 3.2  EKM: IT deployment domains. (Adapted from Delic, K.A. and Riley, 
J.A.,  Enterprise  knowledge  clouds:  Next  generation  KM  systems?  Proceedings 
of the 2009 International Conference on Information, Process, and Knowledge 
Management (eKnow 2009), Cancun, Mexico, February 2009.)
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Problem solving, especially in the EKM IT domain, is the task for which knowl-
edge management techniques and systems are most commonly deployed. The pro-
liferation of knowledge management systems for problem analysis and solving is 
many and varied, spanning the gamut from knowledge capture, representation, 
and transformation through to recognition, extraction, and reuse. Knowledge from 
all sources, including human expertise, in the form of plain text, models, visual 
artifacts, executable modules, etc. is used by intelligent knowledge management 
systems to enable users to solve problems without reference to scarce, and often 
expensive, human experts.

In recent years, a wide variety of artificial intelligence (AI) techniques and 
heuristics have been deployed in knowledge management systems in an effort to 
make the systems smarter and more responsive. These smarter knowledge manage-
ment systems are particularly well suited to automation and self-management tasks, 
where the goal is to provide automated monitoring of system use and predictive 
tuning of system parameters to achieve automatic system scale out.

Business intelligence (BI) refers to a range of methodologies, technologies, 
skills, competencies, and applications businesses implement and utilize in order 
to better understand their commercial context. Typically business intelligence sys-
tems are knowledge management systems that provide current and predictive views 
of the business based on historical and current data relating to the business itself 
and the commercial environment in which it exists. Business intelligence report-
ing is more than the simple reporting of data gathered—it uses a wide range of AI 
techniques to extract relevant knowledge from incoming data streams and reposi-
tories and provides observations, hints, and suggestions about trends and possible 
futures.

Decision making is most often done by humans after understanding the results 
of the business intelligence reporting, but with the volume of business intelligence 
available to analysts increasing almost exponentially, it is becoming more and more 
difficult for humans to make sensible, rational, and timely decisions, so this task is 
increasingly becoming the responsibility of AI systems tuned to the environment 
of their deployment.

The tasks of problem solving, monitoring, tuning and automation, business 
intelligence reporting, and decision making are the most promising areas for the 
future deployment of EKCs. These areas will have a special flavor for the develop-
ment of a slew of new technologies addressing the problems that previous comput-
ing facilities could not resolve.

Currently, the majority of the indicated IT tasks include people, while we sug-
gest that this balance will be changed in the future through automation, ultimately 
leading to self-managing enterprise IT systems (Delic et al. 2007). When mapped 
into a more precise form, this conceptual drawing (Figure 3.2) will evolve into the 
enterprise-scale knowledge management application stack (Figure 3.3).

All knowledge management applications today can be layered into three essen-
tial subsystems:
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 ◾ Front-end portals that manage interactions with internal users, partner’s 
agents, and external users while rendering various “knowledge services.” 
Different classes of users—e.g., internal vs. external—are often presented 
with slightly different portals allowing access to different types of knowledge 
and services.

 ◾ A core layer that provides the knowledge base and access/navigation/guid-
ance/management services to knowledge portals and other enterprise appli-
cations. The core layer provides the Knowledge Base Management System 
(KBMS), the knowledge feeds—the means by which knowledge is added to 
the knowledge base or exchanged with other knowledge management sys-
tems or users—as well as the mechanism to distribute and inject appropriate 
knowledge into business processes throughout the enterprise.

Enterprise knowledge management
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Figure  3.3  EKM:  Architectural  view.  (Adapted  from  Delic,  K.A.  and  Riley, 
J.A.,  Enterprise  knowledge  clouds:  Next  generation  KM  systems?  Proceedings 
of the 2009 International Conference on Information, Process, and Knowledge 
Management (eKnow 2009), Cancun, Mexico, February 2009.)
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 ◾ The back-end that supplies “knowledge content” and the content manage-
ment system from various sources, authors, and communities that enables a 
refresh of the knowledge base.

The Enterprise Workflow System captures interactions with users and provides nec-
essary context for the EKM system. Various feeds enable the flow and exchange of 
knowledge with partners and suppliers. Today these feeds are mainly proprietary, 
while we expect that they will evolve into standards-based solutions for large-scale 
content flows (RESTful services, RSS, ATOM, SFTP, JSON, etc.). To indicate the 
scale and size of the typical corporate knowledge management system, we presume 
that the knowledge base contains several million knowledge items, and users num-
ber in the hundreds of thousands. EKM is considered a high-end, mission-critical 
corporate application, which resides in the corporate data center. High availability 
and dependability are necessary engineering features for such global, always-on, 
always-available systems.

Thus, EKM is typically a three-tier enterprise application probably spread over 
several geographically dispersed data centers and typically interconnected or inte-
grated with enterprise portals, content, and workflow management systems. In 
essence, EKM consists of the enterprise knowledge base (KB) with appropriate 
knowledge management routines (add/remove/modify KB), whose content is usu-
ally accessed via search access routines.

The ultimate result is that we are witnessing emerging social phenomena (writ-
ing blogs, participating in social networks, collaborating in wikis) enabled by an 
always-available, globally accessible, and secure infrastructure that can be used for 
free, or at a very low-cost, and running a mushrooming number of user-created 
applications. Some major companies are already announcing their intention to 
enter, drive, and dominate this field (The Economist 2008).

3.2.1 Enterprise Knowledge Management Infrastructure
Enterprise data centers are the key computational, storage, and network resources 
arranged around an efficient corporate network as the backbone of the enterprise 
IT infrastructure. Consequently, they are designed in such a way that the enter-
prise applications are categorized according to their criticality and provided with 
adequate infrastructural support. Thus, if many millions of users are critically 
dependent on an application, it would be categorized as a mission-critical, nonstop 
application and would be supported 24 × 7 and be always available. Some less criti-
cal applications will have yet another label, be supported 24 × 5, will not be consid-
ered nonstop, and would be something less than always available.

Thus, for EKM, if the risk of monetary and/or reputation loss is high, we will 
provide the infrastructure (clusters or high-end servers with some distinctive disas-
ter recovery capabilities) and support, which will fulfill expectations and fit into 
dependability requirements—with appropriate trade-offs between cost and features.
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3.2.2 Enterprise Knowledge Management Applications
Once we have categorized our EKM needs and provided the appropriate infrastruc-
ture, we should architect, design, and engineer EKM applications so that they fit 
into the entire EKM criticality. Thus, if the infrastructure is mission-critical, then 
EKM should have all the necessary features of a mission-critical application. It is 
out of the scope of this chapter to discuss this in more depth, but one should be well 
aware of this requirement as it will have implications for the software architecture, 
choice of operating system, platform, and programming environment: they should 
all respect the criticality label of the EKM system.

3.2.3 Enterprise Knowledge Management Content
Having briefly described the EKM infrastructure and applications, we should con-
sider how enterprise knowledge will be represented, captured, processed, and deliv-
ered. Problem solving documents (Problem Description-Problem Solution) are the 
most simple and widely used way of capturing problem solving tasks. Some early 
EKM systems used a rule-based representation of knowledge; executable models 
(decision trees, case-based reasoning systems, neural networks) are more recent 
knowledge capturing paradigms. We believe that multimedia content will become 
dominant in the future and that new methods for knowledge capture and render-
ing will be devised.

3.2.4 Enterprise Knowledge Management Users
The evolution of technology in consumer and corporate domains has created a new 
type of user who will be very different from contemporary users. While sketching 
the architecture of future EKM systems, one should seriously analyze and consider 
several aspects and dimensions of future users. The best way would be to look at our 
children: they seem to have developed a way to quickly exchange information snip-
pets, being either very short text messages or particular multimedia content. Also, 
it seems that they have a much better ability to multitask naturally while not losing 
or intermixing communication threads. This is the natural consequence of their 
exposure to gaming and new work and living styles. The so-called Millennium 
Generation will be the model for future users of EKM systems.

3.3  Enterprise Knowledge Cloud
Following social developments in the Internet world, it will be in the interest of 
business enterprises to deploy some of these new paradigms (social networks, 
blogging, open source) within their environments and with business intentions. 
Extrapolating what’s going on in the open Internet, we project that enterprises will 
create several clouds for various purposes.
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An abstracted business enterprise architecture is shown in Figure 3.4. This 
architecture interconnects business partners and suppliers to company customers 
and consumers and uses future cloud technologies to harvest, process, and use 
internal knowledge (corporate nets, wikis, blogs). Furthermore, similar partner/
supplier clouds will be developed to harvest, enrich, and deploy yet another knowl-
edge cloud. Finally, the largest enterprise cloud will cover clients and consumers, 
which could be used for a wide variety of purposes.

Each of the clouds shown in Figure 3.4 is an autonomous entity, existing for 
its own purpose and capable of collecting, warehousing, managing, and serving 
knowledge to its own group of users. However, while the clouds discussed are 
independent, they should be capable of interconnection, overlap, and knowledge-
sharing with appropriate rules and safeguards, so that, for example, customers and 
consumers might have access to appropriate internal enterprise knowledge or even 
partner/supplier knowledge through the cloud.

The emergence of these clouds (Private, Partner, Public) and their coalescence 
into the EKC allows, indeed encourages, the collective intelligences formed within 
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each cloud to emerge and cooperate with each other, thus becoming the driving 
force for the true Intelligent Enterprise. As an example, internal IT operations will 
use Private Clouds, Sales, and Marketing and would operate on Public Clouds, 
while the Outsourcing business may reside on the Partner Clouds—each having 
different types of users and customers. The interaction and cooperation of the user 
groups, their knowledge, and the collective intelligences across the three clouds 
shown in Figure 3.4 provides the infrastructure for behavioral, structural, and stra-
tegic adaptation in response to changes in the respective (business) environment.

To see this happening in the future, we would expect to see the development 
of some major cloud computing technologies and adoption of common standards. 
This will enable yet another type of mega-application—Knowledge Exchange, 
for example, enabling the trade, exchange, and monetizing of knowledge assets. 
However, one should not underestimate the huge obstacles in the security, privacy, 
performance, and dependability of those clouds as the clear precondition for real-
world deployments. One intricate problem to address will be the interoperability of 
clouds, leading to enabling technical standards but also aiming to establish mon-
etary/value ground (accounting and billing systems) for the exchange of various 
cloud contents. All this is in a very early stage, but one should sense that develop-
ments may go in this direction.

3.4  The Next 5 to 15 Years
Today’s enterprise applications are developed by IT departments, but for the future 
we predict a shift towards user-developed applications: mash-ups written in high-
level mash-up languages. Content today is mainly text-based, but for the future we 
see an evolution towards multimedia context and active content (later).

Users today are either fixed or mobile—tomorrow we expect they will be virtual 
and later will take personalities of “avatars” to protect privacy and integrity.

Standards will evolve with the current Web 2.0 and will eventually evolve into 
something like Web 3.0—which we assume to be cloud computing.

Current EKM systems are enterprise applications in data centers, while we 
expect them to evolve into “enterprise grids” on which others envisage the develop-
ment of “KM grids” (Cannataro and Talia 2003). Once the technology is stable and 
markets grow, we predict the development of clouds as the super-structure of enter-
prise grids, interconnecting enterprise data centers providing various functionalities.

Thus, while the architecture of today’s EKM systems is built around the enter-
prise stack, tomorrow’s EKM architecture will be distributed and loosely coupled 
and later will move to decoupled, completely pluggable, intelligent knowledge 
management appliances capable of adapting to interface with EKCs as required 
(Table 3.1).

We are in the midst of important social, technological, and market changes 
where we see some major companies announcing their intention to enter, drive, 
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and dominate the field of cloud computing (Weiss 2007, Forrester Research 2008, 
Hayes 2008). We see this as a precondition for the emergence of the intelligent, 
adaptive enterprise that was announced in the previous century, but can be created 
only in the right technological circumstances.

We believe that enterprise intelligence will draw its capacities from the EKCs 
embedded in the global, dependable fabrics consisting of subjects, objects, and 
devices. Cloud computing will enable massive and rapid rescaling of the content 
production, consumption, and participation of the various groups of cloud users at 
an unprecedented scale. This may yet evolve into a “social computing” paradigm as 
the likely advanced form of future society.

Massive collaboration (on content tagging, for example) followed by the emer-
gence of ontologies based on the Semantic Web, and adjusted by the folksonomies 
developed as user-oriented Web 2.0 applications, will embody “collective intelli-
gence” as the new source of knowledge. To see this happen, we postulate the neces-
sity of massive, global, mega-scale infrastructure in the form of “cloud computing” 
(interconnected grids and data centers). We are at the very beginning of important 
new developments where we expect that the field of EKM will be rescaled by an 
order of magnitude and will spawn the creation of “a new kind of EKM system.” 
We expect that the monetary value of the enterprise knowledge exchanges will 
largely surpass the cost of the use of the cloud infrastructure based on commodity 
components. This will fulfill an old predicament of the “content as the king” of 
commerce.
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4.1  Cloud Computing: IT as a Service
As an evolutionary computing model, cloud computing has been in the making for 
a long time—it embodies the development and aggregation of existing computing 
styles such as grid computing and utility computing. Some traces of grid comput-
ing and utility computing can be found in cloud computing use cases. However, 
cloud computing distinguishes itself from previous technology with its combina-
tion of the latest in technical developments and emerging business models, creating 
remarkable commercial value in new use scenarios.

In a nutshell, the existing Internet provides us with content in the form of 
videos, e-mails, and information served on web pages. With cloud computing, 
the next generation of the Internet will allow us to “buy” IT services from a web 
portal, drastically expanding the types of merchandise available beyond those 
on e-commerce sites such as eBay and Taobao. We would be able to rent from 
a virtual storefront the basic necessities needed to build a virtual data center, 
such as a CPU, memory, and storage and add on top of that the middleware 
necessary, such as web application servers, databases, enterprise server bus, etc., 
as the platform(s) to support the applications we would like to either rent from 
an Independent Software Vendor (ISV) or develop ourselves. Together this is 
what we call IT as a Service (ITaaS) bundled to us the end users as a virtual data 
center.
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Within ITaaS, there are three layers starting with Infrastructure as a Service 
(IaaS) comprised of the physical assets we can see and touch: servers, storage, and 
networking switches. At the IaaS level, what cloud computing service providers can 
offer is basic computing and storage capability, such as the cloud computing center 
founded by IBM in Wuxi Software Park and Amazon EC2. Taking computing 
power provision as an example, the basic unit provided is the server, including the 
CPU, memory, storage, operating system, and system monitoring software.

In order to allow users to customize their own server environment, server tem-
plate technology is used, which means binding certain server configurations and 
the operating system and software together and providing customized functions as 
required at the same time.

Using virtualization technology, we could provide as little as 0.1 CPU in a vir-
tual machine to the end user, therefore drastically increasing the utilization poten-
tial of a physical server to multiple users.

With virtualization increasing the number of machines to manage, service pro-
vision becomes crucial since it directly affects service management and the IaaS 
maintenance and operation efficiency. Automation, the next core technology, can 
make resources available for users through self-service without getting the service 
providers involved. A stable and powerful automation management program can 
reduce the marginal cost to zero, which in turn can promote the scale effect of 
cloud computing.

On the basis of automation, dynamic orchestration of resources can be realized. 
The dynamic orchestration of resources aims to meet the requirements of service 
levels. For example, the IaaS platform will add new servers or storage spaces for 
users automatically according to the CPU utilization of the server, so as to fulfill 
the terms of service levels made with users beforehand. The intelligence and reli-
ability of the dynamic orchestration of resource technology is a key point here. 
Additionally, virtualization is another key technology. It can maximize resource 
utilization efficiency and reduce the cost of an IaaS platform and user usage by 
promoting physical resource sharing. The dynamic migration function of virtu-
alization technology can dramatically improve the service availability and this is 
attractive for many users.

The next layer within ITaaS is Platform as a Service (PaaS). At the PaaS level, 
what the service providers offer is packaged IT capability, or some logical resources, 
such as databases, file systems, and application operating environment. Currently, 
actual cases in the industry include Rational Developer Cloud of IBM, Azure 
of Microsoft, and AppEngine of Google. At this level, two core technologies are 
involved. The first is software development, testing, and running based on cloud. 
The PaaS service is software developer–oriented. It used to be a huge difficulty for 
developers to write programs via networks in a distributed computing environ-
ment, and now due to the improvement of network bandwidth, two technologies 
can solve this problem. The first type of technology is online development tools. 
Developers can directly complete remote development and application through 
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browser and remote console (development tools run in the console) technologies 
without the local installation of development tools. The second type of technol-
ogy is the integration technology of local development tools and cloud computing, 
which means deploying the developed application directly into the cloud comput-
ing environment through local development tools. The second core technology is 
the large-scale distributed application operating environment. It refers to scalable 
application middleware, databases, and file systems built with a large amount of 
servers. This application operating environment enables the application to make 
full use of abundant computing and storage resources in the cloud computing cen-
ter to achieve full extension, go beyond the resource limitation of single physical 
hardware, and meet the access requirements of millions of Internet users.

The top of the ITaaS is what most non-IT users will see and consume: Software 
as a Service (SaaS). At the SaaS level, service providers offer consumer or industrial 
applications directly to individual users and enterprise users. At this level, the fol-
lowing technologies are involved: Web 2.0, Mashup, service-oriented architectures 
(SOA), and multi-tenancy.

The development of the AJAX technology of Web 2.0 makes web applications 
easier to use and brings the user experience of desktop applications to web users, 
which in turn makes people adapt to the transfer from desktop applications to web 
applications easily. The Mashup technology provides the capability of assembling 
contents on the Web, which can allow users to customize Web sites freely and 
aggregate contents from different Web sites, and enables developers to build appli-
cations quickly.

Similarly, SOA provides combination and integration function as well, but it 
provides the function in the background of the Web. Multi-tenancy is a technology 
that supports multi-tenancies and customers in the same operating environment. It 
can significantly reduce resource consumptions and cost for every customer.

Table 4.1 shows the different technologies used in different cloud computing 
service types.

Transforming any IT capability into a service may be an appealing idea, but to 
realize it, integration of the IT stack needs to happen. To sum up, key technologies 
used in cloud computing are: automation, virtualization, dynamic orchestration, 
online development, large-scale distributed application operating environment, Web 
2.0, Mashup, SOA, multi-tenancy, etc. Most of these technologies have matured in 
recent years to enable the emergence of cloud computing in real applications.

4.2  Cloud Computing Security
One of the biggest user concerns about cloud computing is its security, as is nat-
ural with any emerging Internet technology. In the enterprise data centers and 
Internet Data Centers (IDC), service providers offer racks and networks only, and 
the remaining devices have to be prepared by users themselves, including servers, 
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firewalls, software, storage devices, etc. While a complex task for the end user, 
he does have a clear overview of the architecture and the system, thus placing 
the design of data security under his control. Some users use physical isolation 
(such as iron cages) to protect their servers. Under cloud computing, the backend 
resource and management architecture of the service is invisible for users (thus the 
word “cloud” to describe an entity far removed from our physical reach). Without 
physical control and access, the users would naturally question the security of the 
system.

A comparable analogy to data security in a cloud is in financial institutions 
where a customer deposits his cash bills into an account with a bank and thus no 
longer has a physical asset in his possession. He will rely on the technology and 
financial integrity of the bank to protect his now virtual asset. Similarly, we will 
expect to see a progression in the acceptance of placing data in physical locations 
out of our reach but with a trusted provider.

To establish that trust with the end users of clouds, the architects of cloud 
computing solutions do indeed design rationally to protect data security among end 
users and between end users and service providers.

From the point of view of the technology, the security of user data can be 
reflected in the following rules.of.implementation:

 1. The privacy of user storage data. User storage data cannot be viewed or 
changed by other people (including the operator).

 2. The user data privacy at runtime. User data cannot be viewed or changed by 
other people at runtime (loaded to system memory).

Table 4.2  Recommendations to Operators and Users on Cloud Security

To Other Users To Operators

The privacy of user 
storage data

SAN network zoning, 
Mapping Clean up disks 
after callback

File system authentication

Bare device 
encryption, File 
system encryption

The privacy of user data 
at runtime

VM isolation, OS isolation OS isolation

The privacy when 
transferring user data 
through network

SSL, VLAN, VPN SSL, VPN

Authentication and 
authorization needed for 
users to access their data

Firewall, VPN 
authentication, OS 
authentication

VPN authentication, 
OS authentication
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 3. Privacy when transferring user data through the network. It includes the 
security of transferring data in cloud computing center Intranet and Internet. 
It cannot be viewed or changed by other people.

 4. Authentication and authorization needed for users to access their data. Users 
can access their data through the right way and can authorize other users to 
access.

To ensure security, the cloud computing services can use the corresponding tech-
nologies shown in Table 4.2.

In addition to the technology solutions, business and legal guidelines can be 
employed to enforce data security, with terms and conditions to ensure user rights 
to financial compensation in case of breached security.

4.3   Cloud Computing Model 
Application Methodology

Cloud computing is a new model for providing business and IT services. The service 
delivery model is based on future development considerations while meeting cur-
rent development requirements. The three levels of cloud computing service (IaaS, 
PaaS, and SaaS) cover a huge range of services. Besides computing and the ser-
vice delivery model of storage infrastructure, various models such as data, software 
application, programming model, etc. can also be applicable to cloud computing. 
More importantly, the cloud computing model involves all aspects of enterprise 
transformation in its evolution, so technology architecture is only a part of it and 
multi-aspect development, such as organization, processes, and different busi-
ness models should also be under consideration. Based on standard architecture 
methodology with best practices of cloud computing, a Cloud Model Application 
Methodology can be used to guide industry customer analysis and solve poten-
tial problems and risks that emerge during the evolution from current computing 
model to cloud computing model. This methodology can also be used to instruct 
the investment and decision making analysis of the cloud computing model and 
determine the process, standard, interface, and public service of IT assets deploy-
ment and management to promote business development. Figure 4.1 shows the 
overall status of this methodology.

4.3.1 Cloud Computing Strategy Planning Phase
Cloud strategy contains two steps to ensure a comprehensive analysis of the strategy 
problems that customers might face when applying cloud computing mode. Based 
on the Cloud Computing Value Analysis, these two steps will analyze the model 
condition needed to achieve the customers’ target and then will establish a strategy 
to function as the guideline.
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 1. Cloud computing value proposition
 The target of this step is to analyze the specific business value and pos-

sible combination point between the cloud computing mode and specific 
users by leveraging the analysis of the cloud computing users’ requirement 
model and considering the best practices of the cloud computing industry. 
Analyze the key factors that might influence customers to apply the cloud 
computing mode and make suggestions on the best customer application 
methods. In this analysis, we need to identify the main target for cus-
tomers to apply the cloud computing mode and the key problems they 
wish to solve. Take some common targets as examples: IT management 
simplification, operation, and maintenance cost reduction; business mode 
innovation; low-cost outsourcing hosting; high service quality outsourcing 
hosting, etc.

The analysis results will be provided to support decision-making levels to 
make condition assessments and strategy for future development and to pre-
pare for the strategy establishment and organization of the following cloud 
computing.

 2. Cloud computing strategy planning
 This step is the most important part of the strategy phase. Strategy establish-

ment is based on the analysis result of the value step and aims to establish 
the strategy documentation according to a good understanding of various 
conditions that customers might face when applying the cloud computing 
mode to plan for future vision and perspective. A professional analysis made 
by the method above typically involves broad customer business model 
research, organization structure analysis, and operation process identifica-
tion; also, there are some non-functional requirements and limitations in 

IBM cloud computing blueprint model 

Strategy phase
Deployment phase

Cloud industries best practicesCloud industries best practices

Governance, QoS, change managementGovernance, QoS, change management

Cloud value
proposition

Cloud
strategy

Quality of
service

IT
architecture

MA

Business 
architecture

Transformation
planning

Cloud
provider/enabler

chosen

Planning phase

Figure 4.1  Cloud computing methodology overview.
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the plan, such as the concern for security standards, reliability requirements, 
and rules and regulations.

4.3.2 Cloud Computing Tactics Planning Phase
At the phase of cloud planning, it is necessary to make a detailed investigation on 
the customer’s position and to analyze the problems and risks in the cloud applica-
tion both at present and in the future. After that, concrete approaches and plans 
can be drawn to ensure that customers can use cloud computing successfully to 
reach their business goals. This phase includes some practicable planning steps in 
multiple orders listed as follows:

 1. Business architecture development: While capturing the organizational struc-
tures of enterprises, the business models also get information on business 
process support. As various business processes and relative networks in 
enterprise architecture are being set down one after another, gains and losses 
brought by relative paths in the business development process will also come 
into people’s understanding. We categorize these as business interests and 
possible risks brought on by the cloud computing application from a busi-
ness perspective.

 2. IT architecture development: It is necessary to identify the major applications 
needed to support enterprises business processes and the key technologies 
needed to support enterprise applications and data systems. Besides, cloud 
computing maturity models should be introduced and the analysis of tech-
nological reference models should be made, so as to provide help, advice, and 
a strategy guide for the design and realization of the cloud computing mode 
in the enterprise architecture.

 3. Requirements on quality of service development: Compared with other comput-
ing modes, the most distinguishing feature of the cloud computing mode is 
that the requirements on quality of service (also called non-functional needs) 
should be rigorously defined beforehand, for example, the performance, reli-
ability, security, disaster recovery, etc. This requirement is a key factor in 
deciding whether a cloud computing mode application is successful or not 
and whether the business goal is reached; it is also an important standard 
in measuring the quality of cloud computing service or the competence in 
establishing a cloud computing center.

 4. Transformation plan development: It is necessary to formulate all kinds of 
plans needed in the transformation from current business systems to the 
cloud computing modes, including the general steps, scheduling, quality 
guarantee, etc. Usually, an infrastructure service cloud covers different items, 
such as an infrastructure consolidation plan report, operation and mainte-
nance management system plan, management process plan, application sys-
tem transformation plan, etc.
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4.3.3 Cloud Computing Deployment Phase
The deployment phase focuses mainly on the programming of both the strat-
egy realization phase and the planning phases. Two steps are emphasized in this 
phase:

 1. Cloud computing provider or enabler chosen: According to the past analysis and 
programming, customers may have to choose a cloud computing provider or 
an enabler. It is most important to know that the requirement for a service 
level agreement (SLA) is still a deciding factor for providers in winning a 
project.

 2. Maintenance and technical service: As for maintenance and technical ser-
vice, different levels of standards are adopted; these standards are defined 
by the requirements on quality of services made beforehand. Cloud com-
puting providers or builders have to ensure the quality of services, for 
example, the security of customers in service operation and the reliability 
of services.

4.4  Cloud Computing in Development/Test
Economic crises can bring with it enterprise unprecedented business challenges and 
more competitions for the same markets. To address these challenges, enterprises 
have to optimize and update their business operations. At this critical moment, 
only by offering agile operating systems to end users can enterprises turn the crises 
into opportunities and promote better development.

Years of IT development has closely linked IT with the business systems, opera-
tion systems, and maintenance systems of enterprises. To a large extent, the opti-
mization and updating of business is indeed that of the IT system, which requires 
enterprises to keep innovating in the business system. As a result, developing new 
IT systems quickly while doing rigorous tests to provide stable and trustworthy ser-
vices for customers has become the key to enterprise development. Thus, the devel-
opment testing centers have become the engines of enterprises growth and keeping 
the engines operating in a quick and effective way has become a major concern for 
enterprise Chief Information Officers (CIOs).

As the importance of development centers in companies grows, there will be 
more and more projects, equipment, and staff in these centers. Establishing a smart 
development center has become many people’s concern. As the latest IT break-
through, how will cloud computing help to transform development test centers 
and bring competitive advantages to enterprises? We want to illustrate this problem 
through the following case.

Director A is the manager of an information center and he is now in charge of all 
development projects. Recently, he has been thinking about how to best optimize 
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his development and testing environment. After investigation, he concludes that 
the requirements of the new test center are as follows:

 1. Reducing the investment on hardware
 2. Providing an environment quickly for new development testing projects
 3. Reusing equipment
 4. Ensuring project information security

Based on A’s requirement analysis, he can use cloud computing solutions to estab-
lish a cloud computing–based test development center for his company.

4.4.1 Reducing the Cost
In traditional test development systems, companies would set up an environment 
for each test and development project. Different test systems may have different 
functions, performances, or stabilities and thus software and hardware configura-
tions will vary accordingly. However, in a cloud test development platform, all the 
servers, memories, and networks needed in test development are pooling-managed; 
and through the technology of virtualization, each test or development project is 
provided with a logical hardware platform.

The virtual hardware platforms of multiple projects can share the same set of 
hardware resources, thus through integrating the development test project, the 
hardware investment will be greatly reduced.

4.4.2 Providing an Environment for New Projects
A cloud can automatically provide end users with IT resources, which include com-
puting resources, operating system platforms, and application software. All of these 
are realized through the automation module of the cloud.

Automation of computing resources: In the cloud service interface, when end 
users input the computing resources (processor, storage, and memory) needed 
according to the requirements of the application system, the cloud platform will 
dynamically pick out the resources in the corresponding resource pool and prepare 
for the installation of the system platform.

Automation of system platforms: When the computing resources allocation is 
finished, the automation of system platforms will help you to install the system 
with the computing resources on the base of the chosen system platform (Windows, 
Linux, AIX, etc.) dynamically and automatically. It can concurrently install opera-
tion system platforms for all computers in need and it can customize an operation 
system with customization parameters and system service for customers. Moreover, 
the users, networks, and systems can all be set automatically.

Automation of application software: The software of enterprises would be 
controlled completely. The software distribution module can help you to deploy 
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complex mission-critical applications from one center spot to multiple places 
quickly and effectively.

Through automation, clouds can provide environments for new development 
test projects and can accelerate the process of development tests.

4.4.3 Reusing Equipment
Cloud has provided a resource management process based on a development lifecy-
cles test. The process covers many operations such as computing resource establish-
ment, modification, release, and reservation. When the test development projects 
are suspended or completed, the cloud platform can make a back-up of the existing 
test environment and release the computing resources, thereby realizing the reuse 
of computing resources.

4.4.4 Ensuring Project Information Security
The cloud computing platform has provided a perfect means of ensuring the secu-
rity and isolation of each project. There are two ways for users to access the system: 
accessing the web management interface or accessing the project virtual machine. 
To access a web interface, one needs a user ID and a password. To control virtual 
machine access, the following methods can be adopted:

 1. User authentication is conducted through the VPN equipment in the exter-
nal interface of the system.

 2. Each project has only one virtual local area network (VLAN), and the virtual 
machine of each project is located inside the VLAN. The switches and the 
hypervisors in the hosts can guarantee the isolation of the VLAN.

 3. The isolation of the virtual machine is guaranteed by the virtual engine.
 4. Besides, user authentication of the operation systems can also protect user 

information.

A VLAN is created dynamically along with the establishment of the project. Unicast 
or broadcast messages can be sent among project virtual machines or between the 
virtual machine and the workstation of the project members. Virtual machines of 
different projects are isolated from each other, thereby guaranteeing the security of 
project data. A user can get involved in several projects and meanwhile visit several 
virtual machines of different projects.

The new generation of intelligent development test platforms needs the sup-
port of intelligent IT infrastructure platforms. By establishing intelligent develop-
ment test platforms through cloud computing, a new IT resource supply mode 
can be formed. Under this mode, the test development center can automatically 
manage and dynamically distribute, deploy, configure, reconfigure, and recycle IT 
resources based on the requirements of different projects; besides, it can also install 
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software and application systems automatically. When projects are over, the test 
development center can recycle the resources automatically, thereby making the 
best use of the computing capabilities.

4.5   Cloud-Based High Performance 
Computing Clusters

In the development history of information science from the last half a century, 
high performance computing (HPC) has always been a leading technology. It has 
become a major tool for future innovations of both theoretical and research sci-
ence. As new cross-disciplines combining traditional subjects and HPC emerge in 
the areas of computational chemistry, computational physics, and bioinformatics, 
computing technology needs to take a leap forward as well to meet the demands of 
these new research topics.

With the current financial crisis, providing higher computing performance 
with less resource input has become a big challenge for the HPC centers. In the 
construction of a new generation of computing centers with high performance, we 
should not only pay attention to the choice of software and hardware, but also take 
a full account of the center operation, utilization efficiency, technological innova-
tion cooperation, and other factors. The rationality of the general framework and 
the effectiveness of resource management should also be fully considered. Only by 
doing this can the center gain long-term high-performance capacity in computing 
research and supply.

In other words, the new generation of a high-performance computing center 
does not provide traditional high-performance computing, nor is it only a high-
performance equipment solution. The management of resources, users, and virtu-
alization and the dynamic resource generation and recycling should also be taken 
into account. In this way, the high-performance computing based on cloud com-
puting technology was born.

The cloud computing-based high-performance computing center aims to solve 
the following problems:

 1. A high-performance computing platform generated dynamically
 2. Virtualized computing resources
 3. High-performance computer management technology combined with tradi-

tional ones
 4. High-performance computing platform generated dynamically

In traditional high-performance computing environments, physical equipment 
is configured to meet the demands of customers; for example, Beowulf Linux 
and WCCS Architecture are chosen to satisfy the customers’ requirements on 
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computing resources. All of the operation systems and parallel environments are 
set beforehand, and cluster management software is used to manage the comput-
ing environment. However, as high-performance computing develops, there are 
more and more end users and application software; thus, the requirements on 
the computing platform become more diverse. Different end users and applica-
tion software may require different operation systems and parallel environments. 
High-performance computing requires a new way of resource supply in which the 
platform should be dynamically generated according to the needs of every end user 
and application software; the platform can be open, including Linux, Windows, 
or UNIX.

4.5.1 Virtualized Computing Resources
Since few virtualized architectures are used in traditional high-performance com-
puting, this kind of platform cannot manage virtualized resources. However, as 
high-performance computing develops, in many cases we need to attain more 
virtualized resources through virtualization, for example, the development and 
debugging of parallel software and the support for more customer applications, etc.

In the cloud computing–based high-performance computing center, the virtu-
alization of physical resources can be realized through the cloud platform; more-
over, virtualized resources can be used to establish high-performance computing 
platforms and generate high-performance computing environments whose scale is 
larger than that of the actual physical resource so as to meet the requirements of 
customers.

4.5.2 Combination with Traditional Management Technology
The cloud computing–based high-performance computing platform can not only 
manage computers through virtualization and dynamic generation technology, but 
can also work together with traditional cluster and operation management software 
to enable users to manage the virtualized high-performance computers in a tradi-
tional way and submit their own work.

A new IT resources provision model can be attained by the adoption of cloud 
computing infrastructure and high-performance computing center construction. 
In this model, the computing center can automatically manage and dynamically 
distribute, deploy, configure, reconfigure, and recycle the resources. The automatic 
installation of software and application can be realized, too. By the use of the 
model, the high-performance computing resources can be distributed efficiently 
and dynamically. When the project is finished, the computing center can auto-
matically recycle the resources to make full use of the computing power. Taking 
advantage of cloud computing, the high-performance computing center can not 
only provide high calculating power for scientific research institutions, but can also 
expand the service content of the computing center. In other words, it can serve as 
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a data center to support other applications and promote higher utilization efficiency 
of entire resources.

4.6  Use Cases of Cloud Computing
4.6.1  Case Study: Cloud as Infrastructure 

for an Internet Data Center
In the 1990s, Internet portals made huge amounts of investment to attract eyeballs. 
Rather than profits and losses, their market valuation was based on the number 
of unique “hits” or visitors. This strategy proved to work out well as these portals 
begin to offer advertisement opportunities targeting their installed user base, as 
well as new paid services to the end user, thereby increasing revenue per capita in a 
theoretically infinite growth curve.

Similarly, IDCs have become a strategic initiative for cloud service providers 
to attract users. With a critical mass of users consuming computing resources and 
applications, an IDC would become a portal attracting more applications and more 
users in a positive cycle.

The development of the next generation of IDC hinges on two key factors. The 
first factor is the growth of the Internet. By the end of June 2008, for example, 
Internet users in China totaled 253 million and the annual growth rate was as high 
as 56.2%.* As a result, the requirement on Internet storage and traffic capacity 
grows, which means Internet operators have to provide more storage and servers to 
meet users’ needs. The second factor is the development of mobile communication. 
By the end of 2008, the number of mobile phone users in China has amounted to 4 
billion. The development of mobile communication drives server-based computing 
and storage, which enables users to access the data and computing services needed 
via the Internet through lightweight clients.

In the time of dramatic Internet and mobile communication expansion, how 
can we build new IDCs with core competency? Cloud computing provides an 
innovative business model for data centers, and thereby can help telecom operators 
to promote business innovation and higher service capabilities against the backdrop 
of the whole business integration of fixed and mobile networks.

4.6.1.1 Bottleneck on IDC Development

Products and services offered by a traditional IDC are highly homogenized. In 
almost all of the IDCs, basic co-location services account for a majority of the rev-
enue, while value-added services add only a small part of it. For example, in one of 
the IDCs of a telecom operator, the hosting service claims 90% of its revenue, while 

* Source: CCIDConsulting, 2008–2009 China IDC market research annual report.
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value-added service takes only 10%. This makes it impossible to meet customers’ 
requirements on load balance, disaster recovery, data flow analysis, resource utiliza-
tion analysis, etc.

The energy utilization is low, but the operation costs are very high. According to 
CCID research statistics, the energy costs of IDC enterprises make up about 50% 
of their operating costs and more servers will lead to an exponential increase in the 
corresponding power consumption (see footnote on page 75). With the increase of 
the number of Internet users and enterprise IT transformation, IDC enterprises 
will have to face a sharp increase in power consumption as their businesses grow. 
If effective solutions are not taken immediately, the high costs will undermine the 
sustained development of these enterprises.

Besides, as online games and Web 2.0 sites become increasingly popular, all 
types of content including audio, videos, images, and games will need massive stor-
age and relevant servers to support transmission. This will result in a steady increase 
in enterprise requirements for IDC services and higher standards on the utilization 
efficiency of resources in data centers as well as the service level.

Under the full service operation model that emerged after the restructuring 
of telecom operators, the market competition became more and more fierce. The 
consolidation of fixed network and mobile services imposes higher requirements 
on telecom IDC operators as they have to introduce new services to meet market 
demands in time.

4.6.1.2  Cloud Computing Provides IDC with 
a New Infrastructure Solution

Cloud computing provides IDCs with a solution that takes into consideration 
both future development strategies and the current requirements for development. 
Cloud computing builds up a resource service management system in which phys-
ical resources are on the input and the output is the virtual resources at the right 
time with the right volume and the right quality. Thanks to the virtualization 
technology, the resources of IDCs including servers, storage, and networks are put 
into a huge resource pool by cloud computing. With cloud computing manage-
ment platforms, administrators are able to dynamically monitor, schedule, and 
deploy all the resources in the pool and provide them for the users via a network. 
A unified resource management platform can lead to higher efficiency of IDC 
operation and schedule the efficiency and utilization of the resources in the center 
and lower management complexity. The automatic resource deployment and soft-
ware installation help to guarantee the timely introduction of new services and 
can lower the time-to-market. Customers can use the resources in data centers by 
renting based on their business needs. Besides, as required by business develop-
ment needs, they are allowed to adjust the resources that they rent and pay fees 
according to resource usage. This kind of flexible charging mode makes IDCs 
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more appealing. The management through a unified platform is also helpful to 
IDC expansion. When an IDC operator needs to add resources, new resources can 
be added to the existing cloud computing management platform to be managed 
and deployed uniformly.

Cloud computing will make it an unceasing process to upgrade software and 
add new functions and services, which can be done through intelligent monitoring 
and automatic installation programs instead of manual operation.

According to the Long Tail theory, cloud computing builds infrastructures 
based on the scale of market head and provides marginal management costs that 
are nearly zero in market tail as well as a plug-and-play technological infrastruc-
ture. It manages to meet diversified requirements with variable costs. In this way, 
the effect of the Long Tail theory is realized to keep a small-volume production of 
various items and by the use of innovative IT technology, and it sets up a market 
economy model, which is open to competition and favorable to the survival of the 
fittest.

4.6.1.3  Value of Cloud Computing for IDC Service Providers

First of all, based on cloud computing technology, IDC is flexible and scalable and 
can realize the effect of the Long Tail theory at a relatively low cost. The cloud com-
puting platform is able to develop and launch new products at a low marginal cost 
of management. Therefore, startup costs of new businesses can be reduced to nearly 
zero, and the resources would not be limited to a single kind of product or service. 
So under a specified investment scope, the operators can greatly expand product 
lines and meet the needs of different services through the automatic scheduling of 
resources, thereby making the best use of the Long Tail theory.

Secondly, the cloud computing dynamic infrastructure is able to deploy 
resources in a flexible way to meet business needs at peak times. For example, 
during the Olympics, the Web sites related to the competitions are flooded with 
visitors. To address this problem, the cloud computing technology would deploy 
other idle resources provisionally to support the requirements of resources at peak 
hours. The United States Olympic Committee has applied the cloud comput-
ing technologies provided by AT&T to support competition viewing during the 
Olympics. Besides, SMS and telephone calls on holidays, as well as the application 
and inquiry days for examinations also witness the requirements for resources at 
the peak.

Thirdly, cloud computing improves the return on investment for IDC service 
providers. By improving the utilization and management efficiency of resources, 
cloud computing technologies can reduce computing resources, power consump-
tion, and human resource costs. Additionally, it can lead to shorter time-to-
market for a new service, thereby helping IDC service providers to occupy the 
market.
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Cloud computing also provides an innovative charging mode. IDC service pro-
viders charge users based on the resource renting conditions and users only have to 
pay for what they use. This makes the payment charging more transparent and can 
attract more customers (Table 4.3).

4.6.1.4 Value Brought by Cloud Computing for IDC Users

First, initial investments and operating costs can be lowered and risks can be 
reduced. There is no need for IDC users to make initial investments in hardware 
and expensive software licenses. Instead, users only have to rent necessary hardware 
and software resources based on their actual needs and pay according to usage 
conditions. In the era of enterprise informatization, more and more subject mat-
ter experts have begun to establish their own Web sites and information systems. 
Cloud computing can help these enterprises to realize informatization with rela-
tively less investment and fewer IT professionals.

Secondly, an automatic, streamlined, and unified service management platform 
can rapidly meet customers’ increased requirements for resources and can enable 
them to acquire the resources in time. In this way, customers can become more 
responsive to market requirements and enhance business innovation.

Thirdly, IDC users are able to access more value-added services and achieve 
faster requirement responses. Through the IDC cloud computing unified service 

Table 4.3  Value Comparison on Co-Location, Physical Server Renting, and 
IaaS for Providers

Co-Location
Physical 

Server Renting
IaaS with Cloud 

Computing

Profit margin Low. Intense 
competition

Low. Intense 
competition

High. Cost saving by 
resource sharing

Value add service Very few Few Rich, such as IT service 
management, 
Software renting, etc.

Operation Manual 
operation. 
Complex

Manual 
operation. 
Complex

Automatic and 
integrated operation. 
End-to-end request 
management

Response to 
customer request

Manual 
action. Slow

Manual 
action. Slow

Automatic process. 
Fast

Power 
consumption

Normal Normal Reduce power by 
server consolidation 
and sharing. 
Scheduled power off
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delivery platform, the customers are allowed to put forward personalized require-
ments and enjoy various kinds of value-added services. And their requirements 
would get a quick response, too (Table 4.4).

4.6.1.5 Cloud Computing Can Make Fixed Costs Variable

An IDC can provide 24 × 7 hosting services for individuals and businesses. Besides 
traditional hosting services, these clients also need the cloud to provide more appli-
cations and services. In so doing, enterprises are able to gain absolute control on 
their own computing environment. Furthermore, when necessary, they can also 
purchase online the applications and services that are needed quickly at any time, 
as well as adjust the rental scale in a timely way.

4.6.1.6 IDC Cloud Example

In one example, an IDC in Europe serves industry customers in four neighboring 
countries, which cover sports, government, finance, automobiles, and healthcare.

Table 4.4  Value Comparison on Co-Location, Physical Server Renting, and 
IaaS for Users

Co-Location
Physical Server 

Renting IAAS Using Cloud

Performance Depend on 
hardware

Depend on 
hardware

Guaranteed 
performance

Price Server investment 
plus bandwidth 
and space fee

Bandwidth and 
server renting fee

CPU, memory, 
storage, bandwidth 
fee. Pay per use

Availability Depend on single 
hardware

Depend on single 
hardware

High available by 
hardware failover

Scalability Manual scale out Manual scale out Automated scale out

System 
management

Manual hardware 
setup and 
configuration. 
Complex

Manual hardware 
setup and 
configuration. 
Complex

Automated OS and 
software installation. 
Remote monitoring 
and control. Simple

Staff High labor cost 
and skill 
requirement

High labor cost 
and skill 
requirement

Low labor cost and 
skill requirement

Usability Need on site 
operation

Need on site 
operation

All work is done 
through Web UI. 
Quick action
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This IDC attaches great importance to cloud computing technology in the 
hope of establishing a data center that is flexible, demand-driven, and responsive. 
It has decided to work with cloud computing technology to establish several cross-
Europe cloud centers. The first five data centers are connected by virtual SAN and 
the latest MPLS technology. Moreover, the center complies with the ISO27001 
security standards and other security functions that are needed by the banks and 
government organizations, including auditing functions provided by certified part-
ners, are also realized (Figure 4.2).

The IDC uses the main data center to serve customers at its sister sites. The 
new cloud computing center will enable this IDC to pay for fixed or usage-based 
changeable services according to a credit card bill. In the future, the management 
scope of this hosting center can expand to even more data centers in Europe.

4.6.1.7 Influence of Cloud Computing in 3G Era

Ever since the 3G services were launched by the major communication operators, 
the simple voice and information service can no longer meet the growing require-
ments of users. The 3G data services have become the focus of competition among 
operators. Many operators have introduced some specialized services. And with 
the growth of 3G clients and the expansion and improvement of 3G networks, 
operators have to provide more diversified 3G services to survive in the fierce mar-
ket competition. Cloud can be used as a platform to provide such value added 
services.

Server Network Storage
Consolidated IDC fabric

Virtual infrastructure

StorageNetwork

Server

ISV and development communityEnterprise customer

Extend enterprise data center

Isolation 
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Virtual infrastructure

StorageNetwork

Server

Cloud computing 
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Figure 4.2  IDC cloud.
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In this 3G era, mobile TV, mobile securities, and data backup will all become 
critical businesses. Huge amounts of videos, images, and documents are to be stored 
in data centers so that users can download and view them at any time, and they 
can promote interaction. Cloud computing can effectively support these kinds of 
business requirements and can get maximal storage with limited resources. Besides, 
it can also search and promptly provide the resources that are needed for users to 
meet their needs.

After the restructuring of operators, the businesses of leading service provid-
ers will all cover fixed network and mobile services, and they may have to face up 
to fierce competition in the 3G market. Cloud computing can support unified 
monitoring and dynamic deployment of resources. So, during the business con-
solidation of the operators, the cloud computing platform can deploy the necessary 
resources in time to support business development, and can respond quickly to 
market requirements to help operators gain a larger market share.

The 3G-enabled high bandwidth makes it easier and quicker to surf the Internet 
through mobile phones and it has become a critical application of 3G technologies. 
Cloud computing makes it compatible among different equipment, software, and 
networks, so that the customers can access the resources in the cloud through any 
kind of clients.

4.6.2 Case Study—Cloud Computing for Software Parks
The traditional manufacturing industry has helped to maintain economic growth 
in previous generations, but it has also brought along a host of problems such as 
labor market deterioration, huge consumption of energy resources, environmental 
pollution, and a higher drive toward lower cost. As emerging economies begin their 
social transformation, software outsourcing has gained an edge compared with the 
traditional manufacturing industry: on one hand, it can attract and develop top-
level talent to enhance the technical level and competitive power of a nation; on the 
other hand, it can also prompt the smooth structural transformation to a sustain-
able and green service industry, thereby ensuring continuous prosperity and endur-
ance even in difficult times.

As such, software outsourcing has become a main business line for many emerg-
ing economies to ramp up their service economy, based on economies of scale and 
affordable costs. To reach this goal, software firms in these emerging economies 
need to conform their products and services to international standards and absorb 
experiences from developed nations to enhance the quality of their outsourcing 
services. More importantly, good policy support from the government and nec-
essary infrastructures are critical components in the durability of these software 
outsourcing firms.

The IT infrastructure is surely indispensable for software outsourcing and 
software businesses. To ensure the success of software outsourcing, there are two 
prerequisites: a certification standard of software management, which is of an 
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international level (such as CMM Level 5), and an advanced software designing, 
programming, and testing pipeline, namely the software development platform of a 
data center. The traditional data center only puts together all the hardware devices 
of the enterprise, leading to the monopolization of some devices by a certain project 
or business unit. This would create a huge disparity within the system and can’t 
guarantee the quality of applications and development. Besides, it would result in 
an increase in cost and unnecessary spending and in the long term will undermine 
the enterprise’s competitive power in the international market of software outsourc-
ing. Furthermore, when a new project is put on the agenda, it would take a long 
time to prepare for and address the bottleneck of the project caused by traditional 
IT equipment.

To pull the software enterprises out of this dilemma, IBM first developed a 
brand-new management mode for the software developing environment: the man-
agement and development platform of cloud computing. The platform was con-
structed with the aid of the accumulated experience of IBM itself in the field of 
software outsourcing service and data center management. The valuable experience 
from the long-term cooperation with other software outsourcing powers is also 
taken into consideration. This platform is a new generation of data center man-
agement. Compared with traditional data centers, it has outstanding technical 
advantages.

Figure 4.3 is the schematic diagram of the relationship between the cloud com-
puting platform and software outsourcing ecosystems.

First, the platform can directly serve as a data service center for software out-
sourcing companies in the Software Park and neighboring enterprises. As soon 
as a software outsourcing order is accepted, the company can turn to the man-
agement and development platform of cloud computing to look for IT resources 
suitable for use, the process of which is as simple and convenient as booking a 
hotel via the Internet. Besides, by relying on IBM’s advanced technology, the 
cloud computing platform is able to promote unified administrative standards to 
ensure the confidentiality, security, stability, and expandability of the platform. 
That is to say, thanks to its brand effect, the platform developed by the soft-
ware demonstration plot is up to international advanced levels and could thereby 

Telco
Financial
services
sector

Public
sector

Virtualized cloud infrastructure

Software development
and test platform

Digital
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Figure 4.3  Cloud computing platform and software outsourcing ecosystems.
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enhance the service level of software outsourcing in the entire park. The final 
aim is to measure up to international standards and meet the needs of interna-
tional and Chinese enterprises. Meanwhile, a platform of unified standards can 
lower IT maintenance costs and raise the response speed for requirements, mak-
ing possible the sustainable development of the Software Park. Lastly, the man-
agement and development platform of cloud computing can directly support all 
kinds of applications and provide enterprise users with various services including 
outsourcing and commercial services as well as services related to academic and 
scientific researches.

The following are the benefits brought to the outsourcing services companies 
and outsourcing demonstration plot of the Wuxi government by the management 
and development platform of cloud computing:

 1. For outsourcing service companies that apply a cloud computing platform:
 a. An advanced platform with unified standards is provided and the quality 

is guaranteed.
 b. IT management becomes easier and the costs of developing products is 

greatly lowered.
 c. Response speed for business demand is enhanced and expandability is 

ensured.
 d. Existing applications and newly emerging data-intensive applications are 

supported.
 e. Miscellaneous functions for expediting the speed of innovation are also 

provided for outsourcing service companies, colleges and universities, 
and research institutes.

 2. Below are the advantages brought to the outsourcing demonstration plot of 
the Wuxi government through the application of a cloud computing platform:

 a. The government can transform from a supervision mode to a service 
mode, which is in favor of attracting investments

 b. It is conducive to environmental protection and the build-up of a harmo-
nious society

 c. It can support the development of innovative enterprises and venture 
companies

Detailed information about the major functions and technical architectures of 
the management and development platform of cloud computing is introduced 
below.

4.6.2.1 Cloud Computing Architecture

The management and development platform of cloud computing is mainly com-
posed of two functional sub-platforms: the outsourcing software research and 
development platform and the operation management platform.



84  ◾  Cloud Computing and Software Services

 1. Outsourcing software research and development platform: an end-to-end 
software development platform is provided for the outsourcing service com-
panies in the park. In terms of functions, the platform generally covers the 
entire software developing lifecycle including requirement, designing, devel-
oping, and testing of the software. It helps the outsourcing service compa-
nies in establishing a software developing procedure that is effective and 
operable.

 2. Operation management platform: according to the outsourcing service com-
pany’s actual demand in building the research and development platform, 
as well as the practical situation of the software and hardware resource dis-
tribution in the data center, the platform provides automatic provisioning 
services on demand for software and hardware resources. Also, management 
on resources distribution is based on different processes, posts, and roles and 
resource utilization reports will also be provided.

Through the cooperative effect of the two platforms mentioned above, the man-
agement and development platform of cloud computing could fully exert its 
advantage. The construction of outsourcing software research and development 
platform can be customized according to different project needs (e.g., games 
development platform, e-business development platform, etc.), which can show 
the best practices of IBM’s outsourcing software development services. And the 
operation management platform can provide supporting functions such as man-
agement on the prior platform, as well as operation and maintenance, and rapid 
configuration. It is also significant in that it can reduce the workload and costs of 
operation and management. Unlike the handmade software research and develop-
ment platform, it is both time-saving and labor-saving, and it is not that easy to 
make mistakes in it.

4.6.2.2  Outsourcing Software Research 
and Development Platform

The outsourcing software research and development at the enterprise level have to 
put an emphasis on the cooperation and speed of software development. It manages 
to combine software implantation with verification, so as to ensure the high quality 
of the software and shorten the period of development. The program is targeted at 
and suitable for different types of outsourcing research and development companies 
with a demand for code development cooperation and document management. The 
detailed designing of the program varies according to different enterprise needs 
(Figure 4.4).

As can be seen in the chart, the primary construction of the outsourcing 
software research and development platform consists of the construction of four 
sub-platforms:
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 1. Requirement architecture management platform
 2. Quality assurance management platform
 3. Quality assurance management supporting platform
 4. Configuration and changes management platform

The integrated construction and operation of these four sub-platforms covers the 
entire developing lifecycle of the requirements, designing, developing, and testing 
of the software. They are customer-oriented and are featured by high quality and 
good awareness of quality prevention. With the help of these four sub-platforms, 
the outsourcing service companies can manage to establish a software development 
process with high efficiency and operability.

4.6.3  Case Study—An Enterprise with 
Multiple Data Centers

Along with China’s rapid economic growth, the business of one state-owned 
enterprise is also gearing up for fast expansion. Correspondingly, the group has 
an increasingly higher demand for the supporting IT environment. How can the 
group achieve maximum return on its IT investment? For the IT department, on 
one hand is the repetitive and time-consuming work of system operation and man-
agement; while there is an increasingly higher demand from the managers to sup-
port the company’s business, raise its competitive power, and promote business 
transformation. Faced with this problem, this enterprise is now searching for solu-
tions in cloud computing.
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The Enterprise Resources Plan (ERP) plays an important role in supporting 
the entire business in the company. The existing EAR system is not able to apply 
automatic technology. Repeated, manual work accounts for a majority of the sys-
tem maintenance operation, which leads to lower efficiency and higher pressure on 
the IT system maintenance operation. Meanwhile, on the technical level, it lacks 
a technology platform to perform the distribution, deployment, as well as state 
control and recycle of system resources. As a result, the corresponding information 
resources management is performed through traditional manual work, which is in 
contradiction with the entire information strategy of the company. The specifics 
are listed below:

 1. The contradiction between the increasing IT resources and limited human 
resources

 2. The contradiction between automatic technology and traditional manual 
work

 3. The effectiveness and persistence of resources information (including con-
figuration information)

The company has invested a lot in information technology. It has not only con-
structed the ERP system for the management and control of enterprise production, 
but it has also upgraded the platform, updated the host computer, and improved IT 
management in infrastructure. In a word, the SAP system is of great significance in 
the IT system of the Sinochem Group.

The implementation of the cloud computing platform has helped to solve the 
problems faced by the IT department in this company.

4.6.3.1  Overall Design of the Cloud Computing 
Platform in an Enterprise

The cloud computing platform is mainly related to three discrete environments 
of the company’s data centers: the training, development/test, and the disaster 
recovery environment. These systems involved in cloud computing are respectively 
located in data center A, data center B, and the disaster center in data center C. 
It shows the benefits of cloud computing virtualization crossing physical sites (See 
Figure 4.5).

Combined with the technical characteristics of the cloud computing platform 
and the application characteristics of the ERP system in the company, the con-
struction project has provided the following functions:

 1. The installation and deployment of the five production systems of ERP
 2. The automatic deployment of hardware: logical partition and distribution of 

hardware resources
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 3. The installation and recovery of the centralized AIX operating system
 4. The display of system resource usage: CPU/memory/disk usage

4.6.4 Case Study: Cloud Computing Supporting SaaS
By adopting cloud computing solutions, a telco can address the IT challenges 
faced by SMEs. Thanks to the services provided by the Blue Cloud system, VNTT 
has provided the customers with IBM Lotus Foundation and WebSphere Portal 
Express business OA service based on Redhat, CentOS, and Windows platforms. 
Besides, VNTT also provides customers with e-mail services, file sharing, and web 
servers that are always ready for use. For better internal and external communica-
tion, these enterprises need only one portal to rent the portal server based on IBM 
WebSphere Portal (Figure 4.6).

By applying cloud computing as the underlying infrastructure, a telecommu-
nications company can provide its customers with a larger scale of IT services, 
including infrastructure hosting, collaborative platform, applications, process and 
information service; meanwhile, it can also ensure data security, convenience of 
access and the easy management of the environment. In this instance, clouds will 
provide strong technical infrastructure support as well as an effective combination 
with business model innovation.
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Figure 4.5  Coverage of cloud computing in Sinochem Group.
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4.7  Conclusion
With cloud computing as a new way to consume IT services, we can be much more 
flexible and productive in utilizing dynamically allocated resources to create and 
to operate.

Clouds will continue to evolve as the foundation for the future Internet where 
we will be interconnected in a web of content and services.

Monitoring
(Tivoli monitoring)

Provisioning
(Tivoli provisioning

manager)

Execute
Pl

an
Monitor

Servers Network Storage

Physical and virtual resources

Business users IT admins

Self-service portal

Backup
(Tivoli storage manager)

Collaboration
software

An
aly

ze

softwareLotus.

Figure 4.6  SaaS cloud.



89

Chapter 5

Large-Scale Data 
Processing

Huan Liu

Contents
5.1 Introduction ...............................................................................................90
5.2 MapReduce ................................................................................................93

5.2.1 Programming Model ......................................................................93
5.2.2 Implementation Sketch ...................................................................94
5.2.3 Failure Handling ............................................................................95
5.2.4 Optimizations .................................................................................96
5.2.5 Related Work ..................................................................................97

5.3 GridBatch ..................................................................................................97
5.3.1 DFS Extension ................................................................................98
5.3.2 GridBatch Operators ......................................................................99

5.3.2.1 Map Operator .................................................................100
5.3.2.2 Distribute Operator ........................................................100
5.3.2.3 Join Operator ..................................................................101
5.3.2.4 Cartesian Operator .........................................................103
5.3.2.5 Recurse Operator ............................................................103
5.3.2.6 Neighbor Operator .........................................................105
5.3.2.7 Block-Level Operator ......................................................106



90  ◾  Cloud Computing and Software Services

5.1  Introduction
An infrastructure cloud, such as Amazon’s Web Services offerings, is posed to fun-
damentally change the IT infrastructure. It provides infrastructure capacity, such 
as server and storage, on demand from remote locations on the network, fully real-
izing the vision of utility computing. In addition to Amazon’s Web Services, sev-
eral other commercial cloud providers, such as FlexiScale, Rackspace, GoGrid, and 
3Tera, also have similar offerings.

An infrastructure cloud is innovative in several regards. First, it is on demand. 
In the past, IT had to purchase new hardware for a new or upgraded system. It 
not only requires high capital investment up front, but the procurement could 
also take months in an enterprise, significantly slowing down projects. Although 
hosting providers provide capabilities to rent hardware, they typically require an 
up-front contract and long-term commitments. In contrast, anyone with a credit 
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card can sign up for Amazon’s Elastic Computing Cloud (EC2) offerings and start 
provisioning virtual servers right away.

Second, it is pay-per-use. For example, Amazon EC2 meter’s usage on an 
hourly basis, and the users pay $10 per hour for the actual hours used. This is in 
sharp contrast to the traditional hosting model, where the users are billed monthly 
at best.

Third, an infrastructure cloud provides a virtualized container interface that is 
easy to use. In particular, Amazon provides a virtual machine (VM) interface that 
fully emulates an ×86 server. From the customers’ standpoint, they cannot tell the 
difference from a real physical ×86 server. Such a familiar interface not only encour-
ages wide adoption, but also enables easy application migration.

Because of its on-demand and pay-per-use nature, an infrastructure cloud, such 
as Amazon EC2, is ideal for applications with widely varying computation demand. 
Primary examples are large-scale data analysis jobs, such as monthly reporting of 
large data warehouse applications, nightly reconciliation of bank transactions, or 
end-of-day access log analysis. Their computation profile is as shown in Figure 5.1. 
Because of business constraints, these jobs have to finish before a deadline. In the 
past, we typically provisioned dedicated server capacity up front; hence, the server 
capacity would be idle most of the time when the jobs were not run, wasting valu-
able computation resources.

Although these large-scale data analysis jobs could benefit greatly from an 
infrastructure cloud, it is not straightforward to port these applications over. There 
are challenges both in the programming model and in the underlying infrastruc-
ture to analyze the data in the cloud.

From the programming model perspective, parallel programming is both time 
consuming and error prone. The large-scale analytics applications, as well as a 
large class of batch applications have obvious parallelism at the data level. It is 
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Figure 5.1  Computation profile of large-scale data analysis jobs. Large computa-
tion capacity is required for a short period of time. If dedicated computing power 
is provisioned, it will be idle most of the time.
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straightforward to partition the job into many independent parts and process them 
in parallel. However, it is in general not straightforward to implement a parallel 
application for several reasons. First, some forms of communication, coordination, 
and synchronization are required between the machines, but they are not trivial 
to implement correctly. Second, the inherent asynchronous nature of parallel pro-
grams makes it hard for the programmers to reason about the interactions between 
all machines. Compared to sequential programs, there are many more scenarios 
that need to be examined, making it hard to guarantee program correctness in all 
cases. Last, there is still not an effective debugging tool. Because of the complex 
interactions, many bugs are transient in nature, which are hard to reproduce. In 
addition, it is hard to step through some code when there are many threads run-
ning on many machines. The difficulty in implementation translates into higher 
development cost and longer development cycle. Worse yet, the same programming 
effort often has to be repeated for each new project.

From the infrastructure perspective, a cloud presents additional challenges. 
Because of the business model, a cloud is based on commodity hardware in order 
to lower the cost of computing. First, commodity hardware only has limited com-
puting power per machine. For example, Amazon only offers ×86 servers, and the 
largest one is equivalent to a 4 core 2 GHz opteron processor with 16 GB memory. 
Second, commodity hardware is less reliable. Even though a cloud provider’s data 
centers are unlikely to fail because of the various backup mechanisms, individual 
commodity hardware does fail often due to component failures. This is part of the 
reason why Amazon only has a 99.9% SLA on S3 (Simple Storage Service) data 
storage and none yet on the EC2 servers (although it has one on EC2 regions). In 
comparison, a traditional infrastructure employs high-end servers and they rely 
on hardware to achieve both scaling and high reliability. For example, the SUN 
E25K server, a widely used platform in enterprises, has up to 72 processors and 
1 TB memory.

To take advantage of a cloud infrastructure, an application must employs 
horizontal scaling. To overcome the hardware reliability problem, applications 
should be architected to tolerate hardware failures, i.e., treat hardware failures as 
a normal event and recover gracefully instead of treating them as a catastrophe. 
This not only means that data should be replicated, but also means that the appli-
cations should be able to restart computations when the underlying hardware 
fails.

To overcome these challenges, novel programming models, languages, and par-
adigms have emerged in recent years. This chapter describes some key work around 
Google’s MapReduce programming model. We also point out related works in this 
space, give a high-level overview of them, and provide references so that interested 
readers can learn more. A common theme of these works is that they do not attempt 
to help the programmers find parallelism in their applications. Instead, they assume 
that the programmers understand their applications well and are fully aware of the 
parallelization potentials. Further, the programmers have thought through on how 
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to break down the application into smaller tasks and how to partition the data in 
order to achieve the highest performance. But, instead of asking the programmers 
to implement the plan in detail, they provide a high-level construct. Their associ-
ated implementation not only hides the details of parallel programming, but also 
alleviates the programmers from much of the pain, such as implementing the syn-
chronization and communication mechanisms or debugging transient behaviors of 
distributed programs.

5.2  MapReduce
Google is one of the first few companies who encountered an explosion in the 
amount of data. Because they have to index and process billions of web pages, 
they have to find a scalable way to process the data efficiently. The solution is the 
MapReduce [6,7] system. MapReduce is a programming model and an associated 
implementation. Four years after its introduction, more than ten thousand distinct 
MapReduce programs have been implemented at Google, and on an average, one 
hundred thousand MapReduce jobs are executed on Google’s clusters, processing 
more than 20 PB of data every day.

5.2.1 Programming Model
The MapReduce programming model takes a set of key-value pairs as inputs and 
produces a set of key-value pairs as outputs. A MapReduce programmer expresses 
his or her computation as two user-defined functions: map and reduce. The user-
defined map function takes an input key-value pair and produces a set of inter-
mediate key-value pairs. The MapReduce framework groups together all values 
associated with the same intermediate key and passes them to the user-defined 
reduce function. The user-defined reduce function takes an intermediate key and a 
set of values associated with the key, and it merges these values together to form a 
potentially smaller set of values. The user-defined reduce function may just output 
zero or one output value for each key. The intermediate values are supplied to the 
user-defined reduce function through an iterator.

Let us consider a simple example—the word count application—to illustrate 
how MapReduce works. The work count application counts the number of occur-
rences of each word in a large collection of documents. A user would write the user-
defined map function similar to the following.

mapFunc(String key, String value):
 key: document name
 value: document contents
 for each word w in value:
  EmitIntermediate (w, 1);
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A user would write the corresponding user-defined reduce function similar to 
the following.

reduceFunc(String key, Iterator values):
 key: a word
 values: a list of counts
 int result=0;
 for each v in values:
  result += ParseInt(v);
 EmitResult (key, result);

This map function emits each word and an associated count of occurrences 
(i.e., 1). The reduce function simply sums up all counts and then outputs the final 
value.

In a typical implementation, the user-defined map and reduce functions are 
linked with the MapReduce library. To launch a MapReduce job, the users specify 
a set of parameters, such as the input and output files, and tuning parameters, and 
then invoke the MapReduce function.

5.2.2 Implementation Sketch
Besides the Google implementation, there are many other different implementa-
tions of MapReduce. Hadoop [16] is an open-source implementation written in 
Java that is designed for the shared-nothing cluster environment, the kind of envi-
ronment the original Google implementation is designed for. Phoenix [29] is an 
implementation for the shared-memory multicore processor environment.

In this section, we describe the Hadoop implementation, which is based on the 
master/slave architecture. Since the Hadoop is modeled closely after the Google 
implementation, the description below applies equally to the Google implementa-
tion. In Section 5.4, we will describe an alternative implementation, which is based 
on a cloud Operating System (OS). By utilizing a cloud OS, we show that it could 
be implemented in a fully distributed fashion, and it can be faster, more scalable, 
and simpler.

The Hadoop implementation consists of two pieces of related software compo-
nents: the distributed file system (DFS) and the job scheduler.

DFS is closely modeled after the Google File System (GFS) [10]. DFS is respon-
sible for managing files and storing them across all nodes in the system. A large file 
is typically broken down into many smaller chunks, and each chunk may be stored 
on a separate node. Among all nodes in the system, one node serves as the name 
node, and all other nodes serve as data nodes.

The name node holds the name space for the file system. It maintains the map-
ping from a DFS file to the list of chunks, including which data node a chunk 
resides on and the location on the data node. It also responds to queries from DFS 
clients asking to create a new DFS file, as well as allocates new chunks for existing 
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files or returns chunk locations when DFS clients ask to open an existing DFS 
file. A data node holds chunks of a large file. It responds to DFS client requests for 
reading from and writing to the chunks that it is responsible for. A DFS client first 
contacts the name node to obtain a list of chunk locations for a file; then it contacts 
the data nodes directly to read/write the data.

The job scheduling system includes a master node and many slave nodes. The 
slave node is responsible for running a task assigned by the master node. The master 
node is responsible for breaking down a job into many smaller tasks as expressed in 
the user program. It distributes the tasks across all slave nodes in the system, and it 
monitors the tasks to make sure all of them complete successfully.

In general, a slave node is often a data node. Thus, when the master schedules 
a task, it could schedule the task on the node that holds the chunk of data to 
be processed. By processing data on the local node, we save on precious network 
bandwidth.

A MapReduce job consists of a map phase and a reduce phase. The map phase is 
distributed across multiple nodes by automatically partitioning the input data into 
a set of M splits. Each input split is processed by a separate map task. The map tasks 
can be processed in parallel by different machines. The reduce phase his distributed 
by partitioning the intermediate key space into R pieces using a partitioning func-
tion. Each partition is processed by a separate reduce task. The number of parti-
tions, R, and the partitioning function are specified by the user.

The master node is responsible for coordinating the job. It assigns map tasks and 
reduce tasks to the slave nodes. A map task reads the contents of the corresponding 
input split. It parses key-value pairs out of the input data and passes each pair to the 
user-defined map function. The intermediate key-value pairs produced by the map 
function are first buffered in memory, and then periodically written to local files on 
the local disk, partitioned into R regions by the partition function. The locations of 
these files are passed to the master, who will in turn inform the reduce tasks.

When a reduce task starts, it copies the map tasks’ buffered data to the local 
disk. It sorts the data by the intermediate keys so that all occurrences of the same 
key are grouped together. The reduce task iterates over the sorted intermediate 
data, and for each unique intermediate key encountered, it passes the key and the 
corresponding set of values to the user-defined reduce function. The final key-
value outputs produced by the reduce functions are then appended to the final 
output file.

5.2.3 Failure Handling
One of the contributions of MapReduce is its ability to handle failure automati-
cally, alleviating the users from having to handle it themselves.

The master pings the workers periodically. If no response is received from a 
worker for a certain time, the master marks the worker as failed. Any map tasks 
either completed by or being processed by the failed node are rescheduled to 
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other slave nodes. Completed map tasks are re-executed because their outputs are 
still stored on the failed node. However, completed reduce tasks do not need to 
be re-executed because their outputs are stored in the DFS.

MapReduce relies on re-execution as the primary mechanism to handle fail-
ure. When the user-defined map and reduce functions are deterministic func-
tions of their inputs, the re-execution would produce the same output as would 
have been produced by a sequential execution of the entire program. When the 
map or the reduce function is nondeterministic, MapReduce provides weaker 
semantics and the programmer has to handle the potential inconsistency in the 
application.

MapReduce relies on atomic commits for the map and reduce tasks to guaran-
tee that failures are handled properly. The map task sends a message to the master 
node with the locations of the R temporary files when it completes. This message 
serves as the atomic commit mechanism. The reduce task writes outputs to a tem-
porary file first, and then relies on the atomic rename capability provided by DFS 
as the commit mechanism.

5.2.4 Optimizations
A MapReduce implementation employs several optimizations to make the system 
robust.

One optimization is to conserve network bandwidth usage through locality 
optimization. Locality optimization takes advantage of the fact that DFS stores 
the input data on the local disks of the machines in the cluster. DFS breaks up 
each file into 64 MB chunks and stores several copies of each chunk on different 
nodes. The master takes the input files locality information into account when it 
schedules the tasks on the different nodes, and it tries to place tasks on the nodes 
that hold one replica of the input data.

Another optimization is running backup tasks. One of the common problems 
is that a straggler takes a significantly longer time, thus slowing down the overall 
process. Stragglers could arise for a variety of reasons, e.g., a machine may have a 
bad disk, or other jobs on the same machine may be taking up a significant amount 
of CPU cycle. To combat this problem, the master may speculatively schedule a 
task to run on a different node, and takes the result if either the primary or the 
backup finishes. The MapReduce paper [6] shows that a 44% reduction in the com-
putation time is possible with speculation. Recent improvements in the scheduling 
algorithm [34] can cut down the processing time further.

Combiner is another optimization that can reduce the amount of data trans-
ferred between map and reduce. Some applications have a significant repetition in 
the intermediate keys produced by each map task, and the user-defined function 
is commutative and associative. For example, the word count application would 
produce a lot of “the, 1” key-value pairs, since the key “the” appears frequently in 
English documents. All these key-value pairs have to be transferred to the reduce 
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task, where it is combined into a single number. A combiner can perform a partial 
merging on the map node before the data is sent. Typically, the combiner function 
is the same as the reduce function. The only difference is in how the MapReduce 
framework handles the output of the function.

5.2.5 Related Work
MapReduce is only one of the many new programming models that have emerged 
in recent years.

Dryad [18] is another programming model, which is developed by Microsoft 
Research. Dryad takes a much more generic approach, where it models a compu-
tation as a set of vertices and a Direct Acyclic Graph (DAG), which describes the 
communications among the vertices. Each vertex is a separate program that runs 
on a single computing node. However, different vertices may run on different 
computing nodes, and communications between them could go through TCP. 
Dryad could be used as a building block to build other programming models. 
For example, MapReduce is just a special case that can be easily expressed in 
Dryad.

MapReduce-Merge [4] is another programming model, which extends 
MapReduce with a third stage of merging, which could merge results from two 
different MapReduce jobs.

5.3  GridBatch
GridBatch [21,22] is a system we developed at Accenture Technology Labs. It 
extends the MapReduce programming model and allows programmers to easily 
convert a high-level design into the actual parallel implementation. The design 
goal is not to help the programmers find parallelism in their applications. Instead, 
we assume that the programmers understand their applications well and are fully 
aware of their parallelization potentials. Further, the programmers have thought 
through on how to break down the application into smaller tasks and how to 
partition the data in order to achieve the highest performance. But, instead of 
asking the programmers to implement the plan in detail, we provide a library of 
commonly used “operators” (a primitive for data set manipulation) as the build-
ing blocks. All the complexity associated with parallel programming is hidden 
within the library, and the programmers only need to think about how to apply 
the operators in sequence to correctly implement the application. GridBatch is 
specifically targeted at analytics applications, whose unique characteristics require 
special operators. Analytics applications are often interested in collecting statistics 
from the large data set, such as how often a particular event happens. They often 
involve correlating data from two or more different data sets (i.e., table joins in 
database terms).
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5.3.1 DFS Extension
To facilitate locality optimization for the various operators, we introduce new DFS 
capabilities.

There are two fundamental data types in GridBatch: a table and an indexed 
table (borrowed from database terminology). A table contains a set of records (rows) 
that are independent of each other. All records in a table follow the same schema, 
and each record may contain several fields (columns). An indexed table is similar to 
a table except that each record also has an associated index, where the index could 
simply be one of the fields or other data provided by the user.

A table is analogous to the vector concept in a vector or SIMD (Single Instruction 
Multiple Data) machine or the stream concept in stream processors [19] in Computer 
Architecture. A table (or a vector/stream) implies that all records within it are inde-
pendent of each other, and hence, they can be processed in parallel. A vector/stream 
allows a computer architect to design specialized hardware that takes one instruction, 
but applies it to all records in a vector/stream. Similarly, a table allows us to design 
a software system that can process the records in parallel across many machines in 
the cloud.

For an indexed table, we introduce another type of files: fixed-num-of-chunk 
files, where each file has a fixed number of chunks (denoted as C, defined by the 
user) and each chunk could have an arbitrarily large size. When a DFS client asks 
for a new file to be created, the name node allocates all C chunks at the same time 
and returns them all to the DFS client. Although the user can choose C to be any 
value, we recommend a C should be chosen such that the expected chunk size 
(expected file size divided by C) is small enough for efficient processing, e.g., less 
than 64 MB each.

Each fixed-num-of-chunk file has an associated partition function, which 
defines how data should be partitioned across chunks. The DFS client submits the 
user-defined partition function (along with the parameter C) when it creates the 
file, which is then stored by the name node. When another DFS client asks to open 
the file later, the partition function is returned to the DFS client, along with the 
chunk locations.

When a new data record needs to be written, the DFS client calls the partition 
function to determine the chunk number(s); then it appends the record to the end 
of the chunk(s).

The user-defined partition function takes the form

int [] partitionFunc(Index x)

where x is the index for the record to be written. The partition function applies a 
hash function to convert the index into one or more integers in the range of 1 to C, 
which indicates which particular chunk(s) the record should be stored at. In most 
cases, one integer is returned. However, if the user desires to make the data locally 
available to more nodes, the partitionFunc could return an array of integers. For 
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example, the user may desire to have a local copy of the data on all C chunks; then 
the user can design the partition function to return a list of all integers from 1 to C.

Typically, C is set to be much larger than N, the number of machines in the 
system. The mapping from C to N is fixed (i.e., data corresponding to a particular 
chunk number for all indexed tables are on the same machine), and it is prescribed 
by a system-level lookup table, which is maintained at the name node. Such trans-
lation is necessary in order to support dynamic change of the cluster size. When 
old machines leave (possibly because of failures) and when new machines join, 
GridBatch can automatically rebalance the storage and workload.

We introduce the fixed-num-of-chunk file type because analytics applications 
that we are targeting are different from web applications. Web applications (word 
count, reverse web link, etc.) have a large amount of unstructured data, which 
work well with fixed-chunk-size files. In contrast, large analytics applications, such 
as data warehousing, have a large amount of structured data. For efficient process-
ing, data partitioning is commonly used to segment data into smaller pieces (e.g., 
database partitioning in any modern database systems). If fixed-chunk-size files are 
used for analytics applications, constant data shuffling is required whenever a new 
analytics application starts.

Similar to GFS, all data chunks are replicated several times across the nodes in 
the system. When a machine fails, no data is lost and the system will adjust itself to 
rebalance the storage and workload. In GFS, the backup chunk is stored on a ran-
domly chosen node, and the same backup chunk for the same chunk (e.g., the first 
backup chunk for chunk 1) for two different files could be stored on two different 
nodes. For fixed-chunk-size files, we maintain the same backup scheme. However, 
for fixed-num-of-chunk files, we fix the mapping from backup chunks to nodes, 
e.g., the first backup chunks for chunk i for two different files are always stored on 
the same node. When a node fails, we can simply change the system-wide mapping 
table so that chunk i is pointing to the backup node and locality will be preserved.

