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Abstract. This paper reviews the Ogre classification of Big Data application with 
50 facets divided into four groups or views. These four correspond to Problem 
Architecture, Execution mode, Data source and style, and the Processing model used. 
We then look at multiple existing or proposed benchmark suites and analyze their 
coverage of the different facets suggesting a process to obtain a complete set. We 
illustrate this by looking at parallel data analytics benchmarked on multicore clusters. 

Keywords. Big Data, Benchmarking, Analytics, Database 

1. Introduction 

We propose a systematic approach to Big Data benchmarking based on a recent 
classification (Ogres) of applications using a set of facets or features divided into 4 
dimensions: Problem Architecture (or Structure), Execution mode, Data source, storage 
and access, and the Processing algorithms used. This is reviewed in Section 2 and 
summarized in a detailed Table given in the Appendix. We analyze many existing and 
proposed benchmark sets in section 3 and show how they cover the set of facets. We give 
some examples of benchmarking data analytics on clusters in Section 4 and propose 
further steps in Section 5. 

2. Overview of Ogres 

2.1. What is an Ogre? 

The Berkeley Dwarfs [2] were an important step towards defining an exemplar set of 
parallel (high performance computing) applications. The recent NRC report [3] gave 
Seven Computational Giants of Massive Data Analysis, which start to define critical 
types of data analytics problems. We propose Ogres [4-6] ― an extension of these ideas 
based on an analysis by NIST of 51 big data applications [7, 8]. Big Data Ogres provide 
a systematic approach to understanding applications, and as such they have facets which 
represent key characteristics defined both from our experience and from a bottom-up 
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study of features from several individual applications. The facets capture common 
characteristics which are inevitably multi-dimensional and often overlapping. We note 
that in HPC, the Berkeley Dwarfs were very successful as patterns but did not get adopted 
as a standard benchmark set. Rather the NAS Parallel Benchmarks [9], Linpack [10], and 
(mini-)applications played this role. This suggests that benchmarks do not follow directly 
from patterns, but the latter can help by allowing one to understand breadth of 
applications covered by a benchmark set.  

 

2.2. Ogres have Facets 

We suggest Ogres possess properties that we classify in four distinct dimensions or 
views. Each view consists of facets; when multiple facets are linked together, they 
describe classes of big data problems represented as an Ogre. One view of an Ogre is the 

Figure 1: The 4 Ogre Views and their Facets 



overall problem architecture (labelled AV) which is naturally related to the machine 
architecture needed to support data intensive application. Then there is the execution 
(computational) features view (labelled EV), describing issues such as I/O versus 
compute rates, iterative nature of computation and the classic V’s of Big Data: defining 
problem size, rate of change, etc. The data source & style view (labelled DV) includes 
facets specifying how the data is collected, stored and accessed. The final processing 
view (labelled PV) has facets which describe classes of processing steps including 
algorithms and kernels. Ogres are specified by the particular value of a set of facets linked 
from the different views.  

The views are illustrated in Figure 1 and listed in Table A in the Appendix. Table A 
also lists in its last 3 columns a measure of the coverage of two types of benchmarks – 
those of SPIDAL from Section 3.1 and those of the database survey given in section 3.2 
with the rightmost column listing the application coverage of the NIST survey [7, 8]. 

In our language, instances of Ogres can form benchmarks. One can consider 
composite or atomic (simple, basic) benchmarks. For example, a clustering benchmark 
is an instance of an Ogre with a Map-Collective facet in the Problem Architecture view 
and the machine learning sub-facet in the Processing view. The Execution view describes 
properties that could vary for different clustering algorithms and would often be 
measured in a benchmarking process. Note a simple benchmark like this could ignore the 
Data Source & Style view and just be studied for in-memory data. Alternatively we can 
consider a composite benchmark linking clustering to different data storage mechanisms. 
A given benchmark can be associated with multiple facets in a single view, i.e. clustering 
has other problem architecture facets including SPMD, BSP, and Global Analytics.  

3. Particular Benchmarks as instances of Ogres 

Our approach suggests choosing benchmarks from Ogre instances that cover a 
diverse range of facets. Rather than trying to be comprehensive at this stage, we give 
some examples. Note that kernel benchmarks are instances of Ogre Processing facets 
classified as PV2 to PV13; this is where the NAS parallel benchmarks or TeraSort [11] 
would fit. Further we have micro-benchmarks such as MPI ping-pong and SPEC [12] as 
facet PV1 and giving measures of Ogre execution facets EV1 to EV5. In sections 3.1, 
3.2 and 3.3 we go through 3 different sources of benchmarks comparing them to facets. 

3.1. SPIDAL Library as Ogre Benchmarks 

We are part of a recently started NSF project from the DIBBs (Data Infrastructure 
Building Blocks) program where one can use Ogres to classify Building Blocks that are 
part of the SPIDAL Scalable Parallel Interoperable Data Analytics Library, which is the 
focus of this program. In Table 1, we list the proposed library members from this project 
with more details available [13, 14]. Note each problem can provide benchmarks for 
many different execution view facets. For example the first set (Graph Analytics) are all 
instances of the Graph Algorithm facet of the Processing view and either the Map Point-
to-Point and/or Shared memory facets in the Problem architecture view. In the second 
group of spatial kernels, we find queries from the Search/Query/Index and MapReduce 
facets with Spatial Clustering from Global Machine Learning, Map-Collective and 
Global Analytics facets and Distance-based queries from Pleasingly Parallel and 
Search/Query/Index facets. These benchmarks all have the spatial data abstraction facet 



and could