5.3.2 GridBatch Operators
GridBatch does not attempt to help a programmer reason the best approach to pro-
gram an application. Instead, it aims to provide a set of commonly used primitives, 
called operators, which the programmer can use to save on programming effort. 
The operators handle the details of distributing the work to multiple machines; 
hence, the user should not need to worry about parallel programming. Instead, the 
user just needs to apply a set of operators sequentially, just as if writing a traditional 
sequential program.

GridBatch extends the capabilities of Google’s MapReduce system. MapReduce 
could be considered as two separate operators: Map and Reduce. The Map operator 
is applied to all records in a file independent of each other; hence, it can be easily 
parallelized. The operator produces a set of key-value pairs to be used in the Reduce 
operator. The Reduce operator takes all values associated with a particular key and 
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applies a user-defined reduce function. Since all values associated with a particular 
key have to be moved to a single location where the Reduce operator is applied, the 
Reduce operator is inherently sequential.

GridBatch breaks down MapReduce into elementary operators, and, in addi-
tion, introduces additional operators. GridBatch currently consists of the following 
operators: Map, Distribute, Recurse, Join, Cartesian, and Neighbor.

5.3.2.1 Map Operator

The Map operator applies a user-defined function over all records of a table. A 
sample pseudo-code for the user-defined function is as follows:

mapFunc(Record x):
 // Apply necessary processing on Record
 // x to generate Record y
 ......
 EmitResult (Table Y, record y)

Record x is one of the records in Table X to which the Map operator is applied. 
Within the user-defined map function, the user can do any custom processing 
over record x. At the end, the user-defined function could generate one or more 
records for one or more tables. In the example, we generated one new record y for 
Table Y.

The user would invoke the Map operator as follows:

Map(Table X, Func mapFunc)

The first argument specifies to which table this Map operator is applied, and the 
second argument specifies the user-defined function.

Many applications need to process records independently. Using MapReduce, 
even with an identity reduce function, one would incur unnecessary sorting 
between the map and the reduce stage. Instead, one can use the Map operator to 
process these records in parallel.

5.3.2.2 Distribute Operator

The Distribute operator converts a table or an indexed table to another indexed 
table with a different index. The resulting indexed table is stored as a single fixed-
num-of-chunk DFS file. This involves shuffling data from whichever chunk the 
data was on previously to a new chunk as indicated by the partition function for 
the new index.

The user invokes the Distribute operator as follows:

Table Y = Distribute(Table X, Field i, Func newPartitionFunc)
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Y is the resulting table after applying the Distribute operator on X. i indicates 
which field of Table X should be used as the new index. newPartitionFunc is the 
new partition function for the newly generated table. It takes the following form:

int [] newPartitionFunc(Index x)

The function newPartitionFunc returns one or more integers to indicate which 
chunk(s) one record should be written to. If more than one integer is returned, the 
same record will be duplicated over all indicated chunks.

When the Distribute operator is invoked, the master node spawns C separate 
slave tasks on the slave nodes, one for each chunk. We refer to the task responsible 
for the ith chunk, “task i.” For efficient local processing, task i is spawned on the 
same node that holds chunk i of Table X. The slave tasks run parallel to each other. 
Each slave task generates C output files locally, one for each chunk of Table Y. Task 
i goes through each record in chunk i of Table X, and for each record, it applies the 
newPartitionFunc to determine the chunk number j (or a list of chunk numbers) 
for Table Y, to which the record will be distributed. It then writes the record to the 
output corresponding to chunk j (or to outputs corresponding to the list of chunks).

When a slave task completes, it notifies the master node about the task comple-
tion and the location of the C local output files. When the master node notes that 
all slave tasks have been completed, it will spawn another set of tasks, one for each 
chunk, again on the nodes that will hold the corresponding chunk for Table Y. 
Again, each slave task runs in parallel. Task j receives a list of file locations (includ-
ing the host name), one for each slave task in step 2 indicating the location of Task 
i’s output for chunk j of Table Y. Task j remote copies all files to the local node and 
merges them into chunk j for Table Y. The Distribute operator finishes when the 
master node is notified that all slave tasks have finished.

The actions performed by Map and Distribute operators are similar to part of 
the actions performed by MapReduce. We extract them out as separate operators 
because we feel they are fundamental operations that are needed by many applica-
tions. Extracting them out as separate operators gives the users greater flexibility 
when they implement their applications through operator compositions.

Both the fixed-num-of-chunk file and the Distribute operator give users direct 
control on how data is placed on the nodes. This capability allows users to optimize 
local processing, thus saving precious network bandwidth. This is especially impor-
tant in a cloud or a grid consisting of geographically distributed servers across Wide 
Area Networks (WANs), where the network bandwidth is much smaller than that 
in a traditional enterprise infrastructure.

5.3.2.3 Join Operator

The Join operator takes two indexed tables and merges the corresponding records if 
the index fields match. The GridBatch system finds the corresponding records that 
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have a matching index, and then invokes a custom function defined by the user. 
The user-defined function can simply merge the two records, like in a traditional 
database join, or it can perform any special action as it desires.

The users invoke the Join operator as follows:

Join(Table X, Table Y, Func joinFunc)

where
X and Y are the two input indexed tables
joinFunc is the custom function provided by the user

A sample pseudo-code for one implementation of the joinFunc is as follows:

joinFunc(Record x, Record y)
 // Apply necessary processing on Record
 // x and y to generate Record z
 ......
 EmitResult(Table Z, record z)

where x and y are a record of Tables X and Y, respectively. When joinFunc is 
invoked, it is guaranteed that the indices for record x and y match. joinFunc could 
emit zero or more records for zero or more tables. The example shown only emits 
one record for one table.

Before the Join operator is called, it is the user’s responsibility to make sure 
that Tables X and Y are partitioned already using the same partition function (e.g., 
by using the Distribute operator) on the index field that the join is based on. The 
Join operator simply performs the join locally without worrying about fetching 
data from other chunks. This is consistent with our philosophy that the user is 
the most knowledgeable about how to distribute data in order to achieve the best 
performance.

When the Join operator is invoked, the master node spawns C tasks, one for each 
chunk, on the slave node holding the corresponding chunks for Table X and Y. Task 
i first sorts chunk i of Tables X and Y individually in increasing order of their indices. 
Then, task i walks through Tables X and Y with the help of two pointers. Initially, 
one points at the beginning of X and the other points at the beginning of Y. Let i(x) 
and i(y) denote the index value of the records pointed to by the pointers for Tables 
X and Y, respectively. If i(x) = i(y), joinFunc is invoked with x and y as parameters. 
Otherwise, if i(x) < i(y), advance the pointer for Table X, and if i(x) > i(y), advance the 
pointer for Table Y. This process continues until all records are scanned. The Join 
operator finishes when the master node is notified that all slave tasks have finished.

In our client application of finding items generated by a set of sources, we first 
apply the Distribute operator on the barcode table based on the source field, and 
then simply perform a Join operator between the resulting barcode table and the 
table holding the list of sources.
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5.3.2.4 Cartesian Operator

Unlike the Join operator, which only matches records when their index fields 
match, the Cartesian operator will match every record of Table X with every record 
of Table Y, and apply a user-defined function.

In our client’s business-rule-checking application, all barcode records are stored 
as one table and all business rules are stored as another table. The client wants 
to check all records against all rules to make sure there is no business rule viola-
tion. This can be accomplished by simply calling the Cartesian operator. The user-
defined function only needs to check if a record violates a particular rule, and the 
GridBatch system takes care of the dirty plumbing work of matching correspond-
ing records from the two tables.

A Cartesian operator can be used to implement a join. The Join operator only 
works when both tables are indexed and when we desire an exact match on the 
index field. When a non-exact match is desired, we have to check every record x 
against every record y. The user-defined function can then determine whether x and 
y should be joined together.

The users invoke the Cartesian operator as follows:

Cartesian(Table X, Table Y, Func cartesianFunc)

where X and Y are the two input tables, and cartesianFunc is the custom function 
provided by the user.

A sample pseudo-code for one implementation of cartesianFunc is as follows:

cartesianFunc(Record x, Record y)
 // Apply necessary processing on Record
 // x and y to generate Record z
 ......
 EmitResult(Table Z, record z)

where x and y are records of Tables X and Y, respectively. cartesianFunc could emit 
zero or more records for zero or more tables. The example shown only emits one 
record for one table.

Like the Join operator, it is the user’s responsibility to first distribute the data. 
The Cartesian operator simply performs the operation locally without worrying 
about fetching data from other chunks. The user should duplicate one of the tables 
over all chunks (e.g., using the Distribute operator) to guarantee that every record 
x is matched against every record y.

The implementation of the Cartesian operator is similar to that of the Join 
operator. The only difference is that no matching of indices is needed.

5.3.2.5 Recurse Operator

The Reduce part of MapReduce is inherently not parallelizable. But, if there are 
many reduce operations, an application can still benefit from parallelization by 



104  ◾  Cloud Computing and Software Services

spreading the reduce operations across many nodes. For web applications, it is gen-
erally true that there are many reduce operations (e.g., word count). However, this 
is not necessarily true for analytics applications, where the users are only using a 
few reduce operations. For example, the user may just want to sort the output for 
reporting or collect a few statistics. In this case, the Reduce operator becomes a 
bottleneck, limiting the scalability of the application.

Many reduce operations are commutative and associative, and hence, order 
independent. For example, counting the number of occurrences of an event involves 
addition, which is commutative and associative. The order of how addition happens 
does not affect the end result. Similarly, sorting is order independent.

For these order-independent reduce operations, we introduce the Recurse oper-
ator. Users invoke Recurse as follows:

Recurse(Table X, Func recurseFunc)

where X is the input table, and recurseFunc is the custom function provided by the 
user. The Recurse operator merges the table into a single record.

A sample pseudo-code for one implementation of recurseFunc is as follows. For 
conciseness, this example shows the addition operation, but it is equally easy to 
implement the merge sort algorithm:

Record recurseFunc(Record x1, Record x2)
 // Apply processing on x1 and x2
 return x = x1 + x2

where x1 and x2 are partial results from merging two subparts of Table X. recurse-
Func specifies how to merge the two partial results further, and GridBatch applies 
the function recursively over all records of Table X to eventually produce the overall 
sum.

Compared to the reduce operation in MapReduce, the recurse operation is more 
efficient because it can parallelize the reduce operation over many nodes. In addi-
tion, the recurse operation can minimize network traffic by merging results from 
close-by nodes. Since bandwidth is only consumed on local network segments, 
bandwidth on other links is preserved for other tasks. Network bandwidth con-
sumption can be cut down further if only partial results are desired. For example, 
if we are only interested in the top 10 records, each node would only compute the 
local top 10, and send them to the neighboring node, who in turn will merge them 
with the local result to produce the top 10. Since only 10 records are passed from 
node to node, the traffic is much smaller than that used by MapReduce, which 
would require every node sending every record to a single node where the reduce 
operation is carried out.

When the Recurse operator is invoked, the master node spawns many tasks, 
one for each chunk, and it is spawned on the slave node that holds that chunk 
for Table X. Task i first merges all records in chunk i using recurseFunc. First, it 
takes the first two records x1 and x2, and applies recurseFunc. The result is saved in 
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record s. Task i then takes the third record, x3, and applies recurseFunc on s and x3. 
This process continues for all the remaining records.

We now need to merge the results from each chunk together. Half of the tasks 
will send their results s to another task in the other half, where s is merged with 
the local result. At the end, only half of the tasks have partial results. This process 
repeats, i.e., one quarter of the tasks will send their partial results to another task 
in the other quarter tasks, where results are merged. The process ends when the 
final result is derived. The master node is responsible for coordinating the merging 
sequence (who sends results to who else), and it will take the network topology into 
account so that, most of the time, a task only sends its result to a nearby task.

5.3.2.6 Neighbor Operator

Unlike database tables, tables in GridBatch could have an implicit order semantic. 
For example, the barcode table in our client application preserves the scanning 
order. Some analytics functions, such as our client’s interlacing detection problem, 
need to analyze the sequence to derive meaningful results.

The Neighbor operator groups neighboring records and invokes a user-defined 
function to analyze the subsequence. The users invoke the Neighbor operator as 
follows:

Neighbor(int k, Table X, Func neighborFunc)

where
k is a small constant that indicates how many neighboring records to group 

together
X is the input table
neighborFunc is the custom function provided by the user

neighborFunc takes k records as arguments. The k arguments follow the order 
in the table, i.e., the record in argument j immediately follows the record in argu-
ment j − 1 in the table. A sample neighborFunc pseudo-code for our client’s inter-
lacing detection is as follows:

neighborFunc(Record x1, Record x2)
 // report discontinuity
 if ( x1.containerID ≠ x2. containerID )
  EmitResult(Table Z, record x1)

where x1 and x2 are neighboring records of Table X.
This function adds the first record to a new Table Z if the two records belong 

to different containers. To detect whether there is any interlacing, it is sufficient to 
count the number of occurrences of each container ID in Table Z. If any container 
appears more than once in Table Z, then some items from that container have been 
misplaced (note that the container ID is globally unique). Counting the number of 
appearances can be accomplished by the Recurse operator.
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Interlacing detection using SQL is very hard to do, since databases do not pre-
serve the sequence semantic. Furthermore, it is not possible to perform interlacing 
detection with MapReduce either for the same reason. Until now, the only alter-
native is to write a sequential program to scan the whole barcode table and detect 
any discontinuity. However, this naive solution is very time consuming, since the 
barcode table is many terabytes long. By using the Neighbor and Recurse operators, 
we implemented the same logic with only a few lines of code, and yet we were able 
to achieve very high performance. This demonstrates the power and capabilities of 
the GridBatch system.

5.3.2.7 Block-Level Operator

In addition to exploiting parallelism at the record level (Map operator) and at the 
neighbor level (Neighbor operator), the BLO operator allows us to exploit parallel-
ism at the chunk level. As an example, we will show how it can be used efficiently 
to compute medians from a large data set.

The BLO operator applies a user-defined function on a chunk at a time, where 
a chunk is a set of records, which are stored logically and physically in the same 
location in the cluster.

The users invoke the BLO operator as follows:

BLO(Table X, Func bloFunc)

where X is the input table, and bloFunc is the custom function provided by the user.
bloFunc takes an iterator of records as an argument. When iterating through 

the iterator, the records are returned in the same order as when they were written 
to the chunk. A sample bloFunc pseudocode for counting the number of records in 
a chunk is as follows:

bloFunc(Iterator records)
 int count=0;
 for each record x in records
  count ++
 EmitResult(Table Z, count)

This user-defined function counts the number of records in the input iterator, 
and at the end, it adds the count value to a new Table Z. At the end of this BLO, 
each chunk will produce a count value. To get the overall count, a MapReduce or a 
Recurse operator has to be applied to sum up all values in Table Z.

Figure 5.2 shows a comparison between the Map, Neighbor, and BLO opera-
tors. The Map operator is designed to exploit parallelism among independent 
records. The user-defined map function is applied to all records at the same time. 
The Neighbor operator is designed to exploit parallelism among subsequences when 
analyzing a sequence of records. The user-defined Neighbor function is applied to 
all subsequences at the same time. The BLO operator implements another pattern 
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of parallel processing. The user-defined BLO function is applied to all chunks at the 
same time; however, the processing within the chunk could be sequential.

The BLO operator works in conjunction with the FC files, where all data 
that have to be processed sequentially are arranged in the same chunk already. A 
chunk is guaranteed to be stored physically on the same node, and hence, it can 
be efficiently processed locally without consuming network bandwidth. There are 
a couple of ways to shuffle data into the correct chunks. When data are written 
into DFS, the user could choose to write to an FC file with a user-defined partition 
function. The user-defined partition function makes sure that the correct data are 
loaded to the correct chunks. Alternatively, if the data are already stored in an FS 
file, the user could invoke the Distribute operator. Again, the user would supply a 
partition function, which makes sure that data are loaded correctly.

The BLO operator can be considered as the Reduce portion of the MapReduce 
operator, except that it is a stand-alone operator and involves no sorting and group-
ing by key. It is implemented as a child class of the Task class, the base class for both 
the MapTask and ReduceTask classes in the Hadoop implementation. We inherit 
from Task instead of ReduceTask because BLO does not need the data shuffling 
and sorting operations in the ReduceTask class.

Similar to the Join operator, the functionality of the BLO operator could be 
implemented with MapReduce. However, as we will see in our application of com-
puting medians, using MapReduce would be very inefficient, since it would have to 
invoke the identity mapper, shuffle all data around, and sort the data unnecessarily. 
This is especially bad when multiple passes of MapReduce are involved, where the 
work done in one MapReduce pass would have to be repeated in the next pass, since 
there is no mechanism to save the intermediate data in the MapReduce framework.

5.3.3 Sample Application: Computing Median
To illustrate MapReduce and GridBatch in a real application scenario, we consider 
a real enterprise application—a data warehouse application for a large financial 

User-defined map function

User-defined neighbor function

Legend:
A record
User-defined
function applied
over records

User-defined BLO function

(a)

(b)

(c)

Figure 5.2  Comparison between (a) Map, (b) Neighbor, and (c) BLO operators.
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services firm. The company has tens of millions of customers, and they are inter-
ested in collecting and reporting high-level statistics, such as average and median, 
about their customers’ account balances. They want to collect these statistics across 
many different dimensions of their customer base. For example, across age groups, 
what is the balance for 20–30 years old, 30–40 years old, etc.; or across industries, 
what is the balance for customers in retail or hightech industries. They are also 
interested in a combination of many dimensions, such as across age groups within 
different industries or across job tenure length within different geographies.

We use the term “segmentation” to refer to a particular combination of the 
dimensions. For example, computing medians across age group is one segmenta-
tion and computing medians across both age group and industry is another seg-
mentation. We use the term “bracket” to refer to a range within a segmentation. 
For example, users that are 20–30 years old and are in the retail industry form one 
bracket. We need to compute one median for each bracket, and many medians 
for each segmentation, where each median corresponds to one bracket within the 
segmentation. We denote the number of dimensions by D and the number of seg-
mentations by S. In the worst case, S could be as large as D!

The input to the problem is a large fact table with tens of millions of rows. 
Each row holds all relevant information specific to a customer including the cus-
tomer’s account balance, birthday, industry, geography, job tenure length, educa-
tion, etc.

Computing the average is relatively easy because one can simply sum up the 
total and divide it by the count, where both the total and the count are easy to 
compute in parallel with MapReduce. However, computing a median is quite awk-
ward with MapReduce, because it requires sequential processing. A straightforward 
implementation would first sort all data and then find the middle point. Both steps 
are sequential in nature, and hence, they take a long time to complete for a large 
data set. The problem gets worse in our case when there are a large number of 
median computations.

We present two efficient approaches, one using MapReduce, and the other 
using the BLO operator of GridBatch, to compare the two systems. In the follow-
ing, we first describe the traditional approach to compute the median and point out 
the deficiencies, and then we describe our approaches using MapReduce and BLO. 
As we will see, the new programming models, such as MapReduce and GridBatch, 
can solve these problems much more efficiently.

5.3.3.1 Traditional Enterprise Approach

The most common solution in enterprises today for large-scale data warehousing 
applications is to use a database. Once the fact table is loaded into the database, 
one can simply write SQL queries to compute the 50 percentile value, or call the 
median function directly if available from the SQL platform.
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When computing medians for a segmentation, it is more efficient to write one 
SQL query to compute medians for all brackets within the segmentation. This can 
be achieved by a combination of the group by and case clauses. An example for the 
age group segmentation is as follows:

select
 age_group,
median(balance)
from
(select
 balance,
 age_group=(case 20 < age <30: 0
          case 31 < age < 40: 1
         ...)
from account)
group by age_group

The inner select statement builds an intermediary table from the original 
account table. It has a balance column directly from the account table and 
an intermediary age _ group column derived from the age column. All records in 
the same bracket have the same value in the age _ group column. For example, all 
records whose age is between 20 and 30 have 0 in the age _ group column. Once 
the intermediary table is built, the outer select statement uses the group by 
clause to group all records in a bracket together and then computes the median value.

This approach suffers from several problems. First, the case statement is lengthy 
and hard to maintain, especially when multiple dimensions are involved. Second, 
a separate SQL query has to be written for each segmentation, which could be an 
exponential function of D, the number of dimensions. Third, each SQL query has 
to scan the complete data set twice, once to build the intermediary table and once 
to compute the medians. Since there are S (the number of segmentations) SQL 
queries, this approach would scan the data set 2S times.

An alternative approach is to use an ETL (Extract, Transform, Load) tool to 
add the intermediary columns (e.g., age _ group) first. The ETL tool reads from 
the fact table one record at a time, applies the necessary logic to build the interme-
diary column, then writes the result back into a staging table. Because of the higher 
expressibility of ETL, the column building logic is simpler to write and maintain. 
Further, this approach cuts down the number of passes needed to build the inter-
mediary columns from S to D. However, each SQL query still has to scan the data 
set separately once to compute the medians. Since there are S SQL queries, we have 
to scan the data set S + D times.

For a large data set, it is crucial to minimize the number of passes as reading and 
writing consume most of the time. This is especially important in the traditional 
enterprise architecture, since all data are stored in a network attached storage and 
each pass has to consume the limited network bandwidth.
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5.3.3.2 Algorithm for Finding Medians

In this and the next two sections, we show our approach on how to process the 
data distributedly in two passes using either MapReduce or the BLO of GridBatch.

Our approach partitions the data set based on the account balance to facili-
tate parallel processing. Partitions are determined by a set of split-points, where all 
records whose balance falls in between two neighboring split-points are grouped 
into the same chunk. The split-points are picked to ensure that the chunk sizes are 
roughly evenly distributed to maximize parallelism. If the account balance distri-
bution is known, the split-points can be easily determined; otherwise, a prepro-
cessing MapReduce job could be run to collect a sample distribution of account 
balances (sorting using MapReduce used the same sampling approach to determine 
distribution [6]).

The split-points should also be picked to ensure that each chunk is small enough 
to fit into the memory. The BLO operator and the reducer in MapReduce supply 
the input data as an iterator to the user-defined function so that they can deal with 
smaller memory by storing large data on disk. However, if the user-defined reduce 
or BLO function needs to access all data, e.g., during a sort, it is highly desirable to 
store them all in memory in order to avoid the complexity in the user code to swap 
data to disk. Having the chunk size small enough will ensure that the reduce or the 
BLO user-defined function could simply cache all data in memory.

For simplicity of description, we first explain how to compute a single median, 
the overall median, and then we generalize to multiple medians. We describe the 
algorithm in terms of the general approach, and in Sections 5.3.3.3 and 5.3.3.4, 
we describe in more detail how to implement it using MapReduce and BLO. The 
algorithm has three main steps as follows.

 ◾ Step 1: We partition the records into chunks such that all records whose bal-
ance falls between two split-points are in the same chunk. We then iterate 
through all data in a chunk to count the number of records in the chunk.

 ◾ Step 2: The counts for all chunks are aggregated. Since we can easily deter-
mine the total by summing up all counts, we know the rank of the median. 
Since we also know the split-points and the chunk corresponding to two 
neighboring split-points, we know which chunk the median is in and its rank 
within that chunk. Let us assume it is chunk p and rank r.

 ◾ Step 3: We sort all data in chunk p and then find the rth number, which will 
be the median.

The above algorithm is for finding one median in a large distributed data set; 
however, it is easy to extend the algorithm to find many medians, one for each 
bracket of each segmentation. We keep track of one counter for each bracket. In 
steps 1 and 3, the counter for a bracket is only incremented if the record belongs to 
the bracket. Note that we still scan through the data only once in both step 1 and 
step 3, and we also only sort the data once in step 3.
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5.3.3.3 MapReduce Approach

In MapReduce, the data set is stored in an FS file and it is not partitioned. Hence, 
in step 1, we have to count the individual records in the Map and aggregate the 
count in the reduce phase.

The user-defined map function takes one record as the input, and emits one 
key-value pair for each bracket to which the record belongs to, where the key is a 
concatenation of the bracket name and the chunk number and the value is 1. The 
bracket name uniquely identifies the segmentation and value range, and the chunk 
number is specified by the partition function, which maps from the account 
balance into the chunk number based on the set of split-points. For example, the 
key “Age20-30IndustryRetail_5” refers to the age and industry segmentation, 
which includes all records that are in age range 20–30 and in the retail industry, 
and specifies that the balance in the record falls in chunk 5.

mapFunc(Key=null, Value=Record x):
 for ( each bracket b )
  if ( x in b )
   p = partition(x.balance)
   EmitResult(b;p, 1)

The user-defined combine and reduce functions simply sum up all 1’s associated 
with one key. At the end, they emit one key-value pair, where the key is b;p, and the 
value is cb,p—the total count for bracket b and chunk p.

In step 2, another MapReduce is used to determine the chunk and rank where 
the median resides. The map function simply aggregates all counts, cb,p, for a 
bracket, b, into the same reduce function. It returns the bracket name as the key, 
and encodes both the chunk and the count as the value.

mapFunc(Key=b;p, Value=cb,p):
 EmitResult(b, p;cb,p)

The reduce function receives a list of chunk and count pairs for a particular 
bracket b. Based on the ordering of the chunks, it computes the chunk pb where the 
median is and its rank rb within chunk pb.

reduceFunc(Key=b, Value=list of p;cb,p):
 Compute pb and rb
 EmitResult(b, pb;rb)

In step 3, we use the pb and rb numbers returned to find the actual median 
value. It involves sorting records in chunk pb based on their balance, and then 
returning the rbth number in the chunk. The map function returns the record as 
its value and the chunk it is in as the key, so that all records in the same chunk are 
aggregated for the same reduce function.
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mapFunc(Key=null, Value=Record x):
 p = partition(x.balance)
 EmitResult(p, x)

The reduce function first sorts all records based on the account balance; then 
for each bracket b, if the current chunk is pb, it finds the rbth number. Note that we 
could have sorted only records associated with a bracket. However, there could be 
multiple brackets in the same chunk, so it is more efficient to sort only once.

reduceFunc(Key=p, Value=list of Records X):
 sort X based on x.balance
 for each bracket b
  if ( p == pb )
   find rbth record in bracket b
   EmitResult(b, rbth record’s balance)

Note that the reduce function reads directly from the output file from step 2, 
which contains a list of pb;rb value pairs.

5.3.3.4 GridBatch Approach

The GridBatch approach leverages a combination of the BLO operator and the FC 
files. The data are first stored as FC files to facilitate local processing in the follow-
ing steps. This can be achieved in two ways: either upload the data to DFS directly 
as an FC file or, if the data are already stored as an FS file, use the Distribute opera-
tor to partition the data. In either case, we simply supply the same partition 
function either to the DFS or to the Distribute operator. Once the data are stored 
as an FC file, we can proceed to process the same three steps. However, both step 1 
and step 3 not only become simpler but are also able to run more efficiently.

In step 1, the BLO user-defined function simply counts how many records are 
in each bracket for the current chunk. It first computes which chunk p the records 
are in. Since we know all records are in the same chunk, this computation only 
needs to take place once.

bloFunc(list of records X):
 p=partition(X)
 for each x in X
  for each bracket b
   if (x in b)
    cb,p ++
 for each bracket b
  EmitResult(b;p, cb,p)

Step 2 is exactly the same as that in the MapReduce approach; hence, we omit 
the description. In step 3, we invoke another BLO operator to find the actual 
median value.
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bloFunc(list of records X):
 p = partition(X)
 sort X based on x.balance
 for each bracket b
  if ( p == pb )
   find rbth record in bracket b
   EmitResult(b, rbth record’s balance)

Again, we first compute the current chunk number p, which only needs to be 
done once. Then the rest of the processing is identical to the reduce function in step 
3 of the MapReduce approach.

5.3.3.5 Comparing MapReduce and GridBatch Approaches

Although the MapReduce approach and the GridBatch approach are quite simi-
lar, there are two key differences. First, the GridBatch approach takes advantage 
of the partitioned data structure. Through a combination of moving related data 
to the same node and processing data on the node where they reside, GridBatch 
is able to minimize network bandwidth consumption and fully utilize the local 
disk bandwidth. In comparison, MapReduce, at least the open-source Hadoop [16] 
implementation, could create splits (a split is Hadoop’s terminology for a set of 
data to be processed by one Map task) that span multiple chunks. Even though 
Hadoop attempts to localize processing, the spanning means some data will have to 
traverse the network. In addition, Hadoop has no mechanism to move related data 
together. Although the users can create many HFS files with one for each partition 
(a poor man’s FC file), the users have no control over where these files are placed; 
so they could all be stored on a few data nodes. As a result, we either incur a sig-
nificant communication overhead or an imbalance of load among workers during 
processing. As the cluster size increases, the total disk bandwidth increases; how-
ever, the network bandwidth does not (it is limited by the bottleneck link). Thus, 
the GridBatch approach is more scalable.

Second, GridBatch has many operators, and each implements a parallel process-
ing pattern. The user not only has the flexibility to choose the operator that is most 
appropriate for the target problem, but also has the freedom to arbitrarily combine 
them. In comparison, there is only one choice in MapReduce. Compared to using 
the BLO operator, using MapReduce introduces the following inefficiencies.

 1. The MapReduce pattern forces the intermediary data to be verbose. For 
example, in step 1, in order to count, each record has to generate S key-
value pairs in the form of (b;p, 1), one for each segmentation. Even with 
the help of the combine function, only the network bandwidth consumed is 
reduced; the map function still has to write a large amount of data to the disk. 
Furthermore, the combine function introduces additional overhead since it 
has to read the data from the disk, sort the data, and combine the output.
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 2. The intermediary data between map and reduce are not saved. MapReduce 
has no mechanism for saving the intermediary data and reusing it for later 
processing. In step 3, we are distributing the records based on their chunk 
already. Unfortunately, because we cannot save the result, we have to redis-
tribute the data or their derivatives (e.g., the count in step 1) over and 
over again. This is especially inefficient when many MapReduce steps are 
involved.

 3. MapReduce contains processing that may not be needed for some applica-
tions. For example, MapReduce always sorts the key-value pairs based on the 
keys. In our case, the BLO avoids unnecessary sorting on keys in both step 1 
and step 3.

By giving the users a family of operators, GridBatch allows the users to optimize 
the processing by choosing the right operator for the right job. Experimentally, we 
have shown that GridBatch is much more efficient than MapReduce, which is in 
turn much more efficient than the traditional enterprise approach. We omit the 
experimental results for brevity. We refer interested readers to the GridBatch paper 
[22] for more details.

5.4  MapReduce Implementation on a Cloud OS
In Section 5.2.2, we described a MapReduce implementation on top of a server OS. 
In this section, we describe how to leverage a cloud OS to implement MapReduce 
much more efficiently. We describe Cloud MapReduce, a system we have developed 
at Accenture Technology Labs. The lessons we learned from using the cloud OS 
should be generic enough to be applicable to a wide range of system projects.

Like a server OS, a cloud OS is responsible for managing resources. In a server 
(e.g., a PC), the OS is responsible for managing the various hardware resources, 
such as CPU, memory, disks, network interfaces-everything inside a server’s chas-
sis. It hides the hardware operation details and allows these scarce resources to 
be efficiently shared. A cloud OS serves the same purpose. Instead of managing a 
single machine’s resources, a cloud OS is responsible for managing the cloud infra-
structure, hiding the cloud infrastructure details from the application program-
mers and coordinating the sharing of the limited resources.

But unlike a traditional OS, a cloud OS has to do everything at scale. IBM 
CEO Thomas J. Watson is well known for his 1943 statement (although only 
scant evidence exists): “I think there is a world market for maybe five comput-
ers.” Although it is often laughed at since the advent of Personal Computers, it is 
becoming a reality again. The only difference is that we refer to these computers as 
clouds. Today, only a handful of companies, such as Google, Microsoft, Amazon, 
and Yahoo, need and are capable of building a cloud—a large server farm with 
hundreds of thousands of servers. For example, it is reported that Google has well 
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over 1 million servers. Managing such big an infrastructure requires the OS to be 
extremely scalable. It is precisely the scalability that we are leveraging for the Cloud 
MapReduce implementation.

5.4.1 What Is a Cloud OS?
Even though the underlying resources it manages are different, a cloud OS is similar 
to a traditional server OS in terms of the services it provides. Since our MapReduce 
implementation is built on top of Amazon web services, we describe the Amazon 
cloud OS in detail to illustrate what services a cloud OS could provide.

Amazon’s EC2 service manages the compute resources just like a traditional 
OS would. A traditional OS provides a set of process interfaces, such as the POSIX 
interface, for applications to call to instantiate new processes or terminate existing 
ones. When processes are running, the OS manages the fair allocation of CPU 
cycles among the various processes. Similarly, EC2 provides a set of web services 
API for applications to call to instantiate new or terminate existing VMs. When 
VMs are running, EC2 manages the fair allocation of compute resources among 
VMs. The hypervisor schedules the various VMs on the same physical machine to 
ensure that each gets its promised share of the CPU resource. Although there is no 
evidence that EC2 is doing dynamic adjustments, it can potentially even change 
the resource allocation by adjusting the scheduling weight in the hypervisor, or if 
the underlying physical machine is overcommitted, it can move VMs to a different 
physical host [5,17,25]. EC2’s web services API is designed to be scalable so that 
many requests could be served at the same time. For example, the service end point 
is mapped to many IP addresses at the DNS (Domain Name System) level and 
each IP address can be further hardware-load-balanced to many physical servers.

Another service, Amazon’s S3, manages the storage resources just like a tradi-
tional OS would. A traditional OS provides a file interface, where an application 
could call the interface functions to open, read, write, and close a file. Similarly, 
S3 exposes a set of web services API, to which applications could call to put and 
get objects. Like EC2, the web services API is designed to be scalable. In addition 
to the API, object storage is also implemented in a scalable fashion, i.e., objects are 
distributed among many servers and each object is replicated several times. As of 
July 2008, S3 stores 22 billion objects—a clear demonstration of its scalability.

Amazon’s Simple Queue Service (SQS) is similar to a UNIX pipe. In a UNIX 
pipe, a process can write messages at one end and another process could consume 
the messages at the other end. Unlike a UNIX pipe, which is limited to processes 
running on the same hardware, anyone on the Internet could write to or read from 
an SQS queue.

Amazon’s SimpleDB service is most similar to the registry service in a Windows 
OS. As its name suggests, it could also be thought of as a simplified database. An 
application could write some data into SimpleDB, which will be persistently stored. 
SimpleDB also offers the ability to run simple queries against the stored data.
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Similar to EC2 and S3, both SQS and SimpleDB are designed to be highly 
scalable. Since all Amazon services are exposed as web services APIs, standard tech-
niques to design scalable web applications, such as DNS load balancing and IP load 
balancing using hardware load balancers, could help make these services scalable.

The Microsoft cloud OS also offers similar services. Microsoft Azure workers 
provide compute services. It differs from Amazon EC2 in that it provides com-
putation capacity inside a .NET container instead of an ×86 VM. Similar to S3, 
Microsoft Azure blob provides storage service. Similar to SQS and Unix pipe, 
Microsoft Azure queue provides messaging service. Lastly, similar to SimpleDB and 
Windows registry, Microsoft Azure table provides persistent state storage service.

5.4.1.1 Advantages Offered by a Cloud OS

A cloud OS is complex to implement. There are two reasons for this complex-
ity. First, the shear scale of the cloud infrastructure pushes technology limit. Few 
companies have had the experience of managing such a big infrastructure, and the 
cloud providers are forced to build new solutions from the ground up. For example, 
Google designed their own GFS [10] to manage files and BigTable [3] to store a large 
amount of semi-structured data, and Amazon designed Dynamo [8] to manage 
storage and their own management infrastructure to support their web services API.

Second, a cloud has to be robust and scalable because it is designed to be shared 
by hundreds or thousands of people instead of just a few users on a PC. Just like the 
computers in the 1940s, clouds are expensive to build. Both Google and Microsoft 
are aggressively building out their cloud infrastructure. According to their annual 
10K reports, both companies are spending close to a billion dollars a year on capital 
investment. Only a handful of companies could afford such a big investment. Yet, 
many companies or individuals require access to a large computation capacity once 
in a while; thus, a large number of users could potentially time-share the cloud 
infrastructure at the same time. It is not trivial to support such a large number of 
users at the same time. As an evidence of the complexity of building a cloud OS, 
even after 4 years of its introduction, we still found a bug in Amazon’s SQS through 
the course of this research.

Even though a cloud OS is complex to implement, out of necessity, cloud pro-
viders have already spent a large amount of engineering effort on building a highly 
scalable cloud OS that can manage a large infrastructure shared by many people. 
If we leverage the existing cloud OS, we can potentially lower the application com-
plexity, yet achieve high scalability.

5.4.1.2 Challenges Posed by a Cloud OS

A cloud OS’ scalability comes at a price. It has to be traded off with other desirable 
system properties. Eric Brewer, in a keynote address to the PODC (Principles of 
Distributed Computing) 2000 conference [2], presented the CAP theorem. The 
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theorem states that, of the three properties of shared-data systems—data consis-
tency, system availability, and tolerance to network partition—only two can be 
achieved at any given time. A more formal confirmation of the CAP theorem can 
be found in [11]. Because a cloud is used by thousands of people, it has to be 
highly scalable and always available; thus, the only property it can give up is data 
consistency.

Indeed, the Amazon cloud OS has embraced a weaker consistency model 
called “eventual consistency” [32]. Under the eventual consistency model, the 
system guarantees that if no new updates are made to an object, eventually all 
accesses will return the last updated value. However, during a small time win-
dow, clients may observe inconsistent states. The inconsistency window size can-
not be determined a priori because it depends on communication delays, the 
load on the system, the number of replicas involved in the replication scheme, 
and the extent of components failure (both the number of and the length of ) if 
any. The most popular system that implements eventual consistency is the DNS. 
Updates to a domain name are distributed according to a configured pattern 
and in combination with time-controlled caches; eventually, all clients will see 
the update.

In addition to eventual consistency, a cloud also employs horizontal scaling. For 
example, SimpleDB can only sustain a small write throughput per domain; but, a 
user can write to multiple domains at the same time to increase the aggregate write 
throughput. Although each Amazon account has 100 domains by default, one can 
simply send an e-mail to request more domains. This is similar to EC2, which by 
default has a 20 instances (Amazon’s term for VMs) limit, but it can be lifted by a 
simple e-mail request.

Building applications on top of a cloud OS must overcome its limitations. We 
describe the manifestations of the eventual consistency model that we are able to 
observe, and how we architect and implement Cloud MapReduce to overcome the 
eventual-consistency and horizontal-scaling limitations.

5.4.2 Advantages of Cloud MapReduce
We will show that we can greatly simplify the design and implementation of 
MapReduce by leveraging what a cloud OS has implemented already. We com-
pare with Hadoop [16], an open-source implementation of MapReduce on top of 
a traditional server OS. The current version (0.20.0) has a total of 285,387 lines of 
Java code alone. There are also 46,325 lines of Unix shell scripts, which facilitate 
setting up a cluster, propagating configurations, and launching new MapReduce 
jobs. In contrast, our implementation has 3000 lines of Java code. Although some 
of the differences could be attributed to additional features in Hadoop (such as 
Streaming), we believe that we can maintain at least an order of magnitude of 
advantage. We discuss the detailed reasons in Section 5.4.5 after we have described 
our architecture and implementation.
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The simplicity means that it is easy to extend the framework beyond simply 
MapReduce. Many applications do not conform to the MapReduce model. If 
implemented in the MapReduce framework, the application could experience slow 
performance. For example, many problems require a map stage only, i.e., these 
applications only need to spread out the work to as many workers as possible. Using 
MapReduce, the map output has to go through the reduce phase, which consumes 
unnecessary compute resources. Using a simple implementation like ours, we can 
easily change our framework to not only refine the MapReduce model, but also 
implement a totally different model such as Dryad [18].

Beyond simplicity, we demonstrate that, by leveraging the cloud’s scalability, 
our implementation is both faster and more scalable than Hadoop. Even though a 
great deal of engineering effort has gone into making Hadoop as scalable as pos-
sible, the single master node architecture still reportedly limits its scalability to 
around 2000 nodes. In Section 5.4.6, we show that Hadoop further has a scalabil-
ity limit on the number of files it can handle. We observe slow performance when 
there are a large number of input files. In comparison, Cloud MapReduce has no 
single point of scalability bottleneck.

Beyond the advantages, Cloud MapReduce also has several highly desirable 
properties, which seem to be shared by other highly scalable systems (such as 
Dynamo [8]).

Incremental scalability: Cloud MapReduce can scale incrementally in the number of 
computing nodes. A user not only can launch a number of servers at the beginning, 
but also can launch additional servers in the middle of a computation if the user 
thinks the progress is too slow. The new servers can automatically figure out the 
current job progress and poll the queues for work to process.

Symmetry and decentralization: Every computing node in Cloud MapReduce has 
the same set of responsibilities as its peers. There are no master or slave nodes. 
Symmetry simplifies system provisioning, configuration, and failure recovery. As 
implied by symmetry, there is no single central agent (master), which makes the 
system more available.

Heterogeneity: The computing nodes could have varying computation capacity. The 
faster nodes would do more work than the slower nodes. In addition, the comput-
ing nodes could be distributed geographically. In the extreme, a user can even 
harvest idle computing capacity from servers/desktops distributed on the Internet.

5.4.3 Cloud MapReduce Architecture and Implementation
In this section, we describe how we implement Cloud MapReduce using the 
Amazon cloud OS. We start with the high-level architecture, and then delve into 
detailed implementation issues we have encountered. We use the word count appli-
cation as an example to describe our implementation.
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We use four infrastructure services that Amazon provides today. We use EC2 
APIs to spawn up new VMs (also called instances) to process new MapReduce 
jobs. We store our input and possibly output data in S3. By leveraging the distrib-
uted nature of S3, we can achieve higher data throughput, since data comes from 
multiple servers and communications with the servers potentially all traverse dif-
ferent network paths. We also use SQS, which is a critical component that allows 
us to design MapReduce in a simple way. A queue serves two purposes. First, it is a 
synchronization point where workers (a process running on an instance) can coor-
dinate job assignments. Second, queue serves as a decoupling mechanism to coor-
dinate data flow between different stages. Lastly, we use SimpleDB, which serves 
as the central job coordination point in our fully distributed implementation. We 
keep all workers’ status here.

5.4.3.1 Architecture

Cloud MapReduce architecture is shown in Figure 5.3. There are several SQS 
queues: one input queue, one master reduce queue, one output queue, and many 
reduce queues.

As its name implies, the input queue holds the inputs to the MapReduce com-
putation. At the start of the computation, the user provides an input queue, which 
contains a list of S input key-value pairs. Each key-value pair corresponds to a split 
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of the input data that will be processed by one map task. To facilitate tracking, 
each key-value pair also has a unique map ID. In the word count application, this 
queue contains the document collections where the key is the document name and 
the value is a pointer into S3 storage. SQS is designed for message communication; 
hence, it has an 8 kB message size limitation. Because it could be too small to fit 
a large document, we store a pointer to S3 instead of the data directly in SQS. In 
addition to pointing to the location in S3, the pointer could also contain a range 
specification, specifying a chunk of the file. Using ranges, the user could split up a 
bigger file into pieces and process them separately. Similar to the input queue, the 
output queue holds the results of the MapReduce computation. In the word count 
application, the output holds the resulting key-value pairs.

There is only one master reduce queue, and it holds many pointers, one for each 
reduce queue. As we will see, the master reduce queue is used to assign reduce tasks. 
There are a large number of reduce queues. The number of them, denoted by Q, is 
a configurable parameter that is set by the user. The reduce queues and the master 
reduce queue, as well as the entries in the master reduce queue, are created distrib-
utedly before the start of the MapReduce job.

A set of map workers, each running as a separate thread on an EC2 instance, 
poll the input queue for work. When a map worker dequeues one key-value pair, it 
invokes the user-defined map function to process it. Just like in other MapReduce 
implementations, the user-defined function processes the input key-value pair and 
emits a set of output key-value pairs. In the word count example, the input value is 
a pointer to a document stored in S3. The map function first downloads the docu-
ment from S3 to the local machine. It then parses the document, and for each word 
(e.g., “talk”) it sees, it emits a key-value pair, where the key is the word (e.g., “talk”) 
and the value is simply “1” to indicate that it has seen this word once.

The MapReduce framework collects the output key-value pairs from the map 
function, and then writes them to the reduce queues. A reduce key maps to one of 
the reduce queues through a hash function. A default hash function is provided, 
but the users can also supply their own. Since the number of reduce keys could be 
much bigger than Q, several keys may map to the same queue. As we will see, each 
reduce queue is processed by a separate reduce worker; thus, Q should be set to at 
least as large as the number of reduce workers. Preferably, Q should be much bigger 
in order to maximize load balancing.

Once the map workers finish their jobs, the reduce workers start to poll work 
from the master reduce queue. Once a reduce worker dequeues a message, it is 
responsible for processing all data in the reduce queue indicated by the message. 
It dequeues messages from the reduce queue and feeds them into the user-defined 
reduce function as an iterator. After the reduce function finishes processing all data 
in the reduce queue, the worker goes back to the master reduce queue to fetch the 
next message to process.

Just like in other MapReduce implementations, the user-defined reduce func-
tion writes a set of key-value pairs as the outputs. The reduce workers collect the 
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outputs and write them to the output queue. The name of the output queue has 
been specified before the start of the MapReduce job. It can be used either as the 
final output or as the input to the next MapReduce job.

Even though we have shown two sets of workers (map workers and reduce work-
ers) in Figure 5.3, both run on the same set of EC2 instances. Cloud MapReduce 
initially runs only the map workers on the EC2 instances. When the map phase 
has finished (discussed below), it stops all map workers and launches new reduce 
workers to continue in the reduce phase.

Besides reading from and writing to the various queues, the workers also read 
from and write to SimpleDB to update their status. By communicating status with 
a central scalable SimpleDB service, we not only avoid a single point bottleneck in 
our architecture, but we also make our implementation fully distributable. Workers 
work independent of all other workers, and they do not care how many other work-
ers are there. In addition, workers can be heterogeneous. They can be located any-
where in the world and can have a vastly different computing capacity.

In our architecture, it is easy for the job owner to get a rough sense of the job 
progress. The input queue length as a percentage of S—the original input queue 
length—is a good approximation of the map progress. Similarly, the master reduce 
queue length as a percentage of Q—the original master reduce queue length—is 
a good approximation of the reduce progress. Obtaining the approximate queue 
length is a simple call to the SQS GetQueueAttributes API.

Our current implementation is written in Java. Since the interface functions are 
in Java, all user-defined map and reduce functions (at least their interface part) have 
to be written in Java. This limitation could be easily removed by using a mechanism 
similar to the Streaming mechanism used in the Hadoop [16] implementation.

Because the nodes are symmetric, it is easy to launch a MapReduce job. Users 
simply launch a certain number of VMs from our custom Amazon Machine Image 
(AMI), and pass a few job-specific parameters to the VMs as the user data. There is 
no complicated cluster setup and configuration, and there is no need for selecting a 
master. Our AMI contains a simple script that parses the user data passed in during 
launch to determine what application to run and which data set to use, and then 
the script automatically starts the MapReduce job.

5.4.3.2  Cloud Challenges and Our General 
Solution Approaches

Even though the architecture presented above is simple, we have to get around sev-
eral limitations posed by the cloud. We list the key challenges we encountered and 
the general techniques we used to get around them. In the subsequent sections, we 
get into more details on the implementation.

Long latency: Since Amazon services are accessed through the network, the latency 
could be significant. In our measurement, SQS latency ranges from 20 to 100 ms 
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even from within EC2. Hence, a significant portion of the time will be spent wait-
ing for SQS to respond if we access it synchronously. For example, a simple word 
count application on 10 MB of documents takes roughly 2 h to complete on 10 
nodes; whereas, the same application on a single node would have taken only a few 
minutes if processed locally. We get around this limitation through two techniques: 
message aggregation and multi-threading (described in Section 5.4.3.5).

Horizontal scaling: Although all Amazon cloud services are based on horizon-
tal scaling, we are only able to observe one concrete manifestation: when using 
SimpleDB, each SimpleDB domain is only able to sustain a small write through-
put. In our experiments, the threshold is roughly 30–40 items per second. To get 
around this problem, we spread the write workload across many domains, and we 
aggregate the results from all domains when reading the status. Unlike SimpleDB, 
other services, such as S3 and SQS, hide the horizontal-scaling details from the 
end users.

Do not know when a queue is created for the first time: According to Amazon docu-
mentation, to know whether a worker is the first to create a queue, the worker can 
call the CreateQueue SQS API with a unique visibility timeout (time for a message 
to reappear after read) setting. If a queue already exists but has a different visibil-
ity timeout, Amazon returns an error message; otherwise, it returns success. In 
practice, due to eventual consistency, if two workers create the queue at the same 
time, both may return success. We do not encounter this problem in our current 
architecture; however, it did limit our architecture design to avoid dynamic queue 
creation.

Duplicate message: According to Amazon documentation, when a worker reads a 
message from an SQS queue, the message disappears from the queue for a certain 
amount of time (the visibility timeout). In practice, two workers (or two threads) 
may read the same message twice if they read at the same time. This is another 
manifestation of eventual consistency, because each read modifies the message 
state—hiding it for a visibility timeout. Our solution approach depends on the 
queue purpose. We use filtering for input and reduce queues, but we use conflict 
resolution for the master reduce queue. Note that a duplicate message happens 
rarely; so even if the recovery mechanism is expensive, it will not impact the per-
formance much.

Potential node failure: A worker may fail in the middle of processing a map or a 
reduce task. We use a status update to a central place (SimpleDB) as a commit 
mechanism, and we use filtering to remove uncommitted results.

Indeterministic eventual consistency windows: This problem has a different mani-
festation in SQS and SimpleDB. In SQS, we find that it frequently reports the 
queue to be empty even when there are still messages in the queue, especially 
when there are only a few messages left. Amazon documentation attributes this to 



Large-Scale Data Processing  ◾  123

the distributed nature of the SQS implementation, where messages for the same 
queue are stored on different servers. The Amazon documentation states that one 
can call the dequeue API a few times and the queue would return all messages. 
Unfortunately, there is neither a bound on the number of API calls nor a bound on 
the time to wait. Similarly, in SimpleDB, when we read an item right after it is writ-
ten, we may not get the latest value. One solution is to wait for an arbitrarily long 
time; unfortunately, it not only does not provide a guarantee, but it will also result 
in a much slower performance since workers are frequently waiting idle.

Our solution strategy is to set an expectation before reading. For example, we 
record the number of key-value pairs generated by each map task for each reduce 
queue. Then, in the reduce phase, we know exactly how many key-value pairs to 
expect, and we poll from the reduce queue until all are read. As another example, 
when tallying the total key-value pairs generated for a reduce queue, we make sure 
that we get S counts from SimpleDB, one reported by each map task.

5.4.3.3 Status Tracking

Due to eventual consistency, we have no reliable way of knowing whether or not a 
queue is empty. To facilitate tracking, each worker updates its progress to SimpleDB. 
The worker then uses the progress reports from all nodes, including his or her own 
progress report, to determine whether there are more to get from a queue.

When a map worker finishes a map task, it writes two pieces of information 
to SimpleDB: the worker ID and map ID i pair, and the number of reduce key-
value pairs the worker generated for each reduce queue j while processing map ID i 
(denoted by Rij). Updating the status to SimpleDB serves as the commit mechanism 
to signify that the input split corresponding to the map ID has been processed 
successfully.

The worker ID and map ID pair information is used to determine when the 
input queue is empty. When SQS indicates that there are no more key-value pairs 
to process in the input queue, the map worker queries SimpleDB to get the list of 
all worker ID and map ID pairs. It first removes duplicate map IDs by randomly 
picking a winner. Some map IDs may have been processed by more than one map 
worker, either because two map workers received the same map ID due to the even-
tual consistency problem, or because a node failed and a new map worker processed 
the same map ID again. After duplicate removal, the map worker counts how many 
map IDs have been processed. If it is the same as S, Cloud MapReduce proceeds to 
the reduce phase; otherwise, the worker goes back to query the input queue again 
for more work.

The reduce key-value pairs count (Rij) is used to determine when a reduce queue 
has been processed. When a reduce worker is assigned reduce queue j (by querying 
the master reduce queue), it first queries SimpleDB to sum up Rij for all i to see how 
many key-value pairs are in reduce queue j. It then queries reduce queue j until all 
∑iRij key-value pairs have been read.
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In the reduce phase, we use a simpler status-tracking mechanism. Each 
reduce worker updates to SimpleDB Ck—the number of reduce queues it has 
processed—after successfully processing a reduce queue. When SQS reports that 
the master reduce queue is empty, the reduce worker queries SimpleDB to sum up 
Ck. If ∑kCk < Q, the worker goes back to query the master reduce queue again for 
more work; otherwise, it declares that the MapReduce job has finished.

To overcome the write throughput limitation of a single SimpleDB domain, 
each worker randomly picks one of several domains to write the status. When que-
rying SimpleDB for results, each worker launches multiple threads to read from all 
domains at the same time, and then aggregates the overall result. Even though sta-
tuses are maintained centrally, SimpleDB would not be a bottleneck, since it itself 
is implemented in a distributed fashion.

5.4.3.4 Failure Detection/Recovery and Conflict Resolution

We use SQS’s visibility timeout mechanism for failure detection and recovery. After 
a worker reads a message from a queue, the message disappears from the queue for 
a certain period of time (the visibility timeout). Unless deleted explicitly, a message 
will reappear after the visibility timeout passes.

The input queue has a visibility timeout that is longer than the time it takes to 
process a map task. After a map worker has successfully processed a map task, it 
removes the corresponding message from the queue to prevent other workers from 
repeating the same work. Similarly, the master reduce queue has a timeout that is 
longer than the time it takes to process a reduce queue, and a reduce worker only 
removes the message after it has successfully processed the reduce queue.

If a worker fails while processing a map or a reduce task, the message will reap-
pear in the input or the master reduce queue, so that other workers can take over. 
All status updates to SimpleDB are done before removing the message from the 
queue to make sure that the result is committed fully first.

Two map workers may work on the same map task due to either node failure 
or message duplication as a result of eventual consistency. In the MapReduce pro-
gramming model, it is acceptable to process the same map task twice, and so we do 
not take extra steps. In Section 5.4.3.5, we discuss how to filter out duplicate map 
outputs.

However, two reduce workers processing the same reduce queue could pose a 
problem. If it happens, we use SimpleDB for conflict resolution. When SQS reports 
that a reduce queue j is empty, but the reduce worker has not processed all key-value 
pairs (fewer than ∑iRij), the reduce worker suspects that there may be a conflict, 
and so it enters the conflict resolution mode. It first writes the reduce queue ID j 
and worker ID pair into SimpleDB, and then it queries to see if other workers have 
claimed the same reduce queue ID. If so, it invokes a deterministic resolution algo-
rithm (same for all nodes) to determine who should be in charge of processing this 
reduce queue. If the worker loses, it abandons what it has processed and moves on. 
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However, if the worker wins, it goes back to query the reduce queue again. Even if 
other workers have read some messages from the reduce queue, the messages will 
reappear after the visibility timeout for the winning worker to finish its processing.

5.4.3.5 Working with SQS

5.4.3.5.1 Hide Access Latency

We use two techniques—message aggregation and multi-threading—to hide SQS 
latency when accessing reduce queues. Message aggregation takes advantage of the 
8K SQS message limit, which is typically much bigger than a key-value pair. By 
aggregating, we turn multiple round trips into one, which not only saves the num-
ber of queue write requests, but also saves the number of read requests during the 
reduce phase.

Note that message aggregation is different from the combiner in the MapReduce 
framework. A combiner is an application-specific function that reduces the inter-
mediate result size by applying application-specific logic. In contrast, our message 
aggregation is a framework implementation optimization. The optimization works 
regardless of the application.

To hide latency further, we use a thread pool of multiple threads for both writ-
ing to and reading from the reduce queues. When a worker has a message to write, 
it hands over the message to one of the idle threads, which in turn talks to SQS 
directly. For reading from the reduce queues, we allocate a read buffer and set a read 
buffer threshold. When the number of messages in the buffer falls below the thresh-
old, we ask idle threads to download additional messages. Each idle thread performs 
one bulk read of 10 messages (10 is the maximum allowed by SQS API). The reduce 
workers read directly from the read buffer, instead of interfacing with SQS.

Figure 5.4 shows the time for the word count application as a function of the 
number of threads in the thread pool. The word count application runs on a single 
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small EC2 instance and processes a 25 MB data set. We show both the case with the 
combiner enabled and disabled. When the combiner is disabled, more data is shuf-
fled between the map and reduce stages. As shown, the time quickly decreases as 
we add more threads, suggesting that the threads are effective at hiding the latency. 
Since having more threads in the thread pool has little impact on the performance, 
we initialize 100 threads in the thread pool by default in case some applications 
require a large amount of data transfer.

The message aggregation and multi-threading techniques are only used on the 
reduce queues, since the input queue and the master reduce queue serve a very dif-
ferent purpose. The reduce queues are intermediary staging points between the map 
and reduce phases; thus, they require high throughput. In contrast, the input queue 
and the master reduce queue are used for job assignments. It is better to read one at 
a time to ensure a more even workload distribution.

5.4.3.5.2 Duplicate Detection

Due to eventual consistency, we may read a message twice from a queue. We use 
tagging to overcome this problem for the reduce queues. When a map worker 
writes an SQS message, it tags the message with three pieces of information: the 
worker ID, the map ID, and a unique number. The tag is simply prepended to the 
message. When a reduce worker reads an SQS message, it checks the tag to see if 
it has seen the message before. If so, the reduce worker ignores the message; oth-
erwise, it stores the tag in its database to facilitate future duplicate detection, and 
then processes the message.

If two map workers read a duplicate message from the input queue (or if a 
worker failed in the middle of processing a map task), there will be redundant map 
outputs in the reduce queues. The reduce workers filter out these redundant mes-
sages by checking the worker ID and the map ID in the message tag against the list 
of committed map results (see Section 5.4.3.4 on how we get the list of committed 
map results from SimpleDB). The reduce workers simply ignore the messages if they 
are not generated by a committed map.

Two workers may also read a duplicate message from the master reduce queue. 
As discussed in Section 5.4.3.4, we use a conflict resolution mechanism to get 
around the problem.

5.4.4 Map and Reduce Interfaces
The user-defined map function must implement the following interface:

void map(String key, String value, OutputCollector output)

Just as described in [6], both the key and the value are passed to the user-defined 
map function as strings. The OutputCollector is provided to the map function so 
that it can emit the output key-value pairs.
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The user-defined reduce function in the MapReduce programming model 
requires an iterator interface for the list of values for each reduce key. In our archi-
tecture, we have Q fixed reduce queues; thus, it is possible to have multiple reduce 
keys in the same reduce queue. Since values for different reduce keys may be min-
gled in the same reduce queue, we cannot simply feed the queue outputs to the 
reduce function.

Cloud MapReduce uses a push iterator interface for the reduce function. In the 
push iterator implementation, we pass to the reduce function one value at a time 
as we dequeue from the reduce queue, instead of passing to it an explicit iterator. 
The reduce function is called once for each new value. The push iterator interface 
consists of three interface functions.

The first is the start interface:

T start(String key, OutputCollector output)

The start interface is called when we see a key for the first time while dequeuing 
from the reduce queue. It is called before passing the first value to the reduce func-
tion. T is a user-defined class that holds the states that the reduce function needs 
to keep track of. The key associated with this reduce function is also passed in. For 
example, for the word count example, the start function initializes a count variable 
in object T and sets its value to 0.

The second is the actual reduce function:

void next(String key, String value, T state, OutputCollector 
output)

A new value for the reduce key is passed in every time this interface is called. As 
in the Google implementation, both the key and the value are generic strings. The 
reduce function parses the string to derive the correct data. T is the object that 
holds the current state. The reduce function processes the current value and updates 
the state as necessary. For example, in the word count example, the reduce func-
tion converts the string to a numerical value, and then adds the value to the count 
variable stored in T.

The last interface is the end interface:

void complete(String key, T state, OutputCollector output)

This interface is called when there are no more values associated with the reduce 
key. In the word count example, the reduce function emits a key-value pair, where 
the key is the reduce key and the value is the count stored in T.

In our implementation, a reduce worker first dequeues a message from the mas-
ter reduce queue to know which reduce queue it is responsible for. Then the worker 
dequeues messages from the reduce queue one by one. If it sees a reduce key for the 
first time, it invokes the start interface function and keeps the state object T in a 
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collection. For every new key-value pair, it finds the state object T associated with 
the key, and then calls the next interface function. When there are no more mes-
sages in the reduce queue, it calls the complete interface function for each reduce 
key it has seen. Even though we have to keep a reduce key collection and search the 
key collection for each new key-value pair, this could be efficiently implemented 
because the number of reduce keys in each reduce queue is expected to be small.

One drawback of the push iterator implementation is that we need to maintain a 
set of states. This is not a problem for a reduce worker, since we can bound the number 
of reduce keys in each reduce queue by increasing Q. However, this may be a problem 
for a combiner, since a map worker may generate key-value pairs for a large number 
of keys. Fortunately, a combiner does not need to combine all values for a particular 
key. Cloud MapReduce currently sets a 64 MB memory limit on the total amount of 
combiner state a map worker can keep. If the limit is reached, we flush the buffer by 
invoking the complete interface for all reduce keys in the combiner buffer.

5.4.5 Why Cloud MapReduce Is Better?
It is obvious why Cloud MapReduce is more scalable. Unlike other MapReduce 
implementations, we have adopted a fully distributed architecture and we do not 
have a single master node as a bottleneck. All cloud services we use are imple-
mented in a distributed fashion; so they are not a bottleneck in our system. In our 
independent tests, we have confirmed that EC2/SQS/S3 are all highly scalable: 
EC2 is able to launch a large number of instances, and S3 and SQS are able to scale 
to high throughput. In addition, SimpleDB can sustain a high read throughput, 
and through our implementation, we have demonstrated that we can use horizontal 
scaling to scale SimpleDB write throughput.

However, it is not immediately obvious why Cloud MapReduce is simpler and 
faster than other implementations. The key advantages of Cloud MapReduce are 
enabled by several specific aspects of the scalability offered by a cloud OS. First, 
S3 presents an infinite and reliable file storage abstraction, which alleviates us from 
having to design our own file system. Second, SQS presents an infinite message 
store, both in terms of the number of queues one can create and the number of 
messages one can hold in each queue. Such an abstraction allows us to bypass both 
sorting and using the local storage as a staging area. Third, SimpleDB presents a 
high-bandwidth status vault, which can sustain a high read and write (through 
striping) throughput. The high read throughput, in particular, enables our distrib-
uted architecture. Instead of relying on the master to instruct the slave nodes (to 
alleviate the stress on the master), we allow all workers to query the central store 
for a global knowledge first, and then derive the local actions on their own. Last, 
both S3 and SQS present a single point of contact that is capable of sustaining a 
high throughput. We no longer need to worry about spreading the communication 
among the slave nodes in order to achieve a high system throughput.

We discuss the fundamental reasons in more detail in the following.
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5.4.5.1 Why Cloud MapReduce Is Simpler?

Cloud MapReduce currently has around 3,000 lines of Java code (including gener-
ous comments, three MapReduce applications, and our profiling code to collect 
statistics), two orders of magnitude smaller than Hadoop (285,387 lines in ver-
sion 0.20.0). Although some could be attributed to additional features in Hadoop, 
such as Streaming, we believe a large portion could be attributed to the complexity 
introduced when interfacing with a traditional server OS. We examine two compo-
nents in more detail: the file system and the MapReduce framework.

5.4.5.1.1 File System Comparison

A server OS presents a limited storage space constrained by the hard disk capacity 
on a single machine. In order to host a large number of big files, we must design an 
overlay file system on top of a server OS. GFS [10], HDFS (Hadoop File System), 
and Dynamo [8] are all examples of this overlay file system.

Specifically, HDFS has to implement the following logic. First, it has to store 
the name space of the file system. HDFS has a separate name node that keeps track 
of locations of all file chunks, interfaces with clients, and hands out chunk handles 
when requested. Second, it has to present a large file abstraction. Because of a single 
node’s capacity constraint and because of efficiency reasons, a large file has to be 
chopped up into chunks and distributed across many nodes. Third, it has to imple-
ment file replication logic to provide reliability. Each chunk has to be replicated 
on several nodes in order to protect against a single node failure. Fourth, it has to 
implement load-balancing logic to rebalance the chunk to server assignment, espe-
cially when the cluster’s membership fluctuates over time.

All these functions have to be implemented by a cloud OS already. For example, 
S3 transparently replicates each object in order to provide high reliability guaran-
tees. We should note that S3 currently has a 5 GB object size limitation, and so its 
interface is simplified compared to what HDFS presents. However, other cloud OS, 
such as Microsoft Azure Blob, can store infinitely large files.

Because of these complexities, the current HDFS in 0.20.0 has 37,196 lines 
of Java code (package org.apache.hadoop.hdfs under the src/hdfs directory in the 
Hadoop source distribution). In contrast, Cloud MapReduce has 172 lines of code 
to interface with S3.

5.4.5.1.2 MapReduce Framework Comparison

Compared with Cloud MapReduce, Hadoop, as well as other MapReduce imple-
mentations, has to do a lot more in the MapReduce framework, including the 
following.

Sorting: Sorting is required in order to group by keys. This is because a reduce 
partition could be large, since we cannot bound the number of keys in each 
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reduce partition. Although Hadoop could avoid sorting by using a large number 
of reducers (like we do using the push iterator), the overhead of scheduling and 
coordinating data copying on the master node will diminish, if not eliminate, the 
performance gain.

We should note that there are MapReduce jobs today that rely on the MapReduce 
framework to perform sorting. Although not part of the MapReduce programming 
model, both the Google implementation and Hadoop have implicitly promised 
that the key-value pairs will be sorted. We believe a large fraction of MapReduce 
jobs do not need the sorting overhead. For those that do, they can simply imple-
ment sorting in their own user-defined functions.

Master/slave communication: The master is the central coordination point. Hadoop 
must define and implement a common communication protocol such as a remote 
procedure call (RPC), to facilitate task assignment, status reporting, and configura-
tion propagation. In comparison, we simply leverage the existing cloud API.

Configuration: The asymmetric nature requires the master and slaves to be con-
figured differently. The master must know about all slaves to coordinate job 
assignments.

Dealing with slow nodes: Because the task size (in terms of the input data size or 
processing time) has to be large in order not to overwhelm the master, a slow node 
has a much bigger impact on the overall progress. Slow node detection and specula-
tive execution are required to alleviate the impact of stragglers [34]. In comparison, 
Cloud MapReduce can have a much smaller task size, which is neither constrained 
by the chunk size (to optimize for local processing) nor constrained by the master 
node limit. A slow node can at most slow down the overall computation by the time 
required to process one task, which is small in Cloud MapReduce; thus, there is no 
need to explicitly detect slow nodes.

Locality optimization: Hadoop tries to place computation tasks on the node that 
hosts the corresponding data chunks so that data access goes through the local hard 
disk. Extra logic is needed to figure out where a data chunk is stored and how to 
match it against computation tasks.

Failure handling: Hadoop must proactively detect node failures in order to resched-
ule tasks. In contrast, a cloud OS is designed with frequent failures in mind. We 
simply leverage SQS’ visibility timeout mechanism to automatically handle failure 
detection and task re-execution.

The current MapReduce framework in 0.20.0 has 60,367 lines of Java code 
(package org.apache.hadoop.mapred and org.apache.hadoop.mapreduce under the 
src/mapred directory in the Hadoop source distribution). In contrast, we have 593 
lines of MapReduce framework code, 582 lines of SQS interface code, and 797 
lines of SimpleDB interface code.
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In addition, Hadoop also has 63,128 lines of Java code under src/core directory, 
which deals with file caching, merge sorting, configuration, file system clients, 
file system checksums, etc. Additional features that Cloud MapReduce does not 
have, such as Streaming, are in a separate directory under src/contrib, which is not 
counted above.

5.4.5.2 Why Cloud MapReduce Is Faster?

There are several reasons why Cloud MapReduce is fundamentally faster.

No sorting: As described above, the infinite size abstraction presented by SQS (both 
in terms of the number of queues and the size of each queue) allows us to bypass 
sorting. Since sorting takes O(nlog(n)), we expect Cloud MapReduce to perform 
even better when the data set is large.

Parallelize processing and copying: Cloud MapReduce starts uploading reduce results 
as soon as they are produced in the map phase even before a map task finishes. This 
parallelizes the network transfer with CPU-intensive processing.

No disk paging: Since the number of key-value pairs in a reduce task is unbounded, 
Hadoop may have to spill partial sorting results to disk multiple times in order to 
fit within the main memory.

No staging: Hadoop always stores the intermediate results on disks, and then copies 
over the results to the hard disks on the destination node when instructed by the 
master. As a result, the data not only transits through the network once, but it also 
transits twice through the local disk. In comparison, Cloud MapReduce uses SQS 
as a staging area so that it can do everything in memory; therefore, the data only 
transits once through the network.

Finer grain job assignment: Because a task can be small, job assignments happen 
at a much finer granularity. Nodes of different capacity are automatically assigned 
work proportional to their capacity. A straggler is unlikely to drag on the overall 
computation for too long.

Incast problem: Hadoop and other MapReduce implementations start to shuffle data 
from mappers to reducers at the end of the map stage. The simultaneous transfers of 
a large amount of data could overflow the switch buffer, resulting in packet losses, 
which in turn causes TCP to backoff. Current TCP implementations require a 200 ms 
wait time before they retry, which significantly lowers the overall throughput. This 
problem is referred to as the incast problem, and it has been observed in data centers 
[13,27,31]. In contrast, Cloud MapReduce starts to transfer data as soon as it is gener-
ated. Because traffic is smoothed out, it is unlikely to trigger the incast problem. Due 
to the lack of visibility into Amazon’s networking infrastructure, we unfortunately 
do not know whether the incast problem is a contributing factor in our tests.
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Figure 5.5 shows the CPU, memory, and network usage during one run of the 
word count application on a single EC2 instance processing 200 MB of data. We 
disable combiner in order to stress the network. The CPU remains mostly at peak 
utilization throughout the job ( 40% is the highest utilization on a small EC2 
instance). In Figure 5.5a, at around 21:42, the map phase finishes and the worker 
waits to flush out all SQS messages before starting the reduce phase. While waiting 
for the SQS writes to finish, there is a slight drop in the CPU utilization. Unlike 

(a)

(b)

(c)

Figure 5.5  Word count on a 200 MB data set on a small instance. (a) CPU usage, 
(b) network usage, and (c) memory usage.
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other MapReduce implementations, there is not a distinct shuffling stage between 
map and reduce because we transfer data in parallel with the map stage. Figure 5.5b 
includes both downloading files from S3 and accessing SQS. The network band-
width demand is small, staying under 60 Mbps, even with the combiner disabled. 
In our independent tests, an EC2 instance is able to sustain roughly an 800 Mbps 
throughput; so the network interface is far from being the bottleneck. Figure 5.5c 
shows the memory usage, which stays under 600 MB, much less than the 1.7 GB 
available. Even for large jobs with many gigabytes to process per node, the memory 
usage typically stays under 1 GB.

The Cloud MapReduce architecture uses the network exclusively for I/O, 
bypassing all local storage. This is against the conventional wisdom adopted by 
other MapReduce implementations, where heavy emphasis has been placed to opti-
mize data locality. Locality optimization is not necessarily beneficial in a cloud 
environment for two reasons. First, due to EC2 instances’ ephemeral nature, most 
users store their data in S3. When they need to analyze the data, they first launch 
a Hadoop cluster in EC2 and then copy the data from S3 to HDFS. Locality 
optimization in MapReduce does not bring additional benefits, since the network 
transfer cost is already incurred in the copying stage. Second, local disks do not 
have a bandwidth advantage. As it has been shown through independent tests 
[34], a small EC2 instance can at most sustain a 496 Mbps (62 MBps) throughput, 
smaller than the network interface speed. Furthermore, a small EC2 instance has 
only a limited amount of storage at 160 GB. Although one can mount an EBS 
(Elastic Block Storage) drive as a bigger storage, access to EBS also goes through 
the network.

We focus only on small EC2 instances. Although the large and extra-large 
instances have more virtual disks (two and four, respectively), so that one can use 
striping to improve disk I/O performance, it is more cost effective to use more small 
instances, where each comes with an 800 Mbps network I/O potential.

Beyond the network interface, the network bisection bandwidth in a cloud data 
center could be a bottleneck. Typical data center network employs a tree topology. 
Due to both the root router’s switching capacity limit and the high cost of a high-
end router, the network bandwidth in a cloud is typically highly oversubscribed. 
The oversubscription could greatly limit the overall throughput. However, such 
a problem does not occur often due to two reasons. First, EC2’s VM assignment 
algorithm takes into account the traffic condition in order to launch new VMs 
in less populated areas. Second, most VMs do not send traffic at their maximum 
interface speed; hence, the network is not saturated most of the time.

Even though today’s data centers are oversubscribed, the next generation data 
centers are likely to have a much higher bisection bandwidth. Many innovative 
solutions are proposed to build a high-bisection-bandwidth cloud data center in a 
cost-effective manner, including fat tree [1], Portland [24], Bcube [14], Dcell [15], 
and VL2 [12].
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Although the above discussion only applies to the Amazon environment, we 
note that the network interface on enterprise servers is getting faster. It is common 
to have multiple Gigabit Ethernet interfaces on a server, and the aggregate net-
work interface bandwidth could be higher than the aggregate local disk bandwidth. 
Furthermore, TCP offloading [9,20,23,30] can cheaply offload network processing 
to dedicated hardware, alleviating the load on the host CPU.

5.4.6 Experimental Evaluation
We have implemented three different common MapReduce applications to evaluate 
Cloud MapReduce’s performance: word count, reverse index, and string matching 
(distributed grep).

5.4.6.1 Scalability Evaluation

To test out whether Cloud MapReduce will scale in practice, we run the word count 
application on a 100 GB input data. The combiner is enabled by default. We vary 
the cluster size up to 1000 nodes, our maximum limit in EC2. All tests reported 
here were run at night to minimize disruptions to other cloud users. Figure 5.6 
shows the inverse of the total computation time, which corresponds to the amount 
of work completed per unit time. As shown, Cloud MapReduce scales roughly lin-
early as we increase the cluster size.

5.4.6.2 Performance Evaluation

We compare the performance between Hadoop 0.20.0 and Cloud MapReduce on a 
small cluster of five small EC2 instances. To make sure that the master node is not 
interfering with the slave node tasks, we put the master on a separate node (so six 
nodes in total for Hadoop versus five for Cloud MapReduce).
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Figure 5.6  Work completed per second for different size clusters. Word count 
on 100 GB data.
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For word count and grep, we use the examples provided by the Hadoop distri-
bution. However, for reverse index, we have to implement our own, since it is not 
included in the Hadoop distribution.

We run the word count application on a text file of roughly 1 GB size. To see 
the effects of larger data, we run the test with and without the combiner enabled. 
To enable side-by-side comparison, we also run a version of Cloud MapReduce with 
the pull iterator interface implemented with in-memory sorting. Table 5.1 shows 
the time it takes to run the MapReduce job. In both cases, Cloud MapReduce 
is roughly twice as fast as Hadoop. Even with sorting, Cloud MapReduce still 
has a large advantage, which suggests that other factors (e.g., parallelizing data 
transfer and removing scheduling bottleneck) contribute significantly to Cloud 
MapReduce’s advantage.

For the grep application, we use the same 1 GB data as used in the word count 
example, and we grep for the keyword “which.” Cloud MapReduce takes 1001 s, 
whereas Hadoop takes 1211 s. Adding sorting or combiner makes little difference, 
since the amount of data in the reduce stage is small. The time difference is not as 
much because this job is dominated by string matching in the map phase, which 
is CPU intensive. Also, the map output data is small for the reduce stage; thus, the 
effects of data shuffling and staging are not as pronounced.

For the reverse index application, we use the same 1.2 GB data that is used 
in Phoenix evaluation [29]. We are not able to compare our performance with 
that from Phoenix directly because Phoenix only reported performance numbers in 
terms of speedup, and not in terms of absolute time.

The data set contains 92,367 HTML files. Hadoop takes 10 h to process all 
data. In comparison, it took Cloud MapReduce only 569 s, more than 60 times 
faster. To make sure it is not a problem with our reverse index implementation, we 
run the word count application on the same data set, and it takes roughly 13 h to 
complete.

Although we do not know for sure, we believe this is a limitation of the single 
master node architecture. Since each access to a file requires a contact with the 
master node, simply requesting the metadata for these files could be overwhelming. 
In addition, Hadoop creates at least one map for each input file. For this data set, 
there are 92,367 maps in the MapReduce computation. Such a large number of 

Table 5.1  Time (s) to Run the Word Count Application

Combiner No Combiner

Hadoop 459 907

Cloud MapReduce 169 581

Cloud MapReduce w/sort 329 704

Note: 1 GB data on 5 nodes.
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maps place a strain on the master node to schedule and coordinate computation. In 
0.20.0, there is no way to specify the number of maps manually. We also use version 
0.19.0, and try to set the number of maps to a much smaller number manually, but 
the setting is simply ignored.

5.5  Higher-Level Programming Languages
The programming models that we have discussed in this chapter are important 
tools for large-scale analysis. However, they are built for programmers in gen-
eral, and they may be unnatural for business analysts or for quick ad hoc data 
analysis.

There are a number of important works on high-level languages for large-scale 
data processing. Even though we are not able to get into much detail, we highlight 
the important work in this area so that interested readers can learn more.

Pig Latin [26] is a language developed at Yahoo Research. It is similar to 
SQL in terms of its ease of use, but it made many design decisions that are radi-
cally different from SQL. It uses a procedural method of conveying the analysis 
task and also uses user-defined functions extensively to support custom analysis. 
It is implemented on top of Hadoop [16]—the open-source implementation of 
MapReduce.

Google Sawzall [28] is also built on top of MapReduce. It is another system that 
dramatically simplifies certain analytical jobs, such as statistical counting.

DryadLINQ [33] is a system developed at Microsoft Research. It is built on top 
of Dryad [18], and it supports a simple set of LINQ queries, which makes it easy to 
express a parallel processing job in Dryad.
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Chapter 6

Toward a Reliable Cloud 
Computing Service

Thomas J. Hacker

6.1  Introduction
Cloud computing services rely on the on-demand provision of a set of resources. As 
cloud computing becomes more widely adopted, the size and scale of cloud com-
puting systems will necessarily increase to meet a growing demand—both in terms 
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of the number of individual requests as well as the amount of resources required per 
request. In contrast to approaches used in Grid and high-performance computing, 
in which requests that cannot be immediately serviced are added to a queue for later 
service, requests for cloud computing resources must be immediately fulfilled, or 
denied due to a lack of available resources. The challenge facing cloud computing 
service providers is to provision and have available for immediate allocation suf-
ficient resources ready to be deployed for service requests. The costs of maintaining 
a pool of spare resources, however, are tremendous. A modern data center, sup-
plied with adequate power and cooling resources to house high-density computer 
equipment, is expensive to build and operate. With current power utility rates, the 
cumulative costs of powering computer equipment now exceed hardware costs after 
only a few short years—well before the end of the useful lifetime of the equipment. 
Commercial cloud computing organizations seeking to operate a profitable cloud 
computing service face a serious dilemma. If there are not sufficient idle resources 
available during the busiest service times, requests that could generate revenue will 
need to be turned away. On the other hand, if the organization maintains a large 
pool of idle resources awaiting these requests, the operational costs of running these 
systems will erode profit margins, making it more difficult to successfully run a 
service. An additional problem that arises is reliability. If an application requests a 
large number of resources, or requests resources for a considerable length of time, 
there is a measurable probability that one or more of the resources dedicated by 
the cloud computing service for the application will fail during the lifetime of the 
request, which denies access to resources. The expectation of an organization pay-
ing for these resources is that the service will be reliable over the lifetime of the 
request. One possible option available for a cloud service provider is to provide a 
number of hot-spare nodes added to the user allocation to ensure the availability 
of the requested number of resources for the duration of the request. One problem, 
however, is to estimate the number of additional resources required to provide some 
level of guarantee of service.

In this chapter, we address these two problems, and present a model for deter-
mining the probability of blocking service requests and determining the number of 
hot-spare nodes needed to provide a reliable cloud computing service. Specifically, 
given a historic pattern of resource requests along with the total number of comput-
ing nodes available in the system, we present a model that can be used to predict 
the probability of an N node cloud computing service blocking access due to insuf-
ficient capacity during a busy service period.

6.2   Modeling the Service Load of a 
Cloud Computing System

At the time of writing this chapter (March 2009), there are two well-known 
cloud computing services. The best-known commercial one, the Amazon Elastic 
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Compute Cloud EC2 [1], provides a number of virtual machines based on a Xen 
hypervisor that provides a selection of virtual machine types: small, consisting of 
one virtual CPU core; large, containing two CPU cores: and extra large, with four 
cores. Amazon charges for the use of the virtual machine instances based on an 
EC2 Compute Unit, which is equivalent to a single CPU. An example of a noncom-
mercial cloud computing effort is the Eucalyptus [13] project, led by Rich Wolski 
at the University of California, Santa Barbara.

The use of virtual machine technology for cloud computing decouples the num-
ber of virtual and physical CPUs. There is a practical upper bound on the number 
of virtual machines and virtual processors that can be deployed on a server system. 
If a cloud computing service is oversubscribed, the system will become slow and 
unreliable, and new requests for service will be denied. Conversely, if the system is 
undersubscribed, the costs of maintaining unutilized capacity will be unrecover-
able over time, and reduce profits. The challenge facing cloud computing service 
providers is how many resources should be provisioned to reliably service a work-
load, and what is the probability of blocking new requests at a specific resource-
provisioning level?

In this section, we address this question. First, we describe a synthetic work-
load based on the measured job characteristics of a large grid computing system. 
Based on this workload, we propose a negotiation process between a user and a 
cloud computing system to bid for and acquire cloud computing resources. Based 
on this framework, we derive a model that predicts the probability of blocking a 
cloud computing service request based on the offered workload during busy peri-
ods. Following this, we derive a model of cloud computing node reliability, and 
propose an approach to improve reliability.

6.2.1 Measuring the Workload
There are few cloud computing systems today for which detailed and extensive 
workload traces are available. The closest analogue to a cloud computing system is a 
grid computing system, which in many ways is similar to a cloud computing system 
with one important difference. While grid computing systems have the capability 
to queue requests for resources into a service queue to wait for available capac-
ity, cloud computing services must either provide immediate access to requested 
resources or deny or block requests for these resources. Since there are few large-scale 
cloud computing systems in use today, we developed an offered workload based on 
the observed workload characteristics of a large grid computing system.

The Parallel Workloads Archive [4,9] maintains an extensive collection of work-
loads submitted to a variety of high-performance and grid computing systems. To 
model the offered workload submitted to a cloud computing system, we used logs 
of computational jobs submitted to the fs0 system, which was part of the grid com-
puting system of the Distributed Advanced School for Computing and Imaging in 
the Netherlands (DAS2). The grid computing system we analyzed consisted of five 
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distributed Linux clusters with a total of 400 processors, and the workload logs we 
analyzed contain 432,987 job submissions from January 2003 through December 
2003. To understand the stochastic characteristics of the workload, we assessed the 
time between job submission events, the distribution of the number of processors 
requested, and the runtime of each job. As found in related work [4,16] the time 
between job submission events did not follow an exponential distribution, and the 
workload intensity varied over the lifetime of the logs, with periods of intense and 
quiescent computational and job submission activities.

6.2.2 Framework for Requesting and Allocation Resources
Step 1: Request for services
To characterize the workload of a cloud computing system, we first describe a 
framework for resource requests, allocation, and deployment. Consider the follow-
ing multistep process from service request to service delivery and final completion. 
In the first step, a user or application wishes to utilize resources provided by a cloud 
computing system. A request is formed that consists of (1) a number of required 
nodes; (2) specific resource requirements, such as operating system, amount of 
memory, or processor type; (3) estimated maximum length of time for which the 
cloud resource will be needed; and (4) expectation of desired grade of service and 
reliability of service over the required time period.

Step 2: Response of the cloud computing system
In response to the resource request, the cloud computing system will immediately 
communicate an offer, which consists of four different types of responses. The first 
type is an offer to immediately allocate all of the requested resources (just in time) 
at the time of request with a grade of service/reliability at levels required by the user 
at a billing rate X. The second type of response is to provide an immediate alloca-
tion of all resources requested at a reduced grade of service or reliability at a reduced 
billing rate Y < X. This type of response provides an option to the application or user 
to be able to choose to utilize a degraded cloud computing service at a reduced rate. 
The third type of response is to offer a subset of the requested resources—either at 
a full reliability rate or with a degraded grade of service and reliability at a fraction 
of the full rate. The fourth possible request is a decline response, in which the cloud 
computing service provider lacks adequate resources to provide service or cannot 
meet the required grade of service or reliability requirements.

Step 3: Response to the cloud computing system offer
In response to a positive offer from the cloud computing service to provide services, 
the application can either accept or reject the offer. The expectation of the applica-
tion (or user driving the requesting application) is that the cloud computing system 
is ready to immediately provide services, without queuing the user request or forc-
ing the user to wait for more than a brief period for access to services.
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Step 4: Cloud computing system service provision
When an application accepts the cloud computing system’s offer, several ques-
tions must be addressed. First, can sufficient resources be found within the cloud 
computing system to provide all of the resources offered by the cloud computing 
system? Second, what will be the operational reliability of the set of resources com-
mitted to the user, and how can the cloud computing system ensure that this level 
of reliability will be maintained?

Step 5: Application granted access to resources
Once the cloud computing system determines that it can provide the offered 
resources at the required level of reliability, the application is granted access 
to the resource for use. If, during the time period of use, one (or more) of the 
resource elements provided by the cloud computing service fails, the application 
and cloud computing service will face several problems. First, how can the user 
application detect failure and respond to the failure in a manner that allows it 
to tolerate failure? Second, what can the cloud computing system do to ensure 
the continued reliability and grade of service that it agreed to provide during the 
resource and pricing negotiation phase? Third, at what point will the user and 
the system determine that the agreed-on grade of service and reliability cannot 
be met, and how will a resulting reduced billing rate be negotiated? Finally, if 
there is a minimum grade of service and reliability agreed on during the negotia-
tion process, does the user have the right to terminate the agreement and receive 
a full or partial refund?

Step 6: Completion of computation and exit from the system
When the application terminates and releases resources, or if the application exceeds 
the wall clock limit and is terminated, the job is completed. Resources released are 
freed for use by new requests for resources.

6.2.3  Modeling the Availability and Reliability 
of a Cloud Computing Service

Given the resource request process described in the previous section, two ques-
tions emerge. First, given a historic workload offered to a cloud computing service, 
how many free and available resources will the cloud computing system need to 
keep available to be able to service application requests during the peak period of 
use? What will be the probability of rejecting those requests due to a lack of avail-
able resources? Second, given the mean time to failure (MTTF) of the underlying 
nodes, what is the reliability of the nodes allocated by the cloud computing system 
during the application execution time? Additionally, how many hot-spare nodes 
will the cloud computing system need to allocate in reserve to serve as hot-spares 
in case of node failure?



144  ◾  Cloud Computing and Software Services

To predict the number of resources that must be available in a cloud computing 
system to service a load of requests, there are several factors that must be considered. 
First, the number of computational nodes in a cloud computing system is limited, 
and a request will require the simultaneous allocation of a number of nodes—some 
may only request one node, but many will request a number of nodes up to the total 
number of nodes available in the cloud computing system. Second, based on the 
number of nodes requested, the arrival rate of requests for these resources during 
the busy periods is a critical factor in driving the overall utilization of the cloud 
computing system.

To model the workload, we partitioned the fs0 workload (described earlier) into 
bins based on the number of processors requested: 1, 2, 4, 8, 16, 32, 64, and 128 
processors; determined the most active periods of job submission activity over the 
period of the logs; and calculated the average arrival rate (jobs per hour) and average 
job runtime for the set of jobs submitted during the busy period.

Table 6.1 shows the number of submission events, average arrival rate, average 
execution time, and job intensity for each workload class. During the busy periods, 
the cloud computing system must immediately service requests by allocating the 
number of requested resources from a pool of free resources, or block and deny 
access due to a lack of available resources.

6.2.3.1 Modeling the Probability of Blocking a Request

To estimate the probability of blocking a request to the cloud computing system 
during a busy period, we can use a generalized Erlang loss station model [2,7,8].

Consider a cloud computing service that features a total of C computational 
nodes, each of which can be independently assigned to service a request. A workload 

Table 6.1  Workload Model Partitioned into Resource Classes

Resource 
Class

Node 
Count Events λ (jobs/h) 1/μ (h)

α = λ/μ 
Erlangs

1 1 6,158 3.25 0.0913 0.297

2 2 130,431 8.24 0.0941 0.776

3 4 27,156 5.01 0.1336 0.669

4 8 15,585 4.94 0.1012 0.503

5 16 21,359 4.14 0.1012 0.421

6 32 7,918 2.08 0.0987 0.205

7 64 9,722 4.33 0.0676 0.293

8 128 1,295 0.18 0.1738 0.0313
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consisting of a mixture of requests is offered to the cloud computing system from a 
community of users and applications. The service offered by the cloud computing 
system is partitioned into resource classes of service, distinguished by the number 
of computational nodes provided by the system in eight categories, each of which 
contain 1, 2, 4, 8, 16, 32, 64, and 128 node partitions.

Each individual workload request describes the resource class requested (which 
communicates the number of nodes selected from the set of partitions) and the 
maximum time for which these resources will be needed. There are 8 classes of 
service, and the number of nodes in resource class i is ki = 2(i−1) nodes. The arrival 
rate of requests from the offered workload for resource class i is denoted by λi, the 
average requested computational occupancy time by 1/μi, and the corresponding 
class intensity (in Erlangs) by αi = λi/ui.

To utilize the multiclass Erlang loss model, a common assumption is that 
the elapsed time between job requests must fit an exponential distribution. In 
assessing the workload trace, we found that the time between events did not fit an 
exponential distribution, as was found in [4]. Recent work by Bonald [2] deter-
mined that the blocking probability computed from an Erlang or Engset model 
does not depend on the holding time distribution beyond the mean, and that it 
is not necessary to assume that resource requests arrive as a Poisson process. It 
is sufficient to assume that the sequence of resource requests generated by the 
same user arrives as a Poisson process. For the model presented in this chapter, 
we assume that user requests generated by the same user or application arrive as 
a Poisson process.

At any given time, the state of resource use of the cloud computing system is 
described by the row vector x = [x1, x2, …, xk], which represents that concurrent 
number of jobs using resource class i. For example, if x3 = 2, then there are two 
active jobs in resource class 3, each using 4 nodes in the cloud computing system 
(8 nodes in total). The number of computational nodes that make up each resource 
class is designated by r = [r1, r2, …, rk], where resource class ri describes a partition 
of 2(i−1) nodes. If there are C total computational nodes in the cloud computing 
system, the maximum number of concurrent jobs occupying the cloud computing 
system cannot exceed C at any time, specifically,
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Since the number of computational nodes for each request and the number 
of nodes for each class are integers, the stationary distribution of resource occu-
pancy for each resource class can be computed using the Kaufman–Roberts [7,15] 
algorithm. Following the derivation of Bonald [2], the probability that the cloud 
computing system node occupancy is n is
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The probability that resource requests of type i will be blocked is then
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For n = 1, …, C, p(n) is
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with p(0) = 1 and p(n) = 0 for all n < 0. This computation, which is linear in the num-
ber of resource classes k, is much more feasible than the direct calculation of the 
stationary distribution based on all combinations of r and x that are equal to n in 
Equation 6.3, which is exponential in the number of resource classes k.

Using the recurrence relation described by Equation 6.3, we can compute the 
probability of the cloud computing system blocking requests for resources in class 
i using Equation 6.4.

Using the arrival rate λ, execution time 1/μ, and workload intensity α from the 
workload model, we computed a set of dimensioning curves for a cloud comput-
ing system containing a number of nodes ranging from C = 16 to C = 256 nodes. 
Figure 6.1 shows the resulting dimensioning curves that describe the probability 
of blocking requests for each resource class as a function of the number of nodes, 
C, in the cloud computing system.

6.2.4 Availability Discussion
From the results shown in Figure 6.1, we make several observations. First, small 
resource classes with a limited number of nodes have a low probability of blocking. 
This makes sense, since it is simple to pack a system with a collection of small node 
partitions. For a given resource class partition of i nodes, as the number of nodes 
C in the cloud computing system is reduced to 2i, the blocking probability for the 
i-node resource class rises dramatically. Second, providing reasonable availability 
for large resource classes (64 and 128 nodes) with a limited system size of 128 nodes 
will be difficult, due to the high probability of blocking 128 node requests (block-
ing probability 0.96) and 64 node requests (blocking probability 0.28). Third, for 
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modest size resource classes (e.g., 32 nodes or less), the marginal benefit in signifi-
cantly increasing the number of nodes in the cloud computing system is limited. 
For example, in the 32-node resource class, increasing the number of nodes in the 
cloud computing system from C = 128 nodes to C = 256 nodes reduces the blocking 
probability from 0.055 to 0.002. This is a change of 5%, but at the cost of doubling 
the size of the cloud computing system. It may not be worth improving the block-
ing probability by only 5% at the expense of increasing the cost and size of the 
system by a factor of 2.

Based on the availability results from this section, several conclusions can 
be drawn. It is possible to provide a high degree of on-demand availability for 
a cloud computing system for a realistic workload by limiting the resource class 
size, and by making available at least twice the number of nodes in the largest 
resource class in the cloud computing system during a busy period based on a 
historic workload. Second, resource classes containing ≤C/4 nodes, where C is the 
number of nodes available in the cloud computing system, have a low probability 
of blocking, and there is limited improvement in the probability of blocking as 
C increases.

6.3   Modeling the Reliability of a 
Cloud Computing Service

The results in the previous section address the question of modeling the availabil-
ity of a cloud computing service offered a workload. Once an application or user 
is granted access to a cloud computing service, the next problem that arises is the 
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inherent reliability of the service provided. If one of the nodes fails during the 
allocated time, the application will lose service, and may potentially terminate. The 
problem addressed in this section is as follows: given a cloud computing partition 
of size M available over a time period [0,T ], what is the probability of a failure over 
that time? Additionally, if a failure occurs, what strategies could be used to recover 
from the failure and provide the required number of functional nodes for the entire 
allocation time?

6.3.1 Node Reliability
The resources provided by a cloud computing system for an individual user or 
application consist of a partition of size M of a C node cloud computing system. 
The nodes provided could be a hardware node, as is commonly done for high-
performance computing applications, or a virtual machine “slice” of a hardware 
node. If the MTTF of the underlying hardware platform is known, it is possible 
to compute the MTTF of a node in a partition of size M of a cloud computing 
system.

If there are v virtual machines allocated to each hardware node of a cloud 
computing system, the reliability of the virtual machine is directly linked to 
hardware reliability. Thus, when the hardware fails, all v virtual machines run-
ning on this hardware will also fail. For simplicity, we assume that v = 1 for this 
analysis.

The MTTF of the underlying hardware platform can be obtained from the 
vendor or estimated from failure logs. Following the derivation of Hacker [6], the 
MTTF for a partition of a cloud computing system can be computed. As described 
in Hacker [6], and Nurmi, Brevik, and Wolski [3,11,12], the time between failures 
for computer systems follows a Weibull distribution with scale parameter τ and 
shape parameter β. The probability of a system failure during the time interval 
[0,Δt] for the Weibull distribution of scale τ and shape β is [10]
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The probability that a node in the system will not fail in this time is
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The mean of the Weibull distribution is given by τΓ(1 + 1/β), where Γ is the 
Euler Gamma function. Assuming that the vendor MTTF corresponds to the 
mean τ,
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We can determine the Weibull reliability function for an M node partition of 
a cloud computing system similarly—by treating the nodes as individual compo-
nents. Assuming that all nodes are identical, i.e., characterized by the same τnode 
and βnode [14], we find

 

R t R t

e

M

i

M

t

i

M

partition node

node node

( ) ( )

exp

( / )

∆ ∆

∆

=

=

= −

=

−

=

∏

∏
1

1

τ β

∆∆t
τ

β

node

node













 .

 
(6.8)

We assume that the partition’s reliability function is also governed by the Weibull 
distribution with the cluster scale parameter, τpartition, and the cluster shape param-
eter, βpartition.

We assume that the node MTTF is identical for all nodes, and that the same 
Weibull shape parameter applies to the nodes and to the cloud computing partition 
as a whole; and using βnode = βpartition = β, we obtain
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and the partitions’s MTTF:
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6.3.1.1 Cloud Computing Partition Reliability

Using Equation 6.8 with an estimated shape parameter, β = 0.8, and an 
MTTFnode = 36,000 h, we can compute the probability of node failure for each par-
tition (which corresponds to resource classes described in the previous section) 
over a time [0,T ]. Table 6.2 shows the computed reliability for the resource classes 
described above, which consist of partitions of the cloud computing system. The 
computed reliability for the short runtimes derived from the workload is very 
high—over 99% in all cases. To assess the effects of a longer runtime on reliability, 
we scaled the runtime by a factor of 100; and as shown in the last two columns of 
Table 6.2, reliability decreases as the number of nodes in the partition increases—
down to 0.73 for the 128-node partition.

While a 99% reliability is reasonably good, as runtime and the number of nodes 
in a partition increases, reliability will fall. To provide a higher reliability for long-
running and large-partition jobs, the cloud computing system could reserve a pool 
of hot-spare nodes to be used as failover nodes by the cloud computing system 
or application in the event of node failure. The reliability model for this scenario 
is a k-out-of-N system [5]. In this system, at least k out of N nodes must remain 
functional during the time [0,T ] in order for the entire system to be reliable. If 
the partition size is k, and (N − k) hot-spares are available for use when one of the k 
nodes fails, the resulting reliability of the N node partition can be computed. The 
resulting reliability function is then
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Table 6.2  Reliability of Cloud Computing Partitions

Resource 
Class

Node 
Count 1/μ (h) Reliability 100/μ (h) Reliability

1 1 0.0913 0.999 9.13 0.998

2 2 0.0941 0.999 9.41 0.996

3 4 0.1336 0.999 13.36 0.992

4 8 0.1012 0.999 10.12 0.987

5 16 0.1012 0.999 10.12 0.974

6 32 0.0987 0.998 9.87 0.951

7 64 0.0676 0.998 6.76 0.928

8 128 0.1738 0.992 17.38 0.730
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Using Equation 6.11, we can compute the prob-
ability of a node failure within a k-node cloud com-
puting partition if (N−k) spare nodes are available to 
take the place of a failed node. Table 6.3 shows the 
computed failure rate with a maximum runtime of 
20 h for a 128-node partition, which includes poten-
tially up to five spares.

From this table, it is clear that adding a few spares 
has a significant effect on improving reliability. Thus, 
to provide a good reliability level for a cloud comput-
ing system, a cloud computing system should provision 
a number of spares that can be quickly deployed to 
replace failed nodes.

6.4  Conclusions
In this chapter, we addressed two issues: given a workload, how many nodes are 
required for a cloud computing system to provide immediate service with a limited 
probability of blocking service requests; and once a set of resources are allocated, 
what is the probability of failure of a node in use, and what are the reliability effects 
of providing a set of hot-spare nodes. Combining a Generalized Erlang Loss Model 
with a historic workload, it is possible to compute dimensioning curves that can be 
used by a cloud computing provider to estimate the number of resources needed 
to satisfy requests during the busy period. By taking into account the inherent 
Weibull failure characteristics of a cloud computing system, as well as the number 
of nodes in a cloud computing partition, it is possible to calculate the reliability of 
the set of nodes over the lifetime of the task. By adding just a few hot-spare nodes, 
the reliability of long-running and large partitions can be increased significantly.
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Chapter 7

Abstractions for Cloud 
Computing with Condor

Douglas Thain and Christopher Moretti

7.1  Introduction
A cloud computer provides a simple interface that allows end users to allocate large 
amounts of computing power and storage space at the touch of a button. However, 
many potential users of cloud computers have needs much more complex than sim-
ply the ability to allocate resources. In scientific domains, it is easy to find examples 
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of workloads that consist of hundreds or thousands of interacting processes. A user 
who wishes to run such a workload on a cloud computer faces the daunting task of 
deciding how many resources to allocate, where to dispatch each process, when and 
where to move data, and how to deal with the inevitable failures. For this reason, 
many users with large workloads are reluctant to move away from the predictable 
environment of a single workstation or multicore server.

Abstractions are an effective way of harnessing large cloud computers while 
insulating the user from technical complexities. An abstraction is a structure that 
allows one to specify a workload in a way that is natural to the end user. It is then 
up to the system to determine how best to realize the workload given the avail-
able resources. This also allows the user to move a workload from one machine to 
another without rewriting it from scratch. The concept of abstraction is fundamen-
tal to computer science, and examples can be found in many software systems, such 
as compilers, databases, and filesystems.

Map-Reduce [9] is a well-known abstraction for cloud computing. The Map-
Reduce abstraction allows the user to specify two functions that transform and 
summarize data, respectively. If the desired computation can be expressed in this 
form, then the computation can be scaled up to thousands of nodes. The Map-
Reduce abstraction is well suited for analyzing and summarizing large amounts of 
data, and has a number of implementations of which the open-source Hadoop [6] 
is the most widely deployed.

But are there other useful abstractions? In our work with several scientific com-
munities at the University of Notre Dame, we have encountered a number of large 
workloads that are regularly structured, but do not fit the Map-Reduce paradigm. 
In each case, we found workloads that were easy to write on the chalkboard, pos-
sible to run on one machine, but very challenging to scale up to hundreds or thou-
sands of nodes. In each case, our research group worked to design an abstraction 
that could represent a large class of applications, and could execute reliably on a 
cloud computer.

In this chapter, we will describe the following set of abstractions, in a roughly 
increasing order of complexity:

 ◾ Map—Applies a single program to a large set of data
 ◾ All-Pairs—Computes a Cartesian product on two large sets of data
 ◾ Sparse-Pairs—Computes a function on selected pairs of two large sets of 

data
 ◾ Wavefront—Carries out a large dynamic programming problem
 ◾ Directed Graph—Runs a large graph of processes with multiple dependencies

We have implemented these abstractions on the Condor distributed processing 
system. We will begin with a short overview of Condor as a cloud computer, and 
then explain each abstraction in turn. For each, we will present a formal model, 
describe how the abstraction is implemented, and give an example of a community 
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that has used the abstraction to scale up an application to hundreds of CPUs. We 
conclude the chapter by discussing the relative power of each abstraction.

7.2  Condor as a Cloud Computer
Our foundation for this work is the Condor distributed processing system. Condor 
was first created in 1987 at the University of Wisconsin, and has remained in con-
tinuous development and deployment ever since [15,26]. At the time of writing, it 
was deployed at several thousand institutions around the world, managing several 
hundred thousand CPU cores [5,24]. At a typical university, the Condor software 
is deployed to all available machines, including desktop workstations, classroom 
machines, and server clusters, all of which are typically idle 90% of the day. Users 
queue jobs to run in the system, and Condor matches the jobs to run on machines 
that would otherwise go unused.

A large Condor pool can be considered a cloud computer. Like other cloud com-
puting systems, users request service from Condor, but do not care (and cannot 
control) exactly which resources are used to service that request. A job submitted 
to Condor could run on a desktop machine down the hall, or in a machine room 
at another institution. However, Condor is unlike other cloud computing systems 
in that it employs preemption [21]. A job running on a machine may be preempted 
if the machine’s owner returns to type on the keyboard or otherwise uses the CPU.

Figure 7.1 shows the natural variations found in our campus Condor pool over 
the course of July 2009. The dark “Owner” curve shows the number of CPUs cur-
rently in use by their owners, who are either typing at the keyboard or making 
extensive use of the CPU. The lighter “Condor” curve shows the number of CPUs 
currently harnessed by Condor. The lightest “Total” curve shows the total number 
of CPUs in the pool, which varies between 500 and 600. As can be seen, all of these 
values fluctuate considerable as machines are powered on and off, used during the 
work day, and harvested for batch workloads.
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Figure 7.1  Time variations in a Condor pool.
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Condor has been widely used to run large numbers of long-running com-
putations, typically scientific simulations. However, it is not as well suited to 
large numbers of tasks that are short running, data intensive, or both. Even in 
an unloaded system, it takes about 30 s from the time a job is submitted until 
it actually begins running on a machine. This is because Condor must medi-
ate the needs of many different stakeholders, including the machine owner, the 
job owner, and the pool manager. (Other cloud computing systems have similar 
latencies for resource allocation.) Because Condor is careful to clean up thor-
oughly after a job completes, there is no easy way to maintain state on a machine 
across multiple jobs.

To compensate for these properties, we have built an intermediate layer of 
software called Work Queue that provides fast execution and data persistence on 
top of Condor. Work Queue consists of two pieces: a Master and a Worker. A 
Worker is a simple process that is submitted to the Condor pool like an ordi-
nary batch job. Once running, it makes a network connection back to a Master 
process. The Master can send files to the Worker, execute programs, and retrieve 
outputs.

In this way, the Master can start a new program in milliseconds rather than 
30 s. Further, it can take advantage of a semi-persistent filesystem: if two consecu-
tive tasks require the same input data, it only needs to be sent to the Worker once. 
Of course, if Condor decides to evict the Worker process, it will kill any running 
processes and delete the local storage. The Master is able to detect these evictions, 
and reassign tasks to other Workers as needed.

Figure 7.2 shows how all of these pieces fit together. The end user is not exposed 
to any details of the cloud. Instead, he or she runs a command such as All–
Pairs or Wavefront corresponding to the desired abstraction. The abstraction 
examines the workload, decides how many Workers it can use, and submits them 
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Figure 7.2  Multiple abstractions sharing a Condor pool.
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as jobs to Condor. Condor decides what resources to allocate to each user, and 
each abstraction schedules tasks on whatever Workers become available. The result 
is a layered system, where each component has a distinct responsibility, as shown 
in Figure 7.3.

7.3  Map Abstraction
We will begin by describing the simplest abstraction—Map—and then work 
our way up to more complex abstractions. For each, we will give a formal defini-
tion, describe an example, and then explain a significant result achieved using the 
abstraction.

Map( data D[i], function F(data x))
returns array R such that R[i] = F(D[i])

Map applies a function F to all elements of a dataset D, yielding a result data-
set R. Of course, Map and similar operations have been available in functional 
programming languages, such as LISP [23], for many years, and have long been 
recognized as a suitable primitive for parallel programming [7,13]. Map is a natural 
starting point for exploring parallelism.

In practice, our users invoke a stand-alone program called Map that accepts two 
arguments: the function is the name of a conventional program that transforms 
one file, and the array is a file listing the names of files to be mapped. In contrast 
to Map-Reduce [9], which interfaces with C++, and Hadoop [6], which interfaces 
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with Java, Map and the rest of our abstractions use ordinary executable programs as 
“functions.” This allows end users to use whatever language they are most comfort-
able with, and often are able to plug in existing tools without recoding.

Figure 7.4 shows an application of Map used extensively in biometrics. A 
common task is to convert a large set of iris images of about 300 kB each into 
iris codes of about 20 KB each. (An iris code is a compressed binary representa-
tion of an iris actually used for archival and comparison [8].) A program named 
ConvertIrisToCode can carry out one conversion in about 19 s.

To execute this workload, the user runs

Map IrisListing ConvertIrisToCode

Logically, this means to run ConvertIrisToCode once for each entry in 
IrisListing:

ConvertIrisToCode iris001.jpg iris001.code
ConvertIrisToCode iris005.jpg iris005.code
ConvertIrisToCode iris008.jpg iris008.code
...

Although one could accomplish a Map by simply submitting batch jobs, our 
implementation of the abstractions solves a number of technical challenges that 
would otherwise make using the system very challenging. It caches the execut-
able and other required libraries on the execution nodes, detects failed or evicted 
Workers, detects compatibility failures with various machines, aborts straggling 
Workers, preferentially assigns tasks to faster nodes, and deals with network out-
ages and other failures. In this way, the user can focus on their desired work instead 
of on the details of distributed computing.

A typical example of an unoptimized production run of Map on our cloud con-
verted 58,639 iris images to codes in 2.4 h, using anywhere between 100 and 400 
Workers at any given time. The same workload would have taken 309 h on a single 
CPU, for an effective speedup of 125×. By making use of the Map abstraction on 
the cloud, the end user can accomplish in a few hours what previously took over a 
week.
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Figure 7.4  Map abstraction applied to biometrics.
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7.4  All-Pairs Abstraction
Building on the idea of applying a function to a one-dimensional array of sin-
gle inputs, we move on to All-Pairs, an abstraction in which each function call is 
applied onto a pair of inputs.

All-Pairs( data A, data B, function F( data x, data y))
returns matrix R such that R[i, j] = F(A[i], B[j])

The All-Pairs abstraction applies a function F to each pair of elements in data-
sets A and B, yielding a result matrix R, where each cell is the result of comparing 
two items. A common variant of All-Pairs is to let A = B, in which case it is often 
only necessary to compute half of the result matrix. Previous researchers have stud-
ied All-Pairs theoretically [27] and on small clusters [4]. Our contribution is to scale 
the problem up to hundreds of nodes in the cloud [16].

As with the previous abstraction, the user provides a “function” in the form 
of a program that compares two input files. The datasets A and B are text files 
listing the remaining files to be compared. For small problems, the result matrix 
is emitted as a plain text file; for large problems, it is stored as a distributed data 
structure.

All-Pairs problems occur in several fields, such as biometrics, bioinformatics, 
and data mining. We will focus on biometrics here. A common problem in the 
field is evaluation of new algorithms developed to improve the state of the art in 
personal identification. One way to do this is to assemble a large corpus of images 
and compare all of them to each other using the new algorithm. Results obtained 
with different algorithms on the same set of images are directly comparable for 
overall effectiveness.

Figure 7.5 continues with the application from the previous example. Using Map, 
the user has already reduced 58,639 iris images into an equal number of compact 

3.6 billion

Iris comparisons

0.02 s per pair

F

A[0]

A[1]

A[2]

A[3]

B[0] B[1] B[2] B[3]

Figure 7.5  All-Pairs abstraction applied to biometrics.
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iris codes. He or she has written a program CalculateIrisSimilarity 
that computes the masked Hamming distance between two iris codes. The pro-
gram can complete approximately 50 such comparisons per second. An All-Pairs 
comparison of these images against each other would consist of 3.4 billion func-
tion executions, 795 days of serial computation, and 6.8 TB of aggregate input 
requirements.

Such a workload is impractical to complete serially, so scaling up to the cloud 
is required. To invoke the All-Pairs abstraction, the user specifies the input sets and 
the comparison function:

AllPairs SetA SetB CalculateIrisSimilarity

The abstraction handles all of the computation and data management. Using a 
model that takes into account function computation time and data element sizes 
it calculates how many resources should be used for the workload and how much 
work they should be given at a time to balance queuing overhead and job run-
time. It then distributes data to chosen resources and assigns computation to these 
resources. If the node has multiple cores, the access pattern is carefully chosen to 
maximize the cache hit rate. The final results are stored in a large distributed array, 
which may be accessed directly or downloaded to a local file.

Developing a model for the All-Pairs problem is a critical component for 
several reasons. First, it relieves the user of the responsibility of determining 
the number of resources. As problems scale up in size, the number of resources 
required do not necessarily scale up in kind, and thus users may make poor deci-
sions—underprovisioning the system hurting performance, or overprovisioning 
the system increasing overhead and wasting resources. Second, the ability to pre-
dict very general approximate runtimes based on simple diagnostic benchmarks 
for work allows the system to manage running processes and detect jobs that are 
not making progress within a reasonable time (whether due to bugs, hardware 
misconfigurations, etc.) automatically instead of requiring a user to aggressively 
monitor his job.

Our largest production run of All-Pairs compared 58,639 iris codes generated 
from the Iris Challenge Evaluation 2006 [2] dataset all to each other. To our knowl-
edge, this is the largest such result ever computed on a publicly available dataset. 
The abstraction ran in 10 days on a varying set of 100–200 nodes in the cloud, for 
an effective speedup of about 80× [16].

7.5  Sparse-Pairs Abstraction
There are many workloads that involve the comparison of large sets of objects, but 
do not require all possible comparisons. These workloads require the Sparse-Pairs 
abstraction.
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Sparse-Pairs( data A, data B, function F( data x, data y), pairs P)
returns array R such that F(A[P[i].x], B[P[i].y])

The Sparse-Pairs abstraction applies a function F to pairs of elements in sets A 
and B given by the set P, yielding a result set R. Sparse-Pairs fits between the one-
dimensional array abstraction of Map, and the two-dimensional array abstraction 
of All-Pairs. In this way, it is a bit like superimposing the Bag-of-Tasks [3,22] on top 
of the one-dimensional structure of Map.

Sparse-Pairs problems occur frequently in the field of bioinformatics, particu-
larly in the problem of genome assembly. Very briefly, genome assembly is the prob-
lem of assembling many small fragments of DNA (hundreds of bytes each) into one 
long string (billions of bytes) that represents the entire genomic code of an organ-
ism. This is much like putting together a jigsaw puzzle: one must compare many 
pieces to each other in order to determine which should be adjacent.

In principle, one could run an All-Pairs abstraction to compare all fragments to 
each other, and then match up the pieces with the best scores. However, for a suf-
ficiently large problem, this is computationally infeasible. Fortunately, there exist 
various heuristics that can be used to filter out the vast majority of these compari-
sons [19], leaving only a list of “candidate” sequences to compare. This candidate 
list becomes the P set for a Sparse-Pairs workload, as shown in Figure 7.6.
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Figure 7.6  Sparse-Pairs abstraction applied to bioinformatics.
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The principal complication for Sparse-Pairs is that it is not generally feasible to 
optimize a bulk transfer of data files to many nodes, because while each data item is 
used multiple times, the number of repetitive uses may be far less than the number 
of nodes. Thus, the Master must be active in transferring data, which potentially 
creates a single bottleneck at the Master’s outgoing network link. Additionally, for 
fast-finishing functions, even if the Master has sufficient bandwidth, the network 
latency may be too great to keep a sufficient number of Workers satiated.

The first issue can be alleviated with compressed data—in bioinformatics, the 
language {ACGT} can easily be compressed to two bits per base pair—or multiple 
Masters. The second can be improved by grouping together many functions into a 
single “task” sent to the Worker in order to prevent numerous high-latency round-
trips in sending data for potentially thousands of functions.

Two data-related factors differentiate Sparse-Pairs from both Map and All-
Pairs. First, although the pairs are sparse, each sequence is still used many times 
throughout the workload. Thus, while the pairs to be computed could be written 
in full to files in which every pair was a single element, and Map could then be run 
using that input, this is inefficient. Instead, if the set of sequences is not too large 
for the main memory, the sequences can be stored only once in their datafile and 
are read into the Master’s memory to construct the tasks for the Workers on the fly 
as the workload advances.

A Sparse-Pairs result is a subset of a corresponding All-Pairs result. All-Pairs 
can be optimized to take advantage (via data transfer and assignment of computa-
tion to resources) of the fact that every single computation pair will be completed. 
However, it is unnecessary to complete an entire All-Pairs problem for every case of 
Sparse-Pairs; and for particularly sparse sets of pairs, it may be very inefficient to do 
so even if the All-Pairs abstraction is highly optimized. The regular structure of All-
Pairs also allows the interface to the abstraction to require only the function and 
the names of the full sets. Sparse-Pairs only transmits the designated pairs needed 
for each computation.

Our Sparse-Pairs implementation is in regular use with a bioinformatics 
research group at Notre Dame. Our largest assembly so far used 8 million sequences 
extracted from a completed Sorghum bicolor genome and completed alignments for 
84 million candidate pairs. (The equivalent All-Pairs would have required 64 tril-
lion comparisons.) Using 512 CPUs, the assembly is completed in just under 2 h, 
with an effective speedup of 425× [17].

7.6  Wavefront Abstraction
So far, each of the abstractions discussed has allowed computation to be completed 
in an arbitrary order. However, more complex abstractions, such as Wavefront, have 
dependencies, requiring one stage of the computation to complete before another 
can proceed.
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Figure 7.7 shows the Wavefront abstraction, which is a recurrence relation in 
two dimensions. Given two datasets as original input, and a function that takes 
three inputs and returns a single output, calculate the function at each of n2 pos-
sible states of the system, where each state is defined by the results of its predecessor 
states. A state’s predecessors are its neighbors in a matrix, whose values have been 
computed by previous function executions. The problem can be generalized to mul-
tiple dimensions. Wavefront has previously been studied in the context of multicore 
processors [1], which our work has extended to clusters and clouds of multicore 
machines [28].

In practice, the user invokes Wavefront by specifying the input datasets and the 
recurrence function. As before, the “function” is an arbitrary program that accepts 
files on the command line

Wavefront XData YData RecurrenceFunction

Examples of Wavefront problems occur in game theory, economics, bioinfor-
matics, and any problem that involves dynamic programming. In game theory, a 
recurrence table can be constructed to enumerate all possible states of a simulation 
with given inputs. Each cell in the table is dependent on its previous neighbor 
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Figure 7.7  Wavefront problem applied to bioinformatics.
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states. With a completed table, economists can see the start states, all possible final 
states, and all possible paths within the simulated context.

A common use of Wavefront in bioinformatics is the alignment of two very 
large DNA strings. This is done by constructing a dynamic programming table, 
where each cell gives the “score” of the alignment with each string offset by the 
coordinates of that cell. The alignment of two complete genomes (billions of bytes) 
is intractable serially. However, the entire problem can be broken up into a number 
of smaller sub-alignment problems. Each subproblem computes the dynamic pro-
gramming table for a fragment of the genome, and then passes the boundary value 
to its neighbor.

In previous abstractions, the ability to predict runtimes of work units was used 
primarily to provision resources. Determining which processes have run too long 
is useful for detecting misconfigured nodes, but a slow node at the beginning or 
middle of the workload does relatively little damage to the overall performance 
because there is still a high degree of concurrency. In Wavefront, however, predict-
ing runtimes takes on extra importance. A slow-finishing work unit in Wavefront 
propagates its delay through to all of its dependents. This is especially harmful 
early in a workload, when most or all of the remaining computations are depen-
dents, and there is already limited concurrency available in the problem. To combat 
this, Wavefront makes use of the Work Queue’s ability to remove, reschedule, and 
restart tasks that have run significantly beyond their predicted completion time.

Using the Wavefront abstraction, we were able to complete the alignment of 
two variants of the Anthrax genome measuring 5.4 million bytes. Each genome 
was split into 100 fragments of about 54,000 bytes, yielding a 100 × 100 Wavefront 
problem. Using the cloud, the problem completed in 8.3 h instead of 13 days, 
achieving an effective speedup of 38×.

7.7  Directed Graph Abstraction
The abstractions that we have presented so far have a highly regular structure. 
However, many users have applications that can only be described as a directed 
graph of programs. There exist a number of workflow languages that are capable of 
expressing arbitrary graphs of tasks, such as Dagman [25], Pegasus [10], Taverna 
[18], Swift [29], BPEL [14], and Dryad [12], to name a few. Each of these lan-
guages has its own syntax and is capable of connecting to a number of remote 
systems.

However, we often find that end users are reluctant to learn an entirely new lan-
guage simply to run some programs in a particular distributed system. Fortunately, 
many are already using a coordination language that easily expresses parallelism. 
The traditional Make [11] tool is typically used to drive the compilation and link-
ing of complex programs, but it can be used to drive any arrangement of programs 
and files.



Abstractions for Cloud Computing with Condor  ◾  165

To this end, we designed a tool called Makeflow that implements the Directed 
Graph abstraction using the same basic language as Make. In many cases, users 
can take their existing Makefiles and use them unmodified with Makeflow. The 
Makeflow program reads in a directed graph, and then submits jobs individually 
to be executed. By changing command-line options, the same directed graph can 
be run on a single multicore computer, on a Condor pool, or on the Work Queue 
system. Makeflow keeps a transaction log, so that in the event of failure, the entire 
workload can be picked up where it was left off, without losing or duplicating jobs.

Figure 7.8 shows a very small example of a Makeflow. The user gives a set of 
rules, each one stating a program to run, along with the files that it requires and 
the files that it uses. In the example, the program split accepts the file all.dat 
as input and produces the files a.dat and b.dat as output. Each of these is then 
consumed by the process program.

Figure 7.9 shows a larger example of a real Makeflow written to support a bio-
informatics application. In the figure, circles represent programs and squares rep-
resent the files that they read and write. In this particular example, the topmost 
program reads a large input file and splits it into many pieces. Each piece is then 
processed by a genomic search tool, which creates three different outputs per piece. 
The results must be joined together and analyzed in order to produce a final result. 
The system is capable of running workloads consisting of hundreds of thousands 
of nodes.

Makeflow is currently used as the primary execution engine for a bioinformatics 
research portal at the University of Notre Dame. A typical Makeflow job executed 
via the portal consisted of 704 tasks dispatched to the Condor pool and ran on 
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between 25–56 cores on a designated cluster. The overall workflow consumed 686 
CPU-hours in 17 h of wall clock time, reducing the runtime from nearly a month 
down to less than a day.

7.8  Choosing the Right Abstraction
As we have mentioned above, some abstractions can be interchanged with each 
other, with some loss of efficiency. The formal relationship between different 
abstractions, and how to choose among them, remains an open problem in our 
field. How, then, can a user choose which one to use for a given problem? So far, 
we have worked closely with our potential users to choose the appropriate abstrac-
tion for their needs. With the growing suite of abstractions, though, it is becoming 
important that users in various fields can select the right abstraction from the suite 
based on their knowledge of their own problem.

The intent of providing abstractions is for the user to define a large work-
load in a simple manner. The user should be able to use codes that are very 
similar or identical to their serial implementations. The user should be able to 
garner good performance without having to separately implement complicated 
resource management, data management, and fault tolerance mechanisms into 
each application.

Abstractions on the whole shield the user from difficult details about execut-
ing a workload in a distributed environment. However, it is often the case that the 
abstraction that fits the problem best—either due to the design of the abstraction 
or the way a user has defined the problem—will be more efficient due to less trans-
formation required to scale up to the cloud and because of greater possibilities for 
problem-specific solution optimizations.

It is our general suggestion that a user should choose the abstraction that fits the 
way he or she already thinks about his problem. This most easily fulfills the intent 
of running a workload as is, and simply scaling up to a cloud while abstracting away 
the messier details of the larger scale. This also usually requires the least amount 
of user overhead to handle the details of transforming his serial application into an 
entirely different problem before scaling it up.

An example of additional work required to transform the problem is seen when 
comparing Wavefront to a general directed acyclic graph (DAG). A particular piece 
of a Wavefront computation can be referenced simply by coordinates in the results 
table. This ordered pair, when combined with the problem definition, is sufficient 
to enumerate all incoming and outgoing edges in the DAG. The more general DAG 
abstraction would need to define the problem in a less efficient manner, costing 
execution time to complete the transcription into the more general definition and 
also the disk/memory resources to store it. Even then, when executing, a general 
DAG abstraction would still not have the advantages of automatically being able to 
optimize disk and memory management to the rigid patterns of a Wavefront prob-
lem. Thus, it only makes sense for a user who is already looking at his workload as 
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a Wavefront problem to use the abstraction that is most specific for that problem—
because it fits with how he or she has already designed his approach.

This is, however, only a general suggestion, and must be reevaluated even when 
scaling up the same workload. An example of a case in which this is important was 
shown above when discussing the Sparse-Pairs problem. A scientist may start with 
a fairly dense set of pairs to compute between two sets, and decide to use the All-
Pairs problem. However, as the problem is scaled up and the set of pairs becomes 
sparser, even though the All-Pairs abstraction is still available and will still solve 
the problem, it no longer is the appropriate choice. Generalizing an arbitrary set of 
computation pairs into the superset of computation pairs will increase the amount 
of work he or she requires significantly. Not only will it require much more time 
to compute all the extraneous pairs that he is not interested in, but the abstraction 
solving that problem will provision more remote resources (data and worker nodes, 
for instance) to solve the larger version (Table 7.1).

7.9  Conclusion
In this chapter, we have demonstrated several abstractions for cloud computing. 
An abstraction allows an end user to express a very large workload in a com-
pact form, allowing the underlying system to handle the complexity of allocating 
resources, dispatching tasks, managing data, and dealing with failures. For each 
abstraction, we have shown a scientific application that gains significant benefit 
from the cloud.

Our suite of abstractions is not necessarily complete. Our experience so far sug-
gests that a given community of researchers is likely to engage in the same kinds 

Table 7.1  Summary of Typical Workloads

Application Problem Size
Runtime on 

One CPU
Runtime 
in Cloud

Map Transform to 
iris code

58,639 irises 12.8 days 2.4 h

All-Pairs Compare iris 
codes

58,639 irises 2 years 10 days

Sparse-Pairs Sequence 
overlapping

84 million 
pairs

35 days 2 h

Wavefront Long-sequence 
alignment

5.3 million 
bytes

13 days 8 h

Directed 
Graph

Parallel genome 
search

704 nodes 686 h 17 h
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of computations, albeit with different underlying functions and different scales 
of data. This is only natural, because both collaborating and competing research-
ers may use the same underlying techniques and must compare their work to one 
another. For this reason, one or two abstractions may be sufficient to serve a very 
large community of people in a given field of study. At our institution, Map and All-
Pairs are common tasks in biometrics research, while Sparse-Pairs and Wavefront 
are useful for bioinformatics. We have found that Makeflow has broad applications.

We have implemented these abstractions in the Condor distributed system 
because it is widely used to share computing power in academic settings. However, 
the same concepts can be applied to other systems. For example, the Work Queue 
system can be deployed on any kind of cloud computer in order to run the same set 
of abstractions. Further, abstractions need not be implemented with plain programs 
and files as we have done, but could also be implemented in dynamic languages, 
such as Java or C#, using formal functions and datatypes. Such implementations 
would be more strongly typed and have less invocation overhead, but would of 
course be restricted to the given language.

For more information about these abstractions, the reader may consult our 
research publications [16,17,20,28]. The code implementing these abstractions can 
be downloaded from the Cooperative Computing Lab at the University of Notre 
Dame at http://ccl.cse.nd.edu. The Condor distributed computing software is avail-
able from the University of Wisconsin at http://www.cs.wisc.edu/condor

Acknowledgments
This work was supported in part by the National Science Foundation grants 
CCF-0621434 and CNS-0643229. We thank Professor Patrick Flynn, Karen 
Hollingsworth, Robert Mckeon, and Tanya Peters for their collaboration on bio-
metrics applications. We thank Professor Scott Emrich, Michael Olson, Ben Drda, 
and Rory Carmichael for their collaboration on bioinformatics applications. We 
thank Ryan Jansen, Joey Rich, Kameron Srimoungchanh, and Rachel Witty for 
testing early versions of our software.

References
 1. J. Anvik, S. MacDonald, D. Szafron, J. Schaeffer, S. Bromling, and K. Tan. Generating 

parallel programs from the wavefront design pattern. In IEEE International Parallel and 
Distributed Processing Symposium (IPDPS), Fort Eanderdale, FL, p. 165, 2002.

 2. Iris Challenge Evaluation 2006, National Institute of Standards and Technology http://
iris.nist.gov/ice/ice2006.htm, July 2009.

 3. D. Bakken and R. Schlichting. Tolerating failures in the bag-of-tasks programming 
paradigm. In IEEE International Symposium on Fault Tolerant Computing, Montreal, 
Canada, 1991.



170  ◾  Cloud Computing and Software Services

 4. A. Radenski, B. Norris, and W. Chen. A generic all-pairs cluster-computing pipeline 
and its applications. In Proceeding of the International Conference on Parallel Computing, 
Delft, the Netherlands, 1999.

 5. Condor World Map. http://www.cs.wisc.edu/condor/map, July 2009.
 6. The Hadoop Project. http://hadoop.apache.org, July 2009.
 7. G. E. Blelloch. Scans as primitive parallel operations. IEEE Transactions on Computers, 

C-38(11):1526–1538, November 1989.
 8. J. Daugman. How iris recognition works. IEEE Transactions on Circuits and Systems for 

Video Technology, 14(1):21–30, 2004.
 9. J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large cluster. In 

Operating Systems Design and Implementation (OSDI), San Francisco, CA, 2004.
 10. E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta et al. 

Pegasus: A framework for mapping complex scientific workflows onto distributed sys-
tems. Scientific Programming Journal, 13(3):219–237, 2005.

 11. S. Feldman. Make—A program for maintaining computer programs. Software: Practice 
and Experience, 9:255–265, November 1978.

 12. M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: Distributed data parallel 
programs from sequential building blocks. In Proceedings of EuroSys, Lisbon, Portugal, 
March 2007.

 13. S. L. P. Jones. Parallel implementations of functional programming languages. The 
Computer Journal, 32:175–186, April 1989.

 14. D. Jordan and J. Evdemon. Web services business process execution language version 
2.0. OASIS Standard, April 2007.

 15. M. Litzkow, M. Livny, and M. Mutka. Condor—A hunter of idle workstations. In 
International Conference on Distributed Computing Systems (ICDCS), San Jose, CA, 
June 1988.

 16. C. Moretti, H. Bui, K. Hollingsworth, B. Rich, P. Flynn, and D. Thain, All-Pairs: 
An abstraction for data intensive computing on campus grids. IEEE Transactions on 
Parallel and Distributed Systems, accepted for publication in 2009.

 17. C. Moretti, M. Olson, S. Emrich, and D. Thain. Scalable Module Genome Assembly 
on Campus Grids. Technical Report 2009-04, Computer Science and Engineering 
Department, University of Notre Dame, Notre Dame, IN, 2009.

 18. T. Oinn et al. Taverna: A tool for the composition and enactment of bioinformatics 
workflows. Bioinformatics, 20(17):3045–3054, 2004.

 19. M. Pop, S. L. Salzberg, and M. Shumway. Genome sequence assembly: Algorithms and 
issues. Computer, 35(7):47–54, 2002.

 20. B. Rich and D. Thain. DataLab: Transactional data parallel computing on an active 
storage cloud. In IEEE/ACM High Performance Distributed Computing, Boston, MA, 
pp. 233–234, 2008.

 21. A. Roy and M. Livny. Condor and Preemptive Resume Scheduling. Kluwer Academic 
Publishers, Norwell, MA, 2004.

 22. D. da Silva, W. Cirne, and F. Brasilero. Trading cycles for information: Using rep-
lication to schedule bag-of-tasks applications on computational grids. In Euro-Par, 
Klagenfort, Austria, 2003.

 23. G. Steele. Common LISP: The Language. Digital Press, Woburn, MA, 1990.
 24. D. Thain and M. Livny. How to measure a large open source distributed system. 

Concurrency and Computation: Practice and Experience, 18(15):1989–2019, 2006.



Abstractions for Cloud Computing with Condor  ◾  171

 25. D. Thain, T. Tannenbaum, and M. Livny. Condor and the grid. In F. Berman, A. Hey, 
and G. Fox, eds., Grid Computing: Making the Global Infrastructure a Reality. Wiley, 
New York, 2003.

 26. D. Thain, T. Tannenbaum, and M. Livny. Distributed computing in practice: The con-
dor experience. Concurrency and Computation: Practice and Experience, 17(2–4):323–
356, 2005.

 27. K. Theobald, and G. Gao. An efficient parallel algorithm for all pairs examination. In 
ACM/IEEE Conference on Supercomputing, Albuquerque, NM, pp. 742–753, 1991.

 28. L. Yu, C. Moretti, S. Emrich, K. Judd, and D. Thain. Harnessing parallelism in mul-
ticore clusters with the all-pairs and wavefront abstractions. In IEEE High Performance 
Distributed Computing, Munich, Germany, pp. 1–10, 2009.

 29. Y. Zhao, J. Dobson, L. Moreau, I. Foster, and M. Wilde. A notation and system 
for expressing and executing cleanly typed workflows on messy scientific data. In 
SIGMOD, Baltimore, MD, 2005.





173

Chapter 8

Exploiting the Cloud 
of Computing 
Environments: An 
Application’s Perspective

Raphael Bolze and Ewa Deelman

Contents
8.1 Introduction ............................................................................................. 174
8.2 Computing Environments ........................................................................ 174

8.2.1 Institutional Grid..........................................................................175
8.2.2 Cloud Computing ........................................................................178
8.2.3 Volunteer Computing ...................................................................180
8.2.4 Comparison of the Different Platforms .........................................182

8.3 Application Perspectives ...........................................................................183
8.3.1 Highly Parallel Applications .........................................................184
8.3.2 Tightly Coupled Application ........................................................185
8.3.3 Scientific Workflows .....................................................................186

8.4 Discussion ................................................................................................ 191
8.5 Conclusions .............................................................................................. 191
References .........................................................................................................196



174  ◾  Cloud Computing and Software Services

8.1  Introduction
Traditionally, scientists have been using individual workstations, in-house com-
putational clusters, or campus high-performance resources to conduct their sci-
entific computations. When necessary, they applied for cycles on the top national 
resources hosted by supercomputing centers and national laboratories. In the past 
two decades, with the advancement of broad resource sharing technologies such 
as Condor [1] and Globus [2], efforts such as SETI@home [3], and more recently 
Cloud technologies [4], scientists are faced with an ever-expanding choice of com-
puting platforms each with its own benefits and drawbacks related to performance, 
cost, ease of use, and other characteristics. Having this significant number of 
computational options is a great opportunity for computational sciences provid-
ing resources that can scale up with the ever-expanding data collections and ever-
increasing computational needs of today’s applications.

In this chapter, we examine different types of computing environments, focus-
ing on their characteristics and providing example deployments. We also describe 
different classes of scientific applications that are being used across the domains of 
science today and illustrate them with examples (Section 8.2). We focus on three 
main classes of applications including loosely coupled “bag of tasks” computational 
paradigms, tightly coupled parallel codes, and computational workflows (Section 
8.3). Finally, we provide an analysis of what computational environments suit par-
ticular types of applications. The hope is that the analysis will provide domain 
scientists with the necessary information to make decisions regarding their choice 
of computing environments.

8.2  Computing Environments
This section presents the “cloud” of computing environments available to scientists. 
Today, we can identify three main types of cyberinfrastructures that can be con-
sidered by scientists when reaching for external resources to support computations.

First, we consider Institutional Grids. Those distributed platforms have received 
considerable amount of attention for more than a decade and today several deploy-
ments exist in production. These grids can have a national or even worldwide 
reach. Among them are EGEE [5], PRAGMA [6], TeraGrid [7], Open Science 
Grid (OSG) [8], DutchGrid [9], and others. These grids rely on the funding from 
major institutions (the National Science Foundation, the Department of Energy, 
the European Commission, etc.). These institutions provide the infrastructure and/
or the funds to build and maintain these distributed grid deployments.

More recently, cloud computing has become a buzzword for on-demand com-
puting provided mainly by industry. Among the main cloud providers are Amazon 
[10], Google [11], IBM [12], Microsoft [13], and others. These types of platforms 
are often referred to as Utility grids [14] and tend to push the vision of everything 
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as a service (*aaS). Of course, these platforms also come with a business model and 
provide a variety of services at a specified price and quality of service.

Finally, there is public computing or volunteer computing such as the World 
Community Grid [15] or other Desktop Grids [16] that use the processing and stor-
age resources provided by volunteers from the general public to help scientists. The 
idea is to enroll volunteers and use their spare computing time and storage space to 
perform scientific computations.

In Sections 8.2.1 through 8.2.3, we present the main characteristics of three 
infrastructures that rely on institutions, industry, and the public to provide compu-
tational capabilities. We point out their respective strengths and weakness and we 
highlight the use requirements from the point of view of a scientific user.

8.2.1 Institutional Grid
Institutional Grid Computing is designed to address large-scale computational 
problems using a network of shared resources. The major motivation is to use 
aggregated resources that can include computing, storage, and network, and 
are provided by multiple geographically distributed institutions. These grids are 
mainly focused on integrating existing resources with their hardware, operating 
systems (OSs), local resource management, and security infrastructure in order to 
form a virtual organization (VO) [2]. For example, in the OSG [8] or EGEE [5], 
when a project joins a VO, it contributes some of its own resources to the overall 
collaboration while being able to take advantage of the other resources shared 
within the organization. However, the resource provider maintains control over 
their own resources and may decide how and when to share them with others. 
This system works on the principle that not all the resources are needed at the 
same time, and when a project does not need its own resources, these unutilized 
computing cycles are made available to others in the broader collaboration/VO.

Other examples of Institutional Grids are the TeraGrid [7] and DEISA [17], 
which provide a large-scale computational platform for a number of different sciences.

Instead of funding individual clusters or high-performance servers for indi-
vidual projects, grids pool together financial resources to deliver high-performance 
computing (HPC) to a broad range of applications. As an example, Figure 8.1 
shows the variety of scientific applications running on EGEE today. Initiatives 
such as the TeraGrid and DEISA are building a cooperative HPC ecosystem, and 
research projects can apply for allocations of compute cycles that allow them to 
execute jobs on particular HPC centers or across a number of these centers.

Most grid deployments adopt a layered architecture [2] for the infrastructure. 
Figure 8.2 presents one possible high-level view of these layers. The hardware layer 
reflects the physical component of the infrastructure, this includes the characteris-
tics of the processor or cluster, its architecture, and all the specific physical machine 
attributes that fully describe the platform. The network layer covers the connectiv-
ity of the distributed resources orchestrated in the platform, it provides information 
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about the latency and bandwidth of the links, the network protocol, etc. The data 
storage layer illustrates all the storage and file system space available and also the 
protocol to access the data across the different resources. Finally, the software layer 
covers a large spectrum of logical components from the middleware that manages 
the infrastructure to the scientific application running on the platform.

The Institutional Grid provides several benefits as follows:

 ◾ Support for the scientific community and resource providers. As the 
Institutional Grids are designed to serve multiple projects and are hosted in 
several sites, there exists a community of experienced users and providers who 
can offer help and advice. As an example, there are the EGEE User forums 
[19] and many training events are organized [20]. The OSG maintains a Grid 
Operation Center, and the TeraGrid maintains a help desk and other means 
of providing support and outreach [7].

 ◾ There is almost no restriction regarding the type of application that can be 
run on the infrastructure. In the most part, batch execution through queue 
systems is supported, but there are also solutions to support more interactive 
applications with interactive execution [21–23].

Platform

Software

Data storage

Network

Hardware

Figure 8.2  Grid layers and services.

High-energy physics

Infrastructure
Others
Multidisciplinary VOs
Computational

chemistry

Figure  8.1  Number  of  users  per  application  domain.  (From  EGEE:  CIC 
Operations  Portal,  http://cic.gridops.org/index.php?section=home&page=volist. 
With permission.)
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 ◾ Resources are dedicated when available. It means that when a job is submitted 
into the queue management system, it will execute on dedicated resources 
when released from the queue.

 ◾ Diversity and large scale are also two strengths of Institutional Grids. There 
are many sites participating in the grid and so there is potentially a large 
number of resources that can meet user requirements in terms of character-
istics and availability.

 ◾ Institutional Grids are collaboration-oriented and provide a secure model to 
share data [2]. The model has been built on the idea that giving access to 
shared space and distributed computing resources helps researchers from dif-
ferent teams conduct joint scientific projects [24].

Despite all the benefits listed above, Institutional Grids also suffer from some draw-
backs as follows:

 ◾ The Institutional Grid is a shared environment, in the sense that resources are 
made available to many users belonging to various collaborations. Thus, users 
compete for resources. When a user’s job is submitted to the system, it is placed 
in a batch queue where it is prioritized based on the site policies. The start time 
of the job will depend on the load and the scheduling policy of the system [25].

 ◾ The environment and the middleware are in a way rigid and constrained. 
Institutional Grids are designed to serve many domain scientists, including 
those studying archeology, astronomy, earth sciences, finance, life sciences, etc. 
[5] As a result, grids provide a generic software execution environment and tools. 
This leaves users to interface their applications to the existing middleware, 
which can be difficult and usually requires a significant amount of learning. To 
help alleviate this problem, high-level tools are being developed to assist users. 
Among them are workflow management systems [26–28] and application-level 
interfaces [29,30]. Institutional Grids also spend a significant amount of effort 
on user outreach and education helping new users take advantage of the distrib-
uted resources. Finally, scientific communities often come together to provide 
community-based infrastructure such as science portals [31] to make it easier 
for a large number of users to run common applications easily [32].

 ◾ Variability, evolution, and changeability of the grid middleware and the com-
puting environment. Grid software has been evolving over time to match 
the needs of the community and the understanding of the computational 
platform. For example, the latest Globus Toolkit, which is widely used on 
today’s infrastructure, has been released in various versions over the years 
(in sometimes incompatible ways) providing at times custom interfaces (GT 
2.0), relying on a standard that was not supported in the long-term (OGSI—
and the GT3.0) release. This is the same case with EGEE and its middleware 
gLite [33]. Users are thus left struggling to adapt their applications to the 
new middleware as the older software releases are no longer supported.
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8.2.2 Cloud Computing
Recently, cloud computing has emerged as a new alternative for scientists to acquire 
the computing and storage resources they need. There is still no widely accepted 
definition for cloud computing but several common points of view are shared: (1) 
it is scalable and elastic, a user can have as much or as little of a service as he or she 
wants at any given time; and (2) it has a built-in pricing model, it lets users pay as 
they go for the services they are asking for. In contrast to the Institutional Grid, 
cloud computing brings its own stack of components and does not try to integrate 
and glue the existing infrastructure provided by several sites. Clouds use vitualiza-
tion, which homogenizes differences in the underlying hardware and software. As 
a result, they present a configurable environment in terms of the OS and software 
stack with the virtual machine (VM) as the foundation.

It is clear that cloud computing inherits from the previous decade of research 
and development in: grid computing, service-oriented architecture, and virtualiza-
tion. Cloud computing is often depicted as three layers (Figure 8.3) [14]: Platform-
as-a-Service (PaaS), Software-as-a-Service (SaaS), and Infrastructure-as-a-Service 
(IaaS), but many definitions also include some other semantic considerations and 
everything as a sService (*aaS). The PaaS layer points out the ability to build a 
computing platform with storage capacity and applications as a service. It includes 
tools and APIs to quickly build up service-based applications; examples of PaaS are 
the Google App Engine [11], SalesForce Apex Language [34], and others. The SaaS 
layer refers to any kind of application available to the user and deployed as a service 
reusable by any user of the cloud. Google Apps [35] and SalesForce CRMs [36] are 
examples of such services. In the case of scientific computing, it could be a call to a 
scientific application or the stack of software needed to deploy the application. The 
IaaS designates the ability to construct a complete infrastructure with a comput-
ing server and storage space. GoGrid [37] or Amazon with Amazon EC2 [10] and 

Platform as a Service
(PaaS)

Software as a Service
(SaaS)

Infrastructure as a Service
(IaaS)

Figure 8.3  Cloud layer, everything as a service. (From Youseff, L. et al., Toward a 
unified ontology of cloud computing, in Grid Computing Environments Workshop 
(GCE ’08), Austin, TX, 2008. With permission.)
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Amazon S3 [38] services are an implementation of such services and provide com-
puting resources and storage space, respectively. In addition to cloud computing 
services provided by private companies, there exists several tools such as Eucalyptus 
[39], OpenNEbula [40], and Nimbus [41] that mimic commercial services using 
clusters to deploy a test-bed cloud environment. With these tools, freely accessible 
science clouds are being deployed [42].

Already, many scientific projects [43–45] have considered the use of cloud com-
puting services such Amazon EC2 for running their scientific applications.

The main benefits of cloud computing are as follows:

 ◾ Through the use of virtualization, cloud computing opens the infrastructure 
to a large number of applications. Indeed, VMs and specialized OSs provide 
an ideal environment to run legacy applications. These applications are often 
very sensitive to the execution environment and no one wants to modify 
these working and validated codes just to adapt it to a specific execution 
platform.

 ◾ Virtualization used by clouds also provides a customized and reproducible 
environment to target a specific application, so that the user can use it imme-
diately and/or reuse it at a later date. This can be an important consideration 
in favor of cloud computing for a user who wants to be able to reproduce the 
analysis over time or who deals with legacy applications that are hard to port 
to new environments.

 ◾ The cloud promises scalable and dynamic resource allocations to fit user needs. 
However, it is not clear how well this will be employed in practice when the 
technologies are being leveraged by a large number of users.

Although clouds can provide a number of benefits, they also have some 
disadvantages:

 ◾ Even though the hardware manufacturers and OSs have made a huge effort 
to improve virtualization [46,47], the performance still depends on how the 
underlying hardware, network, and VM have been configured. Although 
virtual processor performance is close to physical processor performance, 
virtual network performance still lags behind that of the physical interconnect 
capabilities.

 ◾ There exist several actors and providers in the cloud market, but there is no 
adopted standard and, even worse, some technologies rely on proprietary 
interfaces. As a consequence, there is no compatibility between different ven-
dors. Once a user develops an application for a given cloud, it may take some 
effort to port that application to a different cloud.

 ◾ The pricing model dictates the need to evaluate and quantify the computa-
tional, storage, and networking needs of an application or application set. 
This is often hard to predict and can result in unanticipated costs.
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The distinction between cloud computing and Institutional Grid is small. For 
example, we can refer to the early days of the Grid’5000 project [48] (now renamed 
ALADDIN-G5K), which is a large scale experimental tool with deep reconfigura-
tion capabilities allowing researchers to deploy, install, boot, and run their specific 
software images and possibly including all the layers of the software stack [49]. 
Up and running since 2004, this Institutional Grid has almost all the benefits of 
cloud computing, and the only difference is that this environment was allocated 
to computer scientists’ experiments in grid computing rather than to the broader 
community.

8.2.3 Volunteer Computing
Volunteer computing is often named Desktop computing [50–52] as it uses desktop 
computers as the underlying computational resources. Most of the volunteer com-
puting platforms have the same structure: a client program runs on the volunteer’s 
computer. It periodically contacts project servers over the Internet, asking for jobs 
and sending back the results of completed jobs (see Figure 8.4). This “pull” model 
provides a mechanism to pass through the user’s firewalls that don’t allow incoming 
connections.

There exist a number of frameworks for desktop computing such as Grid MP 
[53], XtremWeb [54], or OurGrid [16], but certainly the most known and widely 
used is the BOINC [50] middleware. Today, at least 29 projects [55] are using the 
open source middleware to support their computations. The applications cover 
a large spectrum of science: astronomy, physics, chemistry, earth science, math-
ematics, biology, and medicine. Compared with other types of HPC or cloud 

Return result
Send workunit

Volunteers

Project servers

Figure 8.4  Public volunteer computing platform.
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computing, volunteer computing has by nature a high degree of diversity. The 
public computers vary widely in terms of hardware, OS, speed, availability, reli-
ability, and network connectivity. The World Community Grid [51] has reported 
on the diversity of resources: 29 different processor types, from 1 to 64 cores; 14 
different OSs; and a huge diversity in the quantity of memory and available disk 
space. In addition to the heterogeneity in computing and storage resources, the 
network connectivity of the volunteers can vary greatly as well from a few kB/s 
to 4 MB/s.

In addition to this mosaic of resources, the application results returned to the 
master are subject to errors. These errors can occur because of hardware malfunc-
tion (particularly on over-clocked computers) or malicious volunteers attempting 
to get credit for computing not actually performed. To deal with erroneous results, 
“redundant computing” is employed. Basically, the result is considerated valid when 
it reaches a consensus (a set of similair results) by running the same computations 
on a number of resources.

From the point of view of the scientist who wants to consider this kind of 
platform, he or she has to provide an application source code that can run on 
the biggest set of volunteer resources that have subscribed to the platform. As 
an example, the World Community Grid asks for the following requirements 
to technically qualify a scientific project: (1) projects should have a need for 
millions of CPU hours of computation to proceed; (2) the computer software 
algorithms required to accomplish the computations should be such that they 
can be subdivided into many smaller independent computations; and finally (3) 
if very large amounts of data are required, there should also be a way to parti-
tion the data into sufficiently small units corresponding to the computations. 
Furthermore, the application should be able to make some checkpoints in order 
to handle the potential interruption of the computation as the volunteer keeps 
control of their desktop computer and can decide to stop participating in the 
computation at any time.

The benefits provided by public computing are mainly as follows:

 ◾ There are potentially many resources. According to Forrester Research [56], 
there will be 2.2 billion Internet users in the world by 2013.

 ◾ The use of public computing resources promotes the project to a high degree 
of visibility to the public. Even if the scientist does not necessarily consider 
publicity as personally beneficial, it can help motivate the public to actively 
support the project.

Nevertheless, volunteer computing also has its disatvantages:

 ◾ There is no communication between computing resources. Thus, the resources 
need to be treated as totally separate entities and can be suitable only for 
independent tasks that do not require any inter-task communications.
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 ◾ There are several technical limitations.The task data footprint and data trans-
fers must be small (∼MB) and the task runtime has to be short (∼10 h).

 ◾ The resources are volatile and the whole platform depends on the willingness 
of the public to share their computational power.

8.2.4 Comparison of the Different Platforms
The distinction between the three platforms previously presented is not very 
clearly defined, as they can all be seen as distributed resources. We have cho-
sen to highlight these three computing environments because they can meet the 
requirements of scientific applications, they are (or promise to be) widely used to 
produce scientific results in a large range of scientific fields, and they are able to 
support computations at a large scale. Finally, we want to differentiate between 
them by the type of resource provider: an institution, a private company, or public 
volunteers.

Cloud computing brings with it a different cost model. As opposed to grids that 
are funded by national research agencies or volunteer computing, which is essen-
tially free, business-based cloud computing brings with it a monetary cost, where 
users pay for the resources they utilize in their work. Several studies have investi-
gated the comparison of the three platforms described above. Most of the studies 
consider both the performance and the cost-benefits of cloud-based services and 
compare them to the two other plaforms. In our previous work [43], we studied the 
cost of running a scientific workflow over a cloud. We estimated the cost of running 
a given scientific application on such platforms and showed that for data-intensive 
astronomy applications such as Montage [57] with a large number of short duration 
tasks, the storage costs were insignificant as compared with the CPU costs. In [58], 
experiments indicated that the cloud (or Amazon’s EC2, at least) is not yet mature 
enough for HPC computations. The authors observed that the giga-floating point 
operations per second (GFLOPs) obtained per dollar spent decrease exponentially 
with increasing computing cores and correspondingly, the cost for solving a linear 
system increases exponentially with the problem size, very much in contrast to 
existing scalable HPC systems.

One clear advantage of cloud platforms is the indefinite availability of the 
resources. The user is not restricted by the wall clock time on a grid cluster or by 
the sudden unavailability of a volunteer resource. Thus, service-based applications 
can be easily deployed on the cloud and can be available for long durations of 
time.

Kondo et al. [59] compared the cloud [10] to volunteer computing [50] from the 
perspective of an embarrsingly parallel and compute-intensive application (SETI@
home). The authors find that the ratio of volunteer nodes needed to achieve the 
compute power of a small EC2 instance is about 2.83 active volunteer hosts to 1. 
In addition, they find that at least 1400 volunteer computers are needed before 



Exploiting the Cloud of Computing Environments  ◾  183

volunteer computing becomes more cost effective in terms of cents per floating 
point operations per second (FLOP) (even if the volunteer resources are free, some-
one has to take care of the infrastructure).

Another study [60] developed formulas to find the real cost of CPU time. With 
an assumption of 440 million CPU hours annually, the author finds that the pur-
chase mode of ressources is still a good investment compared to leasing resources 
from a cloud.

These comparisons point out that applications can run within the three envi-
ronments, even though the cost/benefits vary. In order to choose the appropriate 
execution environment, the behavior of the application needs to be characterized 
from the point of view of performance, scalability, or other user-relevant metrics. 
The associated execution costs of the application in a particular environment can 
be quantified [43].

8.3  Application Perspectives
So far we have examined the computational environments available to the scien-
tists. This section identifies different points of view of scientists who need to rely 
on distributed resources to conduct their scientific computations. It also describes 
three commonly used programming models and characterizes the most appropriate 
execution environments for these models.

There are many reasons that can make a scientist consider the use of exter-
nal computing resources to achieve his or her work. Some of these reasons are as 
follows:

 ◾ Scaling up the application, running the computation on more data, thus 
tackling bigger problems that could not be solved unless external resources 
are used.

 ◾ Achieving a scientific goal. Some users do not have enough resources in their 
own laboratory and therefore need to look for extra computing power or stor-
age. This situation is different from the need to scale up the application. In 
this case, the user is not even able to run any instance of his or her problem 
on the internal resources.

 ◾ Sharing applications and data with colleagues. If the user is producing data 
or applications that other partners want to access, he or she needs to have a 
convenient way to share it.

 ◾ Needing to use applications and data already provided by other scientists.
 ◾ Decreasing the completion time of the application; when the user has reached 

a point where the completion time of his or her application is too long to be 
useful, the user needs to improve the turnaround time of the application by 
reaching out to external resources.
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Beyond the need of the scientists to use external resources to help them reach 
science goals, there are also some typical use cases or programming paradigms. 
Programming paradigms are designed to express algorithms elegantly and effi-
ciently. There are many programming models, each suited to a certain class of prob-
lems. Through various examples, we identify three basic computing models, which 
are widely exploited in distributed environments:

 ◾ Highly parallel applications (bag of tags)
 ◾ Tightly coupled applications
 ◾ Scientific workflows

There exist other models but we believe that these three models reflect the most 
commonly encountered applications deployed in scientific production platforms.

8.3.1 Highly Parallel Applications
Highly parallel computing is used to denote parallel computations in which each 
individual (often identical) task can execute without any communication with 
other tasks. It can also refer to a parameter sweep application where a set of experi-
ments is executed independently from each other. Many scientific applications fall 
into this category. For example, scientists may want to iterate over a number of 
parameters to validate their assumptions or they may want to explore a space of 
parameters to find the suitable case or repetitively process a large amount of data 
with the same application. Obviously, this case is one of the most convenient from 
the point of view of the distribution of execution as it deals with independent tasks, 
which only differ with respect to the input parameters. Nevertheless, this applica-
tion model still raises a lot of challenges, such as how to use resources efficiently or 
how to load balance the workload.

An example of a highly parallel application is molecular docking [52], which 
consists of techniques aiming to predict the interaction between biological mol-
ecules. The goal is to find the best way to associate two molecules in order to form a 
multiprotein complex. Interactions could be between proteins, proteins and DNAs 
(or RNAs), or proteins and small chemical compounds (ligands). The quality of 
the interaction can be evaluated through an interaction energy that is calculated 
according to the space configuration of the complex and the electric charges all 
over the proteins. Docking methods are based on purely physical principles and are 
perfectly suited to computer simulation in silico. Due to the small amount of data 
needed to perform a docking computation (molecular structures and parameters 
are on the order of megabytes), this type of project is particularly well adapted to 
volunteer computing. However, the Institutional Grid can also handle such appli-
cations [61,62].

Another example of highly parallel applications is climate modeling, which 
simulates the interaction of the atmosphere, ocean, land surface, and ice. The 
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climate varies on the timescales ranging from seasonal to centennial. There exist 
several computer models of the coupled atmosphere-land surface-ocean-ice sys-
tems and there exist scientific tools for understanding and predicting natural and 
human-caused changes in the Earth’s climate. State-of-the-art climate models now 
include interactive representations of the ocean, the atmosphere, the land, hydro-
logic and cryospheric processes, terrestrial and oceanic carbon cycles, and atmo-
spheric chemistry. This field of science illustrates how highly parallel applications 
can take advantage of different kinds of distributed environments. In one case [63], 
the project carried out a large number of model runs in which parameters were 
varied within their current range of uncertainty. Then it rejected those that failed 
to model past climate successfully and used the remainder to study future climate. 
Such computations required a small amount of input data, produced around 1 GB 
of temporary files, and the final output was less than 20 MB so it could fit on a 
desktop computer. In another case [64], even though the computation model fit 
the parameter sweep paradigm, it was necessary to transfer or access large amounts 
of data to be able to run climate analysis, and thus the use of a high-performance 
computer and distributed data storage was necessary.

When a user has a highly parallel application, theoretically, they have the free-
dom to choose the three remote execution environments previously presented. 
Nevertheless, practically, the user needs to know whether the application is robust 
to failures and whether the source code is portable and able to be compiled and 
executed on any type of environment. The data volume is also an issue; thus, the 
user needs to know how much input is required and how much output is produced. 
The task execution time also affects what environment is most suitable for a par-
ticular application.

8.3.2 Tightly Coupled Application
Tightly coupled applications refer to parallel applications with multiple interdepen-
dent processes. These processes exchange data during their execution and have to be 
synchronized. Typically, these applications are written with parallel libraries such 
as a message-passing interface (MPI) [65] or parallel virtual machine (PVM) [66] 
that enable communication between processes. Inter-processes communication is 
the key feature of these types of applications. It means that running one instance 
of this application may involve the use of several processes allocated to different 
processors across the network and the processors will need to be able to exchange 
data during the execution (see Figure 8.5). The main concern of this type of appli-
cation is the ability to communicate efficiently and therefore the performance of 
the network layer that connects the computing resources is of critical importance.

There exist a large number of tightly coupled applications and over the past 
decades they have motivated the construction of ever larger (in terms of the num-
ber of processors and storage) and faster (in terms of network speed and FLOPS) 
systems.
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A typical example of such an application is calculating the solution of a linear 
system such as Ax = b, a matrix solving computation. Matrix-based computations 
are a key computational kernel in many scientific applications, where physics laws 
are applied to solve the underlying problem. Typically, parallel implementations of 
matrix computation work well in multi-processor environments because the input 
matrices can be sliced horizontally and vertically into small blocks that are mapped 
onto the available processors. The communications can take place in parallel, and 
thanks to asynchronous communication libraries, most of these communications 
can be overlapped with the actual computations. All these characteristics render 
the matrix product kernel suitable to an efficient parallel implementation on high-
performance clusters. In fact, most powerful machines in the world are ranked on 
the Top 500 [67] list using the highly parallel LINPACK benchmark [68], which 
solves a dense linear system in double precision.

Another example of a tightly coupled application is wave simulation [69,70], 
where one strategy is to divide the area of interest into multiple regions and let 
each processor/process simulate the movements within one region. The movement 
within a region is not independent of the movement within the other regions, 
but rather depends on the movement in its neighbor regions, and as a result each 
process needs to communicate with its neighbors. MPI is employed to exchange 
data between neighboring nodes at each time step in order to pass the wave-field 
between neighboring sub-regions.

Because of frequent communications between application tasks, the vol-
unteer computing platform does not offer a feasible solution for tightly coupled 
applications.

8.3.3 Scientific Workflows
In the general case, a workflow is defined as the organization and the formalization 
of several operations in order to describe a broader application. Adapted to scientific 
domains, a scientific workflow is the orchestration of programs involving several 

Time

p1

p2

p3

p4

Idle

Computing
Communication

Figure 8.5  Gantt chart representation of process activity.
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computing tasks where the output of one task is an input to another task. It may 
also be called a loosely coupled application as opposed to a tightly coupled applica-
tion. These loosely coupled applications are composed of many tasks that can be 
individually scheduled on different computing resources to achieve a greater level 
of performance.

Workflows constitute the current trend in the composition of large-scale sci-
entific applications. However, unlike the highly parallel applications, data and 
control dependencies exist between tasks. Workflow tasks can be either stand-
alone applications or service invocations. Scientific workflows are used in many 
domains such as bioinformatics, climate modeling, image analysis, astrophysics, 
etc. [71–75].

In addition, scientific workflows can often be depicted as directed graphs, 
which often helps to visualize the data or control dependencies that exist in the 
overall application. There are many examples of workflow-based applications [74]. 
Here, we only describe some of them.

The bioinformatics project at Harvard University is conducting a wide search 
for small untranslated RNAs (sRNAs) that regulate several processes, such as secre-
tion or virulence in bacteria. The sRNA identification protocol using high-through-
put technology (SIPHT) program [76] uses a workflow to automate the search 
for sRNA encoding-genes for all of the bacterial replicons in the National Center 
for Biotechnology Information (NCBI) database. The kingdom-wide prediction 
and annotation of sRNA encoding genes involves a variety of individual programs. 
These involve the prediction of Rho-independent transcriptional terminators, Basic 
Local Alignment Search Tools (BLAST) comparisons of inter-genetic regions of 
different replicons, and the annotations of any sRNAs that are found. This applica-
tion is using the Condor DAGMan engine [77] to run application tasks on a cluster 
of computing nodes to deliver results. It also has a web portal from which end-users 
can launch and see the annotations of sRNA encoding-genes. Figure 8.6 shows a 
graphical representation of the SIPHT workflow.

The Montage [57] application was created by the NASA/IPAC Infrared Science 
Archive. It is an open source toolkit and it can be used to generate custom mosaics 
of the sky using input images in the Flexible Image Transport System (FITS) format 
[78]. This workflow of computing tasks is now a standard workflow application and 
it has been widely used to test workflow enactment systems [43,79,80]. During the 
production of the final mosaic, the geometry of the output is calculated from the 
geometry of the input images. The inputs are re-projected to be of the same spatial 
scale and rotation. The background emissions in the images are then corrected to 
be of the same level in all images. The re-projected, corrected images are co-added 
to form the final mosaic. Figure 8.7 shows the Directed Acyclic Graph (DAG) 
representation of the Montage application for one region of the sky. Through the 
use of the Pegasus Workflow Management System [26], this application has been 
successfully enabled in the TeraGrid environment [81] and also in the Amazon 
EC2/S3 cloud [43].
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These two examples from different science fields illustrate the use of scientific 
workflows. In contrast to the tightly coupled parallel applications, the communica-
tion occurs at the end of the execution of one program and usually the communi-
cation is done via a file transfer. The characterization of such applications requires 
identifying all the programs involved in the computation and understanding their 
computational characteristics such as execution time, amount of storage needed, 
and software requirements.

Not all workflows are based on standalone computations such as those described 
above. Some workflows are rather an orchestration of service invocations. These 
types of workflows are often common in biology, where large amounts of databases 
and computational tools are made available to the community as research products 
and models. For example, the Taverna Workbench tool [28,72] provides access to 
web services through a graphical user interface. Figure 8.8 shows an example of 

mProjectPP

mDiffFit mDiffFit mDiffFit

mConcatFit

mBgModel

mBackground

mlmgTbl

mAdd

mShrink

mJPEG

mBackground mBackground mBackground

mDiffFit mDiffFit mDiffFit

mProjectPP mProjectPP mProjectPP

Figure 8.7  Example of one Montage workflow.
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a Taverna workflow shared through the myExperiment.org portal [82]. This appli-
cation performs a ClustalW [83] multiple sequence alignment using the EBI’s 
ClustalW2 web service [84]. The input parameters are the set of sequences to align 
and the e-mail address of the user. The results are the alignment, the guide tree 
used to produce the final alignment, the job ID, and the output of the ClustalW 
program.

8.4  Discussion
In this section, we aim to identify appropriate execution environments for differ-
ent types of applications. The Table 8.1 indicates which resources are appropriate 
given the characteristics of the application in terms of computational, storage, and 
communication needs as well as in terms of the desired resource availability, cost, 
and desired security.

Ease of use is another characteristic that one could explore in the context of the 
various computing environments. However, ease of use is dependent on the user’s 
knowledge and familiarity with the various infrastructures. In all cases, however, 
users need to learn new technologies and tools.

8.5  Conclusions
In this chapter, we described three main distributed computing environments that 
are being used to advance science. We also described some of the programming 
models that scientists use to perform computations in distributed environments. 
We also illustrated the features of grids, clouds, and volunteer computing that are 
appropriate for various application characteristics.

As we look at the developments in the area of computing, we can see how 
over time, computer manufacturers and software providers are providing ever-
increasing capabilities. Until not long ago, a computing center would purchase 
high-performance hardware and a service contract from a computer manufacturer 
such as IBM, and although this model of compute cycle acquisition is still pres-
ent, we see more businesses providing more of the services backed by large scale 
data and compute centers. In this model, the revenues to the companies are not 
a single large-purchase, but are rather potentially growing over time. This model 
can also potentially allow businesses to keep their customers for a longer term 
as they provide ever more increasing functionality. The cost of maintenance of 
computing resources can also be potentially lowered, because the maintenance is 
concentrated in the large-scale centers and can be done in a flexible way without 
exposing the changes to the users. This is in contrast to the current model, where 
computer technicians need to be dispatched to customer sites and need to restore 
the compute systems to the specifications of the customer.
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It will be interesting to see how cloud computing evolves and how it can be 
made relevant to science applications. Will the campus and national computing 
centers disappear?
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9.1  Introduction
Cloud computing has gained significant traction in recent years. By facilitating 
access to an elastic (meaning the available resource pool that can expand or con-
tract over time) set of resources, cloud computing has demonstrable applicability to 
a wide range of problems in several domains.

Appealing features within cloud computing include access to a vast number 
of computational resources and inherent resilience to failures. The latter feature 
arises, because in cloud computing the focus of execution is not a specific, well-
known resource but rather the best available one. Another characteristic of a lot of 
programs that have been written for cloud computing is that they tend to be state-
less. Thus, when failures do take place, the appropriate computations are simply 
relaunched with the corresponding datasets.

Among the forces that have driven the need for cloud computing are falling 
hardware costs and burgeoning data volumes. The ability to procure cheaper, more 
powerful CPUs coupled with improvements in the quality and capacity of networks 
have made it possible to assemble clusters at increasingly attractive prices. The pro-
liferation of networked devices, Internet services, and simulations has resulted in 
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large volumes of data being produced. This, in turn, has fueled the need to process 
and store vast amounts of data. These data volumes cannot be processed by a single 
computer or a small cluster of computers. Furthermore, in most cases, this data can 
be processed in a pleasingly parallel fashion. The result has been the aggregation of 
a large number of commodity hardware components in vast data centers.

Map-Reduce [1], introduced by Dean and Ghemawat at Google, is the most 
dominant programming model for developing applications in cloud settings. Here, 
large datasets are split into smaller, more manageable sizes, which are then pro-
cessed by multiple map instances. The results produced by individual map func-
tions are then sent to reducers, which collate these partial results to produce the final 
output. A clear benefit of such concurrent processing is a speed-up that is propor-
tional to the number of computational resources. Map-Reduce can be thought of 
as an instance of the Single Program/Process, Multiple Data (SPMD) [2] program-
ming model for parallel computing introduced by Federica Darema. Applications 
that can benefit from Map-Reduce include data and/or task-parallel algorithms in 
domains such as information retrieval, machine learning, graph theory, and visu-
alization, among others.

In this chapter, which is an extended version of our paper [21], we describe 
Granules [3], a lightweight streaming-based runtime for cloud computing. Granules 
allows processing tasks to be deployed on a single resource or a set of resources. 
Besides the basic support for Map-Reduce, we have incorporated support for vari-
ants of the Map-Reduce framework that are particularly suitable for scientific appli-
cations. Unlike most Map-Reduce implementations, Granules uses streaming for 
disseminating intermediate results, as opposed to using file-based communications. 
This leads to demonstrably better performance (see benchmarks in Section 9.7).

This chapter is organized as follows. In Section 9.2, we provide a brief overview 
of the NaradaBrokering substrate that we use for streaming. We discuss some of 
the core elements of Granules in Section 9.3. Section 9.4 outlines our support for 
Map-Reduce and for the creation of complex computational pipelines. Section 9.5 
describes the process of developing and deploying applications using Granules. In 
Section 9.6, we describe related work in this area. In Section 9.7, we profile several 
aspects of the Granules runtime, and where possible, contrast its performance with 
comparable systems, such as Hadoop, Dryad, and MPI (Message Passing Interface). 
In Section 9.8, we present our conclusions.

9.2  NaradaBrokering
Granules uses the NaradaBrokering [4–6] streaming substrate (developed by us) 
for all its streams disseminations. The NaradaBrokering content distribution net-
work (depicted in Figure 9.1) comprises a set of cooperating router nodes known as 
brokers. Producers and consumers do not directly interact with each other. Entities, 
which are connected to one of the brokers within the broker network, use their 
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hosting broker to funnel streams into the broker network and, from thereon, to 
other registered consumers of those streams.

NaradaBrokering is application independent and incorporates several services 
to mitigate network-induced problems as streams traverse domains during dissemi-
nations. This system provisions easy-to-use guarantees while delivering consistent 
and predictable performance that is adequate for use in real-time settings.

Consumers of a given data stream can specify, very precisely, the portions of the 
data stream that they are interested in consuming. By preferentially deploying links 
during disseminations, the routing algorithm [4] in NaradaBrokering ensures that 
the underlying network is optimally utilized. This preferential routing ensures that 
consumers receive only those portions of streams that are of interest to them. Since 
a given consumer is typically interested in only a fraction of the streams present in 
the system, preferential routing ensures that a consumer is not deluged by streams 
that it will subsequently discard.

The system incorporates support for reliable streaming and secure streaming. In 
reliable streaming, the substrate copes with disconnects and process/link failures of 
different components within the system with the ability to fine-tune redundancies 
[5] for a specific stream. Secure streaming [6] enforces the authorization and con-
fidentiality constraints associated with the generation and consumption of secure 
streams while coping with denial-of-service attacks.

Some of the domains that NaradaBrokering has been deployed in include earth-
quake science, particle physics, environmental monitoring, geosciences, geographic 
information system (GIS) systems, and defense applications.

Producers or consumers

Broker node

Figure 9.1  NaradaBrokering broker network.
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9.3  Granules
Granules orchestrates the concurrent execution of processing tasks on a distributed 
set of machines. Granules is itself distributed, and its components permeate not 
only the computational resources on which it interleaves processing, but also the 
desktop from where the applications are being deployed in the first place. The run-
time manages the execution of a set of processing tasks through various stages of 
their life cycle: deployment, initialization, execution, and termination. Figure 9.2 
depicts the various components that comprise Granules.

9.3.1 Computational Task
The most fundamental unit in Granules is the notion of a computational task. This 
computational task encapsulates processing functionality, specifies its scheduling 
strategy, and operates on different types of datasets. These computational tasks 
can take on additional interchangeable roles (such as map and reduce) and, when 
cascaded, can form complex execution pipelines.

Computational tasks require the domain specialists to specify processing func-
tionality. This processing typically operates upon a collection of datasets encapsu-
lated within the computational task.

The computational task encapsulates functionality for processing for a given 
fine-grained unit of data. This data granularity could be a packet, a file, a set of files, 
or a database record. For example, a computational task can be written to evaluate a 
regular expression query (grep) on a set of characters, a file, or a set of files. In some 
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cases, there will not be a specific dataset; rather, each computational task instance 
initializes itself using a random-seed generator.

Computational tasks include several metadata, such as versioning information, 
time stamps, domain identifiers, and computation identifiers. Individual instances 
of the computational tasks include instance identifiers and task identifiers, which in 
turn allows us to group several related computational tasks together.

9.3.2 Datasets and Collections
In Granules, datasets are used to simplify access to the underlying data type. 
Datasets currently supported within Granules include streams and files; support 
for databases is being incorporated. For a given data type, besides managing the 
allocation and reclamation of assorted resources, Granules also mediates access to 
it. For example, Granules performs actions related to simplifying the production 
and consumption of streams, reading and writing of files, and transactional access 
to databases.

A data collection is associated with every computational task. A data collection 
represents a collection of datasets, and maintains information about the type, num-
ber, and identifiers associated with every encapsulated dataset.

All that the domain specialist needs to specify is the number and type of data-
sets involved. The system imposes no limits on the number of datasets within a 
dataset collection. During initializations of the dataset collection, depending on 
the type of the constituent datasets, Granules subscribes to the relevant streams, 
configures access to files on networked file systems, and sets up connections Java 
Database Connectivity (JDBC) to the databases.

Dataset collections allow observers to be registered to track data availability, 
dataset initializations, and closure. This simplifies data processing, since it obviates 
the need to perform polling.

9.3.3 Specifying a Scheduling Strategy
Computational tasks specify a scheduling strategy, which in turn governs their 
lifetimes. Computational tasks can specify their sched-
uling strategy along three dimensions (see Figure 9.3). 
The counts axis specifies the number of times a compu-
tational task needs to be executed. The data driven axis 
specifies that the computational task needs to be sched-
uled for execution whenever data is available on any 
one of its constituent datasets. The periodicity axis spec-
ifies that computational tasks be periodically scheduled 
for execution at predefined intervals (specified in ms).

Each of these axes can extend to infinity, in which 
case, it constitutes a stay-alive primitive. A domain 

Counts

Data driven

Periodicity

Figure 9.3  Dimensions 
for scheduling strategy.
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specialist can also specify a custom scheduling strategy that permutes along these 
three dimensions. Thus, one can specify a scheduling strategy that limits a compu-
tational task to be executed a maximum of 500 times either when data is available 
or at regular intervals.

A computational task can change its scheduling strategy during execution, and 
Granules will enforce the newly established scheduling strategy during the next 
round of execution (Section 9.3.5). This scheduling change can be a significant 
one—from data driven to periodic. The scheduling change could also be a minor 
one with changes to the number of times the computation needs to be executed, or 
with an update to the periodicity interval.

In addition to the aforementioned primitives, another primitive—stay alive 
until termination condition reached—can be specified. In this case, the computa-
tional task continues to be “stay alive” until the computational task asserts that its 
termination condition has been reached. The termination condition overrides any 
other primitives that may have been specified and results in the garbage collection 
of the computational task.

9.3.4 Finite-State Machine for a Computational Task
At a given computational resource, Granules maintains a finite-state machine 
(FSM) for every computational task. This FSM, depicted in Figure 9.4, has four 
states: initialize, activated, dormant, and terminate.

The transition triggers for this FSM include external requests, elapsed time 
intervals, data availability, reset counters, and assertions of the termination condi-
tion being reached.

When a computational task is first received in a deployment request, Granules 
proceeds to initialize the computational task. The FSM created for this computa-
tional task starts off in the initialize state.

If, for some reason, the computational task cannot proceed in its execution, 
either because the datasets are not available or the start-up time has not yet elapsed, 
the computational task transitions into the dormant state. If there were problems in 
initialization, the computational task transitions into the terminate state.

Terminate

Initialize

Dormant

Activated

Figure 9.4  FSM for a computational task.
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If, on the other hand, the computational task was initialized successfully, and 
is ready for execution with accessible datasets, it transitions into the activated state.

9.3.5 Interleaving Execution of Computational Tasks
At each computational resource, Granules maintains a pool of worker threads to 
manage and interleave the concurrent execution of multiple computational tasks.

When a computational task is activated and ready for execution, it is moved 
into the activated queue. As and when worker threads become available, the com-
putational tasks are pulled from the first in first out (FIFO) queue and executed in 
a separate thread. Upon completion of the computational task, the worker thread is 
returned back to the thread-pool, to be used to execute other pending computational 
tasks within the activated queue. The computational task is placed either in the dor-
mant queue or scheduled for garbage collection depending on the state of its FSM.

After a computational task has finished its latest (or the first) round of execu-
tion, checks are made to see if it should be terminated. To do so, the scheduling 
strategy associated with the computational task is retrieved. If a computational 
task needs to execute a fixed number of times, a check is made to see if the counter 
has reset. If the computational task specifies a stay-alive primitive based either on 
data availability or periodicity, checks are made to see if the datasets continue to be 
available or if the periodicity interval has elapsed. A check is also made to see if the 
computational task has asserted that its termination condition has been reached.

If none of these checks indicate that the computational task should be termi-
nated, it is scheduled for another round of execution or it transitions into the dor-
mant state. A computational task can continually toggle between the dormant and 
the activated state till a termination condition has been reached.

9.3.5.1 Sizing Thread-Pools

The number of worker threads within the thread-pool is configurable. In general, 
the number of threads needs to be balanced so that the accrued concurrency gains 
are not offset by context-switching overheads among the threads. As a general rule, 
it is a good idea to set this number to be approximately equal to the number of 
execution pipelines available on a given machine. Thus, for a quad-core CPU with 
two execution pipelines per core, the thread-pool will be set up to have approxi-
mately eight threads.

9.3.6 Diagnostics
In Granules, a user can track the status of a specific computational task or collec-
tions (job) of computational tasks. The system maintains diagnostic information 
about every computational task. This includes information about the number of 
times a computational task was scheduled for execution, its queuing overheads, its 
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CPU-bound time, the time it was memory-resident, and the total execution time. A 
computational task can also assert that diagnostic messages be sent back to the cli-
ent during any (or some) of its state transitions. On the client side, an observer can 
be registered for collections of computational tasks to track their progress without 
the need to actively poll individual computational tasks.

9.4  Support for Map-Reduce in Granules
Map-Reduce is the dominant framework used in cloud computing settings. In 
Map-Reduce, a large dataset is broken up into smaller chunks that are concurrently 
operated upon by map function instances. The results from these map functions 
(usually, <key, value> pairs) are combined in the reducers, which collate the values 
for individual keys. Typically, there are multiple reducers, and the outputs from 
these reducers constitute the final result. This is depicted in Figure 9.5.

The Map-Reduce framework has several advantages. First, the domain scientist 
only needs to provide the Map-Reduce functionality and the datasets. Second, it is 
the responsibility of the framework to transparently scale as the number of available 
resources, and the problem size, increases. Finally, the orchestration of the concur-
rent data-parallel execution is managed by the framework.

In traditional Map-Reduce, intermediate stages exchange results using a set of 
<key, value> pairs. We have incorporated support for this basic result type. But we 
have also incorporated support for exchange of primitive data types, such as int, 
short, boolean, char, long, float, and double. We have also incorpo-
rated support for exchanging arrays ([]) and 2D arrays ([][]) of these primitive data 
types. There is also support for exchanging Objects that encapsulated compound 
data types, along with arrays and 2D arrays of these Objects.

The intermediate results in most Map-Reduce implementations utilize file IO 
for managing results produced by the intermediate stages. The framework then 
notifies appropriate reducers to pull or retrieve these results for further processing.
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Figure 9.5  Basic Map-Reduce framework.
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Depending on the application, the overheads introduced by performing such 
disk-IO can be quite high. In Granules, we use streaming to push these results 
onto appropriate reducers. Streaming, as validated by our benchmarks (described 
in Section 9.7), is significantly faster, and we think that there are several classes of 
applications that can benefit from this.

Additionally, since the results are being streamed as and when they have been 
computed, successive stages have access to partial results from preceding stages 
instead of waiting for the entire computation to complete. This is particularly use-
ful in situations where one is interested in getting as many results as possible within 
a fixed amount of time.

9.4.1 Two Sides of the Same Coin
In Granules, map and reduce are two roles associated with the computational task. 
These roles inherit all the computational task functionality, while adding function-
ality specific to their roles.

The map role adds functionality related to adding, removing, tracking, and 
enumerating the reducers associated with the map function. Typically, a map func-
tion has one reducer associated with it. In Granules, we do not limit the number 
of reducers associated with a map function. This feature can be used to fine-tune 
redundancies within a computational pipeline.

The reduce role adds functionality related to adding, removing, tracking, and 
enumerating maps associated with it. The reducer has facilities to track output 
generated by the constituent maps. Specifically, a reducer can determine if par-
tial or complete outputs have been received from the maps. The reduce role also 
incorporates support to detect and discard any duplicate outputs that may be 
received.

The map and reduce roles have facilities to create and publish results. The 
payloads for these results can be primitive data types that we discussed earlier, 
Objects encapsulating compound data types, <key, value> pairs, arrays, and 
2D arrays of the same. In Granules, generated results include sequencing infor-
mation and metadata specific to the generator. Additionally, an entity is allowed 
to assert if these results are partial results and/or if the processing has been 
completed.

Since map and reduce are two roles of the computational task in Granules, they 
inherit functionality related to scheduling strategy (and life-cycle management), 
diagnostic strategy, and dataset management.

Individual map and reduce instances toggle between the activated and dor-
mant states (Section 9.3.5) till such time that they are ready to assert that their 
termination condition has been reached. For example, a reducer may assert that it 
has reached its termination condition only after it has received, and processed, the 
outputs of its constituent maps.
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9.4.2 Setting Up Graphs
Granules supports a set of operations that allow graphs to be set up. Individual 
maps can add/remove reducers. Similarly, reducers are allowed to add/remove 
maps. The functions are functionally equivalent. Granules also allows the map 
and reduce roles to be interchangeable: a map can act as a reducer, and vice versa. 
Figure 9.6 depicts how support for addition/removal of roles combined with role 
interchangeability can be used to create a graph with a feedback loop. In our 
benchmarks, involving the k-means machine learning algorithm, we have three 
stages with a feedback loop from the output of stage 2 to its input. Granules man-
ages overheads related to ensuring that the outputs from the map are routed to the 
correct reducers.

Additionally, Granules can create execution graphs once the numbers of map 
and reduce instances in a pipeline have been specified. Granules ensures the appro-
priate linkage of the Map-Reduce instances.

9.4.3 Creating Computational Pipelines
Typically, in Map-Reduce, the instances that comprise an execution pipeline are 
organized in a directed acyclic graph (DAG), with the execution proceeding in 
sequence through monotonically increasing stages.

In Granules, we have incorporated support for cycles to be present. This allows 
Granules to feedback the outputs of some stage, within a pipeline, to any of its pre-
ceding stages. The system places no restrictions on the span length, or the number, 
of the feedback in the pipeline. In a sense it can be argued that Granules supports 
both data- and control-flow graphs. An example of such a computational graph in 
Granules is depicted in Figure 9.7.

One feature of the computational task plays a role in allowing these loops: 
the notion of the stay-alive computation. Furthermore, since this is available at 
the microlevel (computational task), individual stages, collection of stages, or the 
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computational pipeline itself can be dependent on iterative, periodic, data-driven, 
or termination conditions.

Granules manages the pipeline complexity. The domain scientist does not need 
to cope with fan-in complexity, which corresponds to the number of units that feed 
results into a given instance. Once a pipeline has been created, a domain specialist 
does not have to cope with IO, synchronization, or networking-related issues. The 
runtime includes facilities to track outputs from preceding stages.

9.4.4 Observing the Life Cycle of a Pipeline
At the client side, during the deployment process, Granules allows a life-cycle 
observer to be registered for an execution pipeline. This observer processes diag-
nostic messages received from different computational resources running Granules. 
These diagnostic messages relate to state transitions associated with the different 
computational task instances (and the map and reduce roles) and the pertinent 
metrics associated with the computation task. The life-cycle observer reports to the 
client upon completion of an execution pipeline. The observer also reports errors in 
the execution of any of the units that comprise the pipeline.

9.5   Developing and Deploying 
Applications Using Granules

In this section, we describe the process of developing and deploying applications 
using Granules. In both cases, Granules incorporates support for utility classes, 
whose behavior may be extended to suit specific needs.

9.5.1 Developing Applications
Granules simplifies the process of developing applications. Developers sim-
ply extend the MapReduceBase class. This class implements functionality that 
encompasses both the map and reduce roles of a computation. One requirement is 
that the derived class has exactly one constructor, which does not take any argu-
ments. Developers of the derived class only need to implement the execute() 
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Figure 9.7  Creating pipelines with cycles.
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method. Typical steps involved in implementing this method include initialization 
of the datasets and data structures, processing logic, and specification of a schedul-
ing strategy.

9.5.1.1 Initialization

Typically, depending on the type of the dataset, initialization of the datas-
ets involved in the processing is performed automatically. The designer sim-
ply specifies the identifiers for the dataset. Initializations of the data structures 
needed by the computation can be performed either in the null constructor or 
in the execute() method. In the latter case, care must be taken to ensure that 
the initializations are performed only once across successive invocations of the 
execute() method.

9.5.1.2 Processing Logic

The processing logic within the execute() method is domain specific. This pro-
cessing would involve either the generation of results, or the management and col-
lation of previously produced results. In the reduce role, it is also possible to check 
if outputs have been received from all the preceding maps in addition to discarding 
any duplicate results that were generated.

The generation of results is easy, and the system allows entities to attach differ-
ent payloads to these results. The system currently allows for the payloads for these 
results to be <key, value> pairs, where the elements of these tuples could be objects 
that encapsulate compound data types. The system allows instances, arrays([]), and 
2D arrays ([][]) of primitive data types such as int, short, long, double, 
float, and char to be attached as payloads of these results. The system handles 
the marshaling and un-marshaling of these payloads automatically.

The processing logic also needs to cope with exceptions that will be thrown 
as results of the processing. These exceptions could result from problems with the 
datasets, marshaling issues, and networking problems.

9.5.1.3 Scheduling Strategy

A computational task can change its scheduling strategy during execution. This 
change is reflected during the next iteration of the execute() method. The sys-
tem enforces the newly created scheduling strategy as soon as the current iteration 
of the execute() method terminates. Computational tasks that have specified a 
scheduling strategy that constitutes either a stay-alive primitive, or implies a certain 
number of iterations, can assert that their termination condition has been reached. 
At this time, the computational task is scheduled for garbage collection as soon as 
control returns from the execute() method.
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9.5.2 Deploying Applications Using Granules
Granules provides a helper class, the InstanceDeployer, to enable applications, 
and the computational tasks that comprise it, to be deployed on a set of resources. 
This class performs several operations related to initializing communications, 
resource discovery, and deployment of computations. It is recommended that a 
deployer be created for each application. This can be done by simply extending the 
InstanceDeployer.

9.5.2.1 Initializing Communications and Resource Discovery

The first step that an application deployer needs to perform is to initialize com-
munications with the content distribution network (NaradaBrokering). This can 
be performed by invoking the constructor for the base class (InstanceDeployer), 
which takes a set of properties as its argument. This is typically done by invoking 
the super(streamingProperties) in the derived class’s constructor. Some 
of the elements that are typically part of this set of properties include the hostname, 
the port, and the transport type for one of the router nodes within the content 
dissemination network. Depending on the transport over which communications 
take place, there would be additional elements that may need to be specified. For 
example, if the Secure Sockets Layer (SSL) communications are used, additional 
elements that need to be specified include the locations of the truststore and the 
keystore that would be used for secure communications.

Once communications have been established, Granules automatically discov-
ers resources that are currently available. This list could be periodically refreshed 
should the need arise.

9.5.2.2 Initializing and Deploying Computational Tasks

The developer then needs to provide a method that initializes the computational 
tasks. This involves one or more of the following:

 1. Initializing the Processing Directives associated with an instance: These direc-
tives are used to encode instance-specific information that is accessible only 
to the instance in question.

 2. Specification of the datasets and collection associated with the computation: 
Granules is responsible for configuring access to these datasets.

 3. Linking of the Map-Reduce roles: Granules ensures that once-linked results 
produced by the maps are automatically routed to the appropriate reducers.

 4. Specifying the scheduling strategy for the computational tasks: By default, the 
exactly-once scheduling strategy is used.

 5. Distribution of datasets across these instances: Granules incorporates utilities 
that allow this distribution to be performed efficiently.
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To deploy an application, the developer only needs to invoke the deploy() method 
in the InstanceDeployer. This method deploys the computational tasks on the set 
of resources that were discovered during the initialization phase.

9.5.2.3 Tracking/Steering a Deployed Application

The InstanceDeployer implements the JobLifecycleObserver interface, which 
allows one to track the status of multiple jobs, and the computational tasks that 
comprise them. Classes that extend the InstanceDeployer have the option to over-
ride methods specific to the JobLifecycleObserver interface. Specifically, for a 
given Job, Granules maintains its registered JobLifecycleObserver and invokes 
methods on this observer whenever there is an update to the deployment or execu-
tion status of the computational tasks that comprise it.

Associated with each Job, Granules maintains a ProgressTracker that main-
tains information about the execution state of each of the computational tasks that 
comprise the application. The LifecycleMetrics associated with every computa-
tional task includes information about

 1. The arrival time for the computational task
 2. The queuing overhead for the computational task
 3. The total CPU-bound time for the computational task across multiple itera-

tions (if there are any)
 4. The processing time for the computational task
 5. The current status of the computational task {Awaiting Data, Queued for 

Execution, Executing, Terminated, Successful, FAILED}

The status of a Job is the cumulative status of the computational tasks that com-
prise it.

The InstanceDeployer also incorporates methods for tracking/steering a com-
putation. There are methods to refresh the status of a specific computational task 
or the entire Job. These methods result in updates to the life-cycle metrics of the 
relevant computational tasks. Additionally, Granules also allows computational 
tasks to be aborted when they are in execution. The system allows either a specific 
computational task to be suspended or the entire Job.

9.6  Related Work
The original Map-Reduce paper [1] by Ghemawat and Dean described how their 
programming abstraction was being used in the Google search engine and other 
data-intensive applications. This work was itself inspired by map and reduce primi-
tives present in Lisp and other functional programming languages. Google Map-
Reduce is written in C++ with extensions for Java and Python. Sawzall [7] is an 
interpreted, procedural programming language used by Google to develop Map-
Reduce applications.
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Hadoop [8] was originally developed at Yahoo, and is now an Apache project. 
It is by far the most widely used implementation of the Map-Reduce framework. In 
addition to the vast number of applications at Yahoo, it is also part of the Google/
IBM initiative to support university courses in distributed computing. Hadoop 
is also hosted as a framework over Amazon’s EC2 [9] cloud. Unlike Granules, 
Hadoop supports only exactly-once semantics, meaning that there is direct support 
within the framework for map and reduce functions to maintain state.

Hadoop uses the Hadoop Distributed File System (HDFS) files for communi-
cating intermediate results between the map and reduce functions, while Granules 
uses streaming for these disseminations, thus allowing access to partial results.

HDFS allows for replicated, robust access to files. During the data-staging 
phase, Hadoop allows the creation of replicas on the local file system; compu-
tations are then spawned to exploit data locality. Hadoop supports automated 
recovery from failures. Currently, Granules does not incorporate support for 
automated recovery from failures; this will be the focus of our future work in 
this area. Here, we plan to harness the reliable streaming capabilities available in 
NaradaBrokering.

The most dominant model for developing parallel applications in the high 
performance computing (HPC) community is the SPMD [2] model (first pro-
posed by Federica Darema) in tandem with the MPI [10] library. The SPMD 
model is a powerful one, and Map-Reduce can in fact be thought of as an instance 
of the SPMD model. The use of MPI has, however, not been as widespread outside 
the scientific community.

Microsoft Research’s Dryad [11] is a system designed as a programming model 
for developing scalable parallel and distributed applications. Dryad is based on 
DAGs. In this model, sequential programs are connected using one-way channels. 
It is intended to be a super-set of the core Map-Reduce framework. Dryad pro-
vides job management and autonomic capabilities, and makes use of the Microsoft 
Shared Directory Service. However, since Dryad is developed based on DAGs, it 
is not possible to develop systems that have cycles in them. For example, in our 
benchmarks, we were not able to implement the k-means machine learning algo-
rithm [12] using the basic Dryad framework.

Phoenix [13] is an implementation of Map-Reduce for multi-core and multipro-
cessor systems. A related effort is Qt Concurrent [14], which provides a simplified 
implementation of the Map-Reduce framework in C++. Qt Concurrent automati-
cally optimizes thread utilizations on multi-core machines depending on core 
availability. Disco [15], from Nokia, is an open-source Map-Reduce runtime devel-
oped using the Erlang functional programming language. Similar to the Hadoop 
architecture, Disco stores the intermediate results in local files and accesses them 
using HTTP connections from the appropriate reduce tasks.

Holumbus [16] includes an implementation of the Map-Reduce framework, 
developed in the Haskell functional programming language at the FH Wedel 
University of Applied Sciences, Germany.
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Skynet [17] is an open-source Ruby-based implementation of the Map-Reduce 
framework. Skynet utilizes a peer-recovery system for tracking the constituent 
tasks. Peers track each other and, once failure is detected, can spawn a replica of 
the failed peer.

We had originally developed a prototype implementation of Map-Reduce, 
CGL-MapReduce [18], which implemented Map-Reduce using streaming (once 
again, using NaradaBrokering) with the ability to “keep alive” map instances. 
Granules represents an overhaul, and incorporates several new capabilities, such as 
built-in support for sophisticated life-cycle management (periodicity, data driven, 
and termination conditions), powerful creation and duplicate detection of results, 
and diagnostics in addition to the ability to create complex computational pipelines 
with feedback loops in multiple stages. The code base for the Granules (available for 
download) runtime has also been developed from scratch.

9.7  Benchmarks
In our benchmarks, we profile several aspects of the Granules’ performance. 
We are specifically interested in determining system performance for different 
life cycles associated with the computational tasks. The different life cycles we 
benchmark include exactly-once, iterative, periodic, and data-driven primitives. 
Where possible, we contrast the performance of Granules with comparable 
systems, such as Hadoop, Dryad, and MPI. It is expected that these bench-
marks would be indicative of the performance that can be expected in different 
deployments.

All machines involved in these benchmarks have four dual-core CPUs, a 
2.4 GHz clock, and an 8 GB RAM. These machines were hosted on a 100 Mbps 
LAN. The Operating System on these machines is Red Hat Enterprise Linux ver-
sion 4. All Java processes executed within version 1.6 of Sun’s Java Virtual Machine 
(JVM). We used version 3.4.6 of the gcc complier for C++, and for MPI we used 
version 7.1.4 of the Local Area Multicomputer (LAM) MPI [19].

9.7.1 Streaming Substrate
Since we use the NaradaBrokering streaming substrate for all communications 
between entities, we present a simple benchmark to give the reader an idea of the 
costs involved in streaming. Our results outline the communication latencies in 
a simplified setting involving one producer, one consumer, and one broker. The 
communication latencies are reported for stream fragments with different pay-
load sizes. Additional NaradaBrokering benchmarks in distributed settings can be 
found in [4,5].

Two cluster machines were involved in this benchmark. The producer and con-
sumer were hosted on the same machine to obviate the need to account for clock 
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drifts while measuring latencies for streams issued by the producer, and routed by 
the broker (hosted on the second machine) to the consumer.

The reported delay, in the results depicted in Figure 9.8, is the average of 50 
samples for a given payload size, the standard deviation for these samples also being 
reported. The Y-axis for the standard deviation is the axis on the right side (blue) 
of the graph. Streaming latencies vary from 750 μs/hop for 100 bytes to 1.5 ms/hop 
for a stream fragment of 10 kB in cluster settings.

9.7.2 Information Retrieval: Exactly-Once
In this section, we present results from a simple information retrieval example. 
Given a set of text files, the objective is to histogram the counts associated with 
various words in these files. The performance of Granules is contrasted with that of 
Hadoop and Dryad. The Dryad version to which we have access uses C#, LINQ, 
and file-based communications using the Microsoft Shared Directory Service. The 
OS involved in the Dryad benchmarks is Windows XP.

For this benchmark, we vary the cumulative size of the datasets that need to 
be processed. The total amount of data that is processed is varied from 20 GB to 
100 GB. There were a total of 128 map instances that were deployed on the five 
machines involved in the benchmark.

The results depicted in Figure 9.9 demonstrate the benefits of using stream-
ing as opposed to file-based communications. As the size of the datasets increases, 
there is a concomitant increase in the number and size of the intermediate results 
(file based). This contributes to the slower performance of Hadoop and Dryad. We 
expect the performance of Dryad’s socket-based version to be faster than their file-
based version.
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9.7.3 k-Means: Iterative
Machine learning provides a fertile ground for iterative algorithms. In our bench-
marks, we considered a simple algorithm in the area of unsupervised machine 
learning: k-means. Given a set of n data points, the objective is to organize these 
points into k clusters.

The algorithm starts off by selecting k centroids, and then associates different 
data points within the dataset to one of the clusters based on their proximity to the 
centroids. For each of the clusters, new centroids are then computed. The algorithm 
is said to converge when the cumulative Euclidean distance between the centroids 
in successive iterations is less than a predefined threshold.

In k-means, the number of iterations depends on the initial choice of the cen-
troids, the number of data points, and the specified error rate (signifying that the 
centroid movements are acceptable). The initial set of data points is loaded at each 
of the map functions. Each map is responsible for processing a portion of the entire 
dataset. What changes from iteration to iteration are the centroids. The output of 
each map function is a set of centroids.

The benchmarks, which were run on five machines, also contrast the per-
formance of Granules with MPI using a C++ implementation of the k-means 
algorithm.

The graphs depicted in Figure 9.10 have been plotted on a log-log graph so 
that the trends can be visualized a little better. We varied the number of data 
points in the dataset from 105 to 4 × 107. The results indicate that Hadoop’s 
performance is orders of magnitude slower than Granules and MPI. In Hadoop, 
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these centroids are transferred using files, while Granules uses streaming. 
Furthermore, since Hadoop does not support iterative semantics, map func-
tions need to be initialized and the datasets need to be reloaded using HDFS. 
Though these file-system reads are being performed locally (thanks to HDFS 
and data collocation), these costs can still be prohibitive, as evidenced in our 
benchmarks. Additionally, as the size of the dataset increases, the performances 
of the MPI/C++ implementation of k-means and the Granules/Java implementa-
tion of k-means start to converge.

9.7.4 Periodic Scheduling
In this section, we benchmark the ability of Granules to periodically schedule tasks 
for execution. For this particular benchmark, we initialized 10,000 map functions 
that needed to be scheduled for execution every 4 s.

The objective of this benchmark is to show that a single Granules instance can 
indeed enforce periodicity for a reasonable number of map instances.

Figure 9.11 depicts the results of periodic executions of 10,000 maps for 17 iter-
ations. The graph depicts the spacing in the times at which these maps are sched-
uled for execution. The X-axis represents a specific map instance (assigned IDs from 
1 to 10,000), and the Y-axis represents the spacing between the times at which a 
given instance was scheduled. Each map instance reports 17 values.

The first time a computational task is scheduled for execution, a base time, tb, 
is recorded. Subsequent iterations report the difference between the base time, tb, 
and the current time, tc. In almost all cases, the spacing between the successive 
executions for any given instance was between 3.9 and 4.1 s. In some cases, there 
is a small notch; this reflects cases where the first execution was delayed by a small 

O
ve

rh
ea

d 
(s

)

0.1
0.1

10,000

1,000

100

10

1

1 10 100
Number of 2D data points (millions)

Hadoop
Granules

MPI

Figure 9.10  Performance of the k-means algorithm.



Granules  ◾  221

amount, the (constant) impact of which is reflected in subsequent iterations for 
that map instance.

9.7.5 Data Driven
In this section, we describe the performance of matrix multiplication using Granules. 
In this case, the object is to measure the product of two dense 16,000 × 16,000 
matrices, that is, each matrix has 256 million elements with predominantly non-
zero values.

The matrix multiplication example demonstrates how computational tasks can 
be “stay alive,” and be scheduled for execution when data is available. The maps are 
scheduled for execution as and when the data is available for the computations to 
proceed.

For this benchmark, we vary the number of machines involved in the experi-
ment from 1 to 8. There are a total of 16,000 map instances. At a given time, 
each of these maps processes portions of the rows and columns that comprise the 
matrix. Each Granules instance copes with a fragment of more than 2000 concur-
rent streams. In total, every Granules instance copes with 32,000 distinct streams.

The results for the processing times (plotted on a log-log scale) can be seen 
in Figure 9.12. In general, as the number of available machines increases, there 
is a proportional improvement in the processing time. Our plots of the speed-
up (Figure 9.13) in processing times with the availability of additional machines 
reflect this.

In general, these graphs demonstrate that Granules can bring substantial ben-
efits to data-driven applications by amortizing the computational load on a set of 
machines. Domain scientists do not need to write a single line of networking code; 
Granules manages this in a transparent fashion for the applications.
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9.7.6 Assembling mRNA Sequences
This section describes the performance of Granules in orchestrating the execution 
of applications developed in languages other than Java. The application we consider 
is the CAP3 [20] messenger Ribonucleic acid (mRNA) sequence assembly applica-
tion (C++) developed at Michigan Tech.

An Expressed Sequence Tag (EST) corresponds to mRNAs transcribed from 
genes residing on chromosomes, individual EST sequences represent a fragment 
of mRNA. CAP3 allows us to perform EST assembly to reconstruct full-length 
mRNA sequences for each expressed gene.

Our objective as part of this benchmark was also to see how Granules can be 
used to maximize core utilizations on a machine. CAP3 takes as input a set of files. 
In our benchmark, we need to process 256 files during the assembly.
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On a given machine, we fine-tuned the concurrency by setting the number of 
worker threads within the thread-pool to different values. By restricting the num-
ber of threads, we also restricted the amount of concurrency and the underlying 
core utilizations. We started off by setting the worker-pool size to 1, 2, 4, and 8 on 
1 machine, and then used 8 worker threads on 2, 4, and 8 machines. This allowed 
us to report results for 1, 2, 4, 8, 16, 32, and 64 cores.

The results of our benchmark in terms of processing costs and the speed-ups 
achieved are depicted in Figures 9.14 and 9.15, respectively. In general, as the num-
ber of available cores increases, there is a corresponding improvement in execution 
times.
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The results demonstrate that, when configured correctly, Granules can maxi-
mize core utilizations on a given machine. The graphs plotted on a log-log scale 
indicate that for every doubling of the available cores, the processing time for 
assembling the mRNA sequences reduces by half (approximately). The Granules 
runtime reads the thread-pool sizing information from a configuration file; we 
will be investigating mechanisms that will allow us to dynamically size these 
thread-pools.

9.8  Conclusions
In this chapter, we described the Granules runtime. Rich life-cycle support within 
Granules allows computations to retain state, which in turn is particularly appli-
cable for several classes for scientific applications.

Granules allows complex computational graphs to be created. As discussed, 
these graphs can encapsulate both control flow and data flow. Granules enforces 
the semantics of complex distributed computational graphs that have one or more 
feedback loops. The domain scientist does not have to cope with IO, threading, 
synchronization, or networking libraries while developing applications that span 
multiple stages, with multiple distributed instances comprising each stage. These 
computational pipelines can be dependent on iterative, periodic, data-driven, or 
termination conditions.

Demonstrable performance benefits have been accrued by Granules as a result 
of using streaming for disseminating intermediate results.

Granules’ rich life-cycle support, and its performance when contrasted with 
comparable systems, underscores the feasibility of using Granules in several set-
tings. As part of our future work, we will be investigating support for autonomic 
error detection and recovery within Granules.
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10.1  Introduction
Currently, there is a great tendency toward creating and implementing new 
Distributed System paradigms, such as Grid and Cloud Computing, which allow 
users to both store data and execute applications in a distributed environment with-
out having to be concerned about resource and computational restrictions provided 
by their personal computers. More and more business and scientific applications 
rely on the use of Distributed Systems to solve complex tasks in a completely trans-
parent manner so that users would not have to be concerned about where the data 
is stored or the application is being executed, but instead be focused on the result 
of the desired job. Together with the occurrence of specific user requirements that 
need a Distributed System to be solved, there have also appeared applications that 
need to be solved in a finite number of steps and in certain periods of time. These 
applications usually consist of several tasks linked together by a workflow that can 
have at least one entry and exit point.

We should note that workflows have been extensively used in business applica-
tions as well as science for solving specific problems. There is a consistent branch 
of computer science that deals with the subject of business applications by provid-
ing businessmen with tools that allow them to focus on modeling and supervis-
ing business activities rather than on actual implementation or execution. In what 
concerns the current chapter, we will deal only with scientific workflows, although 
the ideas presented here can be applied without major modifications for the busi-
ness case. On the other hand, scientific workflows arise from various fields, such as 
applied mathematics, physics, chemistry, biology, geography, or history, which use 
complex problems that require breaking them into atomic tasks that can be later 
independently executed. In order to obtain a greater efficiency, these tasks can be 
executed inside a Distributed System transparent from the user point of view and 
orchestrated by using either a centralized or a distributed approach. During the 
workflow’s execution, the user would be unaware of the places where tasks are being 
executed and of the internal logic driving the process. The main interest of the user 
would be the result itself, which would be sent back after the workflow’s execution 
has ended. This way of solving problems is similar to the one followed by Grid and, 
more recently, Cloud Computing.

The enactment of scientific workflows requires complex coordination between 
workflow activities and entities belonging to the Grid or Cloud. Aspects regarding 
the coordination usually include large amounts of required computation and data 
storage elements, services, data discovery and selection mechanisms, control and 
data dependency handling, preparing activities for execution, failure handlers, etc.
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As for this Chapter, the difference between Grid and Cloud Computing with 
regard to the way a workflow is executed is that of concept: Both Grids and Clouds 
are viewed as resource pools offering services for certain jobs. Among the disadvan-
tages that Grids may have over Clouds, we can enumerate issues related to licens-
ing, legal or political issues, lack of virtualization support, complex architectures, 
tools and technologies, etc. However, Grids have also managed to offer easy access 
to their resources in the form of state-full Grid Services, which allow users to sub-
mit jobs without having to know any details on the underlying platform. Also Grid 
Services permit users to later query the result of their computation and offer digital 
certificates as security mechanisms. In addition, Clouds offer virtualization, and 
thus they are capable of running multiple virtual machines on the same resource. 
For the scientific domain, this can be seen as an advantage by running solutions 
that require different platforms on the same physical machine.

Distributed Systems are dynamic in nature and consequently susceptible both 
to network and resource failures as well as to changes in their workload. Therefore, 
a workflow orchestration engine needs to be able to adapt to this unpredictable 
behavior. Furthermore, workflows must allow dynamic evolution during runtime 
in case the workflow definitions have been modified. These definitions could 
concern changes in task dependencies or description, or changes in the method 
a task should be solved and could occur naturally in any workflow due to task 
migration, synchronization, occurrences of augmented solution providers, etc. 
All these issues need to be dealt with automatically because a manual approach 
or workflow abortion could prove to be inefficient due to various reasons, such 
as workflow length and complexity. Automation is also a necessity owing to the 
fact that the execution happens inside a cloud where the user has no control over 
what happens. Moreover, safe nets in the form of logs, warnings, or errors with 
the aim of notifying the user of possible wrong results need to be offered. Faulty 
responses could result from a wrong execution path resulted from improper ser-
vice selection.

The rest of this chapter will address all these issues by starting with a short 
introduction in workflow modeling, decomposition, and task semantics. Then a 
brief overview on present workflow issues and solutions will be addressed followed 
by the description of a simple workflow formalism intended for self-adaptation and 
auto-generation. In this direction, some examples of scientific workflows will be 
given. Finally, several general conclusions will be drawn. The workflows will be 
placed in a Distributed System context, and where necessary, issues and examples 
will be explained.

10.2  Workflow Modeling
Before addressing service-oriented workflow-related issues, we first need to define 
what re-searchers understand by workflows, how they help us in describing 
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executable solutions to particular problems, and how they resemble to or diverge 
from classic approaches such as logic schemes or textual algorithms. These will be 
introduced by using either generic or concrete examples. An important aspect we 
need to bear in mind before proceeding is that workflows operate at higher levels 
and do not get into low-level details (unlike arithmetic operations and file IO).

When solving a particular problem, one of the first steps, as far as basic software 
engineering is concerned, is to decompose the workflow into smaller problems until 
we reach a point where there are immediate solutions for each existing subproblem. 
As a consequence, we obtain a tree where each node is a problem to be solved, its 
direct children are subproblems, and the leaves of the tree are problems with imme-
diate or basic solutions. We can assert that in fact each node represents not only a 
problem to be solved but also the method by which we aggregate the sub-solutions 
of the subproblems. Thus, by walking the tree downward (from the root) we obtain 
the decomposition, whereas by walking the tree upward (from the leaves) we obtain 
the actual computations that have to be done. What we have seen so far is yet only 
an instantiation of a more generic problem that has roughly the same solving method 
but differs only in the actual manipulated values. Therefore, we modify our tree by 
replacing values with symbolic parameters. As previously mentioned, decomposition 
needs to be stopped when a certain level of granularity has been reached and the iden-
tified subproblems have already known solutions (the histogram equalization in case 
of image processing, sparse matrix multiplication for mathematical problems, etc.).

Single nodes can be treated as procedures, namely, as a single unit of work or a 
program that efficiently solves the well-defined corresponding subproblem. Such 
a procedure has an output represented by the solution of the problem, and some 
inputs consisting of the direct parameters of the subproblem, which are received 
when invoked.

The procedure itself is stripped of any decomposition responsibility, and its 
unique purpose is to combine the inputs representing both rightful parameters and 
solutions of subproblems into desired outputs. As an 
example (see Figure 10.1), we could consider (although 
it breaks the granularity rule stated above) computing 
the Least Common Multiple (LCM) of two numbers, 
(A and B). To solve this, we have chosen to divide 
the product of these two numbers by their Greatest 
Common Divisor (GCD). In order to accomplish it, 
we have two nodes (procedures), one for computing the 
LCM having as inputs A, B, and GCD, and one for 
computing the GCD that receives as inputs A and B. 
From the previous example, we can see that the real 
parameters for both procedures are A and B, and that 
the input GCD for the LCM node is in fact the solu-
tion of the GCD subproblem.

A (in) B (in)
M (out)

LCM

GCD

Figure 10.1  LCM solu-
tion tree.
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With more complicated problems, we can clearly notice that by leaving the 
actual solving method for subproblems outside the procedure itself, we enhance 
flexibility by allowing the workflow engine to select a method that best matches 
the particular inputs. In the light of our example, the focus of the solution tree is 
hence shifting from its nodes to its edges, away from the procedures and toward 
the data flow between these procedures. Furthermore, we can state that workflows 
mainly act as glue-code, which binds together applications into complete working 
meta-applications.

The comparison with the solution tree is incomplete and too particular because 
we could imagine a situation in which two tasks have a common dependency, as 
in the case of the Fibonacci recursive function or the Normalized Differential 
Vegetation Index (NDVI). In this case, modeling the workflow as a tree could lead 
us to repeat the same calculations twice, which is inefficient in terms of comput-
ing resources. In contrast, if nodes were allowed to share subproblem outputs, our 
problem would be solved and we would be offered a Directed Acyclic Graph (DAG) 
permitting data reuse. Figures 10.2 and 10.3 give a graphical illustration of the 
NDVI computation when using both a tree and a graph model. The details of these 
computations will be described in Section 10.4.

NDVI (out)

NIR

Img Img Img Img

Coordinates (in)

RED

/

– +

NIR RED

Figure 10.2  NDVI solution tree.
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Another problem that arises from the previous tree model 
is that it allows only for one output for each task, Which is 
not always true for real-life problems. As a simple example, 
we could, take the integer division of two numbers that has 
two valid and useful outputs: the quotient and the reminder. 
In contrast, if we allow only one output for each task we will 
end up with two tasks, one for the division and one for the 
reminder, both of them sharing almost the same code and 
thus leading to execution overhead. Another example could 
be the split of a color image into its RGB layers. As a conse-
quence, a natural extension to our initial tree model would 
be to allow a task to return multiple values, and therefore 
certain parts of the output could be used as inputs in some 
tasks while others for other tasks. By applying this modifica-
tion, we also obtain a DAG.

As a remark, we can safely state that the building blocks 
of workflows are the procedures (the nodes), also called 
tasks, and the data flow dependencies between them (the 
edges in our tree). Additionally, we can assume that work-
flows are deterministic, meaning that for the same inputs 
we always obtain the same outputs. Also it seems that the 
natural way of expressing workflows is by modeling them 
as DAGs, since they not only provide a valuable simplicity 
in expressing them but also might enhance the overall effi-
ciency of the resulting system.

10.2.1 Workflow Decomposition
In what follows, we will deal with task-dependency-related aspects; explain the 
most basic workflow decomposition constructs as sequence, split, and join; and add 
to them other special-purpose constructs as decisions and loops. Also we disregard 
the fact that an edge between two nodes represents the data flow between the 
output of one and the input of the other, and will treat them as simple execution 
dependencies. The reason for this assumption is because many workflow engines 
treat the edges as explicit execution precedence and obtain the data dependency 
only as a consequence to it. Besides, it is obvious that from such a perspective, 
variables are indispensable and almost the only means through which tasks can 
communicate.

A brief overview on the most used constructs is given below.
The sequence construct (see Figure 10.4) is similar to the construct from logic 

schemes meaning that tasks are executed one at a time, starting the next only after 
the previous one has ended. This construct could come from the fact that the out-
put of the previous task is the input of the next task.
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Figure 10.3  NDVI 
simplified  solution 
as a DAG.
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The split construct (see Figure 10.5) introduces par-
allelism into workflows and allows tasks to be executed 
concurrently. It could be compared with spawning new 
threads, each of them solving an independent problem.

The join construct (see Figure 10.6) represents the 
end of a split construct and allows parallel paths to join, 
thus providing a synchronization mechanism. We must 
note that there is no need for a one-to-one mapping 
between splits and joins.

The conditional construct (see Figure 10.7) must 
also be added to the list as it is required when decision-
making scenarios occur. It can have many flavors ranging 
from a mere if-condition-else form to a multi-condition 
construct (similar to the switch case in programming 
languages), with one sub-workflow for each condition 
and an additional default one.

Additionally, there are cases when we have to extend 
the model by including iterative constructs. Such an 
example is the while-like construct, which takes a con-
dition and a sub-workflow and executes it until 
the condition is satisfied. Such cases are typical for 
workflows that contain tasks that are nondeter-
ministic or have side effects. Most implementations 
try to avoid such situations, and DAG-oriented 
workflow engines do not support them because 
they imply a loop.

Although none of the existing workflow 
engines implicitly support Map-Reduce (Dean 
and Ghemawat, 2004) patterns (see Figure 10.8), 
they are often used especially in Cloud/Grid 
Computing due to their capability to express 
scalability. In what follows, we make an adap-
tation for workflows as the original design 
described in the cited paper used a master process 
that had to oversee the entire progress, and thus played the role of a simplified 
orchestration workflow engine. There are normally three basic steps to a Map-
Reduce pattern: fan, map, and reduce. First the fanning process has the purpose 
to take one big chunk of data and split it into smaller pieces. It does not appear 
in the original paper as this resposability was built into the map phase and coor-
dinated by the master process. Then the mapping process takes each small piece 
and applies the needed processing independently and in parallel with the other 
pieces. Finally, the reduce process takes a range of processed data and aggregates 
them. Considering the NDVI example, we can imagine splitting (fanning) the 
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Figure 10.4  Sequence 
construct for workflow 
decomposition.
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Figure  10.5  Split  construct 
for workflow decomposition.
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area into smaller areas in case of large images, com-
puting the NDVI individually (map) for each area, 
and ultimately putting the puzzle back together into a 
larger image for the initial bigger area (reduce).

Finally, we can mention trivial constructs, such as 
task invocation, variable assignment, and basic data 
manipulation (needed for minor adaptation of mis-
matching outputs and inputs), which can also be used 
but are not always part of a workflow language like the 
basic decomposition constructs.

Workflow languages relying on the previously 
mentioned constructs need to explicitly express par-
allelism. This approach has two major shortcomings: 
first, the user (developer) has to proactively think 
about the parallelism; second, the engine has almost 
no liberty to find concurrency (other than explicitly 
expressed), thus reducing the overall efficiency. As 
it will be seen later in this chapter, the only work-
flows that overcome these issues are those based on 
execution rules following an Event-Condition-Action 
(ECA) paradigm.

After having explained the basic workflow con-
structs, we can now further define a well-formed work-
flow from a decomposition perspective. A well-defined 
workflow is either one identifying with a single task, an 
instantiation of a single workflow decomposition con-
struct, or any finite combination of the decomposition 
constructs.

A consequence to the previous definition is that the 
notions of task and workflow are interchangeable, and 
in what concerns the rest of the chapter, they can be 
safely swapped.

10.2.2 Task Implementation Model
Workflows can be regarded from two perspectives: the way they are implemented 
and their semantic aspects In what follows, we have tried to give a small intro-
duction on both topics, starting with implementation and concluding with the 
semantic part.

When speaking about workflow implementations, we are mainly referring to 
different frameworks and platforms that provide developers with a common work-
ing base in order to implement and use the tasks. The main differences between 
these platforms are the way in which tasks are implemented and how they obtain 
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their inputs and give outputs. More precisely, we can speak either of process-based 
or service-based workflows. These two approaches also show how workflows have 
evolved from chaining offline applications to wrapping applications as services and 
providing an online interface.

Process-oriented workflows have advanced from a mechanism of controlling 
operating-system processes. Probably the simplest workflow languages may 
be considered to be shell-scripting languages (like Bash) and make-like tools. 
The former allows sequential and conditional process chaining, while the lat-
ter provides a descriptive rule-like language that even offers automatic parallel-
ism detection. As for the purpose of workflow management, these examples can 
however be considered rudimentary, since more advanced systems are needed. 
Nevertheless, all process-based solutions have in common the basic working 
principles: assuming a list of arbitrary command-line applications with each 
application provided with the right input/output files, we can construct and 
execute a workflow solution by chaining these applications in a certain way. 
A particular aspect is the way these processes (tasks) communicate with one 
another: they are neither capable of taking (pulling) their own inputs nor sub-
mitting (pushing) their outputs, and these facilities must be provided to them by 
the platform. This aspect is essential in the context Distributed Computing, as 
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Figure 10.8  Map-Reduce workflow pattern.
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outputs from tasks need to be transported to the node requiring them as inputs, 
thus incurring network load.

With the appearance of Service-Oriented Architectures (SOA), which allow to 
embed at low-cost processes as Web Services, a shift from process-oriented tasks to 
service-oriented ones was accomplished. The change has brought other advantages as 
well, namely, in the way inputs and outputs are handled by transforming the com-
mand-line arguments and textual configuration files into XML documents, which 
enclose all the task-required parameters. An interesting and very important aspect 
concerning Distributed Computing in this service-oriented paradigm is represented 
by the way in which raw input/output data is handled (for example, large satellite 
images): instead of relying on the platform to provide file transfer from one node to 
another, the job is delegated to a distributed storage system, while services explicitly 
use identifiers of such distributed files as inputs or outputs. Moreover, this abstrac-
tion provides the very foundation on which Cloud Computing is built by allowing 
providers to expose local applications for external use by means of Web Service.

10.2.3 Task Semantics
Usually we think of tasks as black boxes that expose a certain interface with strict 
inputs and outputs and show dependable behaviors. This implies the existence of a 
contract between the task implementation (what the developer has done) and the 
task execution (what the user gets). Generally, this contract can have two facets: 
syntactic and semantic (in the majority of cases, the former).

From a syntactic point of view, a task description reveals to us what type of 
inputs/outputs it expects to receive/send. For instance, it might tell us that it 
expects an integer or a list of strings, each matching a certain regular expression. 
Going even further, it might disclose to us that it awaits a complex compound 
structure but also provides alternatives. For instance, we can consider an Enterprise 
Resource Planning (ERP) system where a task could accept a person data type 
provided either as a structure containing the name, the address, national identi-
fier numbers, or as a unique system-related identifier. These definitions are specific 
to each workflow engine, and in Business Process Execution Language (BPEL) 
(WSBPEL, 2007), for example, they are described by using a standard Web Service 
Web Service Description Language (WSDL). In the case of a make file (which, 
as stated previously, could be seen as the most elementary workflow engine), it is 
described in terms of file extensions and file name patterns. In any case, the syn-
tactic contract refers only to data typing (number, string, structure, list, etc.) and 
some rudimentary conditions (not empty, greater than zero, matching a regular 
expression, etc.) that make the transition to the semantic perspective.

In the case of the semantic contract, some tools and languages may allow us to 
describe more complex validation rules for both inputs and outputs, and also the 
relation between them. These rules are named preconditions (which logic statements 
should be true for valid inputs) and post-conditions (which logic statements should 
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be true for the outputs and for the relation between inputs and outputs). Although 
there is no production-ready workflow engine that allows such a perspective, it 
could be the key to both workflow formal verification and automatic generation. 
Such a scenario has been proposed in (Lu et al., 2006) and will be overseen in 
Section 10.6.

10.3  Present Workflow Issues and Solutions
Generally, an adaptive workflow engine needs to take into consideration issues 
related with data integrity; failure handling; open world service assumption; ad hoc 
workflow design; a multitier abstraction architecture that separates application and 
user concerns from operational and middleware concerns; support for e-Science 
lifecycle in which experiments need to be structured, repeatable, and verifiable; 
data-flow-centric model; etc. Probably the most important problems related to 
workflow execution are to ensure data integrity and failure handling. The first of 
them can be solved using either model checking at design time or proper service 
selection for task execution during runtime. The second one is more problematic as 
errors could occur in many places and cannot be usually predicted. They include 
failures of the workflow engine itself, failures of the component services, and fail-
ures of the network fabric, which will be briefly discussed in what follows.

Solving workflow engine failures could be achieved by offering a cloning mech-
anism and creating multiple workflow instances on various resources. Only the ini-
tial workflow instance would be active, while the rest of the instances periodically 
query the active one to check whether it is still running or not. In case of failure to 
respond to pings, one of the inactive workflows would instead become active and 
take over the role. To facilitate this operation each time a task changes its status or 
a rule is added or retracted front the rule base, all the inactive workflows will be 
notified of the respective event. Consequently, each of them would have an updated 
view of the overall workflow execution status. As an alternative, a scenario where a 
workflow is divided into several smaller ones (Lu et al., 2006)—each of them con-
sisting of part of the initial rule base—the part of the workflow that corresponds to 
these rules can be considered. Yet, these approaches are not completely distributed 
as they still rely on one or more centralized workflow engines. Instead, an approach 
in which there does not exist a workflow engine and tasks act as agents with cer-
tain requirements, input and output ports, dependencies, and other relevant infor-
mation, such as task type (initial, intermediate, and final), problem description, 
etc., could be taken into account. In this case also, two main approaches can be 
taken. The first one is dependent on a central Task Discovery Mechanism (TDM), 
but allows tasks to execute independently and without a centralized or distributed 
orchestrator. Tasks register themselves to the TDM and query it periodically in 
order to update their status. In addition, tasks still waiting for their dependencies 
to finish execution also regularly query the TDM to check whether or not their 



238  ◾  Cloud Computing and Software Services

dependencies have finished. A completely distributed approach could be achieved if 
tasks carried additional information, such as the IDs of their dependencies, and sent 
at times a broadcast message on a specific port containing besides the dependency 
ID some query information. Still this scenario is unlikely applicable to large-scale 
Distributed Systems, which consist of large IP address spaces and where various 
network security policies would hinder the message from passing through.

Failures of the component services as well can be solved by using rules that 
allow multiple retries when attempting to access a service, or by using a discovery 
mechanism that relies on semantic information to retrieve information regarding 
the possible service alternatives for solving a specific task.

Failures of the network fabric are probably the most difficult issues when deal-
ing with failure handling and recovery. Using a distributed workflow approach, 
such as the ones formerly described, combined with a mechanism for storing work-
flow states and resuming them at a later time could provide a certain assurance 
that the workflow will eventually be executed. However, there remains the issue of 
time costs with users normally interested in solving their problems under certain 
deadline constraints where possible.

The failure-related aspects presented in the previous paragraphs also concern 
users executing scientific workflows, these usually take a lot of time to solve with 
intervals ranging from a couple of minutes to days or weeks. As a result, workflow 
engines need to cope with these aspects and try to offer viable solutions so that the 
workflows would either get executed as a result of some rule-based decisions or 
would be paused and reactivated once the problems have been solved.

10.3.1 Present Workflow Solutions
Presently, there are many solutions that allow the composition and orchestration 
of tasks, most of them including an SOA-based approach and using either Web or 
Grid Services as communication end points between services. Composing tasks 
exposed as services is a preferred approach as it allows service providers to expose 
software in an easy and uniform way such that anyone complying to the used 
standards could easily access and use them. In what concerns service composition 
DAGs or Petri nets can be used to model two different approaches. The first one 
is based on classic task composition, which is usually accomplished during design 
time and cannot be easily adapted to support runtime changes as the second one 
that relies on an ECA. Orchestration engines falling in the first category ordinarily 
rely on XML-based formalisms to express relations between tasks. In the second 
case, flow can be seen as made of rules composed of events that trigger actions 
implying data updates or task invocations as a result of some conditions. This is 
more suited in case adaptation to system/logical failures or runtime changes in the 
structure of the workflow are required. Orchestration engines using this approach 
lean on forward-chaining algorithms, such as RETE (Forgy, 1990), to activate 
subsequent rules.
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While the subject of the topic presented in this chapter is dealt with in a large 
amount of papers, it is our goal in what follows to present exclusively the most sig-
nificant and the latest achievements in the field.

10.3.1.1 Classic Approaches

Web Service orchestration can be achieved using classic languages, most of them 
being XML based. One of the most popular standards in service orchestration 
is the WS-BPEL 2.0 (WSBPEL, 2007) language. It is an orchestration language 
aimed, at describing an executable process involving message exchanges with other 
systems that, in this case, can be exposed as Web Services. Besides this feature, 
it allows defining and initializing XML- and WSDL-typed variables, support for 
writing expressions and queries in languages such as XPath 1.0, structured pro-
gramming by using well-known constructs (including if-then-else, while, sequence, 
flow, parallel, etc.), encapsulation of logic by using local variables, event and fault 
handlers, concurrent access to variables, etc. Alternatively, if a non-XML language 
is preferred, BPEL script offers a translation from WS-BPEL 2.0 into a JavaScript 
and Ruby-syntax-like language. Recently, Charfi and Mezini (2007) proposed 
an aspect-oriented approach as an alternative to the process-oriented approach of 
BPEL. In the same paper, the authors also argue that process-oriented composition 
languages suffer from two main problems. The first one concerns the modularity 
of the specification as it might not be suited for cases concerning exception han-
dling, access control and authentication, business rules, etc., while the second one 
concerns the dynamic adaptation during runtime of the service logic. WS-BPEL 
2.0 tries to cope with the second issue by introducing dynamic partner bind-
ing. Macariu et al. (2008) also try to tackle with the second problem by offering 
semi-dynamic Web Service composition focused only on a limited class of scien-
tific workflows that concern mathematical problems. Due to its standardization, 
WS-BPEL 2.0 has been widely adopted as part of many workflow engines, such as 
ActiveBPEL and Apache-ODE.

YAWL (Yet Another Workflow Language) (van der Aalst and ter Hofstede, 
2005) can be seen as a viable alternative to BPEL. It is also based on XML includ-
ing XPath and XQuery to define and manipulate data, and covers most of the exist-
ing workflow patterns. It permits dynamic adaptation of workflow models by using 
worklets and supports design-time model validation, such as detecting deadlocks. 
Probably the mainly developed feature related with YAWL as far as the work pre-
sented in this chapter is concerned with are the worklets (Adams, 2007). They are 
represented by a set of self-contained workflow processes attached to a specific task 
and allow dynamic runtime selection depending on the particular work instance 
context by using a Ripple Down Rules (RDR) approach. RDS allows for rules to be 
defined in hierarchical order by using binary trees with each node being represented 
by a rule and having a false and/or true branch. The single node with an exception 
is the root node that alone has a true branch. The worklet service maintains a set of 
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RDRs that determine—based on the current data—what worklet should be chosen 
as a replacement for a specific task during runtime.

Scufl is data-flow-centric workflow composition language used by the Taverna 
(Oinn et al., 2006) workflow engine. Taverna follows a three-tiered architecture 
approach with Scufl being responsible for linking applications at the user abstrac-
tion level. The execution layer interprets the Taverna Data Object Model that 
handles implicit control flows, while the Freeflue enactment engine manages the 
invocation of different families of services. Scufl uses a simplified syntax in which 
collections, control structures, or error-handling mechanisms are implicit with the 
main components consisting of a set of processors (logical services with one or 
more input and output ports), a set of data links for connecting data sources to 
destinations, and coordination links that allow order dependencies where required. 
The main disadvantage of Scufl is the impossibility of specifying user-defined con-
straints to either processors or data links. An XML-based version called XScufl 
(Greenwood, 2004) has also been developed.

Ontology Web Language for Services (OWL-S), formerly known as DARPA 
Agent Markup Language for Services (DAML-S) (Ankolekar et al., 2001), is an 
ontology-based approach, which can be successfully used in composing Web Services. 
Composition can be achieved by using the CompositeProcess class part of the process 
ontology. This class allows users to specify structures such as sequence, split, unor-
dered, join, choice, condition, and iteration. One of the goals of OWL-S is to allow 
agents to automatically invoke and compose tasks based on their semantic description. 
In Korhpnen et al. (2003), the DAML-S process model is enhanced with transactional 
concepts, and the resulting workflow can then be executed using a workflow engine.

Other approaches represent workflows as DAGs or rely on the Job Submission 
Description Language (JSDL) (Anjomshoaa et al., 2005). The former is used in proj-
ects like Pegasus (Deelman et al., 2005) and Condor (Thain et al., 2003), which 
rely on Direct Acyclic Graph Manager (DAGMan) to subsequently execute them, 
while the latter is used in g-Eclipse (Wolniewicz et al., 2007). DAGMan allows for 
dynamic mapping and some failure-handling features, but is aimed at maximiz-
ing processor efficiency, offering a fixed scheduling mechanism and limited con-
trol constructs. JSDL is primarily used for describing the submission requirements 
of individual jobs, and therefore a workflow language is needed to represent job 
dependencies. g-Eclipse uses an XML format that allows jobs described by using 
JSDL to be linked together by using one or more input/output ports. In Narayanan 
and McIlraith (2002), part of DAML-S semantics is transformed to first-order 
logic and Petri nets. A solution to automatic Web Service composition by using 
both situation calculus and Petri nets is also proposed.

10.3.1.2 ECA-Based Approaches

While workflow languages, such as WS-BPEL, have become standards in Web 
Service composition, they lack the flexibility and adaptability of rule-based 
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approaches. Moreover, even though enhancements such as worklets allow dynamic 
runtime task selection, they let the designer (user) think of all the aspects and 
issues that may appear during the execution of the respective workflow and add 
them to the rule hierarchy. Hence, in case a scenario for which a correspondent 
worklet does not exist, it is the conclusion of the last rule satisfied on the path 
to it that is taken into account. This could infer errors in the overall workflow 
behavior and result, as wrong decisions could be made on the grounds of insuf-
ficient existing knowledge. Worklets are also strongly related with tasks and, as a 
result, are not meant for dealing with system or network failures. Their best use 
could therefore be the correct selection of a solution to the problem depicted by 
the task.

Rule-based languages, such as ECA or CA (Condition Action), allow an alter-
native declarative approach by allowing (Weigand et al., 2008) intuitive formal 
semantics by exploiting a limited set of primitives, direct support for business and 
science policies, flexibility by following alternative execution paths in case of errors 
or unreachable solutions, adaptability by easy insertion and retraction of rules, and 
reusability by their property of being isolated from the process context.

Weigand et al. (2008) describe a CA-based engine called FARAO (FrAmewoRk 
for Adaptive Orchestration) relying on semantic Web with the goal of offering 
adaptable service orchestration. FARAO is based on Adaptive Service-Oriented 
Architecture (ASOA) (Hiel et al., 2008) and uses a shared ontology, which allows 
rules to refer to data items in terms of it. Thus, changes in the service interface do 
not influence the orchestration directly as long as it adheres to the ontology. ASOA 
allows for services to be adapted autonomously or semiautonomously following a 
monitor-plan-act cycle via a management interface.

Nagl et al. (2006) present a service-oriented rule engine called VIDRE (Vienna 
Distributed Rules Engine), which uses RuleML (Lee and Sohn, 2003) to represent 
facts, rules, and queries. It also distributes rules across several rule engines, thus 
increasing the separation and execution of business rules inside multiple (virtual) 
organizations.

Other approaches include injecting rules inside the WSDL specifications fol-
lowed by their deployment on a service executor (Kamada and Mendes, 2007) or 
using an interceptor (Rosenberg and Dustdar, 2005) for catching BPEL activities. 
After an activity has been caught, applicable business rules are called via a rule 
broker service.

The aspect-oriented approach of BPEL, called AO4BPEL (Charfi and Mezini, 
2007), also provides a separation of the main activities from the composition logic 
and follows at the same time the principles of WS-BPEL 2.0. Aspect-oriented pro-
gramming has been recently acknowledged by many authors as a useful and power-
ful technique in cases where dynamic application adaptation is required.

AgentWork (Muller et al., 2004) is another workflow engine that allows rule-
based adaptation by adding and removing tasks based on ECA rules. Adams (2007) 
argues that AgentWork does not offer the flexibility of RDR as worklets do and that 
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changes are limited to individual tasks rather than the process-for-task replacement 
offered by the worklet service.

As it can be noticed from the previous paragraphs, there exist many workflow 
languages and systems that aim at offering both a standardized solution and a 
dynamic approach to runtime changes in the workflow execution. Among them the 
most suited for the job seem to be the ECA approaches, as they offer several advan-
tages like separation of logic represented by rules from data represented by objects, 
declarative programming useful for applications focused on what to do instead of 
how to do it, scalability, and centralization of knowledge. These conclusions also 
arise naturally from what Clouds are and how they work. Clouds are based on 
virtualized resources that are offered on demand as services. When a user submits 
a request to a workflow engine exposed as a service, it expects back the result. The 
workflow engine is responsible for querying the Cloud for any compatible services 
with its tasks and to call these services once the associated task is ready for execu-
tion. The querying can be done based on ECA execution rules and by using some 
semantic information stored inside the service and task ontologies. This approach 
allows the user to submit not only pre-created workflows but also only the problem 
at hand. Based on the latter and on available ontologies, the workflow engine is 
then able to create the workflow for that particular problem by using a backward-
chaining mechanism based on existing execution rules.

10.4  Scientific Workflows Examples
The scientific domain relies more and more on Distributed Computing due to 
large amounts of computations or data requirements. In this frame, the SCIEnce 
(Macariu et al., 2008) and GiSHEO (Frincu et al., 2009; GiSHEO, 2009) projects 
aim at providing the user with the possibility to use the advantages of Grids and 
Clouds for solving problems from two distinct and complementary approaches. 
The SCIEnce project intends to provide users with access to various Computer 
Algebra Systems (CASs) and to solve complex problems by using workflows that 
are executed over a Distributed System transparently to the user. Each task inside 
a mathematical workflow is represented by an operation that can be solved directly 
(for example, the GCD or the factorial). The project relies on WS-BPEL 2.0 as the 
workflow language and on ActiveBPEL as the orchestration engine. To overcome 
the difficulty of writing in the BPEL language, a simpler and restrictive language 
called Abstract Workflow Language (AWL) (Macariu et al., 2008) has been cre-
ated on top of it. Providing scheduling and dynamism to BPEL has proven to 
be more difficult as initially expected, and there are still some open issues that 
have not entirely met their answers. Among them, we can enumerate the ones 
related to choosing resources dynamically at runtime or integrating a scheduler 
inside the engine. The former is of special interest as CASs differ in the algorithms 
they implement for solving such tasks. Therefore, we should be able to choose 
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dynamically at runtime the most appropriate one for the job, operation which 
requires comprehensive knowledge on CAS behavior in various scenarios and an 
appropriate workflow platform.

The GiSHEO project aspires to provide a platform for earth sciences (history 
or archeology, for instance) by offering access to satellite image processing through 
means of web services. Although image processing may be trivial when taken sepa-
rately, there are cases when we need to bind them together into a workflow in order 
to achieve the desired result. Useful examples come from the field of archeology; 
assuming that we want to identify ancient human settlements we could apply the 
following sequence of transformations: gray-level conversion, histogram equaliza-
tion, quantization, and thresholding. Another example is represented by the NDVI 
value used in geography and meteorology for determining the presence of vegeta-
tion. The NDVI can be easily computed by using the Map-Reduce construct, as 
it is usually required for large sets of images. For each image in the set, we need to 
extract the red (RED) and near-infrared (NIR) bands, which will be used to com-
pute the index as (NIR−RED/NIR+RED). After finishing the computations, the 
construct will return a set of processed NDVI values, which can be further used in 
statistics or additional processing. The language expressing the workflow has been 
chosen to be ECA based and orchestrated by an inference engine. The choice of this 
approach allowed for the rule chain to be automatically discovered in case users 
only submitted a request for a particular processing and not the entire workflow. 
The rule-based approach allows the backward-chaining mechanism to determine 
the path to be taken starting from the desired output. This mechanism also ensures 
that the solution will be valid since, besides rule selection, the mechanism also 
offers a semantic check of each selected service.

Despite that the need for a Distributed System is not immediately obvious, it 
becomes clear once the data required for processing becomes too large to be stored 
in one place or the services required by tasks are geographically distributed. In the 
frame of the SCIEnce project, the problem submitted by the user does not neces-
sarily imply large quantities of data but in contrast requires access to CASs exposed 
as services in various geographical places. One of the dissimilarities between the 
SCIEnce project and the GiSHEO project lies in the fact that the latter requires 
a distributed data system as the used images are usually large (several gigabytes 
each). In this direction, the services must be placed where the data is, or near it, as 
transfers would imply an overhead that is too great.

The following sections will deal mostly with the workflow formalism and auto-
generation method used in the GiSHEO project.

10.5  ECA Workflow Formalism
Recently, several papers have sought defining a formalism for describing adaptive 
workflows. The work carried out by Lu et al. (2006) defines a model based on 
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Hoare semantics that allows to automatically check if a workflow can be produced 
from its actual implementation and to synthesize a workflow implementation based 
on a specification and a task library. The model focuses on formalizing the seman-
tics of the workflow together with its preconditions and post-conditions and on 
providing a set of inference rules for each of the following control constructs: empty 
workflow, composition, loop, universal, conjunction, condition, and disjunction.

In Chun et al. (2002), the authors present a knowledge-based workflow model. 
Ontologies are used to describe tasks and their relationships as well as the compo-
sitional rules. Each user is also associated with a user profile, which is evaluated 
against compositional rules by the composition algorithm. The authors argue that 
this approach minimizes the workflow evaluations during runtime and automatizes 
the interagency workflow design.

A workflow formalism based on the High-Order Chemical Language (HOCL) 
is presented in Nemeth et al. (2005). HOCL derives from the γ calculus and has 
been successfully used to represent self-organizing systems (Banâtre et al., 2007). 
The work carried out by Nemeth et al. (2005) tries to provide a coordination frame-
work where a higher level of autonomy is provided, workflow activities are able to 
react and adapt to environmental changes, a distributed enactment that can make 
decisions based on partial workflow information is achieved, and advanced con-
trol structures are supported. One of the main advantages of this approach is the 
implicit parallelism of the model, which arises from the fact that tasks are viewed 
as molecules inside a chemical solution and, as in any real reaction, the process 
takes place in parallel for each present reactive molecule. Solutions can also contain 
sub-solutions, which in turn can comprise molecules that react. As a general rule, 
sub-solutions cannot react with the solution before all the reactions inside them 
have completed.

In what follows, a simple ECA rule-based workflow formalism will be pre-
sented. It has been introduced in the GiSHEO project as the starting point of an 
inference rule-based service composition engine. The reasons for electing such an 
approach have been already discussed in the previous sections. This approach also 
shows how we can achieve service composition by using only rules and a forward-
chaining engine.

Similar to the formalism described in Chun et al. (2002), where the ontologies 
for domain services and tasks are the same, the model we propose also considers 
tasks and services to be interchangeable. A task T or likewise a service S can be 
described as a five tuple θ = θ1 θ2 θ3 θ4 θ5, where θ1 specifies the number of task 
instances (the default value being one); θ2 and θ3 designate, respectively, the input 
and output ports of the task; θ4 encloses the preconditions of the tasks (the tasks 
that need to be executed before it and optional conditions based on the results of 
their execution); θ5 holds the operations needed to be carried out by the task; and 
θ6 comprehends other semantic information related to it. The semantic information 
could contain data about preferred services, required system configuration, and 
system load.
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A workflow W can be specified by ω = ω1 ω2 ω3 ω4 ω5 ω6, where the elements are 
the same as for tasks, the only difference being ω6, which represents the collection 
of tasks belonging to it. A natural way of representing workflows is by using DAGs 
consisting of tasks linked together by preconditions. Similar to tasks, workflows 
must have at least one input and output port. As mentioned in Section 10.2.1, the 
notion of workflows and tasks is interchangeable, which is also true in the former 
definition. As an example, we can note the similarity between the workflow and 
task ontologies, and the particular case where ω6 contains a single task in which 
case the two are identical.

In Nemeth et al. (2005), the notion of abstract and concrete workflow is intro-
duced. An abstract workflow is seen as a model that expresses the logic of the prob-
lem without containing any means of solving it. In order to accomplish this, a 
mapping of tasks on services is needed. Such a workflow where tasks are mapped on 
services is called a concrete workflow. The same work also emphasizes that in order 
to provide full dynamism and autonomy, the conversion between an abstract and a 
concrete workflow must be accomplished during runtime. We further introduce a 
mapping function for generating a concrete workflow, ft: T → S, where S is a service 
that satisfies the task description θ for one or more tasks T ∈ ω6.

The evolution function or rule that allows the activation of tasks based on the 
fulfillment of their preconditions and additional conditional elements can be 
expressed by a function r T Tn m: condition → , where Tn represents the tasks needed 
to be completed before the Tm tasks can proceed with, their own execution. The 
condition represents additional criteria that must be satisfied by the Tn tasks. It is 
also part of the task precondition set θ4, but we have chosen to emphasize its impor-
tance. It can however be safely omitted without loss of generality. The inverse func-
tion r−1 gives the θ4 list of preconditions. As an example of a rule function, we could 
consider a rule such as r T T T( , )1 2 3

2 1T T.output1<10, .output1>0 → , where T3 gets executed 
only after T1 and T2 are completed and if the output on the output1 ports for the 
two tasks is greater than 0 for T1 and smaller than 10 for T2.

In the same manner, a user profile can be expressed similar to that in Chun 
et al. (2002) as u1u2 where u1 and u2 represent the user’s goal service and the user’s 
service preferences, respectively.

The workflow model described before combines the formerly presented model 
by mixing features such as multiple task instances, implicit parallelism, and inte-
gration of resource selection inside the rules found in the HOCL representation of 
Nemeth et al. (2005) with semantic information and ontologies from Chun et al. 
(2002). The resulting workflow language is also backward-chaining enabled, allow-
ing for automatic generation and self-adaptation. This is achieved by using the rule 
function that allows binding together tasks, and its inverse function that allows 
workflow generation starting from a desired solution. The aim of the formalism is 
to offer the basis for a simplified language without loss of generality. The follow-
ing text will show how the constructs presented in Section 10.2.1 can be expressed 
without introducing any new elements besides the rules themselves.



246  ◾  Cloud Computing and Software Services

Rules are defined simply by mentioning the events and conditions that need 
to take place in order to trigger the execution-consequent tasks. Events are viewed 
as completed tasks and are placed on the left-hand side of the rule. Linking the 
output of left-hand-side tasks with the input of right-hand-side tasks is accom-
plished by variables. For example, the rule A[a = o1] → B[i1 = a] links the output 
port o1 of task A with the input port i1 of task B through variable a. All tasks on 
the right-hand side get executed in parallel in the same way as multiple rules are 
triggered simultaneously if their left-hand-side conditions are met. This aspect of 
rule-based workflows allows for constructs such as split and join to be naturally 
expressed without introducing additional elements inside the rule. For instance, a 
(synchronized) join can be expressed as A[a = o1], B[b = o1] → C[i1 = a, i2 = b], and 
a (parallel) split as A[a = o1] → B[i1 = a], C[i1 = a]. Synchronization between sev-
eral tasks can also be achieved by adding them into the left-hand side of the rule: 
A[b = o1], B → C[i1 = b]. The previous example shows how task A is synchronized 
with task B and cannot execute until the latter is completed. Conditional rules 
can be expressed by placing conditions on the variables: A[a = o1] → B[i1 = a]|d < 1. 
Loops can also be easily modeled as in the following example consisting of two 
rules: A[a = o1], B[b = o1] → A[i1 = a, i2 = b]|d < 1 and A[a = o1], B[b = o1] → C[i1 = a, 
i2 = b]|d  >= 1. The former rule expresses the condition to reiterate the loop, while 
the latter expresses the exit condition.

While tasks are executed by services, the choice of the latter is accomplished by 
the workflow engine through the ft mapping function. In addition as their ontol-
ogies are defined in the same manner, services could easily be added inside the 
rules if required. This practice is however not recommended as the service selection 
should be made at runtime based on the most current data by the engine, a special-
ized scheduler, or the task itself. In the case of GiSHEO, the selection is made by 
the centralized workflow enactment engine during runtime.

Rules can also specify whether or not the left-hand-side tasks or the 
number of right-hand-side-produced instances get consumed. In this direction, 
the formalism allows for tasks to have multiple instances. This feature allows 
the introduction of explicit sequencing of multiple rules ready for execution. As 
an example, we can consider the two rules where task A has only one instance: 
A[a = o1, consume = true] → B[i1 = a], A[i1 = a, instances = 1] and A[a = o1, con-
sume = true] → C[i1 = a], A[i1 = a, instances = 1]. In this example, the rules cannot 
fire simultaneously, and one of them needs to wait for the other to produce another 
instance of task A. Multiple task instances allow users to express workflows based 
on nature, such as chemical reactions (Nemeth et al., 2005). Moreover, we can 
define multiple-rule visibility domains or solutions (if using a chemical metaphor), 
which allow both grouping of rules and creating sub-workflows that execute based 
only on rules belonging to a particular domain. When all the rules have triggered 
(all tasks that can trigger rules have been consumed), the reaction can extend to 
wider domains.
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10.6  Workflow Construction
While most applications and frameworks focus on enhancing the execution and 
debugging of workflows, only a few try to focus on automatic construction or vali-
dation. While in the former case they allow the user to create the workflow in an 
iconographic mode by dragging and dropping or by providing some commonly 
used blocks, in the latter case they just verify the workflow from the syntactic 
perspective.

To see why automatic generation or at least guided design is important, we 
take a typical case found in scientific problems in which the scientist tries to opti-
mize or solve a concrete problem that is part of a bigger problem. We assume 
that the used method relies on partial results obtained from other methods that 
had been studied and hopefully implemented by other scientists. In this case, the 
performance and usually the consequence of the experiments depend not only on 
the particular solution but also on the way the methods for the dependencies are 
selected. Additionally, as the scientist has extensive expertise exclusively in a small 
portion of the enclosing domain, he does not always know how to best choose these 
dependencies.

Another usage for such facilities is that as the infrastructure and supporting 
technologies grow, the problems become more and more complex and overwhelm 
the capacity to choose the right methods. Also a missed opportunity could be the 
parallelism built into the workflows, which often leads to suboptimal solutions 
because of the fact that the designer does not always capture all possible parallel 
scenarios.

Some possible solutions (Chun et al., 2002; Korhonen et al., 2003) have already 
been described in one of the previous sections. Another one is described in the 
paper presented by Lu et al. (2006), where the authors focus mainly on formal 
checking of workflows. Only as a consequence of the implied model’s properties 
is generation taken into account. In this case, each task is defined as follows: P(x‒)
T(x‒)[Q1(x‒), …, Qn(x‒)], where x‒ represents the input parameters, P(x‒) is a first-order 
logic predicate that represents the precondition of task T (the conditions that must 
be true in order to execute the task), and the Qi(x‒) vectors stand for possible task 
post-conditions (what should happen after the task execution). It should be noted 
that this model provides the opportunity for nondeterminism, since only one of 
the post-conditions could be true. This possibility is more than what is needed in 
scientific workflows where a simplified model would look like P(x‒)T(x‒)[Q(x‒)]. The 
cited paper also describes a proof-of-concept algorithm for both verification and 
generation of a workflow.

The drawback for all these automatic solutions is that they imply an all-or-
nothing approach where the user either provides all the necessary data, which leads 
to a complete workflow construction, or nothing is obtained. In our view, a human-
assisted approach where the automatic system tries to create a complete workflow 
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and, in case of failure, asks the user for missing pieces would be more appropriate. 
This is also the case of the workflow engine developed in the frame of the GiSHEO 
project. The engine partially offers design-time solutions to users by providing a 
subset of rules that lead to the desired result. Given the user’s requirements (param-
eters) and the desired problem, the engine searches the task ontologies and selects 
appropriate services. Then starting from the desired problem and by recursively 
using the previously defined r −1 function, it extracts the appropriate rules. If the 
resulted set contains no rules with preconditions matching the presented param-
eters, the engine simply shows the obtained chaining and warns the user of the 
incomplete nature of the workflow. It is then up to the user to revise and submit 
new input parameters.

As a conclusion, it can be said that even though automatic generation exists, 
there is still need for human intervention either when incomplete input data is 
provided or when the result is dependent on the input values and/or intermediate 
variations of the parameters, which cannot be done automatically.

10.7  Conclusions
This chapter has given a brief overview on scientific workflows seen from a 
Distributed System perspective. In the first part of the chapter, it has been shown 
that given the increased need of larger storage and computational resources, work-
flows have migrated toward a distributed approach by using Web Services as end 
points for their tasks. In this direction, two main approaches regarding classic 
and rule-based workflow composition have emerged. The latter seems to be more 
suited to handle issues related to scalability, failure tolerance, data integrity, and 
scheduling. It also provides implicitly support for task composition through the use 
of an inference engine. Although scheduling is an important issue related to task 
execution, it has been intentionally omitted due to the fact that such a problem 
requires a large amount of space to be properly addressed. As long as the services 
return a result in a reasonable amount of time, scheduling can be safely ignored. It 
only becomes a problem when a cost function, such as a time constraint, based on 
payed access or a deadline is applied to the workflow. In the second part, we have 
presented a rule-based workflow formalism and language developed as part of the 
GiSHEO project. Its aim is to facilitate the creation of workflows by specifying a 
minimal yet complete workflow language, to allow self adaptation during runtime 
and auto-workflow generation.

Despite the fact that the need for a service-based distributed workflow system 
or at least a workflow suited for executing distributed tasks through services has 
become clear in the last decade, much is still to be done. Although the solutions 
seem at first numerous and independent from each other, there is a tendency toward 
the inclusion of semantic information, ontologies, and execution rules inside the 
execution engines. This work has strived to present both an introduction into what 
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workflows for Distributed Computing are (what they are made of and what solu-
tions and problems currently exist) and how service composition can be easily 
achieved by using rules and semantics.
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Distributed computing can be daunting even for experienced programmers. 
Although many projects have been created to facilitate developing distributed 
applications, they are often quite complex in themselves. While many scientific 
applications could benefit from distributed computing, the complexity of the pro-
gramming models can be a high barrier to entry, especially since many of these 
applications are developed by domain scientists without extensive training in soft-
ware development. Thus, we believe that the paramount design consideration of a 
distributed computing model should be ease of use. With this in mind, we discuss 
GridRPC, which is a model for remote procedure call (RPC) in the context of a 
computational grid or other loosely coupled distributed computing environment. 
Then we discuss GridSolve, an implementation of the GridRPC model.

11.1   Introduction to RPC and Network-
Based Software Services

RPC refers to a mechanism that allows invoking a procedure on a remote machine 
as if the procedure was implemented locally. The invocation is typically carried out 
by means of a communications library and “stub” procedures. The library handles 
packing up the user’s data, sending it across the network to the remote machine, 
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and unpacking it there. The process of packing the data into a standard format 
(especially important for cross-platform scenarios) is referred to as data marshaling. 
Once the data has been transferred, the RPC system invokes the user’s procedure 
and passes the data to it. From this point, the user’s procedure takes control and 
executes until completion. Then the process is reversed to send the results back to 
the client machine. The “stub” procedures are used to enable linking the programs 
(since the actual procedure does not exist locally to be linked) and to initiate the 
RPC process via calls to the RPC library. This standard RPC process is depicted 
in Figure 11.1.

One of the earliest implementations of RPC was part of the Cedar project at 
Xerox Palo Alto Research Center [1], although the concept had been discussed for 
several years prior to the Xerox implementation [2]. Cedar used RPC to enable 
distributed computing primarily because of the ease-of-use inherent in the RPC 
paradigm. Procedure calls were considered a well-understood mechanism and pro-
vided clean and simple semantics. Around that time, RPC was also being inves-
tigated in the context of distributed operating systems. In a critique of RPC as a 
general communications model for arbitrary applications [3], it is argued (among 
other things) that since true transparency is impossible, it may be better to design a 
partially transparent mechanism. If the system is transparent to the point that the 
programmers really do not know if their calls will be executed locally or remotely, 
then there could be serious performance implications (e.g., if a sorting routine 
called a comparison procedure thousands of times, unaware that it would be exe-
cuted remotely). Most modern RPC-like systems are not aiming for that level 
of transparency, but the critique raises issues that are still relevant today. In this 
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Figure 11.1  Client–server interaction in standard RPC.
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chapter, we will touch on these and other RPC transparency issues in the context 
of a grid-based RPC implementation.

The RPC model has several benefits, but the main concern from the perspec-
tive of high-performance computing is efficiency. If the user’s local machine is 
slow, but remote resources are fast, RPC can provide an overall reduction in exe-
cution time, even including the cost of data marshaling. However, traditional 
RPC only allows for synchronous calls, that is, once the procedure is invoked, the 
client program must sit idle until it completes, even if it had other useful computa-
tions it could be doing. The synchronous model also prevents submitting multiple 
parallel RPC requests, which could provide for even better overall performance. 
Another limitation of the traditional RPC model is that the mapping of RPC 
request to server is very simplistic, often requiring the use of a specific machine. 
Intelligent selection of servers could drastically improve the performance. Also the 
use of client-side stubs requires language-specific generators for all client language 
bindings. Furthermore, consider the implications of this compilation requirement 
on interactive computing environments like MATLAB• or Octave, in which 
cases, the user cannot be expected to compile stubs just to make use of a remote 
procedure.

RPC remains a useful mechanism due to its elegance and simplicity, but the 
aforementioned limitations have prompted several extensions to the model, includ-
ing asynchronous calls, task parallel calls, real-time resource scheduling, fault tol-
erance, security, and stubless operation. We will be discussing GridRPC, a recent 
specification of an API (application programming interface) for grid-based RPC, 
as well as a complete implementation of this API within the GridSolve system.

11.2  The GridRPC API
As mentioned in Section 11.1, the difficulty of using most programming models is a 
hindrance to the widespread adoption of grid computing. One particular program-
ming model that has proven to be viable is an RPC mechanism tailored for the 
grid, or “GridRPC.” Although at a very high-level view the programming model 
provided by GridRPC is that of standard RPC plus asynchronous coarse-grained 
parallel tasking, in practice there are a variety of features that will largely hide the 
dynamicity, insecurity, and instability of the grid from the programmers. As such, 
GridRPC allows not only enabling individual applications to be distributed, but 
also can serve as the basis for even higher-level software substrates, such as distrib-
uted, scientific components on the grid.

The GridRPC API [4] represents ongoing work to standardize and implement 
a portable and simple RPC mechanism for grid computing. This standardization 
effort is being pursued through the Open Grid Forum (previously, Global Grid 
Forum) Research Group on Advanced Programming Models [5].
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In this section, we informally describe the GridRPC model and the functions 
that comprise the API. A detailed listing of the GridRPC function prototypes can 
be found in the GridSolve Users’ Guide [6].

11.2.1 Function Handles and Session IDs
Two fundamental objects in the GridRPC model are function handles and ses-
sion IDs. The function handle represents a mapping from a function name to an 
instance of that function on a particular server. The GridRPC API does not dictate 
the mechanics of resource discovery, since different underlying GridRPC imple-
mentations may use vastly different protocols. Once a particular function-to-server 
mapping has been established by initializing a function handle, all RPC calls using 
this function handle will be executed on the server specified in that binding. A 
session ID is an identifier representing a particular non-blocking RPC call. The 
session ID is used throughout the API to allow users to obtain the status of a previ-
ously submitted non-blocking call, to wait for a call to complete, to cancel a call, or 
to check the error code of a call.

11.2.2 Initializing and Finalizing Functions
The initialize and finalize functions are similar to the MPI initialize and finalize 
calls. Client GridRPC calls before initialization or after finalization will fail.

 ◾ grpc _ initialize reads the configuration file and initializes the 
required modules.
 ◾ grpc _ finalize releases any resources being used by GridRPC.

11.2.3 Remote Function Handle Management Functions
The function handle management group of functions allows creating and destroying 
function handles.

 ◾ grpc _ function _ handle _ default creates a new function handle 
using the default server. This could be a predetermined server name or it could 
be a server that is dynamically chosen by the resource discovery mechanisms 
of the underlying GridRPC implementation, such as the GridSolve agent.
 ◾ grpc _ function _ handle _ init creates a new function handle 

with a server explicitly specified by the user.
 ◾ grpc _ function _ handle _ destruct releases the memory asso-

ciated with the specified function handle.
 ◾ grpc _ get _ handle returns the function handle corresponding to the 

given session ID (that is, corresponding to that particular non-blocking request).
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11.2.4 GridRPC Call Functions
A GridRPC call may be either blocking (synchronous) or non-blocking (asynchro-
nous), and it accepts a variable number of arguments (like printf) depending on 
the calling sequence of the particular routine being called.

 ◾ grpc _ call makes a blocking RPC with a variable number of arguments.
 ◾ grpc _ call _ async makes a non-blocking RPC with a variable num-

ber of arguments.

11.2.5 Asynchronous GridRPC Control Functions
The following functions apply only to previously submitted non-blocking requests.

 ◾ grpc _ probe checks whether the asynchronous GridRPC call has 
completed.
 ◾ grpc _ probe _ or checks whether any of the previously issued non-

blocking calls in a given set have completed.
 ◾ grpc _ cancel cancels the specified asynchronous GridRPC call.
 ◾ grpc _ cancel _ all cancels all previously issued calls.

11.2.6 Asynchronous GridRPC Wait Functions
The following five functions apply only to previously submitted non-blocking 
requests. These calls allow an application to express desired nondeterministic com-
pletion semantics to the underlying system, rather than repeatedly polling on a set 
of sessions IDs. (From an implementation standpoint, such information could be 
conveyed to the OS scheduler to reduce cycles wasted on polling.)

 ◾ grpc _ wait blocks until the specified non-blocking requests have completed.
 ◾ grpc _ wait _ and blocks until all of the specified non-blocking requests 

in a given set have completed.
 ◾ grpc _ wait _ or blocks until any of the specified non-blocking requests 

in a given set has completed.
 ◾ grpc _ wait _ all blocks until all previously issued non-blocking 

requests have completed.
 ◾ grpc _ wait _ any blocks until any previously issued non-blocking 

request has completed.

11.2.7 Error Reporting Functions
Of course it is possible that some GridRPC calls can fail, so we need to provide the 
ability to check the error code of previously submitted requests. The following error 
reporting functions provide error codes and human-readable error descriptions:
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 ◾ grpc _ get _ error returns the error code associated with a given non-
blocking request.
 ◾ grpc _ error _ string returns the error description string, given a 

numeric error code.
 ◾ grpc _ get _ failed _ sessionid returns the session ID of the last 

invoked GridRPC call that caused a failure.

11.2.8 Related Work on Network-Enabled Servers
Several Network-Enabled Servers (NES) provide mechanisms for transparent access 
to remote resources and software. Ninf-G [7] is an implementation of the GridRPC 
API that can function on top of a variety of grid middleware environments, such as 
Globus, Condor, and SSH (as of version 5). Ninf-G provides an interface definition 
language that allows services to be easily added, and client APIs are provided in C 
and Java. Security, scheduling, and resource management are generally left up to 
the underlying middleware.

The DIET (Distributed Interactive Engineering Toolbox) project [8] is a 
client–agent–server RPC architecture, which uses the GridRPC API as its pri-
mary interface. A CORBA Naming Service handles the resource registration 
and lookup, and a hierarchy of agents handle the scheduling of services on the 
resources. An API is provided for generating service profiles and adding new ser-
vices, and a C client API exists.

NEOS [9] is a network-enabled problem-solving environment designed as a 
generic application service provider (ASP). Any application that can be changed to 
read its inputs from files and write its output to a single file can be integrated into 
NEOS. The NEOS server acts as an intermediary for all communication. The cli-
ent data files go to the NEOS server, which sends the data to the solver resources, 
collects the results, and then returns the results to the client. Clients can use e-mail, 
Web, socket-based tools, and CORBA interfaces.

Other projects are related to various aspects of GridSolve. For example, task-
farming-style computation is provided by the Apples Parameter Sweep Template 
(APST) project [10], the Condor Master Worker (MW) project [11], and the 
Nimrod-G project [12]. Request sequencing and workflow management is handled 
by projects like Condor DAGman [13].

11.3  GridSolve: A GridRPC Implementation
GridSolve is a GridRPC-compliant distributed computing system that provides 
an efficient and easy-to-use programming model for using remote computational 
resources. Remote resources can provide access to specialized hardware or highly 
tuned software with the performance and features desired by a computational 
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scientist. The basic goal of GridSolve is to provide an easy-to-use, uniform, por-
table, and efficient way to access computational resources over a network.

11.3.1 Overview and Architecture
The GridSolve system is comprised of a set of loosely connected machines. By 
loosely connected, we mean that these machines are on the same local, wide, or 
global area network, and may be administrated by different institutions and orga-
nizations. Moreover, the GridSolve system is able to support these interactions in a 
heterogeneous environment, that is, machines of different architectures, operating 
systems, and internal data representations can participate in the system at the same 
time.

Figure 11.2 shows the global conceptual picture of the GridSolve system. In 
this figure, we can see the three major components of the system: the client, the 
agent, and the servers (computational or software resources). GridSolve and systems 
like it are often referred to as grid middleware. GridSolve acts as a glue layer that 
brings the application or user together with the hardware and/or software needed 
to complete useful tasks. At the top tier, the GridSolve client library is linked in 
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Figure 11.2  GridSolve architecture showing interactions between client, agent, 
and servers.
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with the user’s application. The application then makes calls to GridSolve’s API 
(GridRPC) for specific services. Through the GridRPC API, GridSolve client-users 
gain access to aggregate resources without needing to know anything about distrib-
uted computing or maintaining software libraries. In fact, the user does not even 
have to know that remote resources are involved. The GridSolve agent maintains a 
database of GridSolve servers along with their capabilities (hardware performance 
and allocated software) and dynamic usage statistics. It uses this information to 
allocate server resources for client requests. The agent finds servers that will service 
requests the quickest, balances the load amongst its servers, and keeps track of 
failed ones. The GridSolve server is a daemon process that awaits client requests. 
The server can run on single workstations, clusters of workstations, symmetric mul-
tiprocessors, or machines with massively parallel processors. A key component of 
the GridSolve server is a source code generator, which parses a GridSolve Interface 
Definition Language (gsIDL) file. This gsIDL file contains information that allows 
the GridSolve system to create new service modules and incorporate new function-
alities. In essence, the gsIDL defines an interface and wrapper that GridSolve uses 
to call functions being incorporated. The (hidden) semantics of a GridSolve request 
are as follows:

 1. Client contacts the agent with a service request description
 2. Agent returns a brokered decision containing a list of capable servers
 3. Client contacts the server and sends input data
 4. Server receives the data and runs appropriate service
 5. Client receives the output results or error status from the server

From the user’s perspective, the call to GridSolve acts very much like the call to 
the original function. The GridSolve calls can also be made in an asynchronous 
fashion, so that the client can either perform other tasks during the RPC call, or 
the client can submit multiple parallel RPC service requests and then probe for 
their completion.

11.3.2 Transparency and Ease of Use
In addition to the standard GridRPC API, GridSolve provides a number of fea-
tures that make it easier to use and provide a substantial benefit. These features are 
intended to make it easier for the service provider to add services, and easier for the 
user to take advantage of these services.

11.3.2.1 Stubless Clients

GridSolve is designed so that the clients do not require client-side stubs to be gener-
ated and compiled in order to call remote procedures. This is in contrast with many 
other RPC systems, where a client stub needs to be generated and bound for each 
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remote function. Several dynamically reconfigurable languages, such as Java and 
Python, allow clients to incorporate new functionality on the fly, but traditional 
languages, such as C and Fortran, cannot easily do so. GridSolve accomplishes 
this by using generalized marshaling routines on the client and the server. Using 
a stubless client in GridSolve enables it to make new server functionality available 
to its clients without requiring any changes at the client side. The drawback of this 
approach is that type-checking cannot be done at the time of calling the GridSolve 
API. However, this stubless approach fits well with the goal of making GridSolve 
easy to use. After a client is deployed, no additional changes are required for the 
client to access new functions deployed at any server.

11.3.2.2 Scientific Computing Environments

GridSolve has a strong focus on ease of use, since this is still perceived to be a sub-
stantial barrier to the general adoption of distributed and grid computing services. 
As such, in addition to C and Fortran client interfaces, GridSolve provides client 
bindings to several high-level SCEs (scientific computing environments), such as 
MATLAB, Octave, and IDL (Interactive Data Language). In this way, it becomes 
possible to combine high-performance distributed grid resources with the flexibil-
ity, familiarity, and productivity of SCEs. The SCE bindings allow the user to make 
calls to remote functions in a natural way, and the GridSolve client handles all the 
details of converting data from the SCEs’ internal representations to GridSolve 
data representations. Then the GridSolve client submits the RPC request to the 
GridSolve server, and when the remote reply is received, the client converts it back 
to the natural format for the SCE. This smooth integration with SCEs is one of the 
most successful features of GridSolve.

11.3.2.3 Server Administration

We have implemented a simple technique for adding arbitrary services to a running 
server. First, the new service should be built as a library or object file. Then the user 
writes a specification of the service parameters in a gsIDL file. The GridSolve ser-
vice compiler processes the gsIDL and generates a wrapper, which is automatically 
compiled and linked with the service library or object files. The services are com-
piled as external executables with interfaces to the server described in a standard 
format. The server reexamines its own configuration and installed services periodi-
cally to detect new services. In this way, it becomes aware of the additional services 
without recompilation or restarting of the server itself.

Server administrators may specify arbitrary server attributes in a configuration 
file. These attributes are used to enable filtering or criteria matching in the selection 
of resources. For example, the server could have attributes describing the machine’s 
architecture or amount of memory. These attributes are sent to the agent and stored 
in its database so that clients can make complex requests (e.g., only give me x86 



Transparent Cross-Platform Access to Software Services  ◾  263

servers with more than 2 GB of memory). The agent can very quickly filter service 
requests using these attributes to find matches with the appropriate servers.

Server administrators can also add restrictions in the configuration file. This 
allows restricting access to the server under certain conditions, such as during peak 
times or when there are a certain number of jobs already running.

11.3.3 Scheduling in GridSolve
Scheduling is essential for achieving an efficient and responsive distributed system. 
In a distributed, heterogeneous environment like the grid, services can achieve very 
different performance depending on many factors, including the network condi-
tions, the server speeds, the temporary load on the server, and the efficiency of 
installed software. These factors need to be accounted for when scheduling service 
requests onto servers. GridSolve has several alternative scheduling methods avail-
able, and the topic of scheduling remains an active research area within GridSolve.

11.3.3.1 Agent Scheduling

In agent-based scheduling, the agent uses knowledge of the requested service, infor-
mation about the parameters of the service request from the client, and the current 
state of the resources to score the possible servers and return the servers in a sorted 
order.

When a service is started, the server informs the agent about services that it 
provides and the computational complexity of those services. This complexity is 
expressed using two integer constants a and b and is evaluated as aNb, where N 
is the problem size. At start-up, the server notifies the agent about its computa-
tional speed (approximate MFlops from a simple benchmark), and it continually 
updates the agent with information about its workload. When an agent receives 
a request for a service with a particular problem size, it uses the service complex-
ity and the server status information to estimate the time to completion on each 
server providing that service. It orders the servers in terms of time to completion, 
and then returns the list of servers to the client. The client then sends the service 
request to the fastest server. If that fails for some reason, the client can resubmit the 
service request to the next fastest service, thus providing a basic level of fault toler-
ance. This scheduling heuristic, summarized in Figure 11.3, is known as Minimum 

for all servers Si that can provide the desired service
T1(Si) = estimated amount of time for computation on Si
T2(Si) = estimated time for communicating input and output data
T(Si) = T1(Si) + T2(Si) estimated total time using Si
select the server Sm which has the minimum time, where T(Sm) = min T(Si) ∀i

Figure 11.3  Minimum Completion Time algorithm.
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Completion Time. It is simple to implement and works well in many practical cases. 
Each service request should be assigned to the server that would complete the ser-
vice in the minimum time, assuming that the currently known loads on the servers 
will remain constant during the execution and the communication costs between 
the client and all the servers are the same.

However, the Minimum Completion Time heuristic does not try to maximize 
the throughput when servers are allowed to run multiple services, and there are 
many more requested services than available servers. Since an estimate of the exe-
cution time for the currently executing service is available, this knowledge could 
be used to schedule new service requests more intelligently. Some explorations of 
alternative scheduling heuristics using historical execution trace information are 
described in [14].

11.3.3.2 Server Performance Prediction

The server also plays an important role in helping agent-based scheduling to work 
effectively. To efficiently schedule an application requires being able to accurately 
predict the duration of the requests that compose the application. However, pre-
dicting the duration of a request is a difficult task. Indeed, the duration might 
depend on the data (size and values), on the machine where the application is run, 
and on the implementation of the service. Even when the duration of a service does 
not depend on the data values (as is the case with many linear algebra kernels), 
predicting this duration is hard. In GridSolve, the duration of the task is described 
in the gsIDL file using the highest degree of the complexity polynomial, which 
gives an approximation of the number of operations the service has to perform 
when the inputs are known. The server’s speed (number of operations per second) is 
computed by running a simple benchmark when the server is launched. The server 
periodically updates its current workload, which is used by the agent to scale down 
the server’s speed. Then the estimated duration of the task is computed at runtime 
by dividing the estimated number of operations by the current speed of the server. 
However, computing the duration of a service based on the complexity polynomial 
has several drawbacks.

First, even though the complexity polynomial does not depend on the imple-
mentation, different implementations of the same algorithm do not necessarily 
have the same speed. Assume, for instance, that the service is the matrix multiply 
routine of the BLAS (Basic Linear Algebra Subroutines). There are a lot of dif-
ferent implementations of the same BLAS API, ranging from reference BLAS (a 
non-optimized Fortran version) to automatically tuned libraries, such as ATLAS 
[15], and up to specific implementations optimized for a precise version of a cer-
tain CPU, such as the Goto BLAS [16]. The complexity of these implementations 
is always the same (O(N 3), for multiplying matrices of order N ), but the execution 
time might be completely different (for instance, the reference BLAS are about 
six times slower than the vendor-optimized version on some CPUs). This effect is 
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not taken into account by the standard Minimum Completion Time scheduling 
heuristic in GridSolve.

Moreover, obtaining the speed of the machine with a benchmark assumes that 
the flop rate of each service is the same as the benchmark. In practice, this is not 
true because compute-intensive services achieve higher flop rates than data-intensive  
services. In GridSolve, the server’s speed is estimated by running a Linpack bench-
mark, which performs close to the peak flop rate of the processor. This is appro-
priate when the requested service is a compute-intensive one, such as for a linear 
algebra kernel. However, if the service is I/O bound (such as database access) or 
memory constrained (such as an out-of-core computation), the estimated runtime 
is likely to be a huge underestimation of the actual runtime.

Finally, for a given service, a slight change of a parameter may lead to a differ-
ent algorithm and a different time to execute the service. For instance, the matrix–
matrix multiply routine of the BLAS (dgemm) performs C ← αAB + βC, where A, 
B, and C are matrices. It is easy to see that the case α = 1 and β = 0 is completely 
different from the case α = 0 and β = 1. However, in the current GridSolve model, 
since the values of α and β are not related to the size of the data, they do not appear 
in the complexity model for the dgemm service.

To solve the problems described above, we propose using a complexity template 
model for each service that is instantiated on each server for each different use case 
of the service. This template model consists of a polynomial of the parameters of the 
problem, and a set of category variables. The polynomial describes the behavior of 
the service and has coefficients that will be assigned by GridSolve based on the prior 
execution performance history. The use of categories differentiates the separate per-
formance classes, which cannot be modeled as a continuous complexity function.

GridSolve uses a parametric regression system to compute or update the coef-
ficients for the complexity templates at runtime. Each time the server runs the ser-
vice, it updates the coefficients of the model using this run and the previous ones. 
A certain number of previous runs are stored on the server’s local disk, which can 
be reused if the server has to be stopped and restarted. The server periodically sends 
updates of the coefficients to the agent, which evaluates the expressions at runtime 
to get an accurate prediction of the execution time of the service. The detailed 
complexity parameters that the agent receives from the server allow more accurate 
scheduling decisions to be made.

11.3.3.3 Scheduling Using Proxies for Computational Resources

In this server-based approach to scheduling, GridSolve creates server-proxies to del-
egate the scheduling to specialized scheduling and execution services, such as batch 
systems, Condor, or LFC (LAPACK for Clusters). The GridSolve agent sees the 
server-proxy as a single server entity, even though the server-proxy can represent a 
large number of actual resources, and so the proxy handles the scheduling for these 
resources rather than the GridSolve agent.
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The GridSolve agent can decide to assign the service request to a server-proxy 
based on several factors (e.g., the proxy can register itself with the agent as a virtual 
server with a large amount of processing power). The server-proxy will delegate the 
request to the specialized service (e.g., Condor), which schedules and executes the 
request. The server-proxy then returns the results back to the client.

11.3.3.4 Client Scheduling

Scheduling based purely on computation cost may give poor results because the 
communication cost can be a very large factor in the overall RPC cost, especially in 
a WAN environment. While choosing the fastest server may minimize the execu-
tion time, if this server is on a distant network, the communication cost can easily 
overshadow the savings in the execution time.

To eliminate this weakness, we need an estimate of the network performance 
between the client and the servers that could possibly execute the service. This can 
be difficult to know ahead of time given the dynamic nature of the system, so we 
gather the information empirically at the time the call is made. When the client 
gets a list of servers from the agent, it is sorted based only on the estimate of the 
computational cost. Normally, the client would simply submit the service request 
to the first server on the list, but instead we first measure the bandwidth from the 
client to the top few servers using a simple 32 kB ping-pong benchmark. Given the 
total data size and the network speed, we compute an estimate of the total commu-
nication and computation RPC time for the servers and reorder the list of servers.

There is some cost associated with performing these measurements, but our 
expectation is that the reduction in the total RPC time will compensate for the 
overhead. Nevertheless, we try to keep the measurement overhead to a minimum. 
The time required to perform the measurement will depend on the number of serv-
ers that have the requested problem, and the bandwidth and latency from the client 
to these servers. When the data size is relatively small, the measurements are not 
performed, because it would take less time to send the data than it would take to 
perform the measurements. Also, since a given service may be available on many 
servers, the cost of measuring the network speed to all of them could be prohibitive. 
Therefore, the number of servers to be measured is limited to those with the highest 
computational performance. The exact number of measurements is configurable 
by the client. Once the measurements have been made, they can be cached for a 
certain amount of time so that subsequent calls on that client do not have to repeat 
the same measurement. The lifetime of the cached measurements is configurable 
by the user.

There are many other projects that monitor grid performance (see [17] or [18] 
for a review). For example, the Network Weather Service (NWS) [19] is a popular 
general system service that can monitor the performance of network bandwidth 
and latency (as well as other measures) and provide a statistical forecast for future 
performance. However, for the GridSolve system, most of the existing systems are 
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inappropriate because clients enter and leave GridSolve dynamically, making it dif-
ficult to measure and retain the communication costs between the clients and the 
full set of servers. Moreover, NWS is required to be configured on each end, which 
necessitates some expertise that we do not assume. Hence, we have chosen to imple-
ment low-overhead probes as a way of building up the communication cost matrix 
between a client and the servers relevant to that client.

11.3.3.5 Task Graph Scheduling

There are two deficiencies associated with the standard RPC-based model when 
a computational problem essentially forms a workflow consisting of a sequence of 
tasks, among which there exist data dependencies. First, intermediate results are 
passed among tasks by first returning to the client, resulting in additional data 
transport between the client and the servers, which is pure overhead. Second, 
since the execution of each individual task is a separate RPC session, it is diffi-
cult to explore the potential parallelism among tasks where there is no immedi-
ate data dependency. Our previous approach to request sequencing partially solves 
the problem of unnecessary data transport by clustering a sequence of tasks based 
upon the dependency among them and scheduling them to run collectively. This 
approach has two limitations. First, the only mode of execution it supports is on a 
single server. Second, it prevents the potential parallelism among tasks from being 
explored. Recent work on GridSolve has focused on creating an enhanced request-
sequencing technique that eliminates these limitations and solves the above prob-
lems. The core features of this work include direct inter-server data transfer and the 
capability of parallel task execution. The objective of this work is to simplify the 
parallel execution of data-driven workflow applications in GridSolve.

In GridSolve request sequencing, a request is defined as a single GridRPC call 
to an available GridSolve service. A data-driven workflow application is constructed 
as a sequence of requests, among which there may exist data dependencies. For each 
workflow application, the sequence of requests is scanned, and the data dependency 
between these requests is analyzed. The output of the analysis is a distributed acy-
clic graph (DAG) representing the workflow: tasks within the workflow are repre-
sented as nodes, and data dependencies among tasks are represented as edges. The 
workflow scheduler then schedules the DAG to run on the available servers. A set 
of tasks can potentially be executed concurrently if their dependencies permit it.

In order to eliminate unnecessary data transport when tasks are run on mul-
tiple servers, the standard RPC-based computational model of GridSolve has been 
extended to support direct data transfer among servers. Specifically, in order to 
avoid the case that intermediate results are passed among tasks via the client, serv-
ers must be able to pass intermediate results among each other, without the client 
being involved.

Recent experiments [20] demonstrated promising benefit from eliminating 
unnecessary data transfer and exploiting the parallelism found by automatically 
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constructing and analyzing the task graph. The algorithm for workflow scheduling 
and execution currently used in GridSolve request sequencing is primitive in that it 
does not take into consideration the differences among tasks and does not consider 
the overall mutual impact between task clustering and network communication. 
We are planning to substitute a more advanced algorithm for this primitive one. 
Additionally, we are currently working on providing support for advanced work-
flow patterns, such as conditional branches and loops, which are not supported in 
the current implementation.

11.4  RPC Transparency Issues
As we mentioned in the introduction, there are some nontrivial issues to deal with 
when aiming for a transparent RPC implementation. In this section, we discuss 
some of these issues within the context of the GridRPC specification and our 
GridSolve implementation.

11.4.1 Parameter Passing
In local procedure calls, arguments are passed by value or by reference. Pass-by-
value means that the actual value of the argument is passed to the procedure (e.g., if 
x has the value 5 and x is passed by value, then the procedure is given the value 5). 
In contrast, pass-by-reference means that a pointer is passed to the procedure, which 
must be dereferenced to obtain the actual values (e.g., if the value pointed to by x 
is stored in memory address 0 × 100, then the procedure is given the value 0 × 100). 
Pass-by-reference is useful in a couple of scenarios. First, it allows the procedure to 
modify the value of an argument, which is not possible in a pass-by-value situation. 
Also, it is more efficient for passing large data structures, like matrices, because only 
one address needs to be passed instead of all the values.

In the context of RPC, the problem with pass-by-reference is that the remote 
machine is in a different address space, so any pointers from the client machine will 
be meaningless. This could be handled by making requests back to the client when 
data from the remote pointer is accessed, but that would be very inefficient. The 
typical approach (and the one implemented in GridSolve) is to pass a copy of the 
data referenced by the pointer and then restore any modifications to the data upon 
completion of the RPC. However, in an asynchronous situation, the user needs to 
be careful because any modifications to the referenced data made after the call but 
before the results from the RPC are restored would be lost.

Another complication with parameter passing in RPC is that of complex or 
user-defined data structures. Sun RPC uses XDR (External Data Representation) 
[21], which is a standard for describing and encoding arbitrary data. In GridSolve, 
we chose to avoid XDR for performance reasons and because almost all of the pro-
cedures we were dealing with used simple data structures like vectors and matrices. 
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There are trade-offs between transparency, flexibility, simplicity, and efficiency. 
We gave up some transparency and flexibility to gain simplicity and efficiency.

11.4.2 Binding to Servers
RPC binding refers to locating the remote host with the procedure to be invoked 
and then finding the correct server process on that host. Traditional RPC required 
specifying the remote host name explicitly. When the user is expected to supply the 
host names for the remote calls, the veneer of transparency begins to erode. Also, 
it becomes more than just a transparency issue when asynchronous RPC is consid-
ered. In this case, the selection of the remote host to satisfy the request can have a 
big effect on the performance.

The GridRPC function handle represents a mapping from a service descriptor 
(in this case, a simple character string) to the remote server that will be used to 
execute the function. This mapping could be specified by the user or determined by 
the middleware using simple resource discovery mechanisms or possibly some more 
sophisticated scheduling algorithms. In the end, the GridRPC specification leaves 
the issue of binding up to the various implementations.

The normal GridRPC calling sequence is to first initialize the handle and bind to 
a server using a call to grpc _ function _ handle _ default() followed by 
a call to grpc _ call() (or one of its brethren) at some point later. In the case of 
the GridSolve implementation, there is a slight problem with performing the schedul-
ing in this scenario. GridSolve relies on having access to the values of the arguments 
in grpc _ call() at the time the scheduling is performed, so it can estimate the 
execution time and the communication cost of sending the data. However, at the 
time grpc _ function _ handle _ default() is called, we do not know 
which values will be used in the eventual call, so scheduling is not possible.

To deal with this issue, we allow the user to specify a special host name when 
initializing the function handle. The special name signifies to the GridSolve inter-
nals that the function handle binding should be delayed until the first time the 
handle is used to make a call. Subsequent calls using that function handle will not 
change the binding, so the semantics of successive GridRPC calls is not altered.

In terms of transparency, GridSolve does require the user to know the host 
name of the GridSolve agent, which performs the binding and scheduling, but 
the user never needs to know any of the server details. This seems like a reasonable 
trade-off because of multiple benefits provided by the agent.

11.4.3 Exception Handling and Fault Tolerance
Whenever communication with remote machines is involved, there is a possibil-
ity for new and subtle errors to appear. This can destroy the sense of transparency 
because now the user must deal with many new failure scenarios, which would 
never happen with a local procedure call. The GridRPC specification largely avoids 
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attempting to maintain this kind of procedure-level transparency. The GridRPC 
calls have their own return values and error codes that must be dealt with appropri-
ately. Any errors from the remote procedure itself must be passed back as an output 
argument of the RPC.

Despite the lack of transparency in exception handling, the GridRPC 
Specification leaves open the possibility of implementing transparent fault tol-
erance. In GridSolve, if a call fails, the system will automatically find another 
server to which to resubmit the job. This is completely transparent, so the user 
never knows that there were failures in the system. This brings up several issues 
of how to detect failures. There are many failure scenarios, and the handling of 
each one is a bit different, but these implementation details do not really affect the 
user’s perception of RPC transparency. The issue of fault tolerance also affects the 
issue of binding, because when errors occur, the final server handling the request 
might be different from the one originally selected. GridSolve allows the user to 
enable or disable the fault-tolerant mode in order to match the desired GridRPC 
semantics.

11.4.4 Data Representation
The internal representation of data is an important issue in RPC because the local 
and remote machines may have different word lengths, floating-point formats, 
and byte orderings. If the user has to think about their data representation or 
data structures, the illusion of transparency is lost. We mentioned XDR earlier 
as a solution to the issue of passing complex data structures, but XDR also han-
dles conversion of primitive data types between architectures by using a common 
intermediate representation. The GridRPC specification says nothing about data 
conversion, so it is left up to the implementors to decide. In GridSolve, we imple-
mented a receiver makes right protocol, which allows the client to send data in its 
native format, which the receiver then converts to its own native format if needed. 
This avoids having to do two separate conversions (each end converting between 
native and common representations) as well as avoiding making an extra copy of 
the data on the sending side. GridSolve is still limited in its support for complex 
data structures, but we feel the increased efficiency in the common cases is worth 
making the trade-off.

11.4.5 Performance
While we make great effort to ensure good performance in GridSolve, the fact 
remains that extra communication overhead is inherent in any RPC. It was men-
tioned in [3] that if you had a truly transparent RPC for arbitrary applications, 
serious performance degradation could be inadvertently introduced. Of course, 
GridRPC specifies a different API for remote calls, so users will be aware of which 
calls are local and which are remote. Nevertheless, to achieve the best performance 
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in an RPC-based application, the developers should carefully consider the ratio of 
computation time to communication time (since processor power has been increas-
ing faster than communication speed, this issue gets more serious every year). Take 
matrix multiplication as an example. We compute C ← αAB + βC, where A, B, and 
C are matrices. For the sake of simplicity, assume that they are all square matrices 
of size N × N. The communication costs will be on the order of
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where
“elementsize” is the size of each matrix element in bytes
“bandwidth” is the number of bytes per second for the network

Assuming a local network bandwidth of 11 MB/s and an element size of 8 bytes, 
the communication cost for N = 3000 is around 25 s. The computational costs will 
be on the order of
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where Mp is the performance of the machine in floating-point operations per sec-
ond. At N = 3000 and local machine performance of Mp = 800 Mflop/s, the local 
computation cost would be roughly 22.5 s. So, it costs more to send the data (not 
counting the remote execution time) than it would to just do the computation 
locally. Since the computation cost is growing faster than the communication cost, 
there will eventually be a crossover point where it makes sense to do the RPC, but 
it depends on the performance of the remote machine relative to the local machine 
as well as the network speed (WANs are often much worse than our 11 MB/s LAN 
example).

While this example might be discouraging, there are still many favorable sce-
narios for RPC, especially when taking into account task parallelism. One example 
is in parameter sweep problems, where the data being distributed is relatively small, 
and many servers can be used asynchronously and simultaneously to evaluate dif-
ferent input data with the output being collated in some way. Tasks that are suited 
to RPC computation include Evolutionary Algorithms (genetic algorithms, etc.), 
Monte Carlo–style algorithms, and optimization algorithms.
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11.4.6 Security
Unlike with local procedures, when executing a remote procedure, the data is 
exposed on the network and therefore susceptible to snooping. Security is another 
area that is not addressed by the GridRPC specification, but the various implemen-
tations choose their own strategies. We have not implemented any data encryption 
methods in GridSolve. It is an important issue, but most of our users are running 
the entire GridSolve infrastructure on their local networks (e.g., behind firewalls). 
Because of this, there has not been a huge demand for encryption in GridSolve, but 
it should be straightforward to add since we have already implemented a transpar-
ent data compression module, and encryption could be added to this module at the 
data transport level.

11.4.7 Transparency
Trying to achieve total transparency (even if it is possible) would result in unex-
pected behavior and unacceptable performance degradation. As it was mentioned 
earlier, from a design standpoint, total transparency might not be the ideal any-
way. We have attempted to design a system that is transparent in the sense of 
shielding users from unnecessary details and allowing for relatively painless con-
version of code to a distributed implementation. The user still retains control 
over their application in deciding which functions are appropriate for remote pro-
cessing. But the user does not need to know which server will be used, how the 
data will be converted, whether the job was resubmitted to another server due 
to failures, etc. This level of partial transparency allows the GridSolve system to 
provide better overall performance for the users while leaving the user in control 
of their application.

11.5  Summary
Using distributed grid resources in a simple and effective manner is difficult, 
though there are multiple programming models that are attempting to meet this 
challenge. The GridRPC API is a simple and portable programming model pro-
viding a standardized mechanism for accessing grid resources. GridSolve provides 
an implementation of GridRPC and adds a substantial list of features that are 
designed to make access to grid resources transparent and easier to accomplish. 
Client bindings for commonly used SCEs (e.g., MATLAB, Octave, and IDL) make 
it easy for a computational scientist to use grid resources from within their preferred 
tools. Transparent scheduling via the GridSolve agent relieves the user from having 
to know the details of the servers and service providers. Service-level fault toler-
ance provides a simple and usable mode for failure recovery. Task graph scheduling 
allows the composition of sequences of tasks into an inferred workflow, without 
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requiring additional input from the user. Using all these techniques and more, 
GridSolve has been working to make the grid easier to use, and further research on 
this goal continues.
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12.1  Introduction
Cloud and cloud technologies are two broad categories of technologies related to 
the general notion of Cloud Computing. By “cloud,” we refer to a collection of 
infrastructure services, such as Infrastructure as a service (IaaS) and Platform as a 
service (PaaS), provided by various organizations where virtualization plays a key 
role. By “cloud technologies,” we refer to various cloud runtimes, such as Hadoop 
(ASF, core, 2009a), Dryad (Isard et al. 2007), and other MapReduce (Dean and 
Ghemawat 2008) frameworks, and also the storage and communication frame-
works, such as Hadoop Distributed File System (HDFS) and Amazon S3 (Amazon 
2009).

The introduction of commercial cloud infrastructure services, such as Amazon 
EC2, GoGrid (ServePath 2009), and ElasticHosts (ElasticHosts 2009), has allowed 
users to provision compute clusters fairly easily and quickly, by paying a mon-
etary value for the duration of their usages of the resources. The provisioning of 
resources happens in minutes, as opposed to hours and days required in the case 
of traditional queue-based job-scheduling systems. In addition, the use of such 
virtualized resources allows the user to completely customize the virtual machine 
(VM) images and use them with ROOT/administrative privileges, another feature 
that is hard to achieve with traditional infrastructures. The availability of open-
source cloud infrastructure softwares, such as Nimbus (Keahey et al. 2005) and 
Eucalyptus (Nurmi et al. 2009), and open-source virtualization software stacks, 
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such as Xen Hypervisor (Barham et al. 2003), allows organizations to build private 
clouds to improve the resource utilization of the available computation facilities. 
The possibility of dynamically provisioning additional resources by leasing from 
commercial cloud infrastructures makes the use of private clouds more promising.

Among the many applications that benefit from cloud and cloud technologies, 
the data/compute-intensive applications are the most important. The deluge of data 
and the highly compute-intensive applications found in many domains, such as 
particle physics, biology, chemistry, finance, and information retrieval, mandate 
the use of large computing infrastructures and parallel processing to achieve con-
siderable performance gains in analyzing data. The addition of cloud technologies 
creates new trends in performing parallel computing. An employee in a publishing 
company who needs to convert a document collection, terabytes in size, to a differ-
ent format can do so by implementing a MapReduce computation using Hadoop, 
and running it on leased resources from Amazon EC2 in just a few hours. A scien-
tist who needs to process a collection of gene sequences using the CAP3 (Huang 
and Madan 1999) software can use virtualized resources leased from the univer-
sity’s private cloud infrastructure and Hadoop. In these use cases, the amount of 
coding that the publishing agent and the scientist need to perform is minimal (as 
each user simply needs to implement a map function), and the MapReduce infra-
structure handles many aspects of the parallelism.

Although the above examples are successful use cases for applying cloud and 
cloud technologies for parallel applications, through our research, we have found 
that there are limitations in using current cloud technologies for parallel applica-
tions that require complex communication patterns or require faster communica-
tion mechanisms. For example, Hadoop and Dryad implementations of Kmeans 
clustering applications, which perform an iteratively refining clustering operation, 
show higher overheads compared to implementations of MPI or CGL-MapReduce 
(Ekanayake et al. 2008)—a streaming-based MapReduce runtime developed by 
us. These observations raise questions: What applications are best handled by 
cloud technologies? What overheads do they introduce? Are there any alternative 
approaches? Can we use traditional parallel runtimes such as MPI in cloud? If 
so, what overheads does it have? These are some of the questions we try to answer 
through our research.

In Section 12.1, we give a brief introduction of the cloud technologies, and in 
Section 12.2, we discuss with examples the basic functionality supported by these 
cloud runtimes. Section 12.3 discusses how these technologies map into program-
ming models. We describe the applications used to evaluate and test technologies 
in Section 12.4. The performance results are discussed in Section 12.5. In Section 
12.6, we present details of an analysis we have performed to understand the per-
formance implications of virtualized resources for parallel MPI applications. Note 
that we use MPI running on non-VMs in Section 12.5 for comparison with cloud 
technologies. We present our conclusions in Section 12.7.
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12.2  Cloud Technologies
Cloud technologies such as MapReduce and Dryad have created new trends in 
parallel programming. The support for handling large data sets, the concept of 
moving computation to data, and the better quality of services provided by the 
cloud technologies make them a favorable choice to solve large-scale data/compute-
intensive problems.

The granularity of the parallel tasks in these programming models lies in 
between the fine-grained parallel tasks that are used in message-passing infrastruc-
tures such as PVM (Dongarra et al. 1993) and MPI (Forum n.d.), and coarse-
grained jobs in workflow frameworks such as Kepler (Ludscher et al. 2006) and 
Taverna (Hull et al. 2006), in which the individual tasks could themselves be par-
allel applications written in MPI. Unlike the various communication constructs 
available in MPI, which can be used to create a wide variety of communication 
topologies for parallel programs, in MapReduce, the “map→reduce” is the only 
communication construct available. However, our experience shows that most com-
posable applications can easily be implemented using the MapReduce programming 
model. Dryad supports parallel applications that resemble Directed Acyclic Graphs 
(DAGs), in which the vertices represent computation units, and the edges represent 
communication channels between different computation units.

In traditional approaches, once parallel applications are developed, they are 
executed on compute clusters, supercomputers, or grid infrastructures (Foster 
2001), where the focus on allocating resources is heavily biased by the availabil-
ity of computational power. The application and the data both need to be moved 
to the available computational resource in order for them to be executed. These 
infrastructures are highly efficient in performing compute-intensive parallel appli-
cations. However, when the volume of data accessed by an application increases, 
the overall efficiency decreases due to the inevitable data movement. Cloud tech-
nologies such as Google MapReduce, Google File System (GFS) (Ghemawat et al. 
2003), Hadoop and HDFS, Microsoft Dryad, and CGL-MapReduce adopt a more 
data-centered approach to parallel runtimes. In these frameworks, the data is staged 
in data/ compute nodes of clusters or large-scale data centers, such as in the case of 
Google. The computations move to the data in order to perform the data process-
ing. Distributed file systems, such as GFS and HDFS, allow Google MapReduce 
and Hadoop to access data via distributed storage systems built on heterogeneous 
compute nodes, while Dryad and CGL-MapReduce support reading data from 
local disks. The simplicity in the programming model enables better support for 
quality of services such as fault tolerance and monitoring.

12.2.1 Hadoop
Apache Hadoop has a similar architecture to Google’s MapReduce runtime, where 
it accesses data via HDFS, which maps all the local disks of the compute nodes to 
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a single file system hierarchy, allowing the data to be dispersed across all the data/
computing nodes. HDFS also replicates the data on multiple nodes so that failures 
of any nodes containing a portion of the data will not affect the computations 
that use that data. Hadoop schedules the MapReduce computation tasks depend-
ing on the data locality, improving the overall I/O (input/output) bandwidth. The 
outputs of the map tasks are first stored in local disks until later, when the reduce 
tasks access them (pull) via HTTP connections. Although this approach simplifies 
the fault-handling mechanism in Hadoop, it adds a significant communication 
overhead to the intermediate data transfers, especially for applications that produce 
small intermediate results frequently.

12.2.2 Dryad and DryadLINQ
Dryad is a distributed execution engine for coarse-grained data parallel applica-
tions. It combines the MapReduce programming style with dataflow graphs to 
solve the computation tasks. Dryad considers computation tasks as DAGs, where 
the vertices represent computation tasks and the edges act as communication chan-
nels over which the data flows from one vertex to another. The data is stored in 
(or partitioned to) local disks via the Windows shared directories and metadata 
files, and Dryad schedules the execution of vertices depending on the data local-
ity. (Note: The academic release of Dryad only exposes the DryadLINQ (Yu et al. 
2008) API for programmers. Therefore, all our implementations are written using 
DryadLINQ, although it uses Dryad as the underlying runtime.) Dryad also stores 
the output of vertices in local disks, and the other vertices that depend on these 
results access them via the shared directories. This enables Dryad to re-execute 
failed vertices, a step that improves fault tolerance in the programming model.

12.2.3 CGL-MapReduce
CGL-MapReduce is a lightweight MapReduce runtime that incorporates several 
improvements to the MapReduce programming model, such as (1) faster intermedi-
ate data transfer via a pub/sub broker network, (2) support for long-running map/
reduce tasks, and (3) efficient support for iterative MapReduce computations. The 
architecture of CGL-MapReduce is shown in Figure 12.1 (left). (Note: Please note 
that the CGL-MapReduce is now known as Twister: Iterative MapReduce Runtime.)

The use of streaming enables CGL-MapReduce to send the intermediate results 
directly from its producers to its consumers, and eliminates the overhead of the 
file-based communication mechanisms adopted by both Hadoop and Dryad. The 
support for long-running map/reduce tasks enables configuring and reusing map/
reduce tasks in the case of iterative MapReduce computations, and eliminates the 
need for reconfiguring or reloading static data in each iteration. This feature comes 
with the distinction of “static data” and “dynamic data” that we support in CGL-
MapReduce. We refer to any data set that is static throughout the computation 
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as “static data,” and the data that is changing over the computation as “dynamic 
data.” Although this distinction is irrelevant to the MapReduce computations that 
have only one map phase followed by a reduce phase, it is extremely important for 
iterative MapReduce computations, in which the map tasks need to access a static 
(fixed) data again and again. Figure 12.1 (right) highlights the synchronization and 
communication characteristics of Hadoop, Dryad, CGL-MapReduce, and MPI.

Additionally, CGL-MapReduce supports the distribution of smaller variable 
data sets to all the map tasks directly, a functionality similar to MPI_Bcast() that 
is often found to be useful in many data analysis applications. Hadoop provides 
a similar feature via its distributed cache, in which a file or data is copied to all 
the compute nodes. Dryad provides a similar feature by allowing applications to 
add resources (files) that will be accessible to all the vertices. With the above fea-
tures in place, CGL-MapReduce can be used to implement iterative MapReduce 
computations efficiently. In CGL-MapReduce, data partitioning and distribution 
is left to the users to handle, and it reads data from shared file systems or local 
disks. Although the use of streaming makes CGL-MapReduce highly efficient, 
implementing fault tolerance with this approach is not as straightforward as it is in 
Hadoop or Dryad. We plan to implement fault tolerance in CGL-MapReduce by 
re-execution of failed map tasks and redundant execution of reduce tasks.

12.2.4 MPI
MPI, the de facto standard for parallel programming, is a language-independent 
communications protocol that uses a message-passing paradigm to share the data 
and state among a set of cooperative processes running on a distributed memory 
system. MPI specification (Forum, MPI) defines a set of routines to support various 
parallel programming models, such as point-to-point communication, collective 
communication, derived data types, and parallel I/O operations.
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Most MPI runtimes are deployed in computation clusters where a set of com-
pute nodes are connected via a high-speed network connection yielding very low 
communication latencies (typically in microseconds). MPI processes typically have 
a direct mapping to the available processors in a compute cluster or to the processor 
cores in the case of multi-core systems. We use MPI as the baseline performance 
measure for the various algorithms that are used to evaluate the different paral-
lel programming runtimes. Table 12.1 summarizes the different characteristics of 
Hadoop, Dryad, CGL-MapReduce, and MPI.

12.3  Programming Models
When analyzing applications written in the MapReduce programming model, we 
can identify three basic execution units, namely, (1) map-only, (2) map-reduce, and 
(3) iterative map-reduce. Complex applications can be built by combining these 
three basic execution units under the MapReduce programming model. Table 12.2 
shows the data/computation flow of these three basic execution units, along with 
examples.

In the MapReduce programming model, the tasks that are being executed at 
a given phase have similar executables and similar input and output operations. 
With zero reduce tasks, the MapReduce model reduces to a map-only model, which 
can be applied to many “embarrassingly parallel” applications. Software systems 
such as batch queues, Condor (Condor 2009), Falkon (Raicu et al. 2007), and 
SWARM (Pallickara and Pierce 2008) all provide similar functionality by schedul-
ing large numbers of individual maps/jobs. Applications that can utilize a “reduc-
tion” or an “aggregation” operation can use both phases of the MapReduce model, 
and, depending on the “associative” and “commutative” nature of the reduction 
operation, multiple reduction phases can be applied to enhance the parallelism. For 
example, in a histogramming operation, the partial histograms can be combined in 
any order and in any number of steps to produce a final histogram.

The “side effect–free” nature of the MapReduce programming model does not 
promote iterative MapReduce computations. Each of the map and reduce tasks are 
considered as atomic execution units with no state shared in between executions. 
In parallel runtimes, such as those of the MPI, the parallel execution units live 
throughout the entire life of the program; hence, the state of a parallel execution 
unit can be shared across invocations. We propose an intermediate approach to 
develop MapReduce computations. In our approach, the map/reduce tasks are still 
considered free from side effects, but the runtime allows configuring and reusing 
the map/reduce tasks. Once configured, the runtime caches the map/reduce tasks. 
This way, both map and reduce tasks can keep the static data in memory, and can 
be called iteratively without loading the static data repeatedly.

Hadoop supports configuring the number of reduce tasks, which enables the 
user to create “map-only” applications by using zero reduce tasks. Hadoop can be 
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used to implement iterative MapReduce computations, but the framework does not 
provide additional support to implement them efficiently. The CGL-MapReduce 
supports all the above three execution units, and the user can develop applica-
tions with multiple stages of MapReduce by combining them in any order. Dryad 
execution graphs resembling the above three basic units can be generated using 
DryadLINQ operations. DryadLINQ adds the LINQ programming features 
to Dryad where the user can implement various data analysis applications using 
LINQ queries, which will be translated to Dryad execution graphs by the compiler. 
However, unlike in the MapReduce model, Dryad allows the concurrent vertices 
to have different behaviors and different I/O characteristics, thus enabling a more 
workflow-style programming model. Dryad also allows multiple communication 
channels in between different vertices of the dataflow graph. Programming lan-
guages such as Swazall (Pike et al. 2005), introduced by Google for its MapReduce 
runtime, enable high-level language support for expressing MapReduce computa-
tions, and the Pig (ASF, pig, 2009b) available as a subproject of Hadoop allows 
query operations on large data sets.

Apart from these programming models, there are other software frameworks 
that one can use to perform data/compute-intensive analyses. Disco (Nokia 2009) 
is an open-source MapReduce runtime developed using a functional programming 

Table 12.2  Three Basic Execution Units under the MapReduce 
Programming Model

Map-Only Map-Reduce Iterative Map-Reduce

Input

map()

Output

Input

map()

reduce()

Output

Input

map()

reduce()

Output

Cap3 analysis (we will 
discuss more about this 
later)

HEP data analysis (we 
will discuss more 
about this later)

Expectation 
maximization 
algorithms

Converting a collection 
of documents to 
different formats, 
processing a collection 
of medical images, and 
brute-force searches in 
cryptography; 
parametric sweeps

Histogramming 
operations, 
distributed search, 
and distributed 
sorting; information 
retrieval

Kmeans clustering, 
matrix multiplication
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language named Erlang (Ericsson 2009). The Disco architecture shares clear simi-
larities with both Google and Hadoop MapReduce architectures. Sphere (Gu and 
Grossman 2009) is a framework that can be used to execute user-defined functions 
in parallel on data stored in a storage framework named Sector. Sphere can also per-
form MapReduce-style programs, and the authors compare its performance with 
Hadoop for tera-sort applications. All-Pairs (Moretti et al. 2009) is an abstraction 
that can be used to solve the common problem of comparing all the elements in 
a data set with all the elements in another data set by applying a given function. 
This problem can be implemented using Hadoop and Dryad as well, and we dis-
cuss a similar problem in Section 12.4.4. We can also develop an efficient itera-
tive MapReduce implementation using CGL-MapReduce to solve this problem. 
The algorithm is similar to the matrix multiplication algorithm that we explain in 
Section 12.4.3.

MPI and threads are two other programming models that can be used to imple-
ment parallel applications. MPI can be used to develop parallel applications in 
distributed memory architectures, whereas threads can be used in shared memory 
architectures, especially in multi-core nodes. The low-level communication con-
structs available in MPI allow users to develop parallel applications with various 
communication topologies involving fine-grained parallel tasks. The use of low-
latency network connections between nodes enables applications to perform a large 
number of inter-task communications. In contrast, the next-generation parallel 
runtimes, such as MapReduce and Dryad, provide a small number of parallel con-
structs, such as “map-only,” “map-reduce,” “Select,” “Apply,” and “Join,” and do not 
require high-speed communication channels. These constraints require adopting 
parallel algorithms that perform coarse-grained parallel tasks and less communi-
cation. The use of threads is a natural approach in shared memory architectures, 
where communication between parallel tasks reduces to the simple sharing of point-
ers via the shared memory. However, the operating system’s support for user-level 
threads plays a major role in achieving better performances using multi-threaded 
applications. We will discuss the issues in using threads and MPI in more detail in 
Section 12.5.4.2.

12.4  Data Analyses Applications
12.4.1 CAP3—Sequence Assembly Program
CAP3 is a DNA sequence assembly program developed by Huang and Madan 
(1999) that performs several major assembly steps: These steps include computation 
of overlaps, construction of contigs, construction of multiple sequence alignments, 
and generation of consensus sequences to a given set of gene sequences. The pro-
gram reads a collection of gene sequences from an input file (FASTA file format) 
and writes its output to several output files, as well as the standard output:
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 Input.fsa CAP3 Stdout Other output files→ → +  

The program structure of this application fits directly with the “map-only” basic 
execution unit, as shown in Table 12.2. We implemented a parallel version of CAP3 
using Hadoop, CGL-MapReduce, and DryadLINQ. Each map task in Hadoop 
and in CGL-MapReduce calls the CAP3 executable as a separate process for a 
given input data file (the input “Value” for the map task), whereas in DryadLINQ, a 
“homomorphic Apply” operation calls the CAP3 executable on each data file in its 
data partition as a separate process. All the implementations move the output files 
to a predefined shared directory. This application resembles a common paralleliza-
tion requirement, where an executable script, or a function in a special framework 
such as MATLAB• or R, needs to be executed on each input data item. The above 
approach can be used to implement all these types of applications using any of the 
above three runtimes.

12.4.2 High-Energy Physics
Next, we applied the MapReduce technique to parallelize a High-Energy Physics 
(HEP) data analysis application, and implemented it using Hadoop, CGL-
MapReduce, and Dryad. The HEP data analysis application processes large vol-
umes of data, and performs a histogramming operation on a collection of event 
files produced by HEP experiments. The details regarding the two MapReduce 
implementations and the challenges we faced in implementing them can be found 
in Ekanayake et al. (2008). In the DryadLINQ implementation, the input data files 
are first distributed among the nodes of the cluster manually. We developed a tool 
to perform the manual partitioning and distribution of the data. The names of the 
data files available in a given node were used as the data to the DryadLINQ pro-
gram. Using a homomorphic “Apply” operation, we executed a ROOT-interpreted 
script on groups of input files in all the nodes. The output histograms of this 
operation were written to a predefined shared directory. Next, we used another 
“Apply” phase to combine these partial histograms into a single histogram using 
DryadLINQ.

12.4.3  Iterative MapReduce—Kmeans Clustering 
and Matrix Multiplication

Parallel applications that are implemented using message-passing runtimes can uti-
lize various communication constructs to build diverse communication topologies. 
For example, a matrix multiplication application that implements Fox’s Algorithm 
(Fox et al. 1987) and Cannon’s Algorithm (Johnsson et al. 1989) assumes parallel 
processes to be in a rectangular grid. Each parallel process in the grid commu-
nicates with its left and top neighbors, as shown in Figure 12.2 (left). The cur-
rent cloud runtimes, which are based on dataflow models such as MapReduce and 
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Dryad, do not support this behavior, in which the peer nodes communicate with 
each other. Therefore, implementing the above type of parallel applications using 
MapReduce or DryadLINQ requires adopting different algorithms.

We have implemented matrix multiplication applications using Hadoop and 
CGL-MapReduce by adopting a row/column decomposition approach to split the 
matrices. To clarify our algorithm, let us consider an example where two input 
matrices, A and B, produce matrix C, as the result of the multiplication process. 
We split the matrix B into a set of column blocks and the matrix A into a set of row 
blocks. In each iteration, all the map tasks process two inputs: (1) a column block of 
matrix B and (2) a row block of matrix A. Collectively, they produce a row block of 
the resultant matrix C. The column block associated with a particular map task is 
fixed throughout the computation, while the row blocks are changed in each itera-
tion. However, in Hadoop’s programming model (a typical MapReduce model), 
there is no way to specify this behavior. Hence, it loads both the column block and 
the row block in each iteration of the computation. CGL-MapReduce supports the 
notion of long-running map/reduce tasks, where these tasks are allowed to retain 
static data in the memory across invocations, yielding better performance for “itera-
tive MapReduce” computations. The communication pattern of this application is 
shown in Figure 12.2 (middle).

Kmeans clustering (Macqueen 1967) is another application that performs 
iteratively refining computation. We also implemented Kmeans clustering applica-
tions using Hadoop, CGL-MapReduce, and DryadLINQ. In the two MapReduce 
implementations, each map task calculates the distances between all the data ele-
ments in its data partition and all the cluster centers produced during the previous 
run. It then assigns data points to these cluster centers, based on their Euclidian 
distances. The communication topology of this algorithm is shown in Figure 12.2 
(right). Each map task produces partial cluster centers as the output; these are then 

User program

reduce()

map() map()

Cij

Ci
User program

reduce()

map() map()

Ai

B

PijAi

j
Bj

Data split—2D data points

Compute the
distance to each
data point from

each cluster center,
and assign points to
the cluster centers

Compute the new
cluster centers

Compute the error and decide
whether to continue iteration

Figure  12.2  (Left)  Communication  topology  of  Cannon’s  Algorithm  imple-
mented using MPI.  (Middle) Communication  topology of matrix multiplication 
application based on MapReduce.  (Right) Communication  topology of Kmeans 
clustering implemented as a MapReduce application.



HPC with Cloud and Cloud Technologies  ◾  287

combined at a reduce task to produce the current cluster centers. These current 
cluster centers are used in the next iteration, to find the next set of cluster centers. 
This process continues until the overall distance between the current cluster centers 
and the previous cluster centers reduces below a predefined threshold. The Hadoop 
implementation uses a new MapReduce computation for each iteration of the pro-
gram, while CGL-MapReduce’s long-running map/reduce tasks allow it to reuse 
map/reduce tasks. The DryadLINQ implementation uses various DryadLINQ 
operations, such as “Apply,” “GroupBy,” “Sum,” “Max,” and “Join,” to perform the 
computation, and it also utilizes DryadLINQ’s “loop unrolling” support to per-
form multiple iterations as a single-large query.

12.4.4 Alu Sequencing Studies

12.4.4.1 Alu Clustering

The Alu clustering problem (Batzer and Deininger 2002) is one of the most chal-
lenging problems for sequence clustering, because Alus represent the largest repeat 
families in human genome. There are about 1 million copies of Alu sequences in 
human genome, in which most insertions can be found in other primates and only 
a small fraction (∼7000) are human specific. This indicates that the classification 
of Alu repeats can be deduced solely from the 1 million human Alu elements. 
Notably, Alu clustering can be viewed as a classical case study for the capacity of 
computational infrastructures, because it is not only of great intrinsic biological 
interest, but also a problem of a scale that will remain as the upper limit of many 
other clustering problems in bioinformatics for the next few years, for example, 
the automated protein family classification for a few millions of proteins predicted 
from large metagenomics projects.

12.4.4.2 Smith–Waterman Dissimilarities

We identified samples of the human and chimpanzee Alu gene sequences using 
Repeatmasker (Smith et al. 2004) with Repbase Update (Jurka 2000). We have 
been gradually increasing the size of our projects with the current largest samples 
having 35,339 and 50,000 sequences, and these require a modest cluster, such as 
Tempest (768 cores), for processing in a reasonable time (a few hours, as shown in 
Section 12.5). Note from the discussion in Section 12.4.4.1 that we are aiming at 
supporting problems with a million sequences—quite practical today on TeraGrid, 
and equivalent facilities given basic analysis steps scale like O(N 2).

We used an open-source version NAligner (Smith–Waterman software) of the 
Smith–Waterman–Gotoh (SW-G) algorithm (Smith and Waterman 1981, Gotoh 
1982) modified to ensure low start-up effects by each thread processing large num-
bers (above a few hundreds) at a time. The memory bandwidth needed was reduced 
by storing data items in as few bytes as possible.



288  ◾  Cloud Computing and Software Services

12.4.4.3  The O(N2) Factor of 2 and Structure 
of Processing Algorithm

The Alu sequencing problem shows a well-known factor-of-2 issue present in 
many O(N  2) parallel algorithms, such as those in direct simulations of astrophysi-
cal stems. We initially calculate in parallel the distance, D(i,j), between points 
(sequences) i and j. This is done in parallel over all processor nodes selecting criteria 
i < j (or j > i for the upper triangular case) to avoid calculating both D(i,j) and the 
identical D( j,i). This can require substantial file transfer, as it is unlikely that nodes 
requiring D(i,j) in a later step will find that it was calculated on nodes where it is 
needed.

For example, the MDS (Multi Dimensional Scaling) and PW (PairWise) clus-
tering algorithms, described in Fox et al. (2008), require a parallel decomposition 
where each of N processes (MPI processes, threads) has 1/N of sequences, and for 
this subset {i} of sequences stores in memory D({i},j) for all sequences j and the 
subset {i} of sequences for which this node is responsible. This implies that we need 
D(i,j) and D( j,i) (which are equal) stored in different processors/disks. This is a 
well-known collective operation in MPI called either gather or scatter.

12.4.4.4 Dryad Implementation

We developed a DryadLINQ application to perform the calculation of pair-
wise SW-G distances for a given set of genes by adopting a coarse-grained task 
decomposition approach that requires minimum inter-process communication 
to ameliorate the higher communication and synchronization costs of the paral-
lel runtime. To clarify our algorithm, let us consider an example where N gene 
sequences produce a pairwise distance matrix of size N × N. We decompose the 
computation task by considering that the resultant matrix groups the overall 
computation into a block matrix of size D × D, where D is a multiple (>2) of 
the available computation nodes. Due to the symmetry of the distances D(i,j) 
and D( j,i), we only calculate the distances in the blocks of the upper triangle 
of the block matrix, as shown in Figure 12.3 (left). The blocks in the upper tri-
angle are partitioned (assigned) to the available compute nodes, and an “Apply” 
operation is used to execute a function to calculate (N/D) × (N/D) distances in 
each block. After computing the distances in each block, the function calculates 
the transpose matrix of the resultant matrix, which corresponds to a block in 
the lower triangle, and writes both these matrices into two output files in the 
local file system. The names of these files and their block numbers are commu-
nicated back to the main program. The main program sorts the files based on 
their block numbers and performs another “Apply” operation to combine the 
files corresponding to a row of blocks in a single-large row block, as shown in 
Figure 12.3 (right).
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12.4.4.5 MPI Implementation

The MPI version of SW-G calculates pairwise distances using a set of either single- 
or multi-threaded processes. For N gene sequences, we need to compute half of 
the values (in the lower triangular matrix), which is a total of M = N × (N  − 1)/2 
distances. At a high level, computation tasks are evenly divided among P processes 
and execute in parallel, namely, the computation workload per process is M/P. 
At a low level, each computation task can be further divided into subgroups and 
run in T concurrent threads. Our implementation is designed for flexible use of a 
shared memory multi-core system and distributed memory clusters (tight-coupled 
to medium-tight-coupled communication technologies, such threading and MPI). 
We provide options for any combinations of thread versus process versus node, as 
shown in Figure 12.4. The real computation workload per parallel unit is decided 
by M/(T × P × # nodes).

As illustrated in Figure 12.4, the data decomposition strategy runs a “space-
filling curve through the lower triangular matrix” to produce equal numbers of 
pairs for each parallel unit such as process or thread. It is necessary to map indexes 
in each pairs group back to corresponding matrix coordinates (i,j) for constructing 
a full matrix later on. We implemented a special function, “PairEnumerator,” as 
the convertor. We tried to limit runtime memory usage for performance optimiza-
tion. This is done by writing a triple of i,j and also writing the distance value of 
pairwise alignment to a stream writer, and the system flushes accumulated results 
to a local file periodically. As the final stage, individual files are merged to form a 
full distance matrix.

Upper triangle

Blocks in upper triangle

0
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0

File I/O File I/O File I/O

DryadLINQ
vertices

DryadLINQ
vertices

Each D consecutive blocks are merged to form a
set of row blocks each with N × D elements
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Figure 12.3  Task decomposition (left) and DryadLINQ vertex hierarchy (right) 
of  the  DryadLINQ  implementation  of  SW-G  pairwise  distance  calculation 
application.
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12.5  Evaluations
12.5.1 Introduction
For our evaluations, we used three compute clusters (details are given in Table 12.3) 
with two 32-node clusters having almost identical hardware configurations and one 
latest 32-node cluster of 24-core machines with Infiniband connections. DryadLINQ 
and the MPI application that performs SW-G computation were run on the 
Windows cluster (Ref B, Ref C), while Hadoop, CGL-MapReduce, and other MPI 
applications were run on the Linux cluster (Ref A). We measured the performance 
of these applications, and present the results in terms of parallel overhead defined for 
parallelism P by

 
f P

P T P T
T

( )
( ) ( )
( )

=
× − 1

1
 (12.1)

where
P denotes parallelism (e.g., processes, threads, and map tasks) used
T denotes time as a function of the number of parallel processes used

T(1) is replaced in practice by T(S), where S is the smallest number of processes that 
can run the job. We used Hadoop release 0.20, the academic release of DryadLINQ, 
Microsoft MPI, and OpenMPI (OMPI) version 1.3.2 for our evaluations.

12.5.2 CAP3 and Particle Physics Case Studies
The results of our performance measurements for CAP3 and particle physics are 
shown in Figures 12.5 through 12.8.
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Figure 12.4  Task decomposition (left) and MPI (right) implementation of SW-G 
pairwise distance calculation application.
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Figure 12.5  Performance of the CAP3 application—average time (in s) against 
the number of gene reads processed.

Table 12.3  Different Computation Clusters Used for the Analyses

Feature
Linux Cluster 

(Ref A)
Windows Cluster 

(Ref B)
Windows Cluster 

(Ref C)

# Node 32 32 32

CPU Intel(R) Xeon(R) 
CPU L5420 
2.50 GHz

Intel(R) Xeon(R) 
CPU L5420 
2.50 GHz

Intel(R) Xeon(R) 
CPU E7450 
2.40 GHz

# CPU/# cores 2/8 2/8 4/24

Total cores 256 256 768

Memory 32 GB 16 GB 48 GB

Disk 1 disk of Western 
Digital Caviar RE 
160 GB SATA 7200

2 disks of 1000 GB 
(1 TB) Ultrastar 
A7K1000 7200

2 HP 146 GB 10K 2.5 
SAS HP SP HDD

Network Gigabit Ethernet Gigabit Ethernet 20 Gbps Infiniband

Operating 
system

Red Hat Enterprise 
Linux Server 
release 5.3—64 bit

Windows Server 
Enterprise—64 
bit

Windows Server 
2008 HPC Edition 
(Service Pack 1)
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From these results, it is clearly evident that the cloud runtimes perform 
 competitively well for both “map-only-style” and “map-reduce-style” applications. 
In the HEP data analysis, both CGL-MapReduce and DryadLINQ access input 
data from local disks, where the data is partitioned and distributed beforehand. 
Currently, HDFS can be accessed using Java or C++ clients only, and the ROOT-
interpretable scripts (ROOT—data analysis framework developed at CERN) are 
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not capable of accessing data from HDFS. Therefore, we placed the input data 
in the IU (Indiana University) Data Capacitor—a high-performance parallel file 
system based on the Lustre file system, and programmed the map task in Hadoop 
to directly access data from it. The performance results show that this dynamic 
data movement in the Hadoop implementation incurred considerable overhead to 
the computation, while the ability of reading input data from local disks gave sig-
nificant performance improvement to both DryadLINQ and CGL-MapReduce, as 
compared to the Hadoop implementation.

12.5.3 Kmeans and Matrix Multiplication Case Studies
For an iterative class of applications, cloud runtimes show considerably high over-
heads, compared to the MPI and CGL-MapReduce versions of the same applica-
tions; the results shown in Figures 12.7 and 12.8 imply that, for these types of 
applications, we still need to use high-performance parallel runtimes or alternative 
approaches. (Note: The negative overheads observed in the matrix multiplication 
application are due to the better utilization of a cache by the parallel application 
than the single-process version.) CGL-MapReduce shows a close performance 
closer to the MPI for large data sets in the case of Kmeans clustering and matrix 
multiplication applications, an outcome that highlights the benefits of supporting 
iterative computations and the faster data communication mechanism present in 
CGL-MapReduce.
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12.5.4 Alu Sequence Analysis Case Study

12.5.4.1 Performance of Smith–Waterman–Gotoh Algorithm

We performed the Dryad and MPI implementations of Alu SW-G distance calcula-
tions on two large data sets and obtained the following results.

There is a short partitioning phase for DryadLINQ, and then both approaches 
calculate the distances and write these out to intermediate files, as discussed in 
Section 12.4. We note that the merge time is currently much longer for MPI than 
DryadLINQ, while the initial steps are significantly faster for MPI. However, the 
total times in Table 12.4 indicate that both MPI and DryadLINQ implementa-
tions perform well for this application, with MPI a few percent faster with current 
implementations. As expected, the times scale proportionally to the square of the 
number of distances. On 744 cores, the average time of 0.0067 ms/pair that corre-
sponds to roughly 5 ms/pair calculated per core is used. The coarse-grained Dryad 
application performs competitively with the tightly synchronized MPI application. 
It proves once more the applicability of the cloud technologies for the composable 
applications.

12.5.4.2 Threaded Implementation

In Section 12.5.4.1, we looked at using MPI with one process per core and 
compared this with a threaded implementation, with each process having sev-
eral threads. Labeling the configuration as t × m × n for t threads per process, 
m MPI processes per node, and n nodes, we compare choices of t, m, and n in 
Figure 12.9.

Table 12.4  Comparison of DryadLINQ and MPI Technologies on Alu 
Sequencing Application with SW-G Algorithm

Technology
Total 

Time (s)
Time per 
Pair (ms)

Partition 
Data (s)

Calculated 
and Output 
Distance (s)

Merge 
Files (s)

Dryad 50,000 
sequences

17200.413 0.0069 2.118 17104.979 93.316

35,339 
sequences

8510.475 0.0068 2.716 8429.429 78.33

MPI 50,000 
sequences

16588.741 0.0066 N/A 13997.681 2591.06

35,339 
sequences

8138.314 0.0065 N/A 6909.214 1229.10
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The striking result for this step is that MPI easily outperforms the equivalent 
threaded version of this embarrassingly parallel step. In Figure 12.9, all the peaks in 
the overhead correspond to patterns with large values of t. Note that the MPI intra-
node 1 × 24 × 32 pattern completes the full 624 billion alignments in 2.33 h—4.9 
times faster than the threaded implementation 24 × 1 × 32. This 768-core MPI run 
has a parallel overhead of 1.43 corresponding to a speedup of 316.

The SW-G alignment performance is probably dominated by memory band-
width issues, and we are pursuing several points that could affect this, though it 
is not at our highest priority as SW-G is not the dominant step. We have tried to 
identify the reason behind the comparative slowness of threading. Using Windows 
monitoring tools, we found that the threaded version has about a factor of 100 more 
context switches than in the one-thread-per-process MPI version. This could lead 
to a slowdown of the threaded approach and correspond to Windows handling of 
paging of threads with large memory footprints.

12.6  Performance of MPI on Clouds
After the previous observations, we analyzed the performance implications of cloud 
for parallel applications implemented using MPI. Specifically, we were trying to 
find the overhead of virtualized resources, and understand how applications with 
different communication-to-computation (C/C) ratios perform on cloud resources. 
We also evaluated different CPU-core assignment strategies for VMs, in order to 
understand the performance of VMs on multi-core nodes.
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Commercial cloud infrastructures do not allow users to access the bare-
hardware nodes, in which the VMs are deployed, a must-have requirement for our 
analysis. Therefore, we used a Eucalyptus-based cloud infrastructure deployed at 
our university for this analysis. With this cloud infrastructure, we have complete 
access to both VM instances and to the underlying bare-metal nodes, as well as the 
help of the administrators; as a result, we could deploy different VM configura-
tions, allocating different CPU cores to each VM. Therefore, we selected the above 
cloud infrastructure as our main test bed.

For our evaluations, we selected three MPI applications with different com-
munication and computation requirements, namely, (1) the matrix multiplication, 
(2) Kmeans clustering, and (3) the Concurrent Wave Equation Solver. Table 12.5 
highlights the key characteristics of the programs that we used as benchmarks.

12.6.1 Benchmarks and Results
The Eucalyptus (version 1.4) infrastructure we used is deployed on 16 nodes of an 
iDataplex cluster, each of which has 2 Quad Core Intel Xeon processors (for a total 
of 8 CPU cores) and 32 GB of memory. In the bare-metal version, each node runs a 
Red Hat Enterprise Linux Server release 5.2 (Tikanga) operating system. We used 
the OMPI version 1.3.2 with the gcc version 4.1.2. We then created a VM image 
from this hardware configuration, so that we would have a similar software envi-
ronment on the VMs once they were deployed. The virtualization is based on the 
Xen hypervisor (version 3.0.3). Both bare-metal and virtualized resources utilized 
gigabit Ethernet connections.

When VMs are deployed using Eucalyptus, it allows us to configure the 
number of CPU cores assigned to each VM image. For example, with 8 core 
systems, the CPU-core allocation per VM can range from 8 cores to 1 core per 
VM, resulting in several different CPU-core assignment strategies. In an Amazon 
EC2 infrastructure, the standard instance type has half a CPU per VM instance 
(Evangelinos and Hill 2008). In the current version of Eucalyptus, the minimum 
number of cores that we can assign for a particular VM instance is 1; hence, we 
selected five CPU-core assignment strategies (including the bare-metal test) listed 
in Table 12.6.

We ran all the MPI tests, on all five hardware/VM configurations, and mea-
sured the performance and calculated speedups and overheads. We calculated 
two types of overheads for each application using formula (1). The total overhead 
induced by virtualization and parallel processing is calculated using the bare-metal 
single-process time as T(1) in formula (1). The parallel overhead is calculated using 
the single-process time from a corresponding VM as T(1) in formula (1).

In all the MPI tests we performed, we used the following invariant to select the 
number of parallel processes (MPI processes) for a given application:

 Number of MPI processes = Number of CPU cores used
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Table 12.5  Computation and Communication Complexities of Different 
MPI Applications Used

Application
Matrix 

Multiplication
Kmeans 

Clustering
Concurrent Wave 

Equation

Description Implements 
Cannon’s 
Algorithm

Assume a 
rectangular 
process grid 
(Figure 12.1, left)

Implements 
Kmeans 
Clustering 
algorithm

A fixed number of 
iterations are 
performed in 
each test

A vibrating string is 
decomposed (split) 
into points, and 
each MPI process 
is responsible for 
updating the 
amplitude of a 
number of points 
over time

Grain size (n) The number of 
points in a matrix 
block handled by 
each MPI process

The number of 
data points 
handled by a 
single MPI 
process

Number of points 
handled by each 
MPI process

Communication 
pattern

Each MPI process 
communicates 
with its 
neighbors both 
row-wise and 
column-wise

All MPI processes 
send partial 
clusters to one 
MPI process 
(rank 0); rank 0 
distributes the 
new cluster 
centers to all the 
nodes

In each iteration, 
each MPI process 
exchanges 
boundary points 
with its nearest 
neighbors

Computation 
per MPI 
process

[ (( )] )O n 3 O(n) O(n)

Communication 
per MPI 
process

[ (( )] )O n O n2 = ( ) O(1) O(1)

C/C O
n
1





O
n
1





O
n
1





Message size ( )n n2 = D—where D is the 
number of 
cluster centers

D << n

Each message 
contains a double 
value

Communication 
routines used

MPI_Sendrecv_
replace()

MPI_Reduce()

MPI_Bcast()

MPI_Sendrecv()
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For example, for the matrix multiplication application, we used only half the 
number of nodes (bare-metal or VMs) available to us, so that we had 64 MPI 
processes = 64 CPU cores. (This is mainly because the matrix multiplication appli-
cation expects the MPI processes to be in a square grid, in contrast to a rectangular 
grid). For Kmeans clustering, we used all the nodes, resulting in a total of 128 
MPI processes utilizing all 128 CPU cores. Some of the results of our analysis 
highlighting the different characteristics we observed are shown in Figures 12.10 
through 12.17.

For the matrix multiplication, the graphs show very close performance char-
acteristics in all the different hardware/VM configurations. As we expected, the 
bare-metal has the best performance and speedup values, compared to the VM 
configurations (apart from the region close to the matrix size of 4096 × 4096, where 
the VM performed better than the bare-metal; we have performed multiple tests 
at this point, and found that it is due to the cache performances of the bare-metal 
node). After the bare-metal, the next-best performance and speedups were recorded 
in the case of 1 VM per bare-metal node configuration, in which the performance 
difference was mainly due to the overhead induced by the virtualization. However, 
as we increased the number of VMs per bare-metal node, the overhead increased 

Table 12.6  Different Hardware/VM Configurations Used for Our 
Performance Evaluations

Ref Description

Number of 
CPU Cores 

Accessible to 
the Virtual or 

Bare-Metal 
Node

Amount of 
Memory (GB) 
Accessible to 
the Virtual or 

Bare-Metal 
Node

Number of 
Virtual or 

Bare-Metal 
Nodes 

Deployed

BM Bare-metal 
node

8 32 16

1-VM-8-core 1 VM instance 
per bare-
metal node

8 30 (2 GB is 
reserved for 
dom0)

16

2-VM-4-core 2 VM instances 
per bare-
metal node

4 15 32

4-VM-2-core 4 VM instances 
per bare-
metal node

2 7.5 64

8-VM-1-core 8 VM instances 
per bare-
metal node

1 3.75 128
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as well. At 81 processes, the 8 VMs per node configuration shows about a 34% 
decrease in speedup compared to the bare-metal results.

In Kmeans clustering, the effect of virtualized resources is much clearer than 
in the case of matrix multiplication. All VM configurations show a lower perfor-
mance compared to the bare-metal configuration. In this application, the amount 
of data transferred between MPI processes is extremely low compared to the 
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amount of data processed by each MPI process, and also in relation to the amount 
of computations performed. Figures 12.14 and 12.15 show the total overhead and 
the parallel overhead for Kmeans clustering under different VM configurations. 
From these two calculations, we found that, for VM configurations, the overheads 
are extremely large for data-set sizes of less than 10 million points, for which the 
bare-metal overhead remains less than 1 (for all cases). For larger data sets, such as 
those of 40 million points, all overheads reached less than 0.5. The slower speedup 
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of the VM configurations (shown in Figure 12.13) is due to the use of a smaller 
data set (∼800K points) to calculate the speedups. The overheads are extremely 
large for this region of the data sizes, and hence, this resulted in lower speedups 
for the VMs.

The concurrent wave equation splits a number of points into a set of paral-
lel processes, and each parallel process updates its portion of the points in some 
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number of steps. An increase in the number of points increases the amount of 
computations performed. Since we fixed the number of steps in which the points 
were updated, we obtained a constant amount of communication in all the test 
cases, resulting in a C/C ratio of O(1/n). In this application also, the difference 
in performance between the VMs and the bare-metal version was clearer, and at 
the highest grain size, the total overhead of 8 VMs per node is about seven times 
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higher than the overhead of the bare-metal configuration. The performance differ-
ences between the different VM configurations became smaller with the increase 
in grain size.

From the above experimental results, we can see that the applications with 
lower C/C ratios experienced a slower performance in virtualized resources. When 
the amount of data transferred between MPI processes is large, as in the case of the 
matrix multiplication, the application is more susceptible to the bandwidth than 
the latency. From the performance results of the matrix multiplication, we can see 
that the virtualization has not affected the bandwidth considerably. However, all 
the other results show that the virtualization has caused considerable latencies for 
parallel applications, especially with smaller data transfer requirements. The effect 
on latency increases as we use more VMs in a bare-metal node.

According to the Xen para-virtualization architecture (Barham et al. 2003), 
domUs (VMs that run on top of a Xen para-virtualization) are not capable of 
performing I/O operations by themselves. Instead, they communicate with dom0 
(privileged OS) via an event channel (interrupts) and the shared memory, and 
then the dom0 performs the I/O operations on behalf of the domUs. Although 
the data is not copied between domUs and dom0, dom0 needs to schedule the 
I/O operations on behalf of domUs. Figure 12.18 (left) and (right) shows this 
behavior in the 1 VM per node and 8 VMs per node configurations, respectively, 
that we used.

In all the above parallel applications we tested, the timing figures measured 
correspond to the time for computation and communication inside the applica-
tions. Therefore, all the I/O operations performed by the applications are network 
dependent. From Figure 12.19 (right), it is clear that dom0 needs to handle eight 
event channels when there are eight VM instances deployed on a single bare-
metal node. Although the eight MPI processes run on a single bare-metal node, 
since they are in different virtualized resources, each of them can only commu-
nicate via dom0. This explains the higher overhead in our results for 8 VMs per 
node configuration. The architecture reveals another important feature as well, 
that is, in the case of the 1 VM per node configuration, when multiple processes 
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(MPI or others) that run in the same VM communicate with each other via the 
network, all the communications must be scheduled by dom0. This results in 
higher latencies. We could verify this by running the above tests with LAM MPI 
(a predecessor of OMPI, which does not have improved support for in-node com-
munications for multi-core nodes). Our results indicate that, with LAM MPI, 
the worst performance for all the tests occurred when 1 VM per node was used. 
For example, Figure 12.19 shows the performance of Kmeans clustering under 
bare-metal, 1 VM per node, and 8 VMs per node configurations. This observation 
suggests that, when using VMs with multiple CPUs allocated to each of them for 
parallel processing, it is better to utilize parallel runtimes, which have better sup-
port for in-node communication.

Several others have also performed relevant research on the performance impli-
cations of virtualized resources. Youseff et al. (2006) present an evaluation of the 
performance impact of Xen on MPI. According to their evaluations, the Xen does 
not impose considerable overheads for HPC (high-performance computing) appli-
cations. However, our results indicate that the applications that are more sensitive 
to latencies (smaller messages, lower C/C ratios) also experience higher overheads 
under virtualized resources, and this overhead increases as more and more VMs 
are deployed per hardware node. From their evaluations, it is not clear how many 
VMs they deployed on the hardware nodes, or how many MPI processes were used 
in each VM. According to our results, these factors cause significant changes in 
possible results. Running 1 VM per hardware node produces a VM instance with 
a similar number of CPU cores, such as in a bare-metal node. However, our results 
indicate that, even in this approach, if the parallel processes inside the node com-
municate via the network, the virtualization may produce higher overheads under 
the current VM architectures.
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Evangelinos and Hill (2008) discuss the details of their analysis of the perfor-
mance of HPC benchmarks on the EC2 cloud infrastructure. One of the key obser-
vations noted in their paper is that both the OMPI and the MPICH2-nemsis show 
extremely large latencies, while the LAM MPI, the GridMPI, and the MPICH2-
scok show smaller, smoother latencies. This observation is similar to what we 
observed with the LAM MPI in our tests, and the same explanation holds valid for 
their observation as well.

Walker (2008) presents benchmark results of the performance of HPC applica-
tions using “high-CPU extra-large” instances provided by EC2, and on a similar set 
of local hardware nodes. The local nodes are connected using Infiniband switches, 
whereas the Amazon EC2 network technology is unknown. The results indicate 
about a 40%–1000% performance degradation on the EC2 resources, compared 
to the local cluster. Since the differences in operating systems and the compiler ver-
sions between the VMs and bare-metal nodes may cause variations in results, for 
our analysis, we used a cloud infrastructure over which we have complete control. 
In addition, we used similar software environments in both VMs and bare-metal 
nodes. In our results, we noticed that applications that are more susceptible to 
latencies experience a higher performance degradation (around 40%) under virtu-
alized resources. Bandwidth does not seem to be a consideration in private cloud 
infrastructures.

Gavrilovska et al. (2007) discuss several improvements over the current vir-
tualization architectures to support HPC applications, such as HPC hyper-
visors and self-virtualized I/O devices. We notice the importance of such 
improvements and research. In our experimental results, we used hardware nodes 
with 8 cores, and deployed and tested up to 8 VMs per node in these systems. Our 
results show that the virtualization overhead increases with the number of VMs 
deployed on a hardware node. These characteristics will have a larger impact on 
systems having more CPU cores per node. A node with 32 cores running 32 VM 
instances may produce very large overheads under the current VM architectures.

12.7  Conclusions and Future Work
We have described several different studies of clouds and cloud technologies on both 
real applications and standard benchmark. These address different aspects of paral-
lel computing using either traditional (MPI) or the new cloud-inspired approaches. 
We find that cloud technologies work well for most pleasingly parallel problems 
(“map-only” and “map-reduce” classes of applications). In addition, their support 
for handling large data sets, the concept of moving computation to data, and the 
better quality of services provided such as fault tolerance and monitoring, all serve 
to simplify the implementation details of such problems. Applications with com-
plex communication patterns observe higher overheads when implemented using 
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cloud technologies, and even with large data sets, these overheads limit the usage 
of cloud technologies for such applications. Enhanced MapReduce runtimes, such 
as CGL-MapReduce, allow iterative-style applications to utilize the MapReduce 
programming model, while incurring minimal overheads, as compared to other 
runtimes, such as Hadoop and Dryad.

Handling large data sets using cloud technologies on cloud resources is an area 
that needs more research. Most cloud technologies support the concept of mov-
ing computation to data where the parallel tasks access data stored in local disks. 
Currently, it is not clear to us whether this approach would work well with the VM 
instances that are leased only for the duration of use. A possible approach is to stage 
the original data in high-performance parallel file systems or Amazon S3–type 
storage services, and then move the data to the VMs each time they are leased to 
perform computations.

MPI applications that are sensitive to latencies experience moderate-to-higher 
overheads when performed on cloud resources, and these overheads increase as the 
number of VMs per bare-hardware node increases. For example, in Kmeans clus-
tering, 1 VM per node shows a minimum of an 8% total overhead, while 8 VMs per 
node show at least a 22% overhead. In the case of the Concurrent Wave Equation 
Solver, both these overheads are around 50%. Therefore, we expect the CPU-core 
assignment strategies, such as half a core per VM, to produce very high overheads 
for applications that are sensitive to latencies. Applications that are not suscep-
tible to latencies, such as those that perform large data transfers and/or higher C/C 
ratios, show minimal total overheads in both bare-metal and VM configurations. 
Therefore, we expect that the applications developed using cloud technologies will 
work fine with cloud resources, because the milliseconds-to-seconds latencies that 
they already have under the MapReduce model will not be affected by the addi-
tional overheads introduced by the virtualization. This is also an area we are cur-
rently investigating. We are also building applications (biological DNA sequencing) 
whose end-to-end implementation from data processing to filtering (data-mining) 
involves an integration of MapReduce and MPI (Fox et al. 2008).
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13.1  Introduction
Recent advances in high-throughput instrument technologies allow small research 
labs to obtain data for scientific projects of their interest in a cost-effective way. In 
biology and medicine, this opened a door to a genome-wide study. Unfortunately, 
many small research labs are unable to afford the analysis of such data since the data 
analysis task requires bioinformatics experts and a good computing infrastructure 
to process and analyze a large amount of data. We have been developing a novel bio-
informatics computing architecture, called BioVLAB, using Amazon cloud com-
puting and the Linked Enviroments for Atmospheric Discovery (LEAD)/OGCE 
(Open Grid Computing Environments) scientific workflow system. The emergence 
of cloud computing enables biologists to perform data analysis tasks without wor-
rying about computing resources and related issues such as system administration 
and resource allocation. The BioVLAB architecture is based on the LEAD/OGCE 
workflow system that includes a front-end graphical workflow system named 
XBaya, which allows biologists to run tasks in an intuitive way. XBaya empowers 
users to visually monitor workflow execution in real time and provides controls to 
modify the workflow and steer it according to their scientific needs. The workflow 
system presents an elegant abstraction so that biologists can focus on science while 
the system deals with all cloud computing and local resource interactions.

Using the BioVLAB architecture, we have developed three experimental 
systems: BioVLAB-protein, for a simple protein sequence analysis; BioVLAB-
microarray, for analyzing microarray data from NCBI’s (National Center for 
Biotechnology Information) GEO (Gene Expression Omnibus); and BioVLAB-
MMIA (microRNA and mRNA integrated analysis), for the combined analysis of 
gene and microRNA expression data. This chapter discusses the BioVLAB system 
architecture and the three prototype systems.

13.2  Motivation to Use Cloud Computing
Cloud computing is becoming important in both academia and industry, since the 
recent advancement in new technologies—such as high throughput computing 
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based on multi-core/multi-process architecture, cost-efficient memory and data 
capacity, and virtualization techniques—is changing the traditional concept of 
data analysis into a data-intensive way. For many years in research communities, 
data analysis using computers mainly depends on the capacity of local, small set 
of computers. However, in the current situation, we are now witnessing a burst 
of data, and such small sets of computing nodes are not enough to keep up with 
the fast generation of huge volume of data. Many researchers are now trying to 
use the full capacity of computing powers by utilizing parallelism or a form of 
multiple computers, called computer clusters or grids, for data-intensive com-
puting. Another important characteristic of cloud computing is elasticity that 
allows users to purchase computing power only for the capacity and duration 
that the users need. Especially, this is an important, new opportunity for small 
research labs that do not have high-performance computing infrastructure in 
place.

Currently, a handful of cloud-computing services are available to the public or 
are ready for release in the near future. Among them, the Amazon Elastic Compute 
Cloud (also known as EC2) is the first cloud-computing service in which users 
can “rent” multiple or hundreds of computing units in an on-demand manner. As 
seen in our previous work [1] and Amazon’s report [2], many services and applica-
tions have been developed for running in Amazon EC2. Microsoft is also testing 
a cloud-computing service, called Azure, to provide an Internet-scale cloud service 
platform. By collaborating with academia, HP, Intel, and Yahoo, Microsoft has 
recently launched a cloud computing test bed, called M45, to provide a globally dis-
tributed Internet-scale testing environment to support various academic researches.

13.3  System Architecture and Components
The BioVLAB system is based on the LEAD/OGCE workflow infrastructure. The 
implementation of this infrastructure heavily uses Service-Oriented Architecture 
(SOA) concepts. This architecture can be classified into three major layers. As 
shown in Figure 13.1, the topmost layer is the user interaction layer. The XBaya 
Graphical User Interface (GUI) serves as the user-facing interface, enabling biolo-
gists to construct, execute, and monitor workflow executions. The entire workflow 
system can be operated as a custom desktop application or can be coupled with the 
OGCE- based web portal interface.

The second layer represents various middleware components comprising of 
a workflow composition API (application programming interface), an execution 
engine, and monitoring capabilities. These components are further detailed in 
Section 13.3.1. The middleware layer also includes a web service wrapper called 
GFac (generic factory), which wraps command-line scientific applications into web 
services. These wrapped application services can be invoked stand-alone or can be 
orchestrated into workflows.



312  ◾  Cloud Computing and Software Services

The third layer represents various computing and data resources from local 
workstations to computational clouds like Amazon EC2. The GFac toolkit has 
a built-in functionality to manage all data transfers and jobs. The toolkit accepts 
a request from the workflow execution system and translates this request into 
data movement, and computes job submission to local, grid, or cloud computing 
resources. The wrapped application service is registered with a web service registry 
called XRegistry, which is used by the workflow GUI to browse and construct the 
registered services into workflows.

13.3.1 User Interaction Layer
The main components of the user interaction layer are the workflow system and the 
web portal.

13.3.1.1 Workflow Composer and Execution Engine

The concept of workflow has been introduced in scientific research communities 
to enable a batch execution of multiple tasks on behalf of users. By using such 
workflows, we can reduce a user’s involvement and release the burden of repeating 
tedious tasks. Among various workflow composer and execution engines available 
in the public domain, BioVLAB uses XBaya, a graphical workflow composer and 
execution engine.

Using XBaya, a user can compose a workflow with ease by performing simple 
drag and drop from the workbench, which displays the available applications users 
can include, and execute the workflow graph instantly. After executing a workflow, 
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(ODE) XRegistry
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Figure 13.1  BioVLAB architecture.
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XBaya can report to users the execution status of the workflow. Detailed status 
messages will be displayed on the monitor panel, as shown in Figure 13.2.

In Section 13.3.1.2, we will explain XBaya in detail.

13.3.1.2 XBaya—Workflow System

XBaya, a scientific workflow tool, is the main point of interaction for the scientist 
dealing with the workflow system, and it provides a high-level SOA-based pro-
gramming model to interact with the service layer of the workflow system. This 
scientific workflow-programming model has been recognized as the accepted stan-
dard across different scientific disciplines and the preferred programming model for 
scientific computing. This section focuses on describing the modes of operation of 
the XBaya workflow tool.

The XBaya workflow system facilitates three modes of operation with respect to 
the different stages of workflow execution:

 1. Workflow composition
 2. Workflow orchestration
 3. Workflow monitoring

Besides interacting with these different phases of workflow life cycle, XBaya also 
manages authentication and authorization of workflow users and provides a com-
prehensive security infrastructure based on the GSI (Grid Security Infrastructure) 
[35], while facilitating user authorizations as well as user groups.

13.3.1.2.1 Workflow Composition

XBaya is a pure SOA-based workflow system, and the workflow activities are either 
pure web services or workflow control structures. The web services can be abstract 
services that can be instantiated to actual service just in time when they are needed 
for the workflow, or they can be concrete services deployed by a third party. The 
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Figure 13.2  Components of XBaya.
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control structures provided by XBaya on the other hand consist of conditional 
branching structures, commonly known as if-else conditions and parallel process-
ing structures like for-each blocks that facilitate doing parallel transforms to array 
data structures. Besides services and control structures, sometimes, certain data 
structures require minor transformations, and many workflow systems provide 
widget components to facilitate such requirements (e.g., regEx widget for string 
comparison). XBaya provides the flexibility for the workflow user to implement a 
widget as the workflow is composed, by implementing a Java skeleton that captures 
the widget functionality in a Java operation.

The workflow system consists of a registry service, named XRegistry [36], 
which allows resource sharing in a secure manner. This is a registry that is also used 
by other components, like GFac, for resource storage and lookups. The registry 
interface not only allows resource sharing and service discovery, but also provides 
a mechanism to protect the application service from unauthorized access, thus 
preventing unauthorized users from having access to scientific applications. The 
service authors could create their services using a GFac toolkit and register them in 
the XRegistry as abstract services, and XBaya allows users to query these services 
and import them to be used in composition. Besides looking up XRegistry, XBaya 
allows third-party web services to be included in the workflow either by importing 
the WSDL (Web Services Description Language) file of the service or by providing 
the End Point Reference (EPR) of the web service. Further, as shown in Figure 
13.3, the XBaya workbench provides an interactive and easy drag-and-drop inter-
face for workflow composition.

Composition 
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monitoring Abstract
DAG model

BPEL 1.1

GPEL
engine

Apache
ODE engine
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Python runtimeJython-
based enactor

Message bus

Dynamic
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Figure 13.3  Architecture of the XBaya workflow system.
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13.3.1.2.2 Workflow Orchestration

XBaya provides a high-level workflow description language, referred to as the 
Abstract DAG model in Figure 13.3, that is independent of conventional workflow 
execution languages. This allows the composition of the workflow to be completely 
decoupled from the execution, as well as the workflow to be transformed into dif-
ferent workflow-execution languages easily. The different workflow-enactment 
environments do have their merits and demerits, and depending on the domain sci-
ence, the optimal workflow-enactment environment should be chosen to capitalize 
on the merits. For example, the Apache Orchestration Director Engine (ODE) [37] 
workflow engine is well equipped to handle long-running workflows in a scalable 
manner, whereas the XBaya dynamic enactor would provide dynamic user interac-
tion during workflow execution, thus providing better steering of the workflow. 
Figure 13.3 provides the architecture of the XBaya workflow tool, and how the 
interaction with different workflow engines would take place, as well as how the 
Abstract DAG model may get compiled into each execution environment as neces-
sary. In this chapter, the focus would be on the XBaya dynamic workflow enac-
tor/interpreter, because the flexibilities provided by the dynamic workflow enactor 
seem to fit the bioinformatics domain while fulfilling the other necessary require-
ments expected of the workflow system.

The following sets of features capture the interactive and dynamic aspects of the 
workflows that are provided by the XBaya workflow system. We define an activity 
to be an encapsulation of logic that can be represented as an XBaya workflow node.

 1. Deviations during workflow execution when workflow definition is static:
 a. Fault handling
 b. Dynamic change workflow inputs, workflow rerun
 c. Dynamic change in point of execution, workflow smart rerun
 d. Pause execution, step through execution, and debug points
 2. On-the-fly workflow composition when workflow definition changes:
 a. Dynamic addition of activities to the workflow
 b. Dynamic removal or replacement of activity from the workflow

These two sets are organized in a way that the first set captures the dynamic interac-
tions that do not require changes to the workflow definition while it is executing. 
In other words, the workflow definition remains static during the dynamic inter-
actions. The second set in the taxonomy are the dynamic interactions that would 
change the definition of the workflow.

Since some of the features require the workflow definition to be changed while 
it is being executed, compilation of the workflow to a script would be a wrong 
approach. If the workflow is interpreted one activity at a time, as the user makes 
changes to the workflow, these changes would automatically be picked up when 
the interpreter visits those nodes of the workflow. In XBaya, the workflows are 
interpreted rather than compiled, and the result of execution of each activity is 
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check-pointed. The interpretation allows the workflow definition to be changed 
dynamically, while the check-pointing allows the parts of the workflows to be run 
again as necessary. These dynamic features allow scientists to monitor the work-
flows as they execute and make real-time changes to the workflows and steer their 
scientific application to achieve better results.

13.3.1.2.3 Workflow Monitoring

The XBaya workflow system provides a real-time monitoring interface for the work-
flows to evaluate the progress of an experiment. Figure 13.4 shows a workflow in 
the middle of the execution where the different colors of the components show 
the execution status of that particular component (gray: complete, green: running, 
and yellow: waiting). The monitoring infrastructure of the workflow is completely 
decoupled with the workflow execution so that the workflow can be run with or 
without monitoring. The workflow system employs a WS-Eventing-based [38] 
publish/subscribe messaging system as a message bus to gather the progress of the 
workflow that is happening in distributed locations and services, and the XBaya 
monitoring interface would listen to those notifications sent by the workflow activi-
ties and reflect the progress of the workflow in the workbench.

13.3.1.3 Web Portal

The management of our system as an administrator or the access of stored data 
as an individual user can be performed through the portal interface called web 

Figure 13.4  Illustration of workflow monitoring.
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portal. We built a web portal by using the OGCE portal [3]. As an administrator, 
the management of registered applications that users are allowed to execute can 
be performed easily through GFac’s registry portlet that we have deployed in our 
system. User management and access control can also be done through the portlet 
interface provided by OGCE.

The user can upload and download inputs and outputs of bioinformatics appli-
cations, which are stored in the remote storage services, such as Amazon EC2 and 
Microsoft’s Application-Based Storage, through our web portal simply by using a 
web browser.

13.3.2 Middleware Services
Most bioinformatics applications lack interoperability, and they are mostly stand-
alone and platform-dependent; thus, it requires significant efforts to execute mul-
tiple applications in a single environment. In our system, we deploy the Generic 
Service Toolkit, known as GFac, to convert any command-line bioinformatics 
application into a web service, which is accessible by XBaya.

13.3.2.1 Generic Factory

GFac wraps a command-line application into a web service. The toolkit also handles 
file staging, job submission, and monitoring. Furthermore, the wrapped service acts 
as the extensible runtime around which extensions like sharing, auditing, resource 
brokering, and urgent computing may be implemented.

The service toolkit includes a GFac service for on-demand creation of applica-
tion services, and a service runtime that provides logic for application services. A 
user defines his applications, deployment information, and mapping to the service, 
as three deployment descriptors: application, host, and service description docu-
ments. The host description documents include Java and toolkit installation loca-
tions and temporary working directories, and if it is a compute host description, it 
includes the remote access mechanisms for file transfers and job submissions. On 
the other hand, the application deployment descriptions define application instal-
lation location and execution information about the application itself. Finally, the 
service description documents define input, output, and other application configu-
ration information.

When a user requests a new application service, the factory service chooses 
a host from registered service hosts, and starts a new application service on this 
host. If multiple service hosts are registered, the factory service will provide load-
balancing by choosing a host in a round-robin fashion. The newly created service 
fetches deployment descriptors from the registry and configures itself according to 
the contract defined by the service and according to application descriptions. After 
a successful initialization, the service registers its WSDL in the registry service so 
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that it can be used by other workflow executions, and the service self-shutdown, 
after a given period of inactivity.

When an application service is invoked, the service parses the request and 
identifies the parameters that should be passed into the underlying application. As 
mentioned earlier, a typical application service invocation involves two hosts: the 
service host, where the service instance is running, and the application host, where 
the application is executed. Services and applications have a one-to-many mapping, 
where multiple application descriptions correspond to different installations of the 
same application. After deciding the best application host to execute the applica-
tion, the input data files specified by input parameters are staged to this application 
host and the underlying application is executed using a job submission mechanism. 
The service monitors the status of the remote application and publishes frequent 
activity information to the event bus. Once the invocation is complete, the applica-
tion service tries to determine the results of the application invocation by searching 
the standard output for user-defined patterns or by listing prespecified locations for 
the generated data products.

Apart from wrapping a command-line application as a service, the applica-
tion service provides a number of add-on facilities that are essential for a scientific 
workflow environment. The application service runtime is implemented using a 
processing pipeline based on the Chain-of-Responsibility pattern, where insert-
ing interceptors can alter the pipeline. The resulting architecture is highly flexible 
and extensible, and provides the ideal architectural basis for a system that sup-
ports a wide range of requirements. Furthermore, the design has abstracted out 
common services like file transfer, registry support, notification support, and job 
submission, allowing different implementations to be switched dynamically or via 
configurations.

13.3.3 Compute and Data Resources
Some bioinformatics applications are computationally intensive and require a pow-
erful high-performance or parallelizable computation environment. To respond to 
this problem, our system is designed to utilize remote high-performance resources, 
such as the computing cloud of Amazon EC2 in which a user can create any num-
ber of virtual computing instances at any time. Our system can also use public 
remote storage services, such as Amazon S3 (Simple Storage Service) and Microsoft 
Application-Based Storage, to store the intermediate or the final output of the 
workflow execution. For easy-to-use access and management of data stored in the 
remote services, we provide the web portal in our system.

13.3.3.1 Amazon Computing Clouds Services

The BioVLAB system uses Amazon’s EC2 and S3 as a computing cloud and a per-
sistent storage, respectively. EC2 provides a computing cloud service where a user 



BioVLAB  ◾  319

can have any number of virtual computing instances in an on-demand manner, 
and S3 supplies a persistent place to store user data. While the storage in EC2 is vol-
atile, S3 is persistent, reliable, and convenient to access with simple web interfaces.

In EC2, a user can create a customized virtual machine by using his own 
machine image, called Amazon Machine Image (AMI). For our BioVLAB system, 
we have created our own customized AMI that contains a Unix-based operating 
system, all bioinformatics applications we used, and a set of services for workflow 
execution. By sharing our customized AMI with others, any user can also create a 
virtual machine with a fully pre-configured BioVLAB system.

13.4  Bioinformatics Applications
In this section, we describe three BioVLAB prototype systems.

13.4.1 BioVLAB-Protein
As the new sequencing technology enables rapid sequencing of many genomes, new 
protein sequences are increasingly available; thus, there is an urgent need to decode 
information of the raw sequences. Protein sequences can be analyzed, executing 
various sources of applications in bioinformatics, such as Gibbs [4], ClustalW [5], 
and ARCS [6]. Then, aligned residues can be graphically analyzed using WebLogo 
[7]. In addition, functions of a protein can be determined by querying against 
domain databases such as Prosite [8], Pfam [9], and Gene Ontology [10].

Figure 13.5 is a sample workflow for protein sequence analysis with cloud 
computing. With an input file with multiple protein sequences, the sequences are 
aligned with a multiple sequence alignment tool, ClustalW. Then, ARCS highlights 
conserved regions among aligned biological sequences by measuring sequence char-
acteristics based on column correlations.

13.4.2 BioVLAB-Microarray
Microarray technology has been widely used in cell dynamics research. This high-
throughput technology can measure expression levels of hundreds of thousands of 
genes in a single batch; thus, it gives a massive amount of valuable information of 
how a certain cell reacts to cell conditions [11].

This technology is useful in various ways. It can help identify a function of gene 
that was previously unknown, by inspecting genes with similar expression patterns. 
Also, examining the co-expression pattern can help identify interaction partners 
and correlation of genes. In addition, it can be used to detect genes related to a 
certain disease, and thus possibly discover a target of new medicine.

A typical use case of microarray gene expression includes search for genes with 
similar expression patterns, extraction of differentially expressed genes, clustering 
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of genes based on expression patterns, component analysis, and protein–protein 
interaction network by projecting the expression pattern onto an interaction data-
base, such as Database of Interacting Proteins (DIP) [12].

Figure 13.6 is an example workflow of a microarray gene expression analysis 
in a cloud computing architecture. When the workflow in the figure is executed, a 
microarray gene expression data is obtained remotely from the NCBI GEO database 
using the R GEOquery package [13]. Biologists are often interested in statistically 
differentially expressed genes in an experiment, and can extract such genes based 
on a statistical test such as False Discovery Rate (FDR) [14], which is the second 
step in the workflow. We used the limma package [15] to detect the differentially 
expressed genes. In the next step, the display of the differentially expressed genes as 
a heat map and various clustering methods can run in parallel. Grouping genes may 
reveal functions of previously unknown genes, or a meaningful expression pattern. 
Thus, various clustering methods have been widely used to search hidden informa-
tion in different views, in microarray experiments. We used several clustering meth-
ods, that is, k-means clustering [16], quality threshold clustering (QT clustering) 
[17], and biclustering [18], appeared as nodes in the workflow. Built-in R functions 
kmeans was used for k-means clustering. Additional clustering packages such as flex-
clust [19] and biclust [20] were used for QT clustering and biclustering, respectively.

A graphical summary of microarray gene experiments is shown in Figure 13.7, 
where we used the GDS38 gene expression data set [21], a time-series gene expression 
data set for measuring gene expressions in various cell cycle stages in Saccharomyces 
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cerevisiae yeast genome. The experimental setup was identical to our previous work 
[1], and figures were taken from this work. Figure 13.7a is a heat map summary of 
differentially expressed genes with a p value ≤0.05. Figure 13.7b shows the k-means 
clustering result with a scatter plot and a heat map with a cluster size of 3. Figure 
13.7c summarizes the result of QT clustering with a radius threshold of 1. The 
biclustering summary is shown in Figure 13.7d, where the Cheng and Church 
method [22] was used with a cluster size of 3.

13.4.3 BioVLAB-MMIA
MMIA [23] uses an inversely correlated expression pattern between miRNA and 
mRNA for a combined analysis, since perfect seed-pairing between them is associ-
ated with mRNA destabilization [24]. MMIA provides two main results. The first 
result gives disease information associated with dys-regulated miRNA expression 
and common transcription factors in upstream regions of the miRNAs. The sec-
ond provides functional, pathological, and pathway information associated with 
inversely correlated expressed target mRNAs of the miRNAs. Currently, MMIA 
considers only humans.
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We re-implemented the web-based MMIA in a cloud computing environ-
ment and named it BioVLAB-MMIA, as shown in Figure 13.8. It consists of five 
modules. The first module (A in the figure) takes miRNA expression data or mis-
regulated miRNA gene list as an input. This module performs a statistical test for 
identifying down- or up-regulated miRNAs. The second module (B in the figure) 
finds enriched miRNA gene sets based on the mis-regulated miRNAs. The miRNA 
gene set database contains two categories. One is the disease-related miRNA gene 
set [25], and the other is for transcription binding factor sites in promoter regions 
of miRNA genes [26]. For example, each disease entry has an annotated miRNA 
gene list in the miRNA gene set database. The third module performs a significance 
test for the mRNA microarray and reports dys-regulated mRNA genes. The fourth 
module obtains computational mRNA targets by the mis-regulated miRNAs, and 
it provides three algorithms: TargetScan version 4.2 [27], PITA [28], and PicTar 
[29]. This module supports not only a single algorithm but also an intersection 
between two different algorithms. The fifth module inspects the inversely cor-
related expression between the selected miRNAs and their previously identified 
mRNA targets. It also performs a gene set analysis for the inversely expressed target 
mRNAs of the miRNAs. The precompiled gene sets contain MIT MSigDB [30], 
KEGG [31], and G2D [32], for functional, pathological, and pathway information, 
respectively.
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Figure 13.9 is a graphical summary of the BioVLAB-MMIA experiment. 
Figure 13.9a shows a heat map that displays significantly down-regulated genes 
in an miRNA experiment on human genes. It was obtained after the execution 
of the first module (node A in the workflow) in the example workflow. Figure 
13.9b is a part of the summary table after node B is executed. The USCS genome 
browser [26] result appearing in Figure 13.9b was obtained by clicking an entry in 
the summary table. Figure 13.9c corresponds to node D, and shows an example of 
mRNA target prediction and the details of gene from NCBI that were obtained by 
clicking an entry. Figure 13.9d is a result of the combined analysis of microRNA 
and mRNA, which is node E in the workflow. A KEGG map appearing in the 
figure was obtained by clicking a pathway entry in the summary table. See more 
details in [33].

(a) (b)

(c) (d)

Figure 13.9  BioVLAB-MMIA experimental results:  (a)  significantly down-regu-
lated microRNA, (b) microRNA gene set analysis, (c) mRNA targets prediction, 
and (d) combined analysis of microRNA and mRNA.
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13.5  Conclusion
We have shown that the approach of combining cloud computing and a graphi-
cal workflow composer could be a solution to computational analysis problems 
in scientific domains such as bioinformatics. The most important outcome of this 
approach is a possibility of soliciting a much broader participation of small research 
labs for important data-driven scientific projects by reducing the burden of com-
puter system setup and administration and allowing flexible workflow manage-
ment. This approach has a potential to significantly speed up advances in scientific 
domains, biology and medicine in this case. We are currently designing and build-
ing a larger system for biological pathway analysis based on our experience in build-
ing a web-based pathway system called ComPath [34].
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14.1  Introduction
Resource Description Framework (RDF) and Web Ontology Language (OWL) 
offer significant potential as technologies designed to support the integration of and 
reasoning across heterogeneous disparate data sources. Comprehensive datasets from 
many disciplines, including environmental sciences, biological sciences, social sci-
ences, and health sciences, have been semantically annotated using these languages 
to facilitate data correlation, integration, and reasoning. The widespread adoption of 
Semantic Web technologies is being driven by the need to answer complex queries 
that demand the integration and processing of multiple related but disparate multi-
disciplinary datasets.

The research work presented in this chapter is part of a bioinformatics project 
that is aimed at applying Semantic Web technologies to molecular biology data, to 
enable in silico drug discovery and development by identifying candidate therapeu-
tic targets through the analysis of integrated datasets that relate molecular inter-
actions and biochemical pathways with physiological effects, such as compound 
toxicology and gene–disease associations. Current protein–protein interaction 
(PPI) data is distributed across a wide range of disparate, large-scale, publicly avail-
able databases and repositories. The integration of data in these datasets is required 
before researchers can perform complex querying and analyses over the data to 
reveal previously undetected pathways and new drug candidates.

Given the massive scale of the datasets, the wide variety of different nam-
ing conventions (Good and Wilkinson 2006), and the different syntactic and 
semantic representations and descriptions, precise and efficient integration is a 
very challenging problem. Current tools available for bioinformatics data integra-
tion and discovery vary widely in terms of quality, maintenance, and applicability. 
Although there exist many different tools for performing operations on many dif-
ferent kinds of data (Merelli et al. 2007), there is also a general lack of standards 
for representing data, and a slow uptake of existing data standards (Good and 
Wilkinson 2006). In Newman et al. (2008a), we proposed a more standardized 
approach to the integration of PPI data in RDF through the use of RDF blank 
nodes, which are used to represent real-world entities such as proteins, interac-
tions, and pathways.
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14.1.1 Proposed Architecture
Existing RDF databases have typically suffered from limited scalability, and poor 
or inefficient inferencing and querying.* While some stores offer a high level of scal-
ability for a single node, there is little support for aggregation across multiple nodes. 
Inferencing is typically limited to either basic operations across large amounts of 
data or richer inferencing over small amounts of data—for our project, as well as 
for many other scientific challenges, rich, complex inferencing over large amounts 
of data† is required.

In addition, there are many other problems associated with scientific data anal-
ysis that require consideration. These include algorithm intensity, nonlinearity, and 
limitations on computer component bandwidth (Gray et al. 2005). These issues 
prevent interactive analysis over derived datasets. In order to overcome these dif-
ficulties, Gray recommended a number of mechanisms to expedite and improve 
scientific data analysis (Gray et al. 2005):

 ◾ The use of standardized and precise metadata to describe units, names, accu-
racy, provenance, capture details, etc., in order to help tools compare and 
process the data correctly

 ◾ The creation and adoption of common terminologies using Semantic Web 
technologies (RDF and OWL)

 ◾ The use of set-oriented processing methods, such as Google’s MapReduce 
(Dean and Ghemawat 2004)

So, while the use of ontologies and other Semantic Web technologies such as RDF 
can provide the ability to integrate, reason, and process over datasets, the mag-
nitude of the processing required and the size of the datasets prevent a speedy, 
efficient end-to-end solution. A distributed processing architecture developed by 
Google, known as MapReduce (Dean and Ghemawat 2004), is becoming increas-
ingly popular. This data-processing technique provides a common way to solve 
general processing problems and is closely aligned with the way data is acquired 
from experiments or simulations (Gray et al. 2005). In a MapReduce system, a 
map function takes input key, value pairs and transforms them to output key, value 
pairs. The reduce function takes the values in each unique key and produces output 
values. The advantages of this architecture are numerous (Dean and Ghemawat 
2004, Yang et al. 2007), and include

 ◾ A programming model that is abstract, simple, highly parallel, powerful, easy 
to maintain, and easy to learn

 ◾ An ability to efficiently leverage low-end commodity hardware

* http://esw.w3.org/topic/TripleStoreScalability
† http://esw.w3.org/topic/LargeTripleStores
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 ◾ Easy deployment across hundreds to thousands of nodes on internal or exter-
nal hosting services

 ◾ Robustness and ability to recover from data corruption or the loss of indi-
vidual nodes

Our hypothesis is that Semantic Web applications can benefit from the adoption 
of a scale-out architecture together with MapReduce data processing, in order to 
speed up querying, inferencing, and processing over large RDF triple stores of sci-
entific datasets. One such example is our project that focuses on the integration and 
processing of large-scale PPI data.

14.1.2 Case Study
The primary aim of our project is to integrate data from protein datasets, such as 
MPact (Güldener et al. 2006), the Database of Interacting Proteins (DIP) (Salwinski 
et al. 2004), IntAct (Kerrien et al. 2007), and the Molecular INTeractions data-
base (MINT) (Chatr-aryamontri et al. 2007), using a common model for proteins 
and PPI data to enable data harmonization. The common model is represented as 
an OWL Description Logics (OWL-DL) ontology. This ontology was developed 
by reusing vocabularies from well-established ontologies, such as Gene Ontology 
(Ashburner et al. 2000), Cell-Type ontology (Bard et al. 2005), BioPAX (Bader and 
Cary 2005), PSI-MI (Hermjakob et al. 2004), and others such as National Center 
for Biotechnology Information (NCBI) taxonomy. Based on this ontology, protein 
datasets are converted into RDF instances and stored in a distributed RDF triple 
store, where they are available for subsequent analysis and querying.

Figure 14.1 shows a small RDF graph about a yeast protein with UniProt ID 
“Q12522,” together with other information, such as host species, genomic sequence, 
and external references, that represents a protein instance in our ontology.

It is one of the objectives of our project to achieve real-time, interactive SPARQL 
Protocol and RDF Query Language (SPARQL) query response to queries such as 
“Show me all the human kinases expressed in the liver that are strongly inhibited by 
at least two compounds and are localized to the nucleus.” Such queries are very slow 
to execute, as they involve many joins and may generate an RDF graph that exceeds 
available memory. Hence, the bioinformatics application provides us with an ideal 
test bed and an end-user group for evaluating our Scale-Out RDF Molecule Store.

Within the life sciences, the heterogeneity of naming conventions across datasets 
is a major problem. Each dataset has its own method for protein identification. There 
have been previous attempts at naming standardization, but they have had limited 
effect (Good and Wilkinson 2006). In Newman et al. (2007), the authors proposed an 
“identity reconciliation process” based on the use of RDF “blank” nodes, which pro-
vide the hub that links to the relevant entries in different (translated) datasets and cre-
ates a single representation encompassing all information about a particular protein, 
and also enables all three levels of “attitudes” of knowledge representation (record, 
statement, and domain) (Ruttenberg et al. 2006) pertaining to a particular protein.
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Distributed processing necessitates the need to decompose RDF graphs into 
smaller units. RDF blank nodes also introduce a number of associated problems that 
arise during RDF graph decomposition and merging. The most significant prob-
lem is that RDF blank nodes are only uniquely identifiable within their enclosing 
graph—they are not globally addressable. The implication is that arbitrarily break-
ing down an RDF graph that contains blank nodes will incur loss of information. 
The concept of RDF molecules (Ding et al. 2005) was proposed to tackle the prob-
lem of addressing blank nodes by decomposing an RDF graph losslessly into a set of 
molecules that distribute updates to graphs. Overcoming this problem will require a 
number of extensions to RDF molecules that are described in detail in Section 14.3.

14.1.3 Objectives
The objectives of the work described in this chapter are to investigate solutions to 
the problems of inefficient semantic querying and reasoning across large-scale triple 
stores, and co-identification. These two issues hinder the adoption of Semantic Web 
technologies across many disciplines and applications. The more specific objectives 
of this work are to investigate and evaluate the following:

 ◾ Methods by which the MapReduce scale-out architecture can be used to 
improve the performance of semantic querying and inferencing over large-
scale RDF triples

 ◾ The adoption of RDF molecules for decomposing and distributing RDF 
graphs across computational nodes in the MapReduce architecture
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“CDC95”“Eukaryotic translation
initiation factor 6”

“eIF-6”
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cerevisiae”
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“MATR...”
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GeneSymbol

“TIF6”

“MIPS”

_Xref2

“YPR016C”

_Protein

Accession DataBase

CrossReference

Figure 14.1  RDF triples about a yeast protein.
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 ◾ The use of blank nodes to resolve the co-identification problem
 ◾ Extensions to RDF molecules to overcome problems of ambiguity, data loss, 

and inefficiency introduced by blank nodes

In addition, the aim is to evaluate our proposed Scale-Out RDF Molecule Store in 
the context of the querying and analysis of large-scale PPIs.

In Section 14.2, we describe related work. Section 14.3 describes the proposed 
extensions to RDF molecules with hierarchy and ordering. In Section 14.4, we 
describe the bioinformatics dataset, which will be used for evaluation in Section 
14.5, and introduce important components of the system: (a) graph decomposi-
tion into molecules and molecule merging, (b) MapReduce-based data integra-
tion, and (c) SPARQL querying across cluster. In Section 14.5, we present the 
initial results of the system’s performance of graph decomposition and merging, 
distributed data integration, and SPARQL querying. Finally, we present our con-
clusions in Section 14.6.

14.2  Related Works
14.2.1 Scale-Out Architecture
For a relatively new architecture, scale-out MapReduce systems have already received 
very promising and positive feedback and evaluation results. Benefits include better 
price/performance, successful application to many different domains, and open-
source implementations.

The MapReduce programming framework (Dean and Ghemawat 2004) was 
proposed and developed by Google to support distributed computation over a 
large cluster of commodity-grade hardware. The MapReduce framework consists 
of higher-order functions, map and reduce, found in the functional programming 
language. The map function takes as input a (key, value) pair and produces inter-
mediate results, a set of (key, value) pairs. The reduce function takes as input the 
intermediate results with the same (key, value) and produces the final result.

In the MapReduce framework, a large computation task is divided into a map 
phase and a reduce phase, in which the map and reduce functions are executed 
in parallel over a cluster of machines. The distribution of input/output files and 
the map and reduce tasks, load balancing, and fault tolerance are managed by the 
MapReduce framework and the underlying distributed file system, thus enabling 
rapid development of parallelized user programs.

Google’s initial work using these MapReduce scale-out techniques has included 
indexing the Web, statistical analysis of Web site usage, general data storage and 
querying, map and satellite imagery processing, and social networking (Chang et al. 
2006). Similarly, Yahoo has been applying MapReduce to “search and information 
retrieval, machine learning and data mining, microeconomics, community sys-
tems and media experience and design” (The Yahoo! Research Team 2006). Other 
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successful applications include indexing and searching Web documents (Khare 
et al. 2004), natural language processing (Pantel 2007), learning algorithms for 
multicore systems (Chu et al. 2007), and simulation (McNabb et al. 2007).

The Hadoop* project provides an open-source implementation of Google’s 
scale-out MapReduce, a system including the Hadoop Distributed File System 
(HDFS), MapReduce, and HBase (a BigTable clone).

The MapReduce scale-out architecture has been used in Oren et al. (2008) to 
index documents for open linked data.† There have also been initial implemen-
tations and research into similar, overlapping areas, including RDF stores using 
“shared-nothing” clustering, extending MapReduce higher-level operations, and 
column databases for storing and querying RDF.

The YARS2 federated RDF repository and the SWSE (Semantic Web Search 
Engine) architecture use a “shared-nothing” approach to achieve scalability (Harth 
et al. 2007). This has some conceptual similarities to our data acquisition architec-
ture. However, it is still bound to indexing and querying, and does not share the 
attributes of a MapReduce scale-out solution with its ability to perform arbitrary 
processing and indexing schemes.

The designs of BigTable and HBase are similar to column databases such as 
Sybase IQ, LucidDB, Metakit, KDB, C-Store (Stonebraker et al. 2005), and Monet 
(Boncz 2002). These databases were specifically designed to obtain the best per-
formance from modern hardware architecture. There is also some initial research 
currently underway investigating the use of C-Store and MonetDB (Muster 2007) 
for storing and querying RDF data as well as using these databases to handle sci-
entific data (Ivanova et al. 2007). Our approach differs from these approaches in a 
number of ways:

 ◾ We create a generic store for triples of any predicate, rather than creating one 
table per predicate.

 ◾ Our clustered approach differs substantially from their database architecture.
 ◾ We do not support ACID (Atomicity, Consistency, Isolation and Durability) 

database transactions.
 ◾ Column databases do not have a MapReduce-like processing framework, and 

do not combine processing and data management in the same way.

To the best of our knowledge, the work described in this chapter represents the first 
attempt to apply a scale-out distributed computing approach to expedite the query-
ing and processing of data in a large scale-out RDF triple store. Although in this 
chapter we use specifically PPI data for performance evaluation, there are undoubt-
edly many other suitable applications that require the integration and processing 
of large-scale distributed datasets (e.g., climatology, geosciences, and astronomy).

* http://hadoop.apache.org/
† http://linkeddata.org/
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14.2.2 RDF Modules
The concept of RDF molecules was first proposed in Ding et al. (2005) as a method 
that provides the optimum level of granularity between RDF graphs and triples. 
Given an RDF graph G, the set of molecules are the smallest sets of triples into 
which G can be decomposed without loss of information.

Figure 14.2 shows the different granularity levels of various RDF constructs.
There has been previous relevant work in the area of RDF graph decomposi-

tion. Below we provide an analysis of three possible approaches to RDF graph 
decomposition:

 ◾ Named Graphs (Carroll et al. 2005) enable the specification of an RDF graph 
through a set of RDF statements. The division of statements into subgraphs 
is arbitrary in the sense that the ontology author is responsible for manually 
constructing the subgraphs and naming them. Hence, no automated process 
is available.

 ◾ Concise Bounded Description (CBD) (Stickler 2005) is a subgraph of triples 
about a particular resource R and a chain of triples with blank nodes consist-
ing of matching object to subject nodes (ignoring the special case for reifica-
tion). All triples in a graph where the resource R is the subject are added to 
the subgraph. Next, it recursively adds any triples with blank node subjects 
already in the subgraph. A drawback of CBD is that it only looks at subject 
nodes in RDF triples and a CBD created for a resource node may not include 
all of the information.

 ◾ Minimum Self-Contained Graphs (MSGs) (Tummarello et al. 2005) is a pro-
posal for the decomposition of an RDF graph into self-contained subgraphs. 
Given an RDF triple, its corresponding MSG includes (a) the triple itself 
and, recursively, (b) for all the blank nodes involved in the MSG so far, all 
the triples of MSGs containing these blank nodes. Compared to CBD, MSG 
looks for statements to be included in the MSG in both directions. Hence, it 
results in a lossless decomposition.

Universal graph

RDF document
Named graph

Molecule

Triple

Figure 14.2  Relative granularity levels of RDF constructs. (Adapted from Ding, L. 
et al., Tracking RDF Graph Provenance Using RDF Molecules, UMBC, Baltimore, 
MD, 2005.)
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Based on the above analysis, we believe that RDF molecules provide the best 
approach for our MapReduce RDF store, as they ensure automated, unambiguous, 
and lossless decomposition and an optimal level of granularity.

Formally, given an RDF graph G and a background ontology W, a pair of oper-
ators (d, m) are defined for decomposition and merging:

 

M d G W

G m M W

=

=

( , )

( , )

where M is the set of molecules as the result of the decomposition of G with regard 
to W using the decomposition operator d. The merging operator m merges M back 
to the same graph G, also with respect to the background ontology W. The set of 
molecules M are mutually independent in the sense that no blank node is shared 
among them. Hence, they can be individually processed and later merged to con-
struct the RDF graph G losslessly.

Two types of decomposition were defined: naïve decomposition, in which no 
background ontology is consulted, and functional decomposition, in which an OWL 
ontology is queried for functional dependency between nodes.

The diagram shown in Figure 14.3 consists of six triples (in N3 format) that 
model a physical interaction between two proteins ( _ :3 and _ :4), represented 
as blank nodes.

The naïve decomposition results in a single molecule consisting of all the above 
triples, since they are connected by blank nodes.

14.3  Extended RDF Molecules
In order to maintain maximal compatibility with other datasets, we decided not 
to put any restriction on the format of data, hence allowing blank nodes in RDF 

‘p32379’

Experimental
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hasUniproID hasUniproID

Type

Participant Participant

observedInteraction

‘p46949’

_:4_:2_:3

_:1

Figure 14.3  A simple RDF graph modeling a PPI.
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documents. This decision presents a challenge for the distributed processing of 
RDF documents, as blank nodes are only addressable locally within a document. 
As stated in Section 14.2.2, RDF molecules provide a mechanism for decomposing 
an RDF graph into a set of self-contained molecules, each of which contains all 
(transitively) connected blank nodes. This enables an RDF graph to be losslessly 
decomposed, distributed for processing, and subsequently merged, as depicted in 
Figure 14.4.

The original definition of RDF molecules (Ding et al. 2005) has a number of 
inherent limitations that need to be overcome in order to be used for the RDF 
graph decomposition and merging, without loss of data or integrity. As can be seen 
in Figure 14.3, on the top, the absence of hierarchy in the original RDF molecule 
definition makes it difficult or even impossible to distinguish triples [ _ :2 par-
ticipant _ :3] and [ _ :2 participant _ :4]. Moreover, the absence of 
ordering prevents certain important performance benefits, such as rapid retrieval of 
triples, to be leveraged.

In Sections 14.3.1 through 14.3.3, we present our extensions of RDF molecules 
that mitigate these problems.

14.3.1 Hierarchies
In the original definition, molecules are flat and each molecule contains a set of 
RDF triples. We believe that having hierarchical molecules helps to better reflect 
the structure of the underlying RDF document. These extensions to molecules 
accurately reflect a structure found in biological and other data, and represent rela-
tionships found in databases similar to where one relation refers to another via a 
foreign key.

Another important reason for adding hierarchies is to be able to identify equiv-
alent blank nodes based on context instead of on internal identifiers. Given the 
same context, we can determine blank node equivalence and remove redundant 
information.

1 1

2 2

3 3

4 4 44

3

2

1

Logical

RDF graph Node 1 Node 2 Node 3

Physical

Figure 14.4  An RDF graph decomposed into molecules that are distributed in a 
cluster.
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Extended with hierarchies, a molecule is defined recursively as shown in 
Figure 14.5. An RDF molecule is defined as a (possibly empty) set of submol-
ecules, each of which consists of a root triple and an optional molecule pointed to 
by this triple. The root triple is an RDF triple. For a given molecule, we define the 
head triple to be lexicographically the largest, as defined in Section 14.3.2, from 
the set of root triples.

As described in Section 14.2.2, a molecule in the original definition contains 
triples, all of which are on a single level. We believe that the incorporation of hierar-
chies as shown above helps to capture the structure of the underlying RDF triples. 
Moreover, as RDF graphs capture knowledge, usually there is an inherent structure 
about the data being represented. Hierarchical RDF molecules allow the represen-
tation of this structure explicitly as well.

14.3.2 Ordering
The other major extension to molecules that we implemented is ordering. 
Maintaining ordering is important for the efficient comparison of molecules and 
triples for graph and molecule merging.

Molecule ordering is defined over triple ordering. The “less-than” relationship 
between two triples is based on the comparison between their subjects, predicates, 
and objects, in turn.

For two nodes, the ordering is determined by the following rules:

 1. Node type
 a. Blank node type, which is less than
 b. URI reference node type, which is less than
 c. Literal node type
 2. Node value
 a. Comparison of string value of the nodes

The ordering of two triples is based on the comparison of their nodes in turn. If 
subject nodes are equal, predicate nodes are compared. If predicate nodes are equal, 
then the object nodes must be compared.

The ordering of two molecules is defined over all root triples, and submolecules, 
recursively.

Example. Based on the extended molecule definition, the graph in Figure 14.3 is 
decomposed into the molecule shown in Figure 14.6. Note that this molecule has 

Molecule       ::=    (‘[‘ Submolecule ‘]’)*
Submolecule      ::=    RootTriple  ( Molecule )?|NIL
RootTriple      ::=    Subject Predicate Object

Figure 14.5  Abstract syntax of RDF molecules extended with hierarchies.
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three hierarchies and the second root triple contains two submolecules. The blank 
nodes ( _ :3 and _ :4) in these two submolecules are distinguishable because of 
the hierarchies.

14.3.3 Important Algorithms
In this section, we present algorithms for molecule-related operations, such as naïve 
graph decomposition (no background ontology) and molecule merging. There are 
a number of advantages associated with this approach compared to the functional 
approach:

 ◾ Less duplication across molecules—functional decomposition will generally 
result in blank nodes shared across multiple molecules, whereas naïve decom-
position will generate one molecule containing all such blank nodes.

 ◾ As the decomposition and processing do not need to consult an ontology, it is 
generally faster and is easier to implement.

As described in Ding et al. (2005), the naïve graph decomposition algorithm 
decomposes a graph into a set of molecules. The decomposition of a local 
RDF graph into a set of molecules is described in the pseudocode shown in 
Figure 14.7. We rely on the equality of the blank node identifiers (a combination 
of a Universally Unique Identifier (UUID) and a surrogate numeric identifier) 
when decomposing triples from a local graph.

There are three cases to consider when identifying submolecules:

 ◾ If the head triple is a link triple and the triple to add has a subject that is equal 
to its object, then the triple is added to the head triple.

 ◾ If the identified submolecule contains a triple that links to the head of the 
current molecule, then the current molecule is added to the submolecule and 
the molecule used from then on is the submolecule. In other words, the con-
tents of the molecule are added to the submolecule, which becomes the mol-
ecule used in future operations.

 ◾ If the identified submolecule does not contain a triple that links to the current 
molecule, then it is added to the current molecule.

{ _ :1 type ExperimentalObservation}
{ _ :1 observedInteraction _ :2}
  { _ :2 participant _ :3 }
    { _ :3 hasUniprotID ‘p32379’}
  { _ :2 participant _ :4 }
    { _ :4 hasUniprotID ‘p46949’’}

Figure 14.6  RDF molecule decomposition of the graph shown in Figure 14.3.
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The complexity of the above graph decomposition algorithm can be analyzed as 
follows. Assume that all basic operations, such as adding one triple to a molecule, 
comparison between two nodes, getting the subject/object node from a triple, 
testing whether a triple is a blank node, and creating a molecule, take constant 
time O(1). The complexity of the algorithm depends on the number of blank 
nodes of the graph being decomposed. For example, suppose we have a graph G 
with n triples:

 ◾ The best case is when no triple contains blank nodes. In this case, both the 
subject and object nodes of each triple are tested for blank node. The triples 
are subsequently added to a new molecule. Four constant-time operations 
are performed for n triples. Hence, the complexity is linear to the size of the 
graph O(n).

 ◾ The worst case is when all triples share, recursively, some blank nodes and 
they end up in one molecule with n levels (one triple at a level). In this case, 

AT is the set of added triples (initially empty).
LGT is a sorted set (order as defined above) of triples from a local 
graph. 
FOR EACH Triple T from LGT not in AT
   Create a new molecule M adding T.
   IF  T is Grounded THEN 
     Add T to AT. 
   ELSE
     findEnclosedTriples(M).
   END IF
END FOR 
findEnclosedTriples(M)
   T is the HeadTriple of M.
   BTS is a set of all triples which contain T’s blank nodes.
   FOR EACH Triple BT from BTS not in AT 
     Create a new molecule SM adding BT.
     Add BT to AT.
     findEnclosedTriples(SM)
     IF BT is a Link Triple THEN
       IF BT’s object node equals M’s subject node THEN 
          Add M to SM.
          SM becomes M.
       ELSE
          Add SM to M.
       END IF 
     ELSE 
       Add BT to M. 
     END IF 
   END FOR 
   Add all triples found to the set AT. 
END findEnclosedTriples

Figure 14.7  Graph decomposition algorithm.
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the molecule is a chain of triples. As a triple is only added to a (sub)molecule 
once, it is only compared to the head triple of the enclosing molecule once. 
Hence, only a constant number of basic operations are performed for adding 
each triple. Hence, the time complexity is still O(n).

Therefore, the complexity of the decomposition algorithm is O(n), linear to the size 
of the graph. Also note that three indices are maintained for subject (s), predicate 
(p), and object (o): (s p o), (p o s), and (o s p), where all the triples in the graph are 
stored in all three indices. By storing these indices in hash maps, the retrieval of 
triples takes constant time.

The merging of molecules depends on the presence of a one-to-one correspon-
dence between blank nodes. Next, we present the algorithm for finding the map-
ping between molecules m1 and m2, shown in Figure 14.8.

For each root triple, get the submolecules of m1 and compare them to the triples 
of m2. If the two triples are equal (using the blank node ID), then the correspond-
ing blank nodes of the two triples are added to the map. This process stops when all 
levels of one molecule have been considered.

The complexity of the findBlankNodeMap algorithm depends on the num-
ber of comparisons between triples of the two molecules. Note that having hierar-
chies helps to greatly reduce the number of comparisons, as comparisons are only 
made for submolecules on the same level.

Without loss of generality, let us assume that m1 has fewer levels of submolecules. 
Let the number of levels of m1 be m and the number of triples on level i be n1

i. For the 

findBlankNodeMap(m1, m2)
  BM is a map of blank nodes from m1 to m2 (initially empty).
  FOR EACH root triple t1 in m1
   Find the root triple t2 from m2 that corresponds to t1.
   LET sm1 = m1.submolecule for t1.
   LET sm2 = m2.submolecule for t2.
   IF sm1 != null AND sm2 != null THEN
       nm = findBlankNodeMap(sm1, sm2).
       IF nm = empty THEN
       return empty map.
       ELSE
       add nm to BM.
       END IF
   ELSE IF t1.submolecule = null AND t2.submolecule = null THEN
       add map between blank nodes in t1 and t2.
   ELSE 
       return empty map.
   END IF
  END FOR
  return BM.
END findBlankNodeMap

Figure 14.8  Algorithm for finding blank node mappings between two molecules.
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first m levels, let the number of triples of molecule m2 be n2
i. Thus, the complexity of 

the findBlankNodeMap algorithm is
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is strictly larger than the above complexity result and the difference is greater with 
the increase in the number of levels.

The extended molecules are an important component of the Scale-Out RDF 
Molecule Store. Together with the scale-out architecture, the molecule store will 
enable efficient storage, retrieval, querying, and analysis of integrated biomolecular 
data. In Section 14.4, we give a brief account on the performance evaluation of 
molecule-related algorithms and the integration process.

14.4  Distributed RDF Molecule Store
In this section, we describe the actual test-bed system and the distributed RDF 
molecule store that we have implemented based on the open-source software proj-
ect Java RDF Binding (JRDF).* We also describe key system components, includ-
ing graph decomposition, RDF molecule merging, distributed graph creation, and 
SPARQL querying across the cluster.

14.4.1 Protein–Protein Interaction Test Bed
For the purpose of performance evaluation in the context of our project, we initially 
selected datasets from DIP, IntAct, MINT, and MPact. In Newman et al. (2008b), 
an integration process was proposed to (a) represent the datasets as RDF instances 
compliant with the common ontology and (b) integrate the PPI RDF instances to 
form new RDF graphs based on UniProt IDs and genomic sequences of proteins, 
which are represented as RDF blank nodes. In Section 14.4.2, we demonstrate our 
implementation of the above integration framework using the MapReduce frame-
work as a means of distributing RDF molecules across a cluster. We evaluate its 
performance.

In PPI networks, a protein has a number of identifiers, external references, a 
genomic sequence string, and a host organism. The protein may also participate 
in interactions with other proteins. As discussed in Section 14.1.2, blank nodes 

* http://jrdf.sourceforge.net/
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are used to represent proteins, interactions, external references, etc. Hence, each 
protein and all of its associated information will belong to a single molecule.

A number of queries have been identified that may reveal previously unrecog-
nized PPIs. For instance, the query “Find all yeast protein–protein interactions that 
are known to be localized to the endosomal system” helps biologists to filter PPIs 
integrated across the Gene Ontology, the NCBI taxonomy, and PPI datasets. Given 
the size of the PPI data and associated datasets (well over 1 billion triples), only a 
distributed processing environment is capable of performing integration and query-
ing tasks on this scale.

14.4.2 RDF Molecule Store
Each node in the cluster contains a local, persistent RDF molecule store that 
responds to SPARQL queries. Our indexing scheme takes each permutation of an 
RDF triple (subject, predicate, and object) with an additional molecule ID (m) and 
its parent molecule ID (i): (spomi, posmi, ospmi, and imspo) to create four ordered 
indices. This indexing scheme supports efficient addition, retrieval, and removal 
of molecules and triples in the molecule store. An RDF molecule API defines an 
indexing adaptor to provide SPARQL query functionality.

14.4.3 Graph Decomposition and Molecule Merging
In our approach, we adopted the naïve decomposition algorithm for its simplic-
ity, efficiency, and robustness. This algorithm computes connected components 
only through edges that connect two blank nodes. Given an RDF graph, the naïve 
decomposition algorithm decomposes it into a set of RDF molecules, which do not 
share blank nodes and are therefore mutually independent.

The molecule store merges two molecules if one molecule contains all the prop-
erties (or more) of another molecule. In this way, as more molecules are added, 
redundant molecules are removed (or never added), allowing results from multiple 
nodes from a query to be merged.

14.4.4 Scale-Out Distributed Processing
A MapReduce-style task was developed to transform input datasets into RDF mol-
ecules and persist them in the RDF molecule store, in a distributed fashion. A 
map task takes each data file as input and converts it into a local RDF molecule 
graph. The reduce task collects RDF molecules from the cluster and puts them in 
the persistent, distributed molecule store. Developed based on the Hadoop project, 
this Scale-Out RDF Molecule Store is able to efficiently integrate large amount of 
source data. This scale-out processing environment has been designed in a way to 
achieve better load balancing for distributed query answering.
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We have implemented a Representational State Transfer (REST)-style 
 distributed SPARQL query engine for RDF molecules based on the JRDF proj-
ect. One node in the cluster is designated as the distributed query server, which 
issues queries to each individual local query-answering server. A SPARQL query 
is executed in parallel on each local server in the cluster. Local servers compute 
query results against local indices and return results to the distributed server, which 
combines the results to provide the final query answer. The overall query-answering 
time depends on the longest local query-answering time, plus a small round-trip 
network latency and its own processing overhead.

In Section 14.5, we provide the results of the detailed performance evaluation 
of the system.

14.5  Evaluation Results
In this section, we provide initial performance evaluation results for the critical 
steps in our methodology: (a) RDF graph decomposition and RDF molecule merg-
ing, (b) MapReduce-based integration of PPI data and the distribution of RDF 
molecules into the cluster, and (c) distributed SPARQL query answering.*

14.5.1 Graph Decomposition and RDF Molecule Merging
The graph decomposition and merging algorithms described in Section 14.4 are 
critical components of the distributed RDF molecule store. Applied sequentially, 
the two algorithms can decompose an RDF graph into a set of RDF molecules, and 
then merge them back to form an equivalent graph. In this section, we evaluate the 
performance of these algorithms by comparing them with Jena (McBride 2002). 
Jena is, to the best of our knowledge, the only RDF triple store that provides similar 
functionality, and hence an ideal candidate for performance comparison purposes.

A set of RDF graphs was created for comparison, and the time taken to deter-
mine equivalence was measured. The graphs contain triples that have chaining 
blank nodes, for example, _ :1 p1 _ :2, _ :2 p2 _ :3, _ :3 p3 _ :4. For 
example, Table 14.1 shows that Jena takes 0.05 s to perform the graph equivalence 
test when the chain depth is 3 and the chain size is 10 (total graph size is 30). Note 
that DNF stands for “Did Not Finish” (>900 s).

The RDF molecule approach is faster as the number of chains reaches 100. 
Moreover, the RDF molecule implementation gives consistently superior perfor-
mance, as both the number of chains and the chain depth increase. When the 
chain depth is at least 10 and the number of chains is at least 100 (i.e., graph size is 
at least 1000), the molecule implementation performs orders of magnitude better 
than Jena, with Jena not being able to determine equivalence for graph sizes over 

* All computers used in the experiments in this section have identical setup: Intel Xeon 1.86 GHz 
with 2 GB main memory running JDK 1.5 on top of Linux (CentOS 5).
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20,000. Also note that with the increase of chain size and depth, the performance 
of molecule implementation exhibits linear degradation, which is in line with our 
complexity analysis of the algorithms.

14.5.2 MapReduce Performance
As mentioned earlier, we employ the MapReduce framework for the integration of 
PPI (and associated) data and the distribution of RDF molecules across a cluster of 
computers. A series of tests were performed to evaluate the integration and loading 
time of the distributed molecule store on both a 2-node and a 3-node cluster.

The MapReduce tasks were run multiple times using 11 input files (a total of 
4,164,271 triples and 224,299 molecules). Table 14.2 summarizes the dataset sizes 
and performance of the various tasks on the two clusters. Note that the last two 
columns represent the time taken (in s) on the 2-node and the 3-node cluster, 
respectively.

A number of observations are worth discussing:

 ◾ Tasks 2 and 3 take roughly the same time, despite the fact that task 3 handles 
48% more triples and 14% more molecules than task 2.

 ◾ There is a 100% increase in the time taken from task 3 to task 4, although 
task 4 only handles 44% more triples.

Table 14.1  Time Measurement of Jena 
and Molecule on Graph Equivalence (in s)

Chain 
Size

Depth

3 5 10 20

Jena

10 0.05 0.07 0.1 0.3

100 0.2 0.4 1.8 9.2

1,000 13.1 37.7 197.7 DNF

10,000 DNF DNF DNF DNF

Molecules

10 0.06 0.0 0.1 0.2

100 0.2 0.3 0.4 0.7

1,000 0.9 1.3 2.5 5.0

10,000 7.7 13 26.4 57.4
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 ◾ On the 3-node cluster, tasks 4, 5, 6, and 7 take comparable amount of time 
to complete, although there is a significant increase in the sizes of the tasks.

The above performance characteristics are due to the nature of the MapReduce 
framework, in which the map and reduce phases execute in sequence: no reduce 
task can start unless all map tasks have been finished. Therefore, a very large single-
input file in the map phase in tasks 4, 5, 6, and 7 dominated their running time. 
Preprocessing of large input files to break them into smaller chunks is a viable 
solution to help reduce the time taken by the map phase. Figure 14.9 gives a more 
intuitive view of the running time of the different tasks. The horizontal axis repre-
sents the number of triples (in millions), and the vertical axis represents time (in s). 
It can be seen that the slope of the 3-node cluster is much more moderate compared 
to that of the 2-node cluster.

As shown in Figure 14.9, with the increase of data size, the 3-node cluster shows 
greater scalability. When the triple number exceeds 2 million, the 3-node cluster 
exhibits a constant rate of slowdown, whereas the 2-node cluster slows down con-
siderably when processing 4 million triples. It shows that small clusters do not take 
full advantage of the MapReduce framework as performance suffers from commu-
nication overhead and node balancing. We expect that a larger cluster will amortize 
these overheads and be much more scalable.

The distributed RDF molecule store takes up around 0.5 GB disk space per mil-
lion triples. This is due to the fact that more indexing information is maintained 
for RDF molecules (Section 14.4.2) and no compression or other space-saving opti-
mizations have been applied at this time. Previous modeling (Moreira et al. 2007) 
has shown that the response time of Nutch is essentially constant as the number of 
servers reaches 2000 nodes with up to 40 GB of data per node. We expect that our 
implementation of the on-disk, distributed RDF molecule store will conservatively 

Table 14.2  Time Measurements of Various MapReduce Tasks 
on Two Clusters (in s)

Task No. # Triples # Molecules
2-Node 
Cluster

3-Node 
Cluster

1 363,308 10,387 201 165

2 1,164,446 73,357 899 829

3 1,727,754 83,744 995 895

4 2,488,024 138,675 1,872 1,784

5 2,851,332 149,062 2,041 1,789

6 3,652,470 212,032 2,098 1,883

7 4,164,271 224,299 3,819 2,589
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reach 160 billion triples with a similar setup. Improving indexing efficiency will 
easily boost cluster capacity.

14.5.3 Distributed SPARQL Query Responses
As mentioned in Section 14.4.4, our SPARQL query engine has been developed by 
adapting the indexing structure of our RDF molecule store, so that it is compat-
ible with the indexing structure of the JRDF triple store. Hence, comparable query 
performance and memory usage is expected.

To test the distributed query performance, we ran a mix of five queries about 
the PPI data on the 2-node and 3-node clusters. These queries have a large range of 
selectivity (from 0 results to around 2000 results per query), and hence are able to 
represent the general performance characteristics of the distributed RDF molecule 
store using real-world data. For example, the SPARQL query in Figure 14.10 returns 
the full names and UniProt IDs of human (ncbi:ncbi _ taxo _ 9606 _ ind) 
proteins (biopax:physicalEntity) that are known to be localized at the 
nucleus (cc:GO _ 0005634 _ ind). Such a query requires the integration of the 
NCBI organisms’ taxonomy, the Cellular Component Gene Ontology, the UniProt 
protein database, and other PPI databases that contain human data.

Table 14.3 summarizes the average query-answering performance of the 2-node 
and 3-node clusters (the same clusters used in Section 14.5.2) on the same data-
set (task 7 in Table 14.2). As a baseline comparison, the same set of queries is 
executed against a native Sesame2 RDF triple store.* To make the comparison 
fair, the Sesame triple store only contains about 33% of the triples of the 3-node 
cluster (basically, the triples stored on a single compute node in the 3-node cluster, 

* http://www.openrdf.org/
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Figure 14.9  Time measurement of MapReduce conversion tasks.
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totaling 1,384,496 triples), as the Sesame triple store runs on a single machine only. 
Also note that the Sesame query engine was terminated after running for 1800 s for 
queries 4 and 5* without completion.

Figure 14.11 illustrates that Sesame outperforms both clusters for query 1 and 
query 2. However, the performance is not significantly different from that of the 
3-node cluster. For query 3, both clusters are faster than Sesame. For queries 4 and 
5, both clusters are able to complete the computation while the Sesame engine runs 
for 1800 s before being terminated. Also note that both clusters perform relatively 

* Each of the local query servers and the Sesame query engine is allocated 1.6 GB of memory.

PREFIX rdf:      <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX biopax:    <http://www.biopax.org/release/biopax-level2.owl#>
PREFIX biomanta:    <http://biomanta.sourceforge.net/2007/07/biomanta _

extension _ 02.owl#>
PREFIX ncbi:       <http://biomanta.sourceforge.net/2007/10/ncbi _ taxo.

owl#>
PREFIX  xsd:      <http://www.w3.org/2001/XMLSchema#>
PREFIX  cc:       <http://www.imb.uq.edu.au/biomanta/dev _ ontology#>
SELECT ?name ?id
WHERE {
   ?x rdf:type biopax:physicalEntity.
   ?x biomanta:fromNCBISpecies ncbi:ncbi _ taxo _ 9606 _ ind.
   ?x biomanta:subcellularLocation  cc:GO _ 0005634 _ ind.
   ?x biomanta:hasFullName ?name.
   { ?x biomanta:hasPrimaryRef ?y.
      ?y biopax:DB ?db.
      FILTER ( str(?db) = “uniprotkb”^^xsd:string ) 
   }.
   ?y biopax:ID ?id.
}

Figure 14.10  An example SPARQL query about PPI.

Table 14.3  Performance Statistics for RDF Stores Over Different 
Queries (in s)

Query 
Performance Query 1 Query 2 Query 3 Query 4 Query 5

Answer # 2 203 203 0 1762

Single-node 
Sesame

4.0 0.2 284.9 1800 1800

2-Node 
cluster

19.5 2.8 5.6 6.1 19.6

3-Node 
cluster

13.4 2.3 4.3 4.7 13.0
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consistently, whereas there is a great variability in Sesame’s performance. Hence, as 
the cluster size increases, we anticipate that the distributed RDF molecule store will 
exhibit much greater performance advantage over conventional RDF triple stores.

14.5.4 Discussion on Scalability
The scale-out-style MapReduce and Hadoop frameworks were designed for very 
large-scale data processing that usually involves petabytes of data and thousands of 
compute nodes. Hence, only larger clusters of at least 10 or 20 nodes are able to enjoy 
the full benefits of MapReduce. The 2-node and 3-node clusters we used to perform 
the above experiments are for development and testing purposes only. However, even 
at this small scale, they show very promising results and exhibit good scalability that 
would improve further as the cluster size grows. As discussed in Section 14.5.2, a 
large cluster is able to hold a tremendous amount of RDF triples. Therefore, the ben-
efits of the distributed SPARQL query answering would become more prominent.

14.6  Conclusions
Efficient querying and inferencing across large-scale integrated datasets drawn 
from many distributed, disparate sources is a challenge facing many communities.

Semantic Web technologies, such as RDF, OWL, and SPARQL, are ideal can-
didates for the task of data integration, as they offer open, unambiguous, and 
extensible solutions. At the same time, distributed processing paradigms, such 
as MapReduce, have demonstrated economic and practical ways to index and 
process massive amounts (petabytes) of data. Hence, the synergistic combination 

0.1

1

10

100

1,000

10,000

Query 1 Query 2 Query 3 Query 4 Query 5

Sesame 2-node cluster 3-node cluster

Figure  14.11  Performance  comparison  on  five  SPARQL  queries  (logarithmic 
scale).
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of MapReduce and Semantic Web technologies appears to offer a perfect solu-
tion to the problem of large-scale heterogeneous data integration, querying, and 
reasoning.

However, the co-identification problem (Guha 2004), particularly within disci-
plines such as life sciences, introduces additional complications. Attempts to stan-
dardize naming conventions have had limited impacts. RDF blank nodes, on the 
other hand, provide a novel way of referring to entities of common interest without 
creating new names or coming up with new naming conventions. But RDF blank 
nodes introduce complications when attempting to distribute RDF graphs across 
a distributed architecture, as they are only locally addressable within the enclosing 
RDF graph. It has been proposed that the use of RDF blank nodes be banned. We 
believe that banning the use of a very common language feature in RDF, OWL, 
and Semantic Web Rule Language (SWRL) (Horrocks et al. 2004) has a detrimen-
tal effect on data integration abilities and interoperability.

In a MapReduce framework, it is a necessary first step to decompose large data-
sets into smaller units for processing. With the ubiquitous presence of blank nodes, 
RDF graphs provide too coarse a granularity for effective processing, as the context 
of an entire graph is needed to disambiguate RDF blank nodes. A finer granular-
ity is required to support the distributed integration and processing of RDF data. 
We believe that RDF molecules provide a finer-grained solution to the semantic 
integration and distribution/decomposition problem. As such, we have developed 
optimized algorithms to losslessly decompose an RDF graph into a set of smaller 
“molecules” and subsequently merge them, enabling MapReduce-style processing 
of RDF graphs. However, this process revealed that the presence of RDF blank 
nodes can cause problems of data loss, integrity loss, ambiguity, and slow perfor-
mance. Consequently, we have had to extend the definition of RDF molecules to 
include hierarchy and ordering. By incorporating hierarchy, originally flat RDF 
molecules now contain explicit structural information that is beneficial in enabling 
more intelligent processing. More importantly, a hierarchy makes it possible to 
disambiguate blank nodes within a single molecule. The ordering of molecules also 
provides an efficient way of cross-checking data integrity during the processing of 
molecules.

In this chapter, we present a MapReduce-based RDF molecule store based on 
the MapReduce framework. This system supports efficient processing of RDF data 
by generating and indexing RDF molecules in a clustered, scale-out environment. 
Critical algorithms for decomposing an RDF graph, and merging RDF molecules 
and their respective computational complexity are described, implemented, and 
evaluated for performance. We have compared RDF graph decomposition and 
merging steps with the graph equivalence algorithm in Jena and obtained promis-
ing results. Performance evaluation of distributed data integration has been con-
ducted on a 2-node and a 3-node cluster. Even on this small scale, improvements in 
the performance and efficiency of SPARQL queries have been shown. We have run 
a number of SPARQL queries over the distributed RDF molecule store containing 
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more than 4 million triples and compared performance against the Sesame triple 
store. Comparable performance has been obtained in most cases. And in some 
cases, the distributed RDF molecule store demonstrates performance orders of 
magnitude better than Sesame. As greater numbers of triples are loaded into the 
RDF molecule store and as the size of the cluster grows, we can expect the perfor-
mance advantage to further increase over traditional RDF triple stores.

Future plans include testing the approach over larger compute clusters using 
Amazon’s Elastic Compute Cloud (EC2).* SPARQL query engine optimization 
(Stocker et al. 2008) is an important task to boost overall system performance. Future 
development of additional indexing adaptors would also allow query engines from 
other RDF triple stores, such as Jena, Sesame, and OpenLink Virtuoso, to be used.

Recently, a number of SPARQL performance benchmarks (Bizer and Schultz 
2008, Schmidt et al. 2009) have been proposed. These benchmarks use syntheti-
cally, statistically generated datasets to evaluate the performance (query response 
time) of various SPARQL query engines. Although the data used in these bench-
marks are not real-world data, they still provide valuable information about the effi-
ciency of query engines and suggest potential performance improvement avenues. 
We will conduct proper evaluation of our distributed query engine against these 
benchmark systems.

An efficient underlying indexing scheme for RDF molecules is vital to the 
SPARQL query-answering performance. The current indexing scheme extends 
that of the traditional RDF triple store by appending two molecule indices (parent 
molecule ID and current molecule ID) to the triple IDs. More efficient indexing 
schemes, such as the works proposed by Weiss et al. (Weiss et al. 2008), are an 
important area to work on.

Another important future research direction is the development of a distrib-
uted processing environment for the extended RDF molecule store with inference 
capabilities. We believe that such an environment will greatly enhance our ability 
to query and reason across large amounts of data efficiently.
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15.1  Introduction
Current analytics is limited to structured data (i.e., relational); however, many 
advanced applications rely on semi-structured data, such as XBRL (eXtensible 
Business Report Language) for finance and accounting, reporting applications and 
NewsML (News Markup Language) for publishing and news/media content man-
agement. Among these applications that require management of semi-structured 
data, healthcare is one of the areas that truly relies on XML (Extensible Markup 
Language) to store and exchange medical and healthcare information. For exam-
ple, HL7 CDA (Health Level Seven Clinic Document Architecture) has been a 
standard for electronic interchange of clinical information among healthcare pro-
viders, and it has been adapting XML technology in its newer release to extend its 
capability. Moreover, XML technology is being adapted in modeling and storing 
medical records in the past decade, as computers are widely used in all systems and 
laboratories in modern hospitals and clinical centers.

An electronic medical record (EMR) is a computerized legal medical record 
(i.e., patient record) created in an organization that delivers care, such as hospitals 
and clinical centers. An EMR has three parts, as illustrated in Figure 15.1 and as 
follows:

 1. Patient data: It stores basic information of a patient, such as name, address, 
date of birth, and insurance information. The patient data is usually struc-
tured and can be stored in relational tables.

 2. Patient profile: It usually includes a summary of the medical history of a patient’s 
family, such as if the family members have cancers or high blood pressures, 
as well as the lifestyle of a patient, such as if he or she smokes, drinks, and 
exercises, and if a patient is under heavy pressure at work. The patient pro-
file data is usually structured; however, depending on how many details 
need to be collected and recorded for the patient profiles, it could also be 
semi-structured.

15.6 Experimental Evaluations .........................................................................375
15.6.1 General Setup ...............................................................................375

15.6.1.1 Hardware and Software Configurations .........................375
15.6.1.2 Data Sets, Query Patterns, and Solutions .......................376

15.6.2 Effects of Data Scales ....................................................................377
15.6.3 Effects of Query Complexity ........................................................379
15.6.4 Effects of Hadoop-Specified Configurations .................................382

15.7 Related Work ...........................................................................................383
15.8 Conclusion ...............................................................................................385
References .........................................................................................................385



Enabling XML Capability for Hadoop  ◾  357
Pa

tie
nt

 re
co

rd
s

Pa
tie

nt
 ID

 =
 0

00
01

Ba
sic

 in
fo

Fa
m

ily
 h

ist
or

y

D
ia

be
te

s
Fo

od
 h

ab
its

Re
la

tio
ns

hi
p

Re
la

tio
na

l

Pa
tie

nt
 d

at
a

Cl
in

ic
al

 d
at

a

W
el

l-s
tu

di
ed

 p
ro

bl
em

s w
so

lu
tio

ns

D
ep

en
di

ng
 o

n 
co

m
pl

ex
ity

 o
f i

nf
or

m
at

io
n

re
qu

ire
d 

(d
ise

as
e d

ep
en

de
nt

)
XM

L

XM
L 

is 
a n

at
ur

e s
ty

le
 fo

r p
at

ie
nt

 cl
in

ic
al

 d
at

a
G

oo
d 

fo
r f

le
xi

bl
e m

od
el

in
g 

an
d 

sin
gl

e-
en

tr
y a

cc
es

s
Bu

t n
ot

 g
oo

d 
fo

r O
LA

P 
qu

er
ie

s

Sl
ee

p

D
at

e=
20

00
.3

.2
0

Sy
m

pt
om

s
D

ia
gn

os
is

Tr
ea

tm
en

t

D
at

e=
20

00
.3

.2
7

D
at

e=
20

09
.6

.2
5

Li
fe

st
yl

e
M

R1
M

R2

N
am

e

H
ao

41
01

02
19

78
...

Ch
in

a, 
sh

50
F

M
at

he
r

Fr
y

Sp
ic

y
8h

/d
...

...
...

...

...
...

...

...

ID
A

dd
re

ss
A

ge
Se

x

Fi
gu

re
 1

5.
1 

Ex
am

pl
e 

of
 E

M
R

.



358  ◾  Cloud Computing and Software Services

 3. Clinical data: It stores clinical informatics, including symptoms, diagnosis, 
and treatments of each hospital visit by a patient. The clinical data is usually 
semi-structured because of the nature of its diverse data types, possible evolv-
ing schema, and tree-like diagnosis and treatment classifications.

A patient record has a unique identifier (Pid, patient ID), usually a social secu-
rity number or a citizen identification card number. Patient data is documented 
once when a patient registers at a hospital the first time and it is modified only when 
his/her personal information or insurance information changes. A patient profile 
is created when the patient first registers at the hospital and the patient profile is 
augmented as the patient visits the hospital. A single clinical record, uniquely iden-
tified by a unique identifier (CRid, clinical record ID), is used to store symptoms, 
diagnosis, and treatment of a hospital visit. CRid is usually a number automatically 
generated by computer systems. Clinical data of a patient is stored in multiple clini-
cal records.

XML is a more desirable format for modeling and storing semi-structured 
clinical data in EMR applications for its extendibility to model complexity and 
diverse formats of clinical data; however, EMR systems are usually built on top 
of the RDBMS (relational database management system) or file systems. Few 
advanced database systems support native XML storage and retrieval capability, 
such as IBM DB2 [3]; however, their capability supporting complex healthcare 
applications on a large set of EMRs is very limited. These complex healthcare 
applications could include interactive queries that provide diagnosis and treat-
ment assistance to doctors and batched jobs that analyze EMRs to measure treat-
ment effectiveness and to define treatment standard procedure. The complexity 
arises when the system needs to deal with query conditions on semi-structured 
parts of EMRs and a potentially large number of query conditions. The response 
time of query processing on a large EMR database could be tens of minutes to 
hours for RDBMS-based implementations, or native XML-based implementa-
tions if indexing is not designed properly or query processing is parallelized across 
a cluster of servers.

These applications demand a healthcare informatics system with high usability 
(i.e., supporting healthcare-specific style of query, search, and analytics), flexibility 
(i.e., supporting semi-structured/XML data modeling dealing with evolving data 
types, schemas, and terminologies), reliability (i.e., fault tolerance), performance 
(i.e., fast response time, automated load balance, and the ability to scale up the 
system when needed), and extendibility (i.e., system’s capability to be scaled up as 
needed). To meet these requirements, it requires a novel data management system 
since XML presents a different set of challenges to query processing, indexing, 
parallelism, and distributed computing.

SAP Technology Lab, China, is developing a clouds-enabled information appli-
ance, Xbase, supporting search and analytics on XML-based EMR databases. In 



Enabling XML Capability for Hadoop  ◾  359

light of many recent comparisons of approaches to large-scale data analysis, such 
as in [22] and existing XML indexing and query processing techniques, we take 
a hybrid approach to building Xbase. Xbase is the first healthcare-specific ana-
lytic engine to be built on top of existing cluster/cloud infrastructure Hadoop [24] 
(for semi-structured data and search/indexing requiring massive parallelism) and 
RDBMS (for metadata and structured data). Our implementation of Xbase runs on 
a large cluster of commodity machines to achieve high scalability in a cost-effective 
manner.

XML and distributed computing present a different set of challenges to query 
processing, indexing, and parallelism using existing Hadoop APIs as well as its 
storage, Hadoop Distributed File System (HDFS) [25], and MapReduce distrib-
uted computing framework [8].

In this chapter, we present the architectural design and features of Xbase to 
meet the requirements of advanced healthcare applications. The key features of 
Xbase include

 ◾ Native XML storage with support of distributed file systems
 ◾ Query processing and indexing applied directly to native XML structure and 

content
 ◾ Parallel query processing and index building on top of emerging Hadoop 

cloud computing infrastructure
 ◾ Being built natively on emerging cloud computing infrastructure Hadoop 

to achieve almost unlimited distributed storage capability and computation 
capability

We also describe how our indexing and query processing designs are mapped into 
the Hadoop infrastructure and MapReduce distributed computing framework 
as well as why we select Hadoop over other candidates, including Hbase [26], 
Google’s Bigtable [5], Hive [27], and existing column-oriented DBMS, such as 
Trex [23] and Vertica [29], as the framework for implementation, storage, and 
computation. The main contribution of this work is sharing the design and engi-
neering experience of our efforts building the first XML database, Xbase, on the 
emerging and popular cloud computing infrastructure, Hadoop. Xbase is experi-
mentally evaluated, and preliminary results are presented to validate the applica-
bility of our approach.

The rest of this chapter is organized as follows. In Section 15.2, we describe 
query patterns in healthcare informatics. In Section 15.3, we describe the system 
architecture of Xbase. In Section 15.4, we describe the index design and indexing 
phase in Xbase based on available Hadoop computing infrastructure. In Section 
15.5, we describe query processing in Xbase. In Section 15.6, we present evaluation 
results that experimentally validate effectiveness of our system. In Section 15.7, we 
discuss related work, and conclude the chapter in Section 15.8.
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15.2  Query Patterns for Healthcare Informatics
Queries in healthcare applications have certain patterns. A healthcare informat-
ics system needs to support both interactive and report-generating/analytic que-
ries. It also needs to incorporate domain knowledge bases, such as classifications of 
diagnosis, medical terms, treatment procedures, medicine ingredients, and doctors’ 
expertise and their access control lists, in query processing. Another pattern is that 
there could be a large number of attributes involved in queries, especially for com-
plicated diseases. In real-world cases studied, we observed that there are potentially 
more than 100 attributes in queries related to heart-related diseases and more than 
200 attributes for cancer-related diseases; however, usually a relatively small subset 
of attributes (i.e., 10%–20%) are specified in a single query. Thus, column-based 
storage is preferred to save I/O bandwidth. The complexity of queries and analytics 
is disease/function dependent.

We categorize queries over healthcare informatics into the following four types:

 1. Interactive, similarity-based ad hoc queries, such as searching possible diag-
nosis and treatment of other patients with similar symptoms and profiles

 2. BI style analytics, such as batched jobs that analyze cost efficiency for all 
hospitals in a city grouping by types of diseases, analyze EMR databases to 
measure treatment effectiveness, and define treatment standard procedure

 3. Queries for topic-focused browsing and navigation with aggregation/sum-
marization of information, similar to roll-up and drag-down interactions in 
typical data warehousing applications

 4. Data mining style analytics, such as medical insurance fraud detection and 
biomedicine-related pattern exploration

In this chapter, we focus on describing our system design aspects related to sup-
porting the first two categories of queries: (1) interactive, similarity-based ad hoc 
queries and (2) batched report-generating BI style analytics. Xbase is currently built 
specifically for healthcare applications; thus, we support query syntax commonly 
used for the two types of queries. For example, a query finding possible diagnosis by 
searching patients with similar symptoms and profiles ranked by clinical diagnosis 
code standard may include the following types of conditions:

 ◾ Range, such as 30 < age < 40
 ◾ Category, such as manifestations = {nephrosis, blindness, polyneuropathy}
 ◾ Boolean, such as sex = female
 ◾ In set, such as if a patient has one or more chronic kidney disease symptoms 

or if a set of keywords are in a free style doctor notes
 ◾ Path expression, such as /Pid/emr/treatment [medicine = aspi-
rin]/medicine (i.e., a query selecting medicine nodes with the medicine 
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name “aspirin”) and /Pid/emr/diagnose [enteritis] [diabe-
tes] (i.e., a query selecting diagnosed children of the context nodes that 
have both an enteritis child element and a diabetes child element)

Furthermore, healthcare-related queries are record oriented around Pid and EMRid 
(i.e., EMR ID). Here, we describe query patterns of healthcare applications. In 
Section 15.4, we formally define the scope of query syntax and conditions sup-
ported in Xbase.

15.3  System Architecture of Xbase
As Xbase is designed as an information appliance for healthcare applications, it 
needs to support EMR-oriented queries and analytics on both content and struc-
ture data of EMRs. We utilize RDBMS for patient data and patient-profile-related 
query conditions, and Hadoop for patient-clinical-data-related query conditions. 
In this section, we describe the architectural design of Xbase starting with an over-
view of Hadoop [24].

The Apache Hadoop project develops open-source software for reliable, scal-
able, and distributed computing. Hadoop includes the following subprojects:

 ◾ HBase [26]: A scalable, distributed database that supports structured data 
storage for large tables.

 ◾ HDFS [25]: HDFS is the primary storage system used by Hadoop applica-
tions. HDFS creates multiple replicas of data blocks and distributes them 
on compute nodes throughout a cluster to enable reliable, extremely rapid 
computations.

 ◾ Hive [27,28]: A data warehouse infrastructure that provides data summariza-
tion and ad hoc querying.

 ◾ MapReduce [8]: A software framework for distributed processing of large 
data sets on compute clusters.

 ◾ Pig [9,20]: A high-level dataflow language and execution framework for par-
allel computation.

MapReduce is a programming model and an associated implementation for 
processing and generating large data sets. Users specify a map function that pro-
cesses a key–value pair to generate a set of intermediate key–value pairs, and a 
reduce function that merges all intermediate values associated with the same inter-
mediate key. Programs written in this functional style are automatically parallel-
ized and executed on a large cluster of commodity machines. The run-time system 
of Hadoop takes care of the details of partitioning the input data, scheduling the 
program’s execution across a set of machines, handling machine failures, and man-
aging the required inter-machine communication.
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Xbase utilizes Hadoop’s HDFS as storage for EMRs and their indexes (exclud-
ing those indexes associated with content range conditions of a patient), and 
MapReduce for indexing EMRs and query processing for semi-structured data alone 
with RDBMS for structured data. We do not utilize Hbase, Hive, and Pig due to 
their lack of capability to handle structural information of XML. Comprehensive 
analysis is provided later in Section 15.7 as well as why we select Hadoop over other 
candidates, including Hive, Google’s Bigtable, and some sophisticated XML index 
techniques. The system architecture of Xbase is illustrated in Figure 15.2, and the 
functionality of each component is as follows.

 1. Connectors for applications: Xbase currently supports XQuery with online 
analytic process (OLAP), data mining, and high-level programming API sets 
for application development.

 2. Metadata: It stores operational information for Xbase including the following 
four parts:

 a. KDB (Knowledge Database): This is used to store healthcare-domain-
specific knowledge, such as diagnosis classification, medical terms, treat-
ment procedure, medicine ingredient names, and doctors’ expertise. This 
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KDB is needed for query relaxation, personalized result summarization, 
and access control as well as data cleansing and terminology homogeniza-
tion during the EMR loading phase.

 b. Catalog information: It stores metadata of indexes and EMR schema in 
Xbase. It also stores the statistics of EMRs, both content- and structure-
wise, and query workloads. The statistics is used by the Physical Design 
Advisor when it recommends indexing strategies and by the Query 
Manager when it processes queries.

 c. Encoding logic: Content and path information of EMRs is encoded into 
characters and numbers when they are stored and indexed instead of 
being in their initial forms. The purpose of such encoding is to reduce 
the footprint of EMRs and their indexes on storage and in the memory. 
The results and EMRs are converted into their original forms before they 
return to the querying applications. Encoding logic is derived by the 
Physical Design Advisor.

 d. Log: It stores the log of workload execution, index usage, and history 
of indexing strategies recommended. This log is later used by Physical 
Design Advisor.

 3. RDBMS: RDBMS is used to store, index, and retrieve metadata and patient 
data of EMRs. RDBMS is also used to index and retrieve content by range 
conditions of EMRs, which can be patient data, patient profile, and clinical 
data. Currently, MySQL is used in Xbase. In the current default deployment, 
a single instance of the stand-alone version of MySQL is deployed. Multiple 
instances of MySQL RDBMS or a cluster version of MySQL RDBMS may 
be deployed if RDBMS becomes a bottleneck.

 4. Query Manager: This component is built specifically for Xbase and has three 
subcomponents as follows:

 a. Parser: It converts the input queries to an Xbase internal form and passes 
the queries to the Query Rewriter.

 b. Query Rewriter: It looks up metadata (i.e., KDB, catalog information, 
and encoding logic) and rewrites the queries into sub-queries for RDBMS 
and Hadoop, respectively, and marks query trees with proper indexes, if 
available.

 c. Scheduler: It examines the serializability of all predicates of each query 
tree and generates an execution schedule in Xbase (in RDBMS and in 
Hadoop, respectively, and across these two components). Details of the 
scheduling logic are described in Section 15.5.

 5. Processing Manager: Since queries are processed by both RDBMS and Hadoop, 
the Processing Manager is responsible for dispatching sub-queries to RDBMS 
and Hadoop as well as for coordination, including passing intermediate result 
sets across RDBMS and Hadoop and merging results. The SQL Executor 
and the Hadoop Executor correspond to the query processor in RDBMS and 
the workers in Hadoop, respectively. Since a transaction on a single EMR is 
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actually carried out across multiple components in RDBMS and Hadoop, the 
Transaction Manager is responsible for ensuring that the transaction on the 
EMR is committed only when all sub-transactions are committed.

 6. Storage Manager: This component is a part of the standard distribution from 
Hadoop without enhancement. It has three subcomponents, namely, I/O 
Manager, Partitioning Manager, and Index Manager. The Storage Manager 
of Hadoop is in charge of the actual placement of physical indexes and EMRs. 
We store EMRs and their indexes into Hadoop via its APIs, and the actual 
nodes where the EMRs and indexes are stored and how replicas are synchro-
nized is determined by Hadoop. In the current implementation, we use the 
default value, 3, as the total number of replicas automatically created when a 
physical block is stored in Hadoop. Replicas are created for load balance and 
fault tolerance. How we map our logical design to the physical deployment 
in Hadoop and how we map our query processing to the MapReduce frame-
work are described in Sections 15.4 and 15.5 in detail.

 7. Raw storage: We use the standard distribution of HDFS to store EMRs and 
structure-related indexes.

 8. Physical Design Advisor: It takes application statistic information and rec-
ommended indexing strategies for both RDBMS and Hadoop parts. The 
Physical Design Advisor has two main components (not shown in the figure) 
as follows:
• Placement Manager: It is responsible to prepare and store the content 

(including keys, data guide, raw clinical data, Bloom filter indexes, 
etc) that will be actually stored as a “physical block” on HDFS under 
Hadoop. The content structure of a physical block in Xbase over Hadoop 
is described in Section 15.5.3.

• Indexing Manager: It is responsible for creating indexes for all semi-
structured data and then passing the indexes to the Placement Manager 
to place them on Hadoop. Details of the Indexing Manager are presented 
in Section 15.4.

15.4  Indexing
Xbase is a record-oriented system that manages healthcare information with record 
IDs. Each patient, EMR, and clinical record have IDs; thus, Xbase manages all 
XML documents with a key and its value. Each document has a global unified ID 
as the key. All the other data is regarded as the value. In this section, we describe 
how we apply four types of indexes to content and structural information.

15.4.1 Content and Structures of EMR
An example of the tree-structured EMR is illustrated in Figure 15.3. The tree value 
of EMR contains patient data, patient profile, and clinical data from the left to the 
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right. In our current implementation, the patient data is structured, which is stored 
as relational data, and the patient profile and clinical data are semi-structured data, 
stored as XML data. The EMR consists of two types of information—content and 
structure, as follows:

 1. Content:
• Fine-structured content (FC), as shown in Figure 15.3a: In an EMR, only 

patient data, such as Pid, patient age, name, and address, is FC and 
can be stored in RDBMS to utilize its indexing and query processing 
capabilities.

• Numerical value content (NC), as shown in Figure 15.3b: NC has numeri-
cal values. Range queries usually are issued over NC. NC, separated from 
path structures, can be stored in RDBMS to utilize B+tree indexes for 
efficient query processing.

• Set value content (SC), as shown in Figure 15.3c: Each SC contains a set 
of values following the same tag. An example of SC is symptom. Usually, 
the query over SC also contains a set of values. For fast query processing, 
the index structure for set operation should be applied over SC. In our 
system, we use Bloom-filter-based index [4].

• Frequently accessed path content (PC): In Figure 15.3d, some paths, for 
example, /patient profile/smoking and /patient pro-
file/exercise, are frequently accessed together. Given that each 
path can also be considered as a value, Bloom filter indexes, instead of 
data guide indexes [10], are applied to a set of paths to facilitate efficient 
query processing.
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 2. Structure (S), as shown in Figure 15.3e: S represents the structure of 
each clinical record. Through the path in S we can find the content of 
the data including SC and NC. XML path index techniques, such as in 
[10,15,16,19,30], can be applied here.

Note that the design decision of applying Bloom filter indexes or data guide 
indexes for XML structures are based on the analysis of the Physical Design 
Advisor. The Physical Design Advisor first examines the occurrence frequency of a 
path in all records. It recommends indexing the path using FC-Indexes if it occurs 
in all records, using Bloom filter indexes if it occurs in the majority of records, 
and using data guide indexes if it occurs in a small portion of records. In this 
chapter, we do not discuss the details of the recommendation process due to space 
limitations.

15.4.2 Types of Indexes
In order to directly apply indexing schemes to native XML structures and content, 
we deployed four types of indexes in Xbase as follows:

 1. Fine-structured data content index (FC-Index): With Pid as the primary key, 
FC is stored in relational tables. Traditional RDBMS indexes can be utilized 
for retrieving a proper ID set according to the query’s predicates. We call the 
index structure of this part FC-Index. An example of FC-Index is shown in 
Figure 15.4a. The metadata contains FC’s prefix path and its correspond-
ing address. FC-Index structure is built over all the patient records without 
partitioning.

 2. Numerical value content index for range query (R-Index): Xbase builds sev-
eral special B+ tree indexes for range queries over NC. One metadata table 
holds the pairs of each path and its corresponding R-Index address. For each 
address, a relational table is built to store all pairs of Pids or CRids and their 
content. An example of FC-Index is shown in Figure 15.4b. R-Index is built 
over all the patient records.

 3. Set value content index with Bloom filter (BF-Index): In the patient records, 
some attributes are described by tens, even hundreds, of data values. For 
example, a query including 20 symptoms can be issued over all the patient 
records, and there are more than 200 symptoms for each disease. Because the 
data value is a string (numerical values in SC and path value, for example, 
emr/patient profile can also be considered as strings) in essence, 
large-scale string matching is not trivial. We use the Bloom filter [4] signa-
ture and the Bloom filter tree index structure (BF-Index) to speed up the set 
query filtering process.
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The Bloom filter signature is a bit vector that represents a set of objects 
and is often used as an approximate filter for supporting membership query. 
Its advantages like very quick comparison, easy maintenance, and none false 
negatives lead to its wide adoption in various applications [7,11]. A Bloom-
filter-based signature consists of a vector of m bits and k independent hash 
functions ranging from 1 to m. According to the formula p = (1 − e−kn/m)k [4], n 
is the distinct number of elements. We can observe that the size m of the vec-
tor varies with the false positives rate. A Bloom filter applies to set values that 
do not consider the order. However, since we are assuming a single schema for 
XML, the order does not matter.

The signature of a value set is built through (1) hashing each data to k 
values fi1, fi2 … fik, by k hash functions h1, h2,… hk ; and (2) setting the cor-
responding positions of these hash values to 1 on the m-bit vector. (For exam-
ple, if a particular hash value equals to 4, we should set the fourth position of 
the vector to 1.) Based on the individual data signatures, a set signature can 
be computed over them with an “OR” bit operation. As soon as a query with 
a value set condition comes, its signature, sq, is constructed at first, and com-
pared with the data set signature, sd. If sq ∧ sd = sq, query q may be potentially 
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contained in the data. Otherwise, q can be pruned safely. Benefited from the 
bit operation, all computations among signatures are extremely efficient.

BF-Index is built over the SC part and some path value set PC of all 
the patient records. As shown in Figure 15.4c, one metadata table holds all 
paths that have set content. Each path is associated with a BF-Index file 
name, as shown in the relationships ① and ② in Figure 15.4c and d. The 
BF-Index file is organized as key–value pairs and stored as a sequence file 
on Hadoop. The value includes a set of CRids and the raw data content in 
those IDs to be indexed, while the key is the Bloom filter signature for the 
raw data content. ① points to the BF-Index file PC set data. For example, if 
a record CR1 contains the paths with the prefix emr/patient profile, 
P = {emr/patient profile/smoking, emr/patient profile/
exercise, emr/patient profile/history …}, the Bloom fil-
ter signature, which is the key, is built over the tree paths set P. The value 
includes the CRids whose PC signature is the same with CR1 and the con-
tent is the tree paths. While ② indicates SC data, through testing the query 
signature with the data signature, large number of unqualified records will 
be pruned. However, the resultant CRids passing the Bloom filter are still 
not accurate, although we can adjust the false positives to be very small. 
Therefore, we also store the data contents in order to ensure the corrections. 
For example, if the clinical records 1, 2, 3, and 8 all have emr/clini-
cal Record/symptom/{fever, cough and headache} whose 
BF signature is 0111110101010101, then, in the BF-Index file, there is a pair 
<0111110101010101, [1, 2, 3, 8] {fever, cough, headache}>. When building 
the BF-Index structure, Hadoop would partition the BF-Index file of each 
path into small file blocks and store them on different Hadoop index nodes, 
as shown in the process of ③ in Figure 15.4c.

 4. Structure index based on DataGuide (DG+-Index): For the structure predicates 
of the query, Xbase uses the DG+-Index structure, which is shown in Figure 
15.5. DG+-Index is designed based on the DataGuide index technique [10], 
which is a typical XML structural index for path expressions. To enhance the 
pruning power, DG+-Index also stores the CRid set on each internal indexing 
node indicating the clinical records that include the prefix path from the root 
to the current node. For example, in Figure 15.5, there is a CRid set {1, 2, 8} 
attached on the node “medicine.” Therefore, the path clinical Record/
treatment/medicine is only contained in the clinical records 1, 2, and 
8. Given a DG+-Index and a CRid, Xbase can also find the paths that are 
contained in that clinical record.

As illustrated in Figure 15.4d, each index is stored in a DG+-Index file on 
HDFS and the file is divided into blocks by HDFS. We further divide each block 
into three parts: the key part, the DG+-Index part, and the data part. The key part 
contains the CRids and the offset of the clinical records that are stored in the data 
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part. The DG+-Index part contains the index structure for all the clinical records in 
the data part, while the data part stores the actual clinical records assigned to this 
block. Given a CRid, we can decide whether a clinical record is located in that data 
block or not. Given a path, the DG+-Index part is accessed and the related CRid is 
obtained or NULL is returned if no CRid can be found. With the CRid and the 
offset, we can further locate the clinical record in the block.

We store the clinical records that belong to the same patient on the some node 
in the index building phase. Before inserting a clinical record, the index manager 
would check the potential size of the current index after the insertion. If the size is 
bigger than the size of the block (we use 64M as an example block size), then the 
index file is flushed to Hadoop data nodes as a block appending to the DG+-Index 
file, which is shown in process ⑦ in Figure 15.4d. Otherwise, the clinical record 
and its key are inserted, as illustrated in processes ⑥ ④, and the DG+-Index is also 
updated, as shown in process ⑤ in Figure 15.4d.

Query processing for XML path information with DG+-Index requires tree tra-
versal from the top down to the nodes where no match of prefix path can be found. 
It is considered a relatively costly step in query processing. In Xbase, we parallelize 
this step by partitioning the structural content into multiple nodes, and a DG+-
Index is built for structural content stored in a single node; thus, the DG+-Index 
search is distributed and parallelized among all nodes.

The four types of indexes have different inputs and outputs, as illustrated in 
Figure 15.6. As FC-Index and R-Index are in RDBMS, they are built over both 
keys and values. Xbase can use clinical report IDs (CRids) to probe both of the 
indexes and get the corresponding values. Also, values can be used for probing the 
index to obtain their clinical report IDs.

Clinical record

ID
Date

1, 2, 3, 4, 5, 6, 7, 8

1, 2, 3, 4, 5, 6, 7, 8

1, 2, 3

2, 3

1, 3

1, 2, 3, 4, 5, 6, 7, 8

6, 7, 8

6, 7

1, 2, 8

2, 8

3, 4, 5,

3, 4, 5

3, 4, 5 4, 5

3, 4

1, 2, 3, 4, 5, 6, 7, 8

Department Symptom
Diagnose

Enteritis

Medicine Injection

PenicillinBerberineScope

EnteroscopeBlood

Leukocyte

Lymphocyte Inflammation

Size Degree

Treatment

Figure 15.5  Index for Figure 15.3e.
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For BF-Index, it only accepts a set of values. After the filtering process, CRids 
are returned. Among the four indexes, all the indexes can take advantages of serial-
chain-style execution, except BF-Index. As we have introduced above, on each 
node of DG+-Index, the clinical report IDs that contain their prefix paths are also 
indexed. Therefore, either paths or CRids can be used to probe DG+-Index. The 
same set of CRids used as inputs for probing DG+-Index need to be distributed over 
all nodes; each node can return qualified CRids as soon as there is no matching.

15.4.3 Building Index
For every piece of information in the patient records, the Xbase Indexing Manager 
will automatically determine which index structure should be used. For each 
path in the patient records, the Indexing Manager would determine which index 
structure should be selected for indexing. To build the index structures, there are 
two-phases as follows.

First, rule generation: The Xbase Indexing Manager first generates a set of rules 
according to the query workload and the knowledge of the structure characters 
from sampling the patient records. The rules for FC-Index are determined by the 
fine-structured data parts. The rules for R-Index are generated based on the char-
acters of the NC data with frequently issued queries for a certain range. Given 
a workload threshold α, those NC data whose query workload is bigger than α 
would be indexed by R-Index. The paths with set values should be included into the 
BF-Index. From the sampling, Xbase collects the information of different number 
of values Dit under a certain tag T over all the sample records, and average number 
of values Avg under the same tag T in each record. If Dit is bigger than β and Avg 
is bigger γ, then the path over tag T should be indexed by BF-Index. Otherwise, 
DG+-Index is better than BF-Index for reducing the overhead in the index struc-
ture. If a path cannot be included into any of the above rules, it would be indexed 
by the DG+-Index structure. The parameters α, β, and γ vary with different system 
settings and application requirements. The index structures are different with dif-
ferent α, β, and γ.

Second, index building: As shown in Figure 15.7, if a path can satisfy FC-Index 
rules, it should be indexed by FC-Index. Else, it is tested with R-Index rules. If it 

CRid/value CRid/value Value Value/CRid

Value/CRid

FC-Index R-Index BF-Index
DG+-Index

Value/CRid CRid CRid

Figure 15.6  Input/output of index structures.
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cannot satisfy both FC-Index and R-Index, it should continue testing against the 
rules for BF-Index. If there are still no matches, DG+-Index will be selected for 
indexing that path.

15.5  Query Processing
Query processing in Xbase has several steps. When a query is submitted to Xbase, 
it is sent to the parser to be converted into an Xbase-specific internal format and 
then is passed to the Query Rewriter. A query with multiple conditions is divided 
into several sub-queries. Through the metadata of different index structures, the 
sub-queries can find their proper index addresses. Then, each subquery is rewrit-
ten into SQL or XQuery accordingly, depending on whether it runs at RDBMS or 
Hadoop. All the well-written sub-queries are then sent to the query plan genera-
tor for developing index-probing orders. After probing the index structure, each 
sub-query may obtain a set of CRids that satisfy the individual predicates. Then, 
the Result Consolidator will calculate the CRids for all the sub-queries. With the 
resultant CRids as the keys, the patient records will be retrieved and returned to 
the query. The details of each step are introduced in Sections 15.5.1 through 15.5.4.

15.5.1 Query Rewriting
Followed by the query parser, the Query Rewriter partitions each issued query into 
multiple sub-queries. For example, a query such as “Find the clinical records with 
age between 20 and 40, having the enteroscope check with inflammation of appendix 

Patient
records

Indexing Manager

emr/name
emr/age
...

FC-Index R-Index BF-Index
DG+-Index

YesYesYes

No No Noemr/.../size
emr/.../temp
...

emr/symptom/x
...

Figure 15.7  Indexing Manager.
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within 25 square mm and with the symptoms of headache, fever and cough” will be 
rewritten into the following four sub-queries:

S1:emr/symptom/enteroscope/scope = appendix
S2:emr/symptom/enteroscope/inflammation/size < 25
S3:emr/symptom/headache, fever, cough
S4:age >20 and <40

After probing the metadata tables, the sub-queries would find their own index 
types and index’s addresses. Then, each sub-query will be translated into SQL and 
XQuery. In this simple example, we can find that S1 is suitable for FC-Index or 
DG+-Index, S2 for R-Index or DG+-Index, S3 for BF-Index, and S4 for FC-Index. A 
more complex example is as follows.

“Find the top 2 frequently occurred diseases in all the clinical records which 
belong to Diabetes mellitus in ICD-9 family.” The ICD-9 code stands for the 
International Classification of Diseases, 9th Revision [1]. In ICD-9, each disease 
has an unique code. The code of Diabetes mellitus is 250. An example is shown in 
Figure 15.8, where the path 250-250.1-585.1 indicates a detailed disease belonging 
to category 250. To answer the query, for each path in the ICD-9 code rooted at 
the sub-root 250, we need to calculate the number of patients whose clinical records 
include that path. Then, the top two paths are selected as the result. The query 
is rewritten as follows, and the queries (and sub-queries) are executed in the way 
described in Section 15.5.2:

<Result>
 for $x in doc (ICD9.xml)/root/250/*
   for $y in $x/*
    for $z in $y/*
   <condition path=$x/$y/$z>
    for $pid in doc(patients.xml/*
     for $x$y$z in $pid//*
    count $number

ICD9

Diabetes mellitus

Diabetes with ketoacidosis

250
Chronic kidney disease

585. . .

. . . . . .

. . .

. . .

250.1

Chronic kidney disease
585.1

Figure 15.8  ICD-9 example.
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    order by $number
    count $count
    while $count < 2
     return <number>$number</number>
  </condition>
</Result>

15.5.2 Plan Generation
The query plan in Xbase is the order of index probing. Xbase’s four index structures 
can be parallel-probed, as shown in Figure 15.9a. Using the example in Section 
15.5.4, the sub-queries S1, S2, S3, and S4 can probe the four index structures at the 
same time, respectively. Each sub-query can get the results from one of the index 
structure. For example, the result of sub-query S4 is outputted through FC-Index 
and the result of S1 is obtained from probing DG+-Index. Alternatively, the four 
index structures can be probed in the serial-chain manner, such as in Figure 15.9b. 
Sub-query S3 can probe BF-Index first and get the result (a set of Pids). Then, the 
result of S1 together with the other sub-queries S2 and S4 can probe FC-Index and 
R-Index in a parallel manner. In the last step, the results of S2, S3, and S4 probe the 
last index, DG+-Index, with S1 to obtain the final result.

Considering the example in Figure 15.9, suppose that the selectivity of sub-
query S4 is much bigger than that of S1. If the parallel plan is adopted, after S1 gets 
the result, Xbase should wait for S4’s result before doing consolidation. However, 
if the serial-chain plan is chosen, S3’s result, which are a small number of Pids, is 
used to probe FC-Index and check the predicate of S4. In this way, the result can 
be generated faster if the selectivity of S3 is small. The plan of whether to choose 
parallel or serial-chain index probing and how to serialize the sub-queries should be 
calculated according to the selectivity of the sub-queries.

Xbase’s task scheduler has the responsibility for generating sub-queries’ execu-
tion orders. Since DG+-Index has higher cost than the other three index structures, 

Query

Query

S4 S2 S3

S3

S1

FC-Index R-Index FC-Index R-IndexBF-Index

BF-Index

CRid

CRid(a) (b)

Result of S3 and S4 Result of S3 and S2

Result of S2, S3, S4 and S1

DG+-Index

DG+-Index

Figure 15.9  Parallel versus serial-chain execution. (a) Parallel index probing. (b) 
Serial-chain index probing.
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it is better to be probed in the end of the plan. BF-Index can only accept a value, 
and it is very fast due to bit operations during query probing. Therefore, Xbase 
prefers to put BF-Index at the front of the plan. For the other two index structures, 
FC-Index and R-Index, different parallel and serial plans can be selected by apply-
ing many of the traditional optimization rules in the RDBMS.

algorithm.15.1.Query.Processing.in.xbase

input: Query Q.
output: Clinical Record ID (CRid).
 1: Parser Q into internal format;
 2:  Partition Q into sub-queries Q = {S1, S2…Sm} and find proper index structure 

for each query I = {I1, I2…Im};
 3: Rewrite each sub-query into Xpath Query or SQL;
 4: for each sub-query Si do
 5:  if Ii ≠ DG+-Index then
 6:   P ← Si;
 7:  end.if
 8: end.for
 9:  Task Scheduler ← P;//Sub-queries with DG+-Index are scheduled at the end 

of serial chain
10: Sort Q according to the plan.
11: for each sub-query Si do
12:  if Ii ∞ {FC-Index, R-Index} then
13:   Fetch result CRids from RDBMS through JDBC;
14:  else
15:   Create Map-Reduce job to get CRids;
16:  end.if
17: end.for
18: Result CRid set ← Join the result from different sub-queries;
19: Data Retrieval from different Hadoop nodes.

15.5.3 Plan Execution
The query plan is then sent to Xbase’s Processing Manager. For those sub-queries 
that require probing indexes, such as FC-Index or R-Index, the central relational 
DB is searched through the JDBC interface. For those sub-queries that need to 
probe indexes, like DG+-Index or BF-Index, we create a MapReduce job (or distrib-
uted tasks). Through the map function, the partial results are obtained.

We deploy BF-Index and DG+-Index on Hadoop to utilize its MapReduce 
computing framework. When a search on BF-Index is initiated, a MapReduce job 
is started where the mapper function is to check the compatibility between the 
given signature (generated based on the query) and each signature in the sequence 
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file. If a signature is found to be compatible, the value (actual content of the clini-
cal record) is further checked to see if it matches the query in order to eliminate 
false positives. The CRids of the matching clinical records are returned by the 
mapper function, and the reducer function collects all the CRids and sorts them. 
In the case of DG+-Index, similarly, a MapReduce job is created for each probe 
on DG+-Index. A hint CRid set (i.e., the partial result generated by previous sub-
queries) may be an additional input to the mapper function. The mapper function 
first checks the key part to see if this block is compatible with the given hint CRid 
set. If not, then the task is completed with an empty result. If it is compatible, a 
further search through the DG+-Index is conducted to identify matching clinical 
records in the data part. The reducer function is the same as that in the probing 
BF-Index.

In Xbase’s implementation, what we need is a distributed storage and pro-
cessing framework, so that BF-Index and DG+-Index can be distributed into 
multiple nodes. And the process code is also replicated and distributed to these 
nodes for processing local data. The final results are gathered into the Query 
Executor.

15.5.4 Result Consolidation and Data Retrieval
After probing the index structure, each sub-query should obtain a set of IDs as a 
temperate result. The result Consolidator will perform the “AND” or “OR” opera-
tion over these IDs to develop the final ID set and calculate the statistic informa-
tion over the result set, such as “Find the percentage of” in our example query. For 
some of the queries, the original clinical records need to be retrieved. Based on the 
ID as the key, the requirement is propagated to data stores in the Data Retrieval 
step. In Xbase, the data are stored over Hadoop nodes. The query processing pro-
cess is summarized in Algorithm 15.1.

15.6  Experimental Evaluations
We have conducted evaluations of two prototype EMR database systems: (1) Xbase, 
which is a hybrid implemented on both Hadoop and RDBMS, and (2) a proposed 
RDBMS-based solution as a strawman implementation to compare with Xbase. 
We start with the general setup for the experiments and then the evaluation results.

15.6.1 General Setup

15.6.1.1 Hardware and Software Configurations

The experiments were conducted on a Hadoop cluster of 12 desktop-level comput-
ers. Each computer has an Intel Core 2 Duo 2.66 GHz CPU, 2G memory, 160G 
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hard disk, and Ubuntu 9.04. The computers are connected via a 100 M fast eth-
ernet switcher. The version 0.20.0 of Hadoop is used in our experiments, with the 
configuration of 1 name node, 1 job tracker, and 10 slave nodes (i.e., data nodes and 
task trackers). The replication factor is set to 3, while the maximum number of map 
and reduce tasks that will run simultaneously triggered by a task tracker is set to 2. 
As we use a single reduce task for each query job in our experiments, the number of 
reduce tasks per job is set to 1. The Hadoop cluster is used by Xbase only.

Additionally, an 8-core server (2 Intel Xeon X5460 processors, 4 cores in each 
CPU package, 12 MB L2 cache shared by 2 cores, 16 GB globally shared DRAM, 
and SUSE 10.0) with MySQL Cluster 5.1 installed is employed to store the rela-
tional data for Xbase and the strawman RDBMS implementation for the EMR 
application.

The prototype system is written in Java (JDK 1.6) and has two parts: index 
builder and query processor. The index builder scans source schema and XML 
documents (i.e., clinical records), and then creates corresponding index structures 
on the database and/or the Hadoop cluster. The source XML documents are also 
stored as part of the DG+-Index on Hadoop. The query processor receives queries 
from the clients, composes query plans, and then executes them on the database (as 
SQL queries) and the Hadoop cluster (as MapReduce jobs).

In the experiments, we vary the following parameters: (1) the volume of data, 
(2) the complexity of the queries, and (3) the size of HDFS file blocks in Hadoop 
to measure their impacts on the query response time.

15.6.1.2 Data Sets, Query Patterns, and Solutions

Our data generator is based on XMLgen from XMark [2] with our own DTD 
designed for clinical records. We generate the clinical records with sizes vary-
ing from 5K to 625K records with a depth around 10 and the largest fanout 
around 50.

The distribution of the queries’ predicates used in the experiments are sum-
marized in Table 15.1. Three queries with predicates that utilize mixed types of 
indexes are denoted as Query 4, Query 8, and Query 16. Each of them contains 
different number of predicates requiring different sets of indexes. We also prepare 
two queries, one requiring paths with BF-Index while the other with DG+-Index. 
We also list the numbers of MapReduce jobs required to initiate for each query. 
Please note that all predicates requiring DG+-Indexes can be combined into a single 
MapReduce job as a single job can check multiple conditions at the same time. On 
the other hand, each predicate requiring BF-Indexes needs to invoke a MapReduce 
job separately, since BF-Indexes cannot be shared nor combined. Other predicates 
requiring no DG+-Index nor BF-Index will be used on RDBMS, and thus do not 
need to invoke a MapReduce job.

To compare the query processing time, we develop a pure RDBMS-based 
EMR database system to compare with the Xbase solution. We implement the 
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RDBMS-based strawman EMR database using MySQL Cluster 5.1 on an 8-core 
server. The schema is designed as one content table with three columns: #CR_id, 
#PATH, and #VALUE. For each XML-formatted clinical record, all the leaf 
nodes are extracted and stored in the content table together with its path and the 
clinical record identifier as triple tuples. An example of storing an XML clini-
cal record in a relational table with the (#CR_id, #PATH, #VALUE) schema is 
illustrated in Figure 15.10. Table 15.2 lists the statistics of the relational tables in 
different data scales. As we can see, relational tables are not suitable for storing 
XML documents in terms of both space efficiency and query processing effi-
ciency. The table shows to store 700,000 clinical records, which will result in 
more than 1 billion rows in the table. In the experiments presented in the later 
subsections, we show that such RDBMS-based implementation is far less effi-
cient than Xbase, which is a hybrid system that consolidates the advantages of 
both RDBMS and Hadoop.

15.6.2 Effects of Data Scales
We first conducted experiments for different data volumes with a DG+-Index block 
size of 64M and BF-Index block size of 1M, which is denoted as the pair (64M, 
1M). Figure 15.11 shows the average query processing time of the same queries on 
various volumes of data sets.

From Figure 15.11, we can see that the query processing time increases sublin-
early with the increase of the data volume. This is because the number of blocks 
needed to be accessed grows with the increase of data volume, given the same 
block size. Therefore, the number of map tasks to be processed in one MapReduce 
job also increases. This impacts the performance of searching on DG+-Index and 
BF-Index. With the increase of query complexity, the number of MapReduce jobs 
to be submitted for one query also increases. To this end, the overall query process-
ing time becomes larger.

Table 15.1  Query Complexity

No. of 
Predicates

Predicates 
Requiring 
FC-Index

Predicates 
Requiring 
R-Index

Predicates 
Requiring 
DG+-Index

Predicates 
Requiring 
BF-Index

No. of 
MapReduce 

Jobs

Query 4 4 1 1 1 1 2

Query 8 8 1 2 2 3 4

Query 16 16 2 6 4 4 5

Query-BF 4 0 0 0 4 4

Query-DG+ 4 0 0 4 0 1
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Figure 15.12 shows the processing time of queries with mixed conditions on 
various volumes of data by the strawman RDBMS-based solution. Obviously, 
the increases of time consumption follow the trend of over-linear increases. And, 
with the increase of complexity of query conditions, the processing time of the 
strawman RDBMS-based solution increases over-linearly. It suggests that for a 
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Figure 15.10  Example of RDBMS-based XML clinical record implementation.

Table 15.2  Data Statistics of Pure 
RDBMS Solution

Number of Records Number of Rows

5K 7.5M

25K 37.5M

125K 187.5M

625K 937.5M
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centralized database system, loading and query processing over large-scaled data 
involves high cost.

15.6.3 Effects of Query Complexity
To show the differences between Xbase and pure RDBMS solutions, we compare 
the processing time of Query 16 on various volumes of data. The results shown 
in Figures 15.13 through 15.15 indicate that under the small data scales, less than 
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25K records, the Xbase and pure RDBMS solutions have similar query process-
ing times. With the increase of size of data scale, the processing time of the pure 
RDBMS increases much faster than the Xbase solution. It is because that, tradi-
tionally, a centralized database system lacks the ability of scaling up. To process 
the queries over large-scaled data, even with a powerful server, the bottleneck of 
the system is in the I/O layer, data loading, and memory access. Since Xbase’s 
XML processing capability is built on top of Hadoop, such a bottleneck can be 
solved by load distribution across a large number of smaller servers by the Hadoop 
infrastructure.
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We also conducted experiments to evaluate queries with predicates requiring only 
BF-Indexes and DG+-Indexes, respectively. In these experiments, we set a relatively 
small size for the BF-Index file. This is because we expect a rather small size of 
key–value pairs for each Bloom filter. This is true if the parameters of the Bloom 
filter signature are selected appropriately. However, if the false-positives rate of such 
a signatures is high, the size of each key–value pair could be very large. In such a 
case, if the block size of the BF-Index file is smaller than the size of each key–value 
pair, the performance of probing BF-Index will be substantially impacted because 
the locality of the mapper task is violated and considerable amount of data have to 
be transferred among nodes.

Figure 15.16 gives the average query processing time of queries requiring only 
DG+-Index and BF-Index, respectively. The experiment shows that the DG+-
Index-related condition check is much more expensive than the Bloom-filter-
related condition check. The reason is that for BF-Index, after the coded query 
condition is sent to map function, most blocks are filtered by the Bloom filter 
mechanism. Thus, the total block search time consumed decreases. As for DG+-
Index, it can be applied only to the path-related conditions, but not to the values 
of the leaf nodes along the paths. As a result, raw XML-formatted clinical records 
have to be loaded to check conditions related to leaf nodes’ values. In the worst 
case, when most clinical records contain such paths, the bodies of most blocks 
have to be loaded and checked sequentially throughout the whole block. Thus, 
the processing time is high even when DG+-Index is applied. Additional improve-
ment can be done by clustering structurally similar clinical records and placing 
them on the same blocks in order to reduce the processing time of path-related 
conditions.
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15.6.4 Effects of Hadoop-Specified Configurations
Given the fixed data volume, Figure 15.17 shows the query processing time when 
different block sizes are configured for index files on HDFS over 25K records. We 
can see from Figure 15.17 that with the increase of index file block size, the number 
of blocks per file and the number of tasks per MapReduce job decrease. Though 
each mapper task spends relatively more time to process a bigger block, since the 
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initialization of a mapper task also takes some time, the overall processing time 
per job drops from (16M, 256K), (32M, 512K), to (64M, 1M). Thus, the experi-
ments suggest that a larger block size will lead to a comparatively lower overhead of 
Hadoop job invocation. However, a larger block size will only be beneficial if the 
number of mapper tasks per job is bigger than the number of available processing 
slots in the Hadoop cluster; otherwise, the computing resources of the system may 
be underutilized. To this end, selecting a block size that optimizes the system per-
formance is quite complex and almost unfeasible given many parameters involved, 
such as the number of concurrent Hadoop workloads, the distribution of data skew, 
and the QoS of network transformation. A formal study of this subject would be 
left for future research work.

15.7  Related Work
XML is emerging as a de facto standard for information exchange among various 
applications on the World Wide Web. There has been a growing need for develop-
ing high-performance techniques to query large XML data repositories efficiently. 
One important problem in XML query processing is twig pattern matching, that is, 
finding in an XML data tree all matches that satisfy a specified twig (or path) query 
pattern. The survey in [12] classifies and compares major techniques for twig pat-
tern matching. It considers two classes of major XML query processing techniques: 
the relational approach and the native approach. The relational approach directly 
utilizes existing relational database systems to store and query XML data, which 
enables the use of all important techniques that have been developed for relational 
databases. We build one prototype system of this kind (as shown in Figure 15.10) 
as a strawman implementation to compare with Xbase. In the native approach, spe-
cialized storage and query processing systems tailored for XML data are developed 
from scratch to further improve XML query performance.

As implied by existing work reviewed in [12], XML data querying and manage-
ment are developing in the direction of integrating the relational approach with the 
native approach, which could result in higher query processing performance and 
also significantly reduce system reengineering costs. We call this a hybrid approach 
to XML database system. Xbase presented in this chapter can be considered such a 
hybrid system, while Xbase utilizes the Hadoop infrastructure to implement XML 
structural information repository and search capability.

Hive [27,28] is a data warehouse infrastructure built on top of Hadoop that 
provides tools to enable easy data summarization, ad hoc querying, and analysis 
of large datasets’ data stored in Hadoop files. It provides a mechanism to put 
the structure on this data, and it also provides a simple query language called 
QL, which is based on SQL and which enables users familiar with SQL to query 
this data. At the same time, this language also allows traditional MapReduce 
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programmers to be able to plug in their custom mappers and reducers to perform 
more sophisticated analysis, which may not be supported by the built-in capabili-
ties of the language.

Bigtable [5] is a distributed storage system for managing structured data that 
is designed to scale to a very large size: petabytes of data across thousands of com-
modity servers. Many projects at Google store data in Bigtable, including web 
indexing, Google Earth, and Google Finance. These applications place very dif-
ferent demands on Bigtable, both in terms of data size (from URLs to web pages 
to satellite imagery) and latency requirements (from back-end bulk processing to 
real-time data serving). Despite these varied demands, Bigtable has successfully 
provided a flexible, high-performance solution for all of these Google products. 
In this chapter, we describe the simple data model provided by Bigtable, which 
gives clients dynamic control over data layout and format, and we also describe the 
design and implementation of Bigtable.

In order to store and retrieve XML documents efficiently, dozens of research 
and industrial works were carried out in the last two decades. Targeting the com-
plexity of Xpath, many proposals on XML structural indexes express paths of an 
XML document as a set of equivalent node classes, which include DataGuide [10], 
1-index [19], and F&B Index [15] and its disk-based extension [30]. Generally 
speaking, their basic idea is to match the path of query conditions with the precal-
culated skeleton of XML repository, and then, check the value by indexed nodes. 
The DG+-Index proposed in this chapter is just an extension of them, based on the 
observations that long and complex paths tend to be uninteresting. Some work 
like A(k)-index [16], which is a family of indices by the extension of 1-index [19], 
exploits the similarity of short paths to reduce the size of the structure. Similar work 
includes D(k)-index [6] and M(k)-index [14]. Actually, the research works above 
can be involved into our framework without too much effort, which is because the 
DG+-Index we proposed is the abstracted structure of them, which can be extended 
without any conflict with other index mechanisms.

Aiming to the variety of XML contents, several other related works focus on 
indexing values in XML [18], building indexes for XML range queries [17], and 
indexing XML fragments in RDBMS [21]. Though the other three index structures 
we proposed are extended from works above, one distinguished difference is that we 
build different index structures according to well-known data types, respectively, 
rather than general XML data. In the further, the XML data we aimed to is the 
application-specified EMR data.

New approaches were proposed in [22] and [13] to large-scale data analysis and 
a uniform data repository for mixed data types. These approaches tried to solve the 
similar problem addressed in this chapter; but our work is more healthcare specific 
and different system architectures are developed, especially our system on top of 
Hadoop enjoys distributed computing and fault tolerance provided by the Hadoop 
infrastructure itself.
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15.8  Conclusion
XML is a more desirable format for modeling and storing clinical data in EMR 
applications for its extendibility; however, EMR systems are usually built on top 
of RDBMS or file systems. Few advanced database systems support native XML 
storage and retrieval capability; however, their capability supporting complex 
healthcare applications on a very large set of EMRs is very limited. We point out 
that complex healthcare applications demand usability, flexibility, reliability, per-
formance, and extendibility.

We are developing a clouds-enabled information appliance, Xbase, supporting 
analytics on XML-based EMR databases. Here, we summarize how we design 
Xbase to meet these requirements.

 ◾ Usability: Xbase is designed and built specifically to support healthcare-
specific style of query, search, and analytics, which involve a potentially large 
number of conditions, and query relaxation is built into the query processing 
scheme to incorporate terminologies in the KDB, such as diagnosis and treat-
ment classification, doctors’ areas of expertise, and access control list.

 ◾ Flexibility: Xbase supports data modeling and native physical storage for 
semi-structured data dealing with evolving data types and flexible schemas 
required in healthcare applications.

 ◾ Reliability: HDFS creates multiple replicas of data blocks and distributes 
them on compute nodes throughout a cluster to enable reliable, extremely 
rapid computations.

 ◾ Performance: In Xbase, query processing and indexing is applied directly to 
the native XML structure and content to ensure fast response time, while the 
Hadoop infrastructure provides automated load balance.

 ◾ Extendibility: Xbase is built natively on the emerging cloud computing infra-
structure, Hadoop, to achieve almost unlimited distributed storage capabil-
ity and computation capability. The extendibility of Xbase is enabled by and 
embodied in the Hadoop infrastructure.
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16.1  Motivation
In the past decade, the growth of web service technologies and the emergence of 
service-oriented architectures (SOAs) have added tremendously to the increasing 
maturity of the Internet and the software industry. These advancements make it 
possible for software vendors to deliver effective software applications as web-based 
services using a new delivery model called Software-as-a-Service (SaaS). In simple 
terms, SaaS is a model of software deployment where an application is hosted as 
a service provided to customers across the Internet [1]. By eliminating the need 
to install and run the application on the customer’s computer, SaaS alleviates the 
burden of software maintenance, ongoing operation, and client support for the cus-
tomer. Conversely, customers relinquish control over software versions or changing 
requirements. Moreover, costs to use the service become a continuous expense, 
rather than a single expense at the time of purchase. SaaS applications are generally 
charged on a per-user basis and are shared by multiple independent customers [2]. 
Under SaaS, the service customer receives the benefits of the software, with clearly 
understandable costs, at a contractually defined service level [3].

While successful commercial SaaS applications like Salesforce.com and Google 
Apps are now deployed, tools and approaches to assist organizations in evaluat-
ing and planning for SaaS opportunities are not yet widely available. This chapter 
provides a model framework for evaluating SaaS applications based on quality-
of-service (QoS) characteristics, and forms the basis for a toolset to assist the IT 
planning process.

16.2  Service System Quality Management
In studying SaaS evaluation, our focus on quality management is motivated by two 
basic assumptions about the nature of service system delivery:

 1. Service systems operate most effectively when both the service customer and 
the service provider understand and actively engage in the co-creation of 
value [4].

 2. Service system improvement is best achieved when the major service quality 
factors are mutually agreed upon, tracked, managed, analyzed, and acted 
upon by the service customer and the service provider.

The goal of service quality management is to provide lower cost, better products 
and services, and higher customer satisfaction. Traditionally, if a service provider 
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understands what a customer wants from a service (typically defined with detailed 
specifications based on the customer requirements), manages the variables in the 
service delivery process that can lead to deviation from specifications, and deliv-
ers the service in accordance with the customer’s stated requirements, the ser-
vice system is properly managing with respect to service quality [5]. In practice, 
however, a dynamic approach must be used in managing service quality due to 
continuous changes in the cost of service delivery, customer requirements, and 
the emergence of new technologies. When existing customer expectations are not 
met, a new expectation benchmark must be set and service reevaluation under-
taken. The need is growing for evaluation models to assess service quality on an 
ongoing basis and to improve/accelerate decision making related to the adoption 
of software services in general and SaaS applications in particular, given their 
rapidly increasing adoption [6].

Unfortunately, most current quality management approaches for SaaS services 
focus on the perspective of service providers, and thus do not fully take into con-
sideration the collaborative nature of the two basic assumptions given at the begin-
ning of this section. Approaches such as SERVQUAL [7], American Customer 
Satisfaction Indices (ACSI) [8], and Balanced Scorecard [9] incorporate the view-
point of customers, but often not in combination with the provider’s viewpoint. 
What is not present in the existing literature is an approach that adequately com-
bines the perspectives of both provider and customer together with the nature of 
their ongoing business relationship. Therefore, at a general level, we are interested 
in addressing the following research problems: (1) the exploration of an integrated 
model that takes into account the shared nature of service quality in SaaS systems 
and (2) how to best track and improve the service quality effectively by applying 
the model.

16.3  SaaS Maturity Models
In the process of developing the foundation of our SaaS evaluation model, we 
explored a number of related models for assessing service system delivery and man-
agement. These are characterized as Service Delivery Models, and their approaches 
are summarized later in Section 16.7. These models are relevant and complemen-
tary to SaaS evaluation; however, their scope is broader than SaaS systems and 
is primarily concentrated on service delivery from the perspective of the service 
provider. In this section, we review the two main SaaS maturity models that have 
been proposed to date.

16.3.1 Microsoft SaaS Maturity Model
Microsoft introduced the first widely published SaaS maturity model in 2006 
[8]. A four-level SaaS maturity model was proposed mainly to assess the maturity 
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of single-packaged SaaS applications. According to the model description, SaaS 
applications can be classified by three key attributes of architectures: configurabil-
ity, multi-tenant efficiency, and scalability. Each level in this model is distinguished 
from the previous one by the addition of one key attribute. A brief explanation of 
each level is as follows [10]:

 ◾ Level 1—Ad hoc/custom: Each customer has a customized version of the appli-
cation and runs its own instance of the application on the servers hosted 
by the provider. Migrating a traditional non-networked or client-server 
application to this level typically requires the least development effort and 
cuts down operating costs primarily by consolidating server hardware and 
administration.

 ◾ Level 2—Configurable: The second maturity level provides greater application 
flexibility through configurable metadata that enable customers to use sepa-
rate instances of the same application code. This allows the provider to meet 
the different needs of each customer through detailed configuration options, 
while simplifying maintenance and updating a common code base.

 ◾ Level 3—Configurable, multi-tenant efficient: At the third maturity level, the 
provider adds multi-tenancy support to the second-level capabilities, enabling 
a single-application instance to service all customers. This approach allows 
better use of the provider’s server resources without any apparent difference 
to the customer.

 ◾ Level 4—Scalable, configurable, multi-tenant efficient: Better overall scal-
ability for the provider’s service delivery is the goal at the fourth level. 
This is typically achieved through a multitier architecture supporting a 
load-balanced farm of identical application instances, running on a vari-
able number of servers. Effectively, a “cloud computing” [11,12] approach 
is adopted by the provider to support a set of application instances. The 
capacity of the provider’s system can be increased or decreased dynamically 
to match the demand by adding or removing servers, without requiring 
changes to the application software.

16.3.2 Forrester SaaS Maturity Model
Forrester’s model, the other major SaaS maturity model, provides guidance on 
strategy transformations to software vendors working with service providers who 
consider an SaaS business model. This model classifies the maturity of SaaS solu-
tions on five levels, according to the way an SaaS system is delivered [13].

 ◾ Level 0—Outsourcing: In outsourcing, a service provider operates one appli-
cation or a suite of applications for a large customer organization. Typically, 
an outsourcing provider is obligated under contract to one customer and 
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cannot directly leverage this customer’s application for a second customer. 
Because of this restriction, outsourcing does not qualify as SaaS; thus, this 
level is not considered a formal maturity level. It is included as level 0 because 
SaaS providers often launch their business operations through outsourcing 
arrangements with a few preferred customers.

 ◾ Level 1—Manual ASP (application service provider) service: The model at this 
level is mainly targeting midsize companies. An ASP hosts packaged applica-
tions (e.g., system analysis and program development [SAP] and PeopleSoft  
enterprise resource planning [ERPs]) for multiple customer organizations. 
Typically, the service provider allocates to each customer a dedicated server 
running that customer’s instance of the application. This allows, as deemed 
necessary, the ability for a provider to customize the installation in the same 
way as self-hosted applications.

 ◾ Level 2—Industrial ASP service: At this level, an ASP introduces advanced 
IT management software to provide an identical packaged application with 
customer-specific configuration options to many small-to-medium-sized cus-
tomer organizations. A key element of the industrial ASP service is that the 
core elements of the software package are the same for all customers, and 
therefore a significant amount of the operating costs can be shared among 
multiple customers.

 ◾ Level 3—Single-app SaaS: From this level on, SaaS capabilities become built 
into the business applications. These include web-based user interface access 
to all services and the ability to service a great number of customers with one 
scalable infrastructure. Single-application SaaS adoption focuses on small-
to-medium-sized businesses. Like the industrial ASP service of level 2, the 
only way to customize the application is through configuration. Salesforce.
com’s customer relationship management (CRM) application initially 
entered the market at this level [13].

 ◾ Level 4—Business-domain SaaS: At this level, the SaaS provider offers not 
only well-defined business applications but also a platform supporting addi-
tional business logic. This allows the single-app SaaS of level 3 to be aug-
mented with third-party packaged SaaS solutions and optional customized 
extensions. The model can now satisfy some of the requirements of large 
enterprises by migrating a whole business domain like “customer care” to an 
SaaS solution.

 ◾ Level 5—Dynamic business Apps-as-a-service: At this level, Forrester’s model 
claims that a new Dynamic Business Application imperative “design for peo-
ple, build for change” is embraced. Advanced SaaS providers coming from 
level 4 will offer a comprehensive application as well as an integration plat-
form on demand, and pre-populate the platform with business applications 
or business services. Customer-specific and even user-specific business appli-
cations on various levels can be composed dynamically. The resulting process 
agility should be attractive to everyone, including large-enterprise customers.
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There are similarities and some distinct differences between the two SaaS maturity 
models from Microsoft and Forrester. Both models describe a set of greater capa-
bilities needed by the SaaS provider to manage common software architectures 
and infrastructure as the levels of maturity increase. Microsoft’s model focuses on 
the increased capabilities of an SaaS deployment through the re-architecting of 
single-application packages delivered on a common infrastructure. These capabili-
ties are embodied in three key attributes: configurability, multi-tenant efficiency, 
and scalability. Forrester’s model takes an evolutionary approach that provides 
prescriptive guidance to software vendors and service providers in the transforma-
tion of enterprise-wide software. If we restrict our attention to single-application 
deployment of SaaS, levels 1 through 3 have significant similarities in the two 
models. The major difference at level 4 is the support for software across an entire 
business domain in Forrester’s model. Level 5 of Forrester’s model appears to have 
no counterpart in Microsoft’s model. A scan of the SaaS literature indicates that 
there is likely no SaaS implementation in existence today that would be rated at 
Forrester’s level 5.

An important observation of these SaaS maturity models is that neither focuses 
on quality of service. Without the ability to assess quality-of-service delivery, the 
decision makers (i.e., the customers and the providers) will have a difficult time 
planning and managing service improvements. In addition, these models largely 
ignore the perspective of service customer, and only emphasize what the service 
provider can do. It is our strong belief, based on the two fundamental assumptions 
about service systems identified in Section 16.2, that it is necessary to incorporate 
the perspectives of both service provider and service customer in any SaaS evalua-
tion model.

16.4  Quality in SaaS Business Relationship
In this section, we introduce the notion of quality as it applies to service delivery, 
and then discuss how quality is often expressed or realized as part of an ongoing 
SaaS business relationship.

16.4.1 Quality Definitions
The definition of “quality” has been addressed and debated for a long time in a 
number of academic and industrial publications [14–18]. Of these, we have chosen 
to focus on the one developed by David Garvin [16], in which he identified five 
major perspectives to the definition of quality: transcendental, product based, user 
based, manufacturing based, and value based. We have found that for software 
services it is difficult to separate product (the software system) from service (the 
deployment or actual “manufacturing” of the system as a service). For quality of 
service, we only consider the following four perspectives.
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 ◾ Conformance quality: This is equivalent to many aspects of a combination 
of Garvin’s product-based and manufacturing-based perspectives focusing 
on conformance to specifications. Typically, the focus is internal and on 
determining that performance matches original design specifications often 
expressed in service-level agreements (SLAs). Approaches that can be applied 
to manage conformance quality include (1) QoS specification languages [19], 
in which quality requirements, quality capabilities, and quality agreements 
are expressed; and (2) service-level standards, such as IT Service CMM (IT 
Service Capability Maturity Model) [18] and ITIL (Information Technology 
Infrastructure Library) [19].

 ◾ Gap quality: This is equivalent to Garvin’s user-based perspective focusing 
on whether customer expectations are met or exceeded. This is the most per-
vasive definition of quality, particularly as applied to business management. 
Most approaches on gap quality use the Gaps Model of Service Quality [22], 
which measures the gaps explicitly by considering both customer perceptions 
and expectations. These approaches include SERVQUAL [7], ACSI [8], and 
TechQual+ [23].

 ◾ Value quality: This is equivalent to Garvin’s value-based perspective focusing 
on the direct benefits (value) to the customer. It is a universal measure for 
widely different types of objects, and can be an appropriate guideline for con-
tinuous quality improvement. Approaches on value quality introduce more 
business-oriented measurements, such as productivity, Return on Investment 
(ROI), and risk estimate, and provide greater insight into business goals.

 ◾ Excellence quality: This is equivalent to Garvin’s transcendent perspective 
focusing on recognition of excellence. It stresses the features and character-
istics of quality, but it may change dramatically and rapidly. In IT services, 
excellence quality is marked by uncompromising standards and high perfor-
mance, and can be used directly as promise and advertisement. Therefore, it 
is usually externally defined and hard to relate to quality improvement.

Because of the difficulty in using excellence quality to identify quality improve-
ment opportunities, we focus only on the first three definitions of quality in our 
work [24,25].

16.4.2  Quality Management in an SaaS 
Business Relationship

Basic to any SaaS deployment are business relationships between the provider orga-
nization and the various customer organizations to which the provider delivers its 
services. Two of these relationships, presented from a provider organization’s view, 
are shown in Figure 16.1. The relationships, labeled conformance quality and gap 
quality, are depicted as measures in the diagram. These are measures that should 
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be managed by the SaaS provider as part of their business relationship with their 
customers. In most service arrangements, conformance quality is expressed as ser-
vice levels agreed to with the client. With SaaS, service levels are often advertised 
in advance as part of the provider’s marketing strategy and finalized under contract 
when a service sales agreement is reached with the customer. Therefore, in SaaS, the 
focus on conformance quality aspects, such as volume (transactions per minute), 
response time, and availability of service, is usually negotiated and agreed to up 
front between the production department (responsible for running service support) 
and the marketing and sales departments of the provider organization.

Providers are also involved in gap quality measurements with customer orga-
nizations. Typically, quality concerns related to ease of use, response to failures, 
and user training are determined by the provider using survey tools involving the 
customers. This form of user input identifies gaps between what the customers are 
experiencing in using a service and what they would like to be experiencing. This 
feedback is critical if a provider wishes to improve their service.

The view of SaaS business relationships from the customer’s perspective is shown 
in Figure 16.2, in which two relationships are depicted. The first, named functional 
needs, expresses the user requirements for supporting their workplace activities in 
the customer organization. The business units of the customer organization usu-
ally consult with their users to determine if these service requirements can be met 
through a service offering by one or more SaaS providers.

The second relationship, labeled value quality, captures the value the customer 
organization places on deploying a service using an SaaS. Although there is no 
universally accepted definition of value quality, common approaches for measuring 

Conformance quality

Gap quality Other customer
organizations

Customer
organization

Provider
organization

Production

Marketing

Clients

Figure 16.1  Provider organization view of an SaaS business relationship.
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value quality include cost-benefit analysis [26], ROI analysis [27], risk management 
[28], or combinations of these approaches using a balance scorecard [9].

16.5   Co-Creation of Business Value 
in a Service Relationship

The discussion in Section 16.4 on value quality was from the perspective of the cus-
tomer organization. But one of the fundamental definitions from the merging area 
of service science [4] is that a “… service system is a value co-production configura-
tion of people, technology, other internal and external service systems and shared 
information.” The question that arises is how is the notion of co-creation of value 
in an SaaS offering supported in value quality measures.

Let us explore this question by considering the possible co-value situations that 
can exist between a service provider and a service customer organization. These 
situations can be represented in Figure 16.3, where we express the customer and 
provider values, respectively, on simple x–y axes, each axis ranging in scale from 
a low to a high value. In general, the value measures for the provider and the cus-
tomer are dependent on the nature of the service offering. For the purpose of this 
discussion, let us assume simplistically that the customer value is determined pri-
marily by ROI analysis and the provider value is determined by the total profit 
(income after all expenses) from providing the service. In the diagram, we have 
characterized the five regions with names that reflect the relative maturity of the 
service offering [29]. When a service is first developed, it is typically done as a lim-
ited offering (or research prototype) based on research of market opportunities and 
the innovative application of new or advanced technologies or processes. From the 
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Figure 16.2  Customer organization view of an SaaS business relationship.
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perspective of value quality, the service provider sees low value (little or no profit) 
and the customer also sees low value, because the prototype service is limited in 
functionality with little commitment to sustainability because of the trial nature 
of its deployment.

Assuming that the service is well received for its initial functionality and respon-
siveness, and its user base increases, the value (as determined by ROI) will increase 
for the customer. During the early stages of growing the service from prototype to 
an initial release in the marketplace, the value to the provider (profit) remains low 
or at best increases slightly.

Once the service takes hold in a marketplace and large numbers of custom-
ers acquire the service, the value for the provider (profit) increases substantially in 
proportion to the number of customers. The value to the customer (ROI) is very 
dependent on the costs associated with the delivery of the service within a grow-
ing marketplace. If there is little or no competition for the provider, we move to 
a monopoly service situation typically generating higher costs and, therefore, lower 
relative value for the customer (ROI). Alternatively, the marketplace could quickly 
yield a healthy set of service providers that should lead to an increase in value for 
customers (ROI), because cost of service should not rise substantially if at all. This 
stage, labeled mature service, represents the situation when the co-value of the ser-
vice business relationship for providers and customers is at its peak (we refer to it as 
a “win-win” value situation).

Note that it is rare for a software service marketplace to remain in a monop-
oly situation for an extended period, because the capital investment for new 
providers to develop competitive services is usually not extensive. Therefore, 
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Figure 16.3  Phases of service delivery based on co-value to the customer and 
the provider.
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generally for SaaS, a monopoly service should quickly transition to a mature 
service situation.

A fifth stage that can occur is when service competition increases for the pro-
vider and marketplace adoption becomes so widespread that the service becomes 
commoditized. At this commodity service stage, the value to the provider (profit) can 
decrease significantly because of decreased profit margins on a per customer basis. 
The value to the customer can also decrease at this stage because the commoditized 
service is no longer a strategic advantage for customer organization, which may 
have its own set of competitors.

The transition from a commodity service to a research prototype is repre-
sented as a dotted line to show that often a new provider organization creates a 
new service innovation that impacts the commoditized marketplace. This new 
service will begin its own service maturation process that can displace the com-
modity service in that marketplace. An example of this is the rise of e-mail ser-
vices in the last decade to replace much of the standard mail services that had 
been commoditized.

Of course, not all service offerings follow this form of “life cycle.” Many new 
services do not make it past the prototype stage or linger in the initial release stage 
without garnering significant market presence. Some services, given the nature of 
their potential marketplace, may never be commoditized. Ideally, both service pro-
vider and service customer continue to seek ways of maintaining a “win-win” busi-
ness relationship, where new or added co-value is continually being created for a 
service offering. At the core of the SaaS QoS model that we present in Section 16.6 
are the characteristics of the business relationships between the service customer 
and the service provider.

16.6   Specifications of a QoS-Focused 
SaaS Evaluation Model

In this section, we present our initial version of an SaaS QoS evaluation model 
and illustrate its features using existing SaaS applications. This model prescribes 
the quality-of-service approaches for four service classes based on the business rela-
tionships between the service provider and the service customer: Ad hoc, Defined, 
Managed, and Strategic. The model is summarized in Table 16.1.

16.6.1 SaaS Maturity Levels

16.6.1.1 Ad Hoc Service

An SaaS service is called Ad hoc if it is used by a customer on an as-needed basis in 
response to business requirements. The goal of the service customer is to ensure that 
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Table 16.1  Maturity Levels of Business Relationship in SaaS Services

Maturity 
Level

Characteristics 
of Business 

Relationships
Service 

Customer Goals
Service 

Provider Goals
Quality 

Approaches

Level 1 Ad hoc Functionality 
needs 
achieved

Service 
delivery on an 
“as-needed” 
basis

Some quality 
measures 
may be in 
place

Level 2 Defined Functionality 
needs 
achieved with 
reliability and 
other desirable 
quality 
requirements 
guaranteed

Service 
delivery on a 
regular 
(defined) 
basis with 
defined 
capability

Conformance 
quality 
measures 
(SLAs 
defined and 
tracked)

Level 3 Managed Goals of Level 2 
plus 
agreement on 
monitoring of 
service quality 
assurance

Service 
delivered 
with 
configurable 
capability; 
shared 
responsibility 
to monitor 
and manage 
service 
quality factors

Conformance 
plus gap 
quality 
measures

Level 4 Strategic Proper 
governance of 
service to 
ensure value 
goals defined 
and achieved 
using 
approaches 
such as 
cost-benefit 
analysis, ROI 
analysis, and 
risk 
management

Dynamic 
delivery with 
the shared 
goal of 
service 
improvement 
with 
customer

Conformance, 
gap, and 
value quality 
measures
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the service meets the critical needs of its users. Typically few, if any, QoS attributes 
are tracked by the provider on behalf of the customer. Examples of Ad hoc services 
are Amazon.com and Expedia.com when used widely in an organization to facili-
tate book and travel purchases, respectively.

16.6.1.2 Defined Service

An SaaS service is called Defined if it is described in a contract or an agreement that 
outlines service usage and guarantees the service-level capabilities typically through 
service level agreements (SLAs). The QoS concerns focus on measurable, perfor-
mance-oriented factors, such as availability and responsiveness. A good example of 
a Defined service is Google Apps [30] Enterprise Edition, which has a defined SLA 
focusing on availability. Another example is SAP’s Business ByDesign [31], which 
provides SaaS capabilities for ERP-level applications (integrated accounting, supply 
chain, HR, CRM, etc). SAP also provides an SLA focused on availability.

16.6.1.3 Managed Service

An SaaS service is called Managed if it is a Defined service with additional agreed-
upon commitments by both the customer and the provider to share the responsibili-
ties of managing the service. Examples of shared responsibilities include monitoring 
the service quality and refining the service to meet changing quality requirements. 
A good example of a Managed service is Salesforce.com’s CRM service. They pro-
vide customization and integration capabilities that allow customers to set up their 
own unique CRM service and share customer-developed applications. Salesforce.
com also supports tracking of service issues and commitments.

16.6.1.4 Strategic Service

An SaaS service is called Strategic if it is a Managed service in which both the 
customer and the provider are able to identify the common, agreed-upon business 
value of deploying the service. Typically, the decision to adopt a strategic service 
is based on business value analyses, such as cost-benefit analysis, ROI, and/or risk 
analysis. We have not found any good example of a Strategic service in today’s SaaS 
solutions, since we do not see the application of business value analyses in SaaS 
services management.

Fundamental to our model is the increasing role that service quality measures 
play in the business relationship as this relationship moves from Ad hoc to Strategic. 
In an Ad Hoc service, there is little or no emphasis on QoS measures. A Defined 
service includes conformance quality measures, a Managed service adds gap qual-
ity to conformance quality measures, and a Strategic service includes value quality 
measures as well as conformance and gap quality measures. The goal of both SaaS 
providers and customers is to increase the depth of their business relationship as the 
service offering moves from Ad hoc to Strategic.
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16.6.2  QoS-Value Graphs—An Instrument for the 
QoS-Focused SaaS Evaluation Model

For our model to be used effectively in the planning of IT services, it must be more 
than just descriptive. In particular, instruments must be available to support the 
definition, tracking, and analysis of the value quality for each QoS attribute that 
is agreed upon by the provider and the customer. Let us consider the following 
example scenario to illustrate how one such instrument, QoS-value graph, can 
assist in a key element of the model for the determination of co-value using QoS 
attributes.

Assume that an agreed-upon QoS attribute is the average response time for a 
set of five important service components of a service offering. We can represent 
in a QoS-value graph the relative value of different average response times for the 
customer and the provider. From this graph, the customer is prescribing that the 
response rates of less than 15 ms have highest values. The customer value decreases 
in a linear fashion for average response times between 15 and 30 ms, dropping 
to zero value for average response times greater than 30 ms. For the provider, the 
value related to response time performance is primarily determined by their capa-
bility to meet response time demands with their delivered service. The value curve 
in Figure 16.4 indicates that it is impossible for the provider to deliver an average 
response time of less than 10 ms for the current service offering. From 10 and 
17 ms, the provider value increases rapidly, representing a technology space that 
could be achieved if significant costs were invested in improving the current ser-
vice system. For greater than 17 ms, the provider value continues to increase in a 
linear fashion, representing decreasing response-time requirements for the SaaS 
provider.
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(average response time)
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Figure 16.4  QoS-value curve with QoS attribute of average response time.
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By using an instrument such as a QoS-value curve, the provider and the cus-
tomer can share important information to assess co-value opportunities and arrive 
at an agreement over average response time commitments. In the case depicted in 
Figure 16.4, one could imagine the provider and the customer arriving at a decision 
to use 17 ms as the basis for an ongoing SLA.

These curves can be used across all QoS attributes that are deemed most impor-
tant in any business relationship involving a Strategic service. As another example 
of the QoS-value curve instrument, consider the use of cost-benefit analysis, a value 
quality attribute, as part of a Strategic service partnership. Figure 16.5 represents 
the situation where the benefits to cost ratio is adopted as a QoS attribute that 
would be defined and tracked. Note that we have decided in this example to inverse 
the normal ratio of cost to benefits to benefits to cost, because it is easier to conceive 
of an increase in customer or provider value as the QoS attribute increases. For 
an SaaS service offering, the customer benefits are the funds saved by deploying a 
service, and the costs are primarily the funds as defined in the service contract with 
the SaaS provider. For the SaaS provider, the benefits would be primarily based on 
the funds received from the customer for delivering the service, and the costs would 
be the funds required to operate the service. The QoS-value curve shows that for 
the provider there is a narrow region (1.6–1.8) of the benefits to cost ratio in which 
the value increases significantly. This represents the situation in which the benefits 
outweigh the costs by a comfortable margin—enough to ensure that the service 
relationship yields real value for the provider.

For the customer, a benefits to cost ratio is of no value until it reaches slightly 
above 1. The customer value then increases somewhat until a ratio of 1.8, at 
which point it increases significantly in a linear fashion. Assuming that a strategic 
service relationship is sought and, therefore, co-value creation is an over-riding 
goal, the provider and the customer can share their QoS-value curves to assist 

Customer

Provider

QoS attribute
(benefits to cost ratio)

1 2 3 4

Va
lu

e

Figure 16.5  QoS-value curve with QoS attribute of benefits to cost ratio.
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in determining what is a viable cost range for the service offering that allows the 
provider to make a reasonable profit and the customer to garner significant value 
from the service.

Additional tools and capabilities for our QoS-focused SaaS evaluation model 
are being planned, and these are outlined in the Section 16.8.

16.7   Related Work in Service Delivery 
and Management

In the past decade, there has been growing interest in the definition of maturity 
models and specifications of best practices in the general area of IT service manage-
ment and delivery. This work is relevant and complementary, but does not apply 
directly to our narrower focus on SaaS evaluation presented in this chapter. For 
completeness, we include a summary of this work in this section.

Frank Niessink et al.’s IT Service CMM [20] is a service maturity model that 
enables IT service providers to assess and further improve their capabilities with 
respect to the IT service delivery. The structure of this model is similar to that 
of Carnegie Mellon University (CMU)/Software Engineering Institute’s (SEI’s) 
Software CMM with five maturity levels: Initial, Repeatable, Defined, Managed, and 
Optimizing; yet the contents are focused on key process areas needed for provision-
ing mature IT services. The model also introduces suitable and practical assessment 
approaches to determine and improve the maturity of the organization. However, 
this approach only aims at the implementation of service processes within IT orga-
nizations, and largely ignores the other important roles of the service customer.

The OGC’s (Office of Government Commerce) ITIL [21] is a framework of 
best practices in information technology, primarily focusing on IT service strat-
egy, design, transition, operation, and improvement. In the past decade, ITIL has 
been adopted worldwide as one of the most popular service-level standards in IT 
organizations. Instead of using ordered levels and process areas, ITIL organizes the 
processes as areas of best practices and describes the details of process implementa-
tion and activities. The emphasis in ITIL is on the delivery of IT services in-house 
by the Information Technology department. ITIL provides some general guidance 
to outsourcing strategies and externally delivered services.

The adoption of SOA solutions in IT requires more specific maturity mod-
els to assess the SOA implementation and identify the SOA business value. Sonic 
Software’s SOA Maturity Model (SOA MM) [32] is one such model, defining 
maturity levels with key business impact within the organization. The model was 
extended to include five aspects by Inaganti and Sriram’s Model [33]: Scope of SOA 
Adoption, SOA maturity levels, SOA expansion stages, return on SOA investment, 
and SOA cost-effectiveness and feasibility. Other SOA maturity models specialized 
in different areas of IT services include IBM’s SOA integration model [34] and 
HP’s SOA domain model [35].
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16.8  Conclusion and Future Work
This chapter provides the basis for a QoS-focused SaaS evaluation model. The key 
contributions are the definition of a four-level SaaS system maturity model and the 
inclusion of a QoS-value graph instrument when using this model. The important 
aspects of this work include the recognition that SaaS evaluation must take into 
account the generation of co-value by both the provider and the customer, and that 
additional tools are needed to assist both the provider and the customer in assessing 
and improving the service quality on an ongoing basis.

Further research is needed into tools that can be adapted to SaaS service offer-
ings, to automatically collect many of the QoS attributes that are agreed to as part 
of a provider/customer SaaS agreement. The evaluation model should also support 
regular reporting of QoS nonconformances and trends in service support (both 
positive and negative). Effort is also needed to integrate our work on SaaS evalu-
ation with the evaluation of other service offering approaches, including in-house 
services and other forms of external services such as outsourcing. Finally, we are 
also investigating evaluation support for selecting the best (or currently most viable) 
SaaS offering among similar offerings by multiple providers. This work involves 
a weighted multi-QoS-attribute approach that could potentially allow the service 
selection decision to be delayed until just before the service is needed.
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17.1  Introduction
With the rapid development of the Internet and information technologies, web 
services has de facto become one of the most significant technologies in the 
domains of both academia and industry [1]. Web services is a modular, self-
organized, and loosely coupled software that can be advertised and accessed 
programmatically across the Internet. It has changed the ways of traditional pro-
gramming, such as object-oriented programming, which is based on the underly-
ing layer, while the web services technology mainly focuses on the abstraction 
of the higher level. Therefore, compared to traditional programming, it is more 
convenient and faster for application designers to construct new softwares based 
on existing applications according to users’ increasing requirements. Nowadays, 
more and more applications have been wrapped into web services, which are 
so-called SaaS (Software as a Service), introduced in the cloud area [1,19,20]. 
However, a single web service does not have to satisfy the requirements of users. 
Therefore, how to effectively integrate several web services into a composite one 
has been a challenge and is attracting more and more attention from the corre-
sponding research area.

Web services composition (WSC) is a complex process involving several steps. 
One of the most significant steps is the process of web services selection for each 
task in WSC. Recently, lots of quality of service (QoS)-driven web services selec-
tion approaches [2–4] have been presented. Nevertheless, few of them consider the 
impact of failure risk in transactional WSC, especially in the scientific comput-
ing environment with transaction, where it possibly leads to losses such as wasted 
time and execution resources. To address this issue, we propose a risk-driven selec-
tion approach for transactional WSC, with which we can spend the same cost on 
the dimension of reliability, but reduce average losses for composition web services 
(CWS). Specifically, we first use a failure-causing tree based on failure atomicity 
to evaluate probable risk losses for each task in the transactional execution path. 
Then, a different relative impact is assigned to each task based on its risk losses, 
to specify reliability requirements. Finally, a modified QoS-driven web services 
selection method is presented. The experiment presented in this chapter proves the 
feasibility of our work.

The rest of this chapter is organized as follows. In Section 17.2, we give a 
detailed formal representation of our model on WSC with transactional prop-
erties. A specific scenario in the scientific computing domain is described. In 
Section 17.3, we introduce the method of risk evaluation for participant tasks 
based on our presented failure-causing tree and propose two algorithms, which 
are used to obtain the relative impact on each task. In Section 17.4, we bring forth 
a modified web services selection algorithm based on the common QoS-driven 
web services selection method presented as our former work. In Section 17.5, a 
simulating experiment has been performed to verify our solution, and then a per-
formance comparison between our method and other related methods has been 
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demonstrated. Section 17.6 provides the summary of related work. Finally, we 
conclude our idea and indicate the future direction in Section 17.7.

17.2  Formalized Model
In order that our work is well expressed, we first formalize the model of our solu-
tion to transactional WSC. According to the literature [5], the authors proposed 
that the process of WSC should be divided into two phases, which consist of 
application-level composition and concretion-level composition, respectively. The 
first phase mainly supports the abstract-level composition based on the types of 
web services, focusing on functional satisfaction for predefined user requirements. 
This generates the optimal workflow to satisfy users’ functional requirements. 
The second phase assigns each task of the plan composed in the first phase with 
concrete instances of candidate web services based on nonfunctional properties. 
Accordingly, our work is based on the second-phase composition, assuming that 
it works after the first phase. This means that our work in this chapter has the 
precondition finished the first-phase composition. In our work, we formalize our 
model of WSC based on the assignment of specific instances of candidate web 
services that are based on nonfunctional properties. We also refer to the concepts 
proposed in the literature [2], where a path for a specific workflow or a kind of 
type-based composition is called for, and a plan for an executable path is named. 
For the sake of facility to represent our problem later, we distinguish between the 
concepts of task and instance of web service, where the latter will be assigned to 
the former so that the former can be executed in the plan. Actually, this concept 
of task is an abstract web service or a service class defined in the literature [2].

In the transactional aspect, we have the precondition that the transactional 
property of each task in CWS has been defined in advance by specific application 
designers. Therefore, the transactional property of the corresponding candidate 
web service should be in compliance with its assigned task.

Definition.17.1 We define each task in a path as a seven tuple t = <tid,I,O,F,Q,e,tp>, 
where the notation tid represents the identifier of task t; notations I and O represent 
the input parameters set and the output parameters set on this task t, respectively; 
notation F denotes requirements of all functional properties of task t; and notation 
Q expresses requirements of nonfunctional properties, such as QoS parameters, 
involved cost, executing time, and availability. Meanwhile, notation e denotes the 
relative degree of impact in the entire path, which would be calculated based on 
our evaluation method presented in Section 17.3 for failure risk of task t in a spe-
cific path. This attribute is explained in Section 17.4. The last notation, tp, defines 
transactional properties specified by application designers according to the features 
of business application, where tp denotes the transactional properties TP = {r, c, nr, 
nc, rc, nrc, nrnc, rnc}. The description for each element in TP is given in Table 17.1.
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In order to understand these transactional properties, we use a state transition 
diagram, as illustrated in Figure 17.1. There are five regular states for each task in a 
transactional CWS. Following is the process of these state transitions.

When one candidate instance of web service has been assigned to the task, 
the web service would be initiated. Correspondingly, the state of this task will 
change to start. After completing the initial process, the state will reach the active 
state, in which the task runs its assigned web service instance. Finally, the state 
of the task will reach the completed state. Certainly, there exist some uncom-
mon states, such as abort/cancel and failed. The abort/cancel state is transferred 
from the start state or the active state. When a task with the transactional prop-
erty ‘r’ is in the failed state, it can be transferred to the active state by replacing 
another alternative web service to retry, as demonstrated in Figure 17.1a. In the 
meanwhile, a task with the transactional property ‘c’ in the completed state can 
be transferred to the compensated state by compensating this task using the cor-
responding compensation operation, as shown in Figure 17.1b. In the nature of 
things, in case that a task with the transactional property ‘cr,’ which is the combi-
nation of the transactional property ‘c’ and the transactional property ‘r,’ is in the 
failed state or the completed state, its state can be changed to the active state or 
the compensated state according to Figure 17.1a and b, respectively, as shown in 
Figure 17.1c. Finally, Figure 17.1d illustrates the state transition for the task with 
the transactional property ‘nrnc.’ When it comes to the failed state, the active 
state cannot be reached because of the transactional property ‘nr’; likewise, while 
it is in the completed state, it cannot be compensated because of its transactional 
property ‘nc.’

Table 17.1  Semantic Description for Each Transactional Property

Property Semantic Description

r It could be retried with another instance of candidate web 
services when the task t executing with the current assigned 
instance of web service causes a failure or an exception.

c It denotes that task t can be compensated by a predefined 
process.

nr It represents task t does not own the transactional property r.

nc It represents task t does not own the transactional property c.

rc The combination between property r and property c.

nrc The combination between property nr and property c.

nrnc The combination between property nr and property nc.

rnc The combination between property r and property nc.
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Definition.17.2 We define a quarter tuple s=<sid,tid,Q,R> for each instance of 
web service that is a member of the candidate services list for being assigned to a spe-
cific task, as defined in Definition 17.1. In this definition, notation sid represents the 
identifier of service s. Notation tid denotes the identifier of the task whose candidate 
services list includes service s. Notation Q represents a set of nonfunctional proper-
ties that should be advertised by the provider of service s. It is very similar with the 
notation Q defined in the task. Finally, notation R denotes the current reliability 
parameter of service s. This parameter can be advertised in the extended description 
language of the web service, such as the prevalent WSDL [21], by the provider.

Definition.17.3 We assume that notation P denotes an execution path. In the 
meanwhile, according to the literature [6], P could be represented in the form of 
workflow patterns. In this chapter, three typical patterns are considered for our 
execution path, because the other workflow patterns can be reduced to these three 
patterns [4]. Now, we introduce some corresponding operators to denote these 
workflow patterns as follows:

 1. Sequence pattern, which is represented by the notation ‘;’. For example, the 
execution path (t1;t2) means that task t2 should be invoked after task t1 is 
completed.

 2. Parallel pattern, which is represented by the notation ‘|’. The execution 
path (t1|t2) means that task t1 and task t2 can execute simultaneously.

Start Active Completed

Abort/cancel Failed

Start Active Completed

Abort/cancel Failed

Start Active Completed

Abort/cancel Failed

Replacing the
alternative web
service to retry

Start Active Completed 

Abort/cancel Failed Compensated 

State Transition Explanation for transition

Compensate

Compensated

As 1.a As 1.b

(d)

(b)

(c)

(a)

Figure 17.1  State transition diagram for task with different kinds of transactional 
properties. (a) State transition for task with transactional property ‘r.’ (b) State 
transition  for  task  with  transactional  property  ‘c.’  (c)  State  transition  for  task 
with  transactional property  ‘rc.’  (d) State  transition for  task with transactional 
property ‘nrnc.’
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 3. Alternative pattern, which is represented by the notation ‘+’. The execu-
tion path (t1 + t2 + … + tm)n means that at least n tasks need selecting to 
execute parallelly from the task set {t1, t2, …, tm}. On the condition n 
equals to 1, we say that the alternative pattern becomes the single selec-
tion pattern.

Figure 17.2 shows a typical execution path that is our motivation application in the 
domain of scientific computing called the ensemble prediction business process. It 
is a new, interesting, and hot research technology in the area of numerical weather 
forecast, and includes several steps, which contain preprocess, perturbation genera-
tion, model forecasting for ensemble members, postprocessing, product generation 
and visualization, and so on [22]. In this figure, the whole of tasks t1 and t2 denotes 
the preprocess step; meanwhile, tasks t3–t7 that should be executed concurrently 
belong to the perturbation generation step. After the completion of the perturba-
tion generation step, several initial samples will be produced, which are used as 
input data for tasks denoting the model forecasting step from t8 to t12. When all 
tasks in the model forecasting step have been performed successfully, task t13 rep-
resenting the postprocessing step can be started. For the product generation step, 
there are several candidate ways represented by tasks t14–t16; however, only one 
candidate task can be selected for execution. Finally, when task t17 denoting the 
visualization step is performed completely, the entire execution path will be ended 
successfully.

In this application, each of the tasks has its own transactional properties for the 
inherent characteristics of this business process. Once a task encounters failures, 
in order to guarantee atomic consistency, forward recovery methods such as retry-
ing operations, or backward recovery methods such as compensation operations 
are required to be executed. In this business process environment, the execution 
of each task needs a very long execution time and high execution cost. Therefore, 
the web services selection for each task needs to consider the impact of failure risk. 
Otherwise, it will waste huge cost in re-executing and recovering corresponding 
tasks in case several tasks cause exception or failure. In Section 17.3, a new evalua-
tion method based on transactional CWS is presented.

t1

t7

t8

t12

t13
t17

t2
t3

t16

t14

Figure 17.2  Process of ensemble prediction formalized as (t1;t2;((t3;t8)|(t4;t9)|
(t5;t10)|(t6;t11)|(t7;t12));t13;(t14 + t15 + t16)1;t17).
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17.3  Evaluation of Failure Risk Losses
17.3.1 Formation of Failure-Causing Tree
The authors of literature [7] put forth the concept of failure risk; they proposed that 
failure risk was a characteristic considering the probability that some faults would 
occur and lead to an impact on the composite service. Distinguished from their 
work, our work just evaluates the losses caused by failure, so that we can obtain 
the relative degree of impact for each task in an execution path of transactional 
composition. We do not regard the probability that some fault will occur at a spe-
cific task or at a specific web service instance. Our method only needs to evaluate 
the causing losses in the event that a task encountered failures or exceptions. In 
order to evaluate failure-causing losses for all tasks in a specific execution path 
defined above, not only should we delve into the execution cost of each task in his-
tory, but we should also consider dependency among tasks in that specific execu-
tion path, especially in a transactional composition environment. Based on this 
idea, we first look into the dependency among tasks. In literature [17], the authors 
made Dependencies Management (DM) coordinate the execution of transactional 
workflow with Dependencies Rules (DR), which was composed of all kinds of 
formal dependencies rules. However, they did not detail these dependencies-related 
transactional aspects. Literature [17] also presented some dependencies between the 
services in transactional composition service (TCS) to guarantee failure atomic-
ity requirement for transactional composition service. It gives four dependencies 
related to transactional properties in TCS. In this chapter, we mainly consider two 
dependencies, which are failure-causing dependency and compensation-causing 
dependency, respectively, on the basis of recovery policies of transactional CWS to 
obtain possible losses caused by the failure of individual tasks. In the following, we 
give the two dependencies based on our WSC environment defined in Section 17.2.

Definition.17.4 Failure-causing dependency (from task ti to task tj): It can be 
denoted as ti tjfailure → . This dependency represents that task tj would be canceled 
or compensated in case of failure of task ti. In other words, the failure of task ti will 
affect task tj in order to preserve transactional correctness for the whole of the pro-
cess. How to perform actions for task tj is decided by its state, and these actions will 
be in support of the evaluation algorithm presented in Section 17.3.2. There exist 
three cases. In order to express well, we define function P(e) in view of the possibil-
ity of event e arising. Function occur(e) represents that event e has been triggered. 
Char ‘*’ denotes any transactional property ‘nr’ or ‘r.’

Case 1:
Precondition:

[ ( ( ) ) ( , )] (P occur ti.state failed tj.state completed tj= = ∧ = = ∈ ∧0 1 ..tp c ti tjfailure= = ∗ ′ ∧  →′ ) ( ).
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Event: occur (ti.state == failed).
Actions for task tj: Abort (tj) ∨ Compensate (tj).

Case 2:
Precondition:

 [ ( ) ) ] (P occur ti.state failed tj.state completed tj.tp= = ∧ = = = = ∧ =0 == ∗ ′∗ ∧  →′ ) ti tjfailure

Event: occur (ti.state == failed).
Action: Abort (tj).

Case 3:
Precondition: 

[ ( ( ) ) ] (P occur ti.state failed tj.state completed tj.t= = ∧ = = = = ∧1 pp c ti tj.failure= = ∗ ′ ∧  →′ )

Event: occur (ti.state = = failed).
Action: Compensate (tj).

Going back to Figure 17.2, there is one failure-causing dependency from task 
t8 to task t3. Namely, there is a condition t tfailure8 3 → . Since task t8 and task 
t3 exist in a sequence pattern, the condition [P (occur (t8.state = = failed) ∧ t3.
state = = completed) = = 1] ∧ (t8.tp = = ′*c′) is true. Finally, according to case 
3, task t3 will be compensated when task t8 causes failure. In the same way, 
there exists the condition t3 t4failure → , and the value of Boolean expression 
P(occur (t3.state = = failed) ∧ t4.state = = completed) ∈ (0,1)] ∧ (t4.tp = = ′*c′) is also 
true. Obviously, according to case 1, we have the conclusion that task t4 may be 
aborted or compensated when task t3 causes failure.

Definition. 17.5 Compensation-causing dependency (from task ti to task tj): 
There is a compensation-causing dependency from task ti to task tj if the compensa-
tion of task ti causes task tj’s compensation. This kind of dependency is caused indi-
rectly by failure of one task in an execution path. We denote by ti tjcompensation →  
the compensation-causing dependency from task ti to task tj, which means task tj 
needs to be compensated after task ti is compensated.

There is a big difference between the two dependencies defined above. In the 
failure-causing dependency ti tjfailure → , the state of task ti must not be the com-
pleted state, and it may arise from two cases, which are its own failure and the 
situation that it is aborted by another task, respectively. In the compensation-
causing dependency ti tjcompensation → , however, the precondition that the states of 
both task ti and task tj should be in the completed state must be satisfied.

Theorem. 17.1 Compensation-causing dependency has transitivity: It means 
supposing ti tjcompensation →  and tj tkcompensation →  to be true, we can obtain that 
ti tjcompensation →  is true.
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Proof: Let the compensation-causing dependencies ti tjcompensation →  and 
tj tkcompensation →  be true. If task ti has been compensated, then it exists in which 
task tj needs to be compensated according to the dependency of compensa-
tion causing ti tjcompensation → ; now it exists in task tj that will be compensated. 
Therefore, we can understand that task tk needs to be compensated in terms of the 
compensation-causing dependency tj tkcompensation → ; thus, it means that the con-
dition of compensation of task ti can lead to the conclusion that task tk needs to be 
compensated. In other words, we can get the result of which compensation-causing 
dependency ti tkcompensation →  is true.

Definition.17.6 Failure-causing tree (let the root of the tree be task t): This kind 
of tree is very similar to a fault tree. It consists of nodes and links, where nodes con-
tain two types, which are operator and task, respectively, while links also contain 
two kinds, which are links based on dependencies defined above. In the failure-
causing tree of task t, the links connected immediately with task t or with operators 
that are connected directly with task t represent failure-causing dependency, and 
the others denote compensation-causing dependency. Following are several rules 
used for the formation of this kind of tree:

Rule 1: If task t is retriable, as we know, in case of caused failure, it can be 
recovered by the mechanics of forward recovery, such as by restarting this 
task with other similar-function web services. Therefore, it need not com-
pensate any other completed tasks. There is only one node representing the 
self of task t in its failure-causing tree.

Rule 2: If there is a parallel pattern or a condition pattern in the original 
execution path, and the failure-causing tree of task t includes those nodes 
representing tasks in a parallel pattern or in a condition pattern and con-
tains one node representing a task before these tasks, we should append 
these nodes representing the task to every offset representing a parallel 
pattern or a condition pattern in the failure-causing tree.

Rule 3: Otherwise, all nodes in the failure-causing tree should conform to the 
tasks’ structure corresponding to the original execution path.

Figure 17.3 shows an example on several dependencies correlating to the busi-
ness transaction requirement in the execution path of ensemble prediction, and a 
typical failure-causing tree with the root node of task t13. Figure 17.3a illustrates 
failure-causing dependency and compensation-causing dependency, which are 
represented by two different kinds of dotted arrows, respectively. Due to lim-
ited space, we only outline the dependencies corresponding to task t13, while 
the others are not shown. It can be known from this figure that there are five 
failure- causing dependencies between task t13 and from task t8 to task 12. It 
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also shows that there are five pairs of compensation-causing dependencies. Figure 
17.3b illustrates a failure-causing tree according to dependencies showed by 
Figure 17.3a, where task t13, and task t8 to task t12 are connected with the opera-
tor AND, which represents that they have a parallel relationship in the failure-
causing tree; the label on the side of each failure-causing dependency denotes 
possibility, as given in Definition 17.4. From this diagram, we can see P(occur 
(t13.state = = failed) ∧ ti.state = = completed) = 1, i ∈ {8, 9, 10, 11, 12}, since there 
is a sequence pattern between task ti and task t13 in the original execution path. 
Meanwhile, the existing operator NULL that has been omitted between task t8 
and t3 represents that they have a sequence relationship in the failure-causing 
tree. (Note: There are three kinds of operators corresponding to the workflow pat-
tern defined above, which are SEQ, AND, and OR)

Theorem.17.2 All of the completed nodes except for the root node in the failure-
causing tree need to be compensated when the root node encounters failure.

Proof: According to Theorem 17.1, and Definitions 17.4 and 17.5, we can prove 
it directly.

17.3.2 Losses Evaluation of Failure Risk for Tasks
We postulate that these two dependencies have been established during the first 
level of WSC. So we can evaluate losses of each task with the help of these depen-
dencies and historical execution information of individual tasks. In the following, 
we show our losses evaluation algorithms based on the failure-causing tree for each 
task in a specific execution path.

(a) (b)

Failure causing dependency Compensation causing dependency OperatorFlow

t13

AND

t8

t3 t4 t5 t6

t11t10t9 t12

t7

1 1 1 1 1 

(t3,nrc)

(t7,nrc)

(t8,nrc)

(t12,nrc)

(t13,nrnc)
(t2,rc)

(t16,nrc)

(t14,nrc)

(t17,rc)

(t1,rc)

Figure 17.3  An example of failure-causing tree. (a) Several dependencies in the 
execution path of ensemble prediction. (b) Failure-causing tree of task t13.



Transactional Services Composition  ◾  419

According to Theorem 17.2, we can infer that the losses caused by the failure 
of a specific task should involve two parts, which are compensation cost part and 
execution cost part along the failure-causing tree. We consider the cost metric as 
two dimensions that are execution time dimension and execution cost dimension, 
respectively. We define the following formula to evaluate the cost-taken of a specific 
execution path or sub-path:
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In this formula, functions f Tt time
p( ) and f Ee e

p( ) represent two different utility 
functions based on the parameter of time dimension and the parameter of execu-
tion cost dimension for path p, respectively. These two functions can be defined 
to unify metrics based on users’ preferences. For example, we can transform 
the time metric and the execution cost metric into the universal metric such as 
money. Variables u and v are weight values specified by the user. Therefore, in 
order to evaluate the losses of a failure task, we should evaluate the total execu-
tion time and execution cost spent by tasks according to its failure-causing tree. 
However, there are different computing ways between execution time and execu-
tion cost due to different structures existing in the failure-causing tree, which 
makes us evaluate them based on its inherent structure separately. In the follow-
ing, we show the respective ways to evaluate these two parameters based on three 
different structures corresponding to the operators in the failure-causing tree. 
Without loss of generality, we postulate that task t is the root node of the failure-
causing tree, and let variables Ttime

p  and Ee
p  represent the total losses of time and 

execution cost in a sub-tree p of the failure-causing tree. From the computing 
methods perspective, sub-trees with the same structure in the failure-causing 
tree may have different computing ways for different kinds of dependencies. In 
order to use a uniform evaluation method based on the structure of the failure-
causing tree covering both kinds of dependencies, we lend the function P(e) as 
defined above to represent the possibility of event e arising. We can obtain P(e) 
as follows:

 

P(e)

P(e) if dependencies belong to
failure-causing dependency

=

;

1;; if dependencies belong to
compensation-causing dependency









  

(17.2)



420  ◾  Cloud Computing and Software Services

Case 1: If there is an operator SEQ between t1 and t2 in a path as illustrated in 
Figure 17.4a, we can evaluate their total time and cost consumed as follows:
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Case 2: If there is an operator AND between t1 and t2–t3 as illustrated in Figure 
17.4b, we can evaluate their total time and cost consumed as follows:
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Case 3: If there is an operator OR between t1 and t2–t3 as showed in Figure 17.4c, 
where t2 and t3 have execution probabilities p2 and p3, respectively, we can evalu-
ate their total time and cost consumed as follows:

(b) (c)

t1

t2

AND

t1

t2 t3

p3p2

t3

t1

t2

OR

(a)

Figure 17.4  Several probable sub-trees in a failure-causing tree. (a) A sub-tree 
with  operator  NULL.  (b)  A  sub-tree  with  operator  AND.  (c)  A  sub-tree  with 
operator OR.
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Case 4: If there is only one node in the failure-causing tree, it means that task t just 
needs an executing forward recovery mechanism, such as retrying this task when 
it encounters a failure. Therefore, we can evaluate its total time and cost consumed 
as follows:
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For the evaluation methods defined above, we use a superincumbent and recursive 
approach to compute cost and time for each kind of sub-tree. Two new variables, 
Ttime

pt1  and Ee
pt1, are introduced to represent evaluation time and evaluation cost for 

the sub-tree pt1, which is generated from the corresponding failure causing tree 
with algorithm of deep first searching (DFS) ended in task t1. TexecTime

ti  and TcpTime
ti  

denote the execution and compensation times of task ti. Meanwhile, EexecCost
ti  and 

EcpCost
ti  represent the execution and compensation costs of task ti. Variables ′TexecTime

ti  
and ′EexecCost

ti  are used to represent possible execution time and cost spent when task ti 
running is aborted by failure causing dependency. Variables Rtytime(t) and Rtycost(t) 
denote the execution time and cost taken by retrying an operation that may be 
replaced by another candidate web service instance. All the variants proposed above 
can be predicted by the history execution information of individual tasks. We use 
the method of mean value on history information [2] or other history-based meth-
ods. For instance, presuming that task t has been executed five times in history, 
each of which has spent a cost of 50, 65, 70, 65, and 80, respectively, we can come 
to a conclusion with the following expression:

 TcpTime
t = + + + + =50 65 70 65 80

5
66.
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We show our method of evaluating losses-taken for a specific task of the failure-
causing tree in Algorithm 17.1, as shown in Figure 17.5, where step 3 is a function 
to compute the total execution time and cost with the failure-causing tree T(t). 
However, there are some overlapped nodes generated in the failure-causing tree 
T(t) existing due to several patterns before them in the original execution path 
such as parallel pattern, since these nodes need to be appended to every offset for 
the formation of the failure-causing tree T(t). Meanwhile, step 4 attains the set of 
overlapped nodes; step 5 obtains the eventual result of both execution time and cost 
considering overlapped nodes; step 7 represents the condition of the existing one 
node in the failure-causing tree. Finally, the algorithm obtains the losses for the 
task t with Formula (17.1) in step 9.

As mentioned by Algorithm 17.1, we can get the loss-taken for a specific task 
according to its related failure-causing tree. However, its precondition is that the 
execution path can be recovered by the backward or forward method. We also need 
to consider the situation that it exists in a task-assigned web service class with no 
compensated property. For this situation, in order to ensure failure consistency for 
executing in the execution path, for tasks after these tasks with no compensated 
property, we need to keep them with a retriable property or assign them the high-
est level of impact in the execution path so that we can select a higher, reliable web 
service to execute. For instance, we can set the reliability requirement for these 
kinds of tasks near to1.

Algorithm 17.2, as shown in Figure 17.6, gives the approach for attaining the 
failure impact of the entire tasks in a specific execution path P formalized as in 
Section 17.2. Step 1 finds the first task with no compensated transactional property. 
Step 2 initializes a set used for marking such tasks with the non-retriable property; 
therefore, steps 3–7 find these tasks with the non-retriable property after task t to 

Algorithm 17.1: Evaluating losses-taken for Task t (ELT) 
Input: Head node T (t); // A failure causing tree of a task t
Output: RealLossescFT t( ) ;
Begin:
1 if T (t).child!= ∅ ;
2  then do
3   ER(T(t),Time,Cost);
4   CaculateOvlapNodes(T(t),OvlapNodeSet);
5   EvaCosideringOvlapNodes(tempTime,tempCost,OvlapNodeSet, Losses Etime

FT t
e
Tr t( ) ( ), );

6  else do

7  
Ttime

FT( )

( )
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;

t
time
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8 end if
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End

Figure 17.5  Algorithm 17.1 for evaluating losses.
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store in set P1. Because these tasks found in steps 3–7 must not encounter any fail-
ures for ensuring correctness, we should set the failure impact value for these tasks 
higher than others, and the value is μ at step 9, which is input by the user. For other 
tasks in the execution path P, we first evaluate losses for these tasks using Algorithm 
17.1, and then uniformly scale losses evaluated for these tasks in the domain [0,1] 
in steps 10–13. Finally, we return the array of failure impacts for all tasks in the 
execution path P. Currently, we have evaluated the failure impacts for all tasks in a 
specific execution path. In Section 17.4, a modified QoS-driven web services selec-
tion algorithm would be given based on the failure impact.

17.4  Selection Algorithm
Now we propose our web services selection approach that is very similar to the 
selection methods based on QoS constraints [2,8]. Our approach differs from these 
methods in that we specify firstly the requirement on the reliability dimension that 
is one dimension of QoS dimensions according to the failure impact of each task. 
Certainly, in the field of QoS-driven WSC, the higher the reliability requirement, 
the more efficient the performance. However, let us consider the situation with the 
same total cost constrained by the user. We need to constrain different require-
ments of reliability for a task base on its failure impact evaluated above, so that 
we can reduce average losses for the related execution path as well as save costs for 
users. Hence, what we first need to do is to decide the requirement of reliability 
dimension for each task in the execution path. In the following, we will give our 
optimization solution model with linear programming [9].

Algorithm 17.2: Calculating Impact for each Task (CIT)
Input: P;//An execution path with transactional properties generated at the first level composition), 
which could be formalized as defined in section two.
Output: impact[t1..tn]: the impact for each task’s failure risk
Begin
1 t=findFirstNCTask(P);//find t.TP not in {nc,rnc,nrnc}
2 P1={};//initialize set P1
3 while (t.next!=null ) do
4  t’=t.next;
5  if  (t’.TP=nr*) //’*’ represents c or nc or null.
6  Add(t’,P1); add task t’ to Set P1.
7 End do
8 for each task ti in P1
9  impact[ti]=µ;//specified by user;
10 for each task ti in (P-P1)
12 Losses[ti]=ELT(T(ti));//get the losses-taken of task t.
13 impact[t1..tN]=scale(losses[t1..tN]);
14 return impact[t1..tn]
End

Figure 17.6  Algorithm 17.2 for calculating impact.
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Let set constant ei represent the equivalent weight between cost dimension and 
cost-taken for reliability dimension from the user’s prospect, which can be statis-
tically calculated in terms of QoS information of candidates for task i. In other 
words, it will increase the cost-taken ei units for task i when we want to enhance the 
requirement of reliability by one unit for task i. Let set variant ri represent the reli-
ability requirement for task i, on which standard task i will select the web service, 
and these kinds of variants will be computed by our linear programming later. The 
array impact[i] is calculated by our Algorithms 17.1 and 17.2 defined above. The 
constant Ruser and Cr represent two values that are the lowest requirement of reli-
ability for composition service and the cost constraint spent on reliability dimen-
sion specified by the user, respectively. The function Reliabilitypath(r1, r2, …, rn) 
calculated based on the control construct of the execution path, by Jorge Cardoso 
et al. in literature [10], denotes the method of computing reliability dimension for a 
composition service that contains task t1, task t2, …, and task tn. In order to ensure 
the minimizing losses and to keep the same cost spent on reliability dimension, we 
will use the following minimum objective function:

 Impact r impact ipath i

i

n

= −
=

∑( ) * [ ]1
1

 (17.7)

For the purpose of keeping the same cost and to guarantee the lowest reliability 
requirement from the global prospect, the following constraints should be satisfied:
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∑ ≤
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In terms of defining variants, functions, and constraints above, we can compute 
the values r1, r2, …, rn.

Based on the steps above, we can modify the web services selection algorithm 
such as Multi-dimension Multi-choice 0–1 Knapsack Problem (MMKP) that has 
been proved an np-hard problem[11,12] solved in our former work in literature 
[8], while one kind of constraint that the requirement on reliability dimension for 



Transactional Services Composition  ◾  425

each task i is ri should be added to [8] so as to assist the selection of candidate web 
services for each task in a specific execution path.

17.5  Experiments and Evaluation
To prove the feasibility for our method in this chapter, we perform the simula-
tive experiment using our Algorithms 17.1 and 17.2 and the selection algorithm 
proposed in Section 17.4. We use the execution path of CWS, as illustrated in 
Figure 17.1 in Section 17.2. We assume that the compensation cost or retrying cost 
of each task is evaluated based on history information. We also presume that the 
communication cost is far less than the cost of compensation and execution in our 
application of ensemble prediction. So we can ignore the impact of communication 
between tasks. Our experiments were carried out on a Intel• machine with 1.86 
GHz and 1.5 GB RAM running Microsoft Windows XP. We used lp_solve_5.5.0 
to solve the integer planning model. All implementations were done in Java.

Table 17.2 shows the relative cost and impact obtained by Algorithms 17.1 
and 17.2 for each task. In this table, symbol α represents the lowest impact factor 
specified by users or designers. The blank cell represents that the cost related to the 
task is very large comparing to other tasks. The last row of this table represents the 
impact for each task in CWS. Finally, we perform the simulative experiment to 
measure the average losses caused by the failure of tasks for CWS. For each task, 
we respectively limit the candidate web services providers from 5 to 12, whose reli-
ability parameters advertised can be implemented by a random function defined 
in JAVA. For the sake of simplification, we postulate that each variable ei for task 
i has the same value. The lowest requirement of initial reliability for CWS is 0.5. 
Meanwhile, the domain of ri is divided into discrete values, which are constrained 
in the set {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1}, and then they are amplified ten 
times so as to become integers. For the moment, we can make use of the Integer 
Programming–based method to get the requirement value of ri for each task i; then 
the method in literature [8] is applied to get the optimal execution plan.

The result of this experiment, as demonstrated in Figure 17.7, with the increas-
ing number of execution times of CWS, is that the average losses with our method 
are always lower than the method [8] of QoS-based web services selection without 
considering the impact of failure risk. We also can see from this figure, with the 
number of execution times growing larger, that the gap of average losses between 
these two methods becomes more stable.

17.6  Related Work
In this section, we overview the major techniques related to our approach. To the 
best of our knowledge, few literatures discuss the full similar topic as our work 
to predict the relative impact based on the evaluation of risk cost for each task 
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in CWS with transactional properties, which provides a policy in support of web 
services selection for CWS. Wu and Yang [13] studied an approach to predict QoS 
parameters for the composition of web services with transaction, and a specifica-
tion model was defined to specify the execution processes of CWS according to the 
exception handling policies of transactions. This algorithm can reduce the error 
rate. However, our work involves a few differences. First, what we discuss is on 
evaluating failure risk losses for individual tasks, while their work focuses on the 
entire execution process. Second, our work is based on the selection of individual 
web services, while their work is based on the selection of execution processes.

Currently, there are several works proposed to evaluate the risk cost for the 
execution process of WSC. Kokash et al. [7,14] explored a method for evaluating 
the risk cost for WSC according to the probability of each candidate service. With 
evaluating the risk cost for all combinations of WSC, they selected optimal plans 
that lead to the least probable risk losses. Obviously, they can get optimal plans 
from the risk losses perspective by considering the risk probability for each can-
didate web service. However, the complexity of their method will increase greatly 
as the number of combinations for WSC becomes large, and its complexity rises 
by the exponent function. Meanwhile, it is very hard to calculate the accurate risk 
cost for CWS because of the uncertainty of each single web service hosted on the 
Internet. And our method to evaluate the risk cost for CWS is not based on a 
single web service. Since our method is based on Algorithms 17.1 and 17.2 and the 
selection algorithm from literature [8], our complexity is the largest among these 
three algorithms, which is the selection algorithm from literature [8]. Obviously, 
the complexity for our method is polynomial. What we use is only the historical 
execution information for each task participating in the WSC evaluated. Therefore, 
our complexity is lower than their complexity. At the same time, our method can 
be in support of the web services selection for each task in the specific composition 
service. Kokash in the literature [14] also proposed a means of service selection 
based on failure risk evaluation of composition to improve composition reliability. 

Our method
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Figure 17.7  Results for different selection methods.
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The main distinctions of our work from his work consist of the following two 
points. First, our method for evaluating the failure risk cost is in terms of our pro-
posed failure-causing tree that is in the context of transactional service composi-
tion. Second, our method for evaluating the failure risk cost does not consider the 
probability of individual service anticipating in the composition service, so that we 
need not consider all combinations for the composition service. Asnar et al. [15] 
refined the Goal-Risk framework introducing the notion of trust for assessing risks 
on the basis of the organizational setting of the system. The assessment process 
was enhanced to analyze risks along trust relations among actors. This method of 
evaluating risks is qualitative, and it does not provide a quantitative risk analysis, 
while our method provides a technique of quantitative failure risk assessment for 
each participating task in the composition service.

More recently, a lot of work has emerged on WSC with transactional support. 
El Haddad et al. [16] studied a QoS-driven web services selection approach in 
combination with the transactional property. In terms of the transactional behav-
ior characteristic of the composition service, they defined two risk levels that are 
risk0 and risk1. Therein the risk0 level guarantees the successful execution of 
the system, whose completed results can be compensated by the user, while the 
risk1 level does not guarantee the system’s successful execution. But if it achieves 
the results, the system cannot be compensated by the users. The selection algo-
rithm proposed in that literature need check the requirement of the transactional 
behavior of composition services first, and then execute based on QoS-driven web 
service selection approach proposed by Zeng and Benatallah in [2]. It is distin-
guishable from our work in that we focus on the evaluation of risk cost for each 
task in the composition service in order to assign each task to the corresponding 
reliability requirement, and we have predefined transactional properties for each 
task according to specific business requirements. In the literature [17], the authors 
proposed a transactional approach for reliable WSCs by ensuring the failure ato-
micity required by the designers. A set of transactional rules had been defined 
to assist designers to compose a valid composite web service with regard to the 
specified accepted termination state (ATS). Its failure atomicity theory paves the 
way for our proposed formation rules of the failure-causing tree, which supports 
the evaluation of risk cost. In the literature [18], the authors explored WSC with 
transactional support. They orchestrated web services based on rules including 
both transactional behaviors and composition patterns.

17.7  Conclusions
Current QoS-driven service selection methods for WSC ignore the failure risk 
impact of each task, and few works focus on WSC with transactional proper-
ties. In this chapter, we have presented a risk-driven services selection method for 
WSC with transactional properties. In our method, a failure-causing tree has been 
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proposed based on failure atomicity of CWS to evaluate risk losses for each task and 
attain the relative impact of each task in the transactional execution path of CWS. 
Then, a linear programming method based on the impact of each task in the execu-
tion path can be used to decide the requirement of reliability dimension for each 
task to support the selection of concrete web services. Actually, our method reaches 
the result proved by our experiment that can reduce average losses caused by fail-
ures of tasks in scientific computing applications, such as the ensemble prediction 
application. In future, we will apply our methods to the practical application of the 
Chinese Ensemble Prediction Application Grid to prove our conclusion further.
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Make tool, 164
workflow languages, 164

Disco, 216
Distributed environments

automation, 229
data integrity and failure handling, 237

discovery mechanism, 238
dynamic evolution, 229
grid vs. cloud computing, 229
present workflow solutions

classic approaches, 239–240
ECA-based approaches, 240–242
orchestration engines, 238

scientific workflows, 242–243
workflow construction, 247–248
workflow modeling

DAG, 231–232
GCD, 230
integer division, two numbers, 232
LCM solution tree, 230–231
logic schemes/textual algorithms, 230
NDVI computation, 231–232
NDVI solution tree, 231
task implementation model, 234–236
task semantics, 236–237
workflow decomposition, 230, 

232–235
workflow orchestration engine, 229

Distributed Interactive Engineering Toolbox 
(DIET) project, 259

Distributed workflow approach, 238
Distribute operator, 100–101
DryadLINQ

“homomorphic Apply” operation, 285
vs. MPI technologies, 294
vertex hierarchy, 288–289

Dryad programming model, 216–218

E

EBI ClustalW2 workflow, 189–191
EC2, see Amazon Elastic Compute Cloud
ECA workflow formalism

abstract workflow, 245
concrete workflow, 245
evolution function/rule, 245–246
GiSHEO project, 244
ontologies, 244
synchronization, 246

Elastic Utility Computing Architecture Linking 
Your Programs to Useful Systems 
(Eucalyptus)

architecture, 24–26
engineering challenge, 24
eucalyptus public cloud (EPC), 26
leveraging the ecosystem, 27–28
notes from the private cloud, 26–27
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Electronic medical record (EMR)
Bloom filter, 366
clinical data, 358
fine-structured and numerical value content, 

365
patient data, 356–357
patient profile, 356–357
Physical Design Advisor, 366
set value and path content, 365
storage, HDFS, 364
structure, 365–366
transaction, RDBMS, 363–364
tree-structure, 364–365
Xbase, 359
XML, 358–359

Encoding, 363
Enterprise knowledge clouds (EKC)

abstracted business enterprise architecture, 
55–57

collective intelligence, 49–50
emerging cloud computing infrastructures, 

48–49
intelligent enterprise, 50–51

Enterprise knowledge management (EKM)
applications, 55
architectural view, 53
artificial intelligence and heuristics, 52
back-end portals, 54
business intelligence, 52
content, 55
core layer, 53
enterprise workflow system, 54
front-end portals, 53
infrastructure, 54
IT deployment domains, 51–52
system evolution, 58
users, 55

Enterprise Resource Planning (ERP) system, 236
Erlang functional programming language, 216
Erlang loss station model, 144–145
Eucalyptus, see Elastic Utility Computing 

Architecture Linking Your Programs 
to Useful Systems

Event-condition-action (ECA) paradigm, 234
Eventual consistency model, 117
Excellence quality, 395
Execute() method, 213
Expressed Sequence Tag (EST) assembly, 

222–223
Extensible Markup Language (XML)

Bigtable, 384
complex healthcare applications, 358

de facto standard, information exchange, 383
EMR, 356–358
experimental evaluations

data scale effects, 377–379
data sets, query patterns, and solutions, 

376–378
Hadoop-specified configurations, 

382–383
hardware and software configurations, 

375–376
query complexity effects, 379–382

healthcare informatics system, 358
indexing

building index, 370–371
EMR content and structures, 364–366
fine-structured data content (FC) index, 

366–367
hash functions, data signatures, 

367–368
input/output, index structures, 

369–370
numerical value content index, range 

query, 366–367
set value content, Bloom filter, 

366–368
structure index, DataGuide, 368–369

query patterns, healthcare informatics, 
360–361

query processing
plan execution, 374–375
plan generation, 373–374
result consolidation and data retrieval, 

374–375
rewriting, 371–373

Xbase
features, 359
Hadoop, 361–362
healthcare-specific analytic engine, 359
information appliance, 361
MapReduce, 361
system architecture, 362–364

F

Failure-causing dependency, 414–416
Fanning process, 233
Fibonacci recursive function, 231
Forrester SaaS maturity model, 392–394
Forward recovery mechanism, 421
Framework for adaptive orchestration 

(FARAO), 241
Function handle management, 257
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G

Gadget framework
OAuth standard, 34
OLSG gadget, 34–35
OpenSocial framework, 34
vs. portlet frameworks, 33–34
SIDGrid preview gadget, 34–35

Gap quality, 395
Generic factory (GFac), 311, 317–318
GiSHEO project, 242–243
Google file system (GFS), 94
Granules

benchmarks
data driven, 221–222
information retrieval, 218–219
k-means algorithm, 219–220
mRNA sequences, 222–224
periodic scheduling, 220–221
streaming substrate, 217–218

cloud computing, 202–203
computational task

finite-state machine (FSM), 207–208
instance and task identifiers, 206
interleaving execution, 208
processing functionality, 205

datasets and collections, 206
deploying applications

communications and resource discovery, 
214

initialization phase, 214–215
InstanceDeployer, 214–215
tracking/steering, 215

developing applications
initialization, 213
MapReduceBase class, 212–213
processing logic, 213
scheduling strategy, 213

diagnostics, 208–209
Hadoop, 216
Map-Reduce framework

advantages, 209
computational pipeline creation, 211–212
graph setup, 211
intermediate results, 209–210
life-cycle observer, 212
results generation, 210

NaradaBrokering
broker network, 203–204
reliable and secure streaming, 204

runtime, 205
scheduling strategy specification, 206–207

Greatest common divisor (GCD), 230
GridBatch

BLO, 106–107
Cartesian operator, 103
DFS extension, 98–99
distribute operator, 100–101
join operator, 101–102
map operator, 100
median computation

finding medians, algorithm, 110
GridBatch approach, 112–113
MapReduce approach, 111–112
MapReduce vs. GridBatch, 113–114
traditional enterprise approach, 108–109

neighbor operator, 105–106
recurse operator, 103–105

Grid computing system, 141–142
GridRPC

API
asynchronous GridRPC control 

functions, 258
asynchronous GridRPC wait functions, 

258
error reporting functions, 258–259
function handles and session IDs, 257
GridRPC call functions, 258
initializing and finalizing functions, 257
NES, 259
remote function handle management 

functions, 257
standardization, 256

binding, servers, 269
data representation, 270
exception handling and fault tolerance, 

269–270
GridSolve

agent scheduling, 263–264
client scheduling, 266–267
computational resources, server-proxies, 

265–266
definition, 259–260
overview and architecture, 260–261
server performance prediction, 264–265
task graph scheduling, 267–268
transparency and ease of use, 261–263

network-based software services
Cedar project, 255
client–server interaction, 255
data marshaling, 255–256
high-performance computing, 256
library procedure, 254–255
stub procedure, 255
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parameter passing, 268–269
performance, 270–271
security, 272
transparency, 272

GridSolve
agent scheduling, 263–264
client scheduling, 266–267
computational resources, server-proxies, 

265–266
definition, 259–260
overview and architecture, 260–261
server performance prediction, 264–265
task graph scheduling, 267–268
transparency and ease of use, 261–263

GridSolve Interface Definition Language 
(gsIDL) file, 261–262

H

Hadoop Distributed File System (HDFS), 129, 
216, 361

Haskell functional programming language, 216
High-energy physics (HEP), 285, 290, 292
High-order chemical language (HOCL), 244
High-performance computing (HPC)

combination with traditional management 
technology, 74–75

virtualized computing resources, 74
High-performance parallel computing

benchmarks and results
concurrent wave equation solver, 298, 

302
different hardware/VM configurations, 

296, 298
dom0 and domU communication, 303
EC2 cloud infrastructure, 305
Eucalyptus infrastructure, VM image, 

296
k means clustering, 298–301
LAM vs. OMPI, 303–304
matrix multiplication application, 

298–299
speedups and overheads calculation, 296
virtualization, 303

Cloud technologies, 277
Apache Hadoop, 278–279
CGL-MapReduce, 279–280
DAG, 278
Dryad and DryadLINQ, 279
MPI, 280–281

computation and communication 
complexities, 296–297

data analyses applications
Alu clustering problem, 287
CAP3, sequence assembly program, 

283–285
Dryad implementation, 288–289
high-energy physics (HEP), 285
iterative MapReduce, k means 

clustering and matrix multiplication, 
285–287

MPI implementation, 289–290
O(N  2) factor of 2, 288
Smith–Waterman dissimilarities, 287

evaluations
CAP3 and particle physics, 290–293
different computation clusters, 290–291
k means and matrix multiplication, 

292–293
Smith–Waterman–Gotoh algorithm, 

294
threaded implementation, 294–295

programming models
data/compute-intensive analyses, 283
Disco, 283–284
Dryad, 283
Hadoop, 281, 283
map and reduce tasks, 281
Sphere, 284
task communication, 284
three basic execution units, 281, 283

Hoff’s cloud model, 11–13

I

ICD-9 code, 372
Indexing process

building index, 370–371
EMR content and structures, 364–366
fine-structured data content (FC) index, 

366–367
hash functions, data signatures, 367–368
input/output, index structures, 369–370
numerical value content index, range query, 

366–367
set value content, Bloom filter, 366–368
structure index, DataGuide, 368–369

Infrastructure as a Service (IaaS)
Eucalyptus, open-source

architecture, 24–26
engineering challenge, 24
Eucalyptus Public Cloud (EPC), 26
leveraging the ecosystem, 27–28
notes from the private cloud, 26–27
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IaaS layer, 178–179
Nimbus toolkit

CernVM, cloud computing ecosystem, 
32–33

CloudBLAST, 33
context broker, 30
EC2-style VM deployment, 29
meeting STAR production demands, 

31–32
WSRF interface, 29

quality-of-service aware interface, 23
self-service interface, 23

Institutional grid computing
benefits, 176–177
drawbacks, 177
layers and services, 175–176

Interlacing detection, 106
Internet Data Center (IDC) infrastructure

cloud example, 79–80
development bottleneck, 75–76
in 3G era, 80–81
making fixed costs variable, 79
new infrastructure solution, 76–77
value for IDC users, 78–79
value for service providers, 77–78

Inter-processes communication, 185

J

Java database connectivity (JDBC), 206
Java Virtual Machine (JVM), 217
JobLifecycleObserver interface, 215
Job scheduling system, 95
Job Submission Description Language (JSDL), 

240
Join operator, 101–102

K

Kaufman–Roberts algorithm, 145
Knowledge database (KDB), 362–363

L

Large-scale data processing
computation profile, 91
GridBatch

BLO, 106–107
Cartesian operator, 103
DFS extension, 98–99
distribution operator, 100–101
join operator, 101–102
map operator, 100

median computation, 107–114
neighbor operator, 105–106
recurse operator, 103–105

higher-level programming languages, 136
MapReduce

cloud OS implementation (see Cloud OS 
MapReduce implementation)

Dryad model, 97
failure handling, 95–96
optimization, 96–97
programming model, 93–94
sketch implementation, 94–95

Large-scale scientific dataset, dynamic 
provisioning

cloud computing and data, 39–41
science gateways for data, 39
storage factors, 38–39

Least common multiple (LCM), 230
LifecycleMetrics, 215
Linked Environments for Atmospheric 

Discovery (LEAD) workflow system, 
19, 310

Linpack benchmark, 265
Loosely coupled application, see Scientific 

workflows

M

Map abstraction
biometrics, 158
definition, 157
iris code, 158

Map operator, 100
Mapping process, 233–234
MapReduce, 154

cloud OS implementation (see Cloud OS 
MapReduce implementation)

computational pipeline creation, 211–212
definition, 331, 334
Dryad model, 97
failure handling, 95–96
graph setup, 211
life-cycle observer, 212
map and reduce role, 210
optimization, 96–97
parallel execution, cluster of machines, 334
performance

conversion tasks, 347–348
integration and loading time evaluation, 

346
two clusters, time measurements, 

346–347
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programming model, 93–94
scale-out techniques, 334–335
sketch implementation, 94–95
system architecture, Xbase, 361

Matrix-based computations, 186
Matrix multiplication, 221–222
Mean time to failure (MTTF), 148–149
Message aggregation techniques, 125
Message-passing infrastructures (MPIs)

cloud technologies, 278
computation and communication 

complexities, 296–297
de facto standard, parallel programming, 

280
implementation, 289–290
parallel programming runtimes, 281–282
performance, clouds

concurrent wave equation solver, 298, 
302

different hardware/VM configurations, 
296, 298

dom0 and domU communication, 303
EC2 cloud infrastructure, 305
Eucalyptus infrastructure, VM image, 

296
k means clustering, 298–301
LAM vs. OMPI, 303–304
matrix multiplication application, 

298–299
speedups and overheads calculation, 

296
virtualization, 303

Messenger Ribonucleic acid (mRNA), 222
Metadata, 362–363
Microarray gene expression analysis, 320–321
MicroRNA and mRNA integrated analysis 

(MMIA)
BioVLAB

architecture, 323
experimental results, 324

disease information, dys-regulated miRNA 
expression, 321

functional, pathological, and pathway 
information, 321

Microsoft SaaS maturity model, 391–392, 394
Minimum completion time algorithm, 

263–264
Minimum self-contained graphs (MSGs), 336
Molecular docking, 184
Montage workflow, 187, 189
M45 test bed, 311
Multi-threading techniques, 125–126

N

NaradaBrokering
broker network, 203–204
reliable streaming, 204
secure streaming, 204

Neighbor operator, 105–106
NEOS server, 259
Network-enabled servers (NES), 259
Network weather service (NWS), 266–267
Nimbus toolkit

CernVM, cloud computing ecosystem, 
32–33

CloudBLAST, 33
context broker, 30
EC2-style VM deployment, 29
meeting STAR production demands, 

31–32
WSRF interface, 29

Node reliability
mean, 149
MTTF, 148–149
partition reliability, 150–151
virtual machine, 148
Weibull distribution, 148–149

Normalized differential vegetation index 
(NDVI), 231–232, 243

O

Office of Government Commerce (OGC’s) 
ITIL, 404

Ontology Web Language for Services 
(OWL-S), 240

Open Grid Computing Environments (OGCE), 
34, 310, 317

Open Life Science Gateway (OLSG) gadget, 
34–35

P

Parallel programming, 157
Pass-by-reference procedure, 268
Pass-by-value procedure, 268
Petri nets, 238
Phoenix, 216
Platform-as-a-Service (PaaS), 7, 178
Process-oriented workflows, 235–236
ProgressTracker, 215
Protein Data Bank (PDB), 19
Public computing, see Volunteer computing
Push iterator interface, 127
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Q

QoS-focused SaaS evaluation model
applications, 390
business relationship

customer organization view, 396–397
maturity levels, 399–400
provider organization view, 395–396
quality definitions, 394–395

co-creation, business value
commodity service, 399
phases, service delivery, 397–398
ROI, 398
service system, 397

Forrester SaaS maturity model, 392–394
Microsoft SaaS maturity model, 391–392, 

394
quality management, 390–391
service delivery and management, 404
specifications

ad hoc service, 399, 401
Defined service, 401
Managed service, 401
QoS-value graphs, 402–404
Strategic service, 401

Qt Concurrent, 216
Query processing

plan execution, 374–375
plan generation, 373–374
result consolidation and data retrieval, 

374–375
rewriting, 371–373

R

RDF, see Resource description framework
Recurse operator, 103–105
Reduce process, 233–234
Relational database management system 

(RDBMS), 363
RENCI science gateway, 36–38
Request blocking probability modeling

computational nodes, 145
dimensioning curve, multiple resource 

classes, 146–147
Erlang loss station model, 144–145
Kaufman–Roberts algorithm, 145
node occupancy, 145–146
Poisson process, 145

Resource description framework (RDF)
blank nodes, 333
distributed SPARQL query responses

performance statistics, 348–349
PPI, 348–349
Sesame’s performance, 349–350

graph decomposition and molecule 
merging

equivalent graph, 345
Jena, 345–346
naïve decomposition algorithm, 344

graph, yeast protein, 332–333
identity reconciliation process, 332
MapReduce performance, 346–348
modules

CBD graph, 336
complexity, time, 341–342
decomposition and merging operators, 

337
findBlankNodeMap algorithm, 

342–343
hierarchies, 338–339
MSGs, 336
naïve graph decomposition algorithm, 

340
ordering, 339–340
PPI, 337–338
pseudocode, 340–341
relative granularity levels, 336

molecule store, 344
objectives, 333–334
ontologies, 332
proposed architecture, 331–332
protein–protein interaction test bed, 

343–344
scalability, 350
scale-out architecture, 334–335
scale-out distributed processing, 344–345

Resources requisition and allocation framework, 
142–143

Reverse index application, 135
Ripple down rules (RDR) approach, 239–240
Risk evaluation-based selection approach

assessment process, 428
CWS, 427
experiments and evaluation, 425–426
formalized model

alternative pattern, 414
business process environment, 414
concretion-and abstract-level 

composition, 411
ensemble prediction process, 414
parallel pattern, 413
quarter tuple, 413
semantic description, 411–412
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sequence pattern, 413
state transition diagram, task, 412–413
transactional aspect, 411

risk losses failure
failure-causing tree formation, 415–418
task, 418–423

selection algorithm
array impact, 422–424
constraints satisfaction, 424
minimum objective function, 424
reliability dimension, 423–424

WSC process, 410, 427

S

Sawzall programming language, 215
Scientific computing environments (SCEs), 

262
Scientific workflows

application, bioinformatics, 187
communication, file transfer, 189
definition, 186–187
Montage workflow, 187, 189
SIPHT workflow, 187–188
Taverna workflow, 189–191

Scufl language, 240
Semantic contract, 236–237
Semantic Web Search Engine (SWSE) 

architecture, 335
Sequential and conditional process chaining, 

235
Server administration, 262–263
Service level agreements (SLAs), 401
Service-oriented architecture (SOA), 236
Service-oriented workflow, 236
Shared-nothing approach, 335
Simple queue service (SQS), 115
Single-app SaaS, 393
Single program/process, multiple data (SPMD) 

model, 203, 216
Skynet, 217
Social Informatics Data Grid (SIDGrid)

access, multimodal data, 19
SIDGrid preview gadget, 34–35

Software as a Service (SaaS)
layer, 178
science gateway architecture, 36–38
UCSB-IBM cloud ontology, 5–7

Software kernel layer, 9
Software parks

cloud computing architecture, 83–84
outsourcing demonstration plot benefits, 83

outsourcing service companies benefits, 83
outsourcing software research and 

development platform, 84–85
software outsourcing ecosystems, 82

Sparse-pairs abstraction
genome assembly, 161
Sorghum bicolor genome, 162

SPI cloud classification
cloud infrastructure systems, 4
cloud platform systems, 3–4
cloud software systems, 3

sRNA identification protocol using high-
throughput technology (SIPHT) 
program, 187–188

Status tracking mechanism, 123–124
Stubless clients, 261–262
Syntactic contract, 236

T

Task discovery mechanism (TDM), 237–238
Taverna workflow, 189–191, 240
TeraGrid, 175
TeraGrid Science Gateway program, 19
Transactional composition service (TCS), 415
Twister, iterative MapReduce runtime, see 

CGL-MapReduce

U

UCSB-IBM cloud ontology
classification model, 5
cloud hardware/firmware, 9–10
cloud software environment (PaaS), 7
cloud software infrastructure, 8–9
Jackson’s expansion on, 10–11
SaaS applications, 5–7
software kernel layer, 9

V

Value quality, 395
Vienna distributed rules engine (VIDRE), 241
Virtual machine technology, 141, 148
Volunteer computing, 175

benefits, 181
disadvantages, 181–182
platform structure, 180–181
World Community Grid, 181
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W

Wavefront abstraction
bioinformatics, 163–164
dynamic programming, 164
game theory, 163–164
multicore processor, 163

Wave simulation, 186
Web Service Description Language (WSDL), 

236
Web Service Resource Framework (WSRF), 29
Web Services, 236, 238–239
Web services composition (WSC) 

process, 410
Weibull distribution, 148–149
Workflow decomposition, 230

conditional construct, 233–234
iterative constructs, 233
join construct, 233–234
map-reduce workflow pattern, 233, 235
parallelism approach, 234
sequence construct, 232–233
split construct, 233
trivial constructs, 234
well-defined workflow, 234

Work Queue software, 156, 164–165, 169
WS-BPEL 2.0 language, 239

X

Xbase
BF-index and DG+-index, 375
design, 385
features, 359
Hadoop, 361–362
healthcare-specific analytic engine, 359
information appliance, 361
MapReduce, 361
parallel vs. serial-chain execution, 373
system architecture, 362–364
task scheduler, 373–374

XBaya workflow system
components, 313
management, authentication and 

authorization, 313
monitoring, 316
orchestration, 315–316
workflow composition, 313–314

XML, see Extensible Markup Language
XRegistry service, 312, 314
XScufl language, 240

Y

Yet another workflow language (YAWL), 239
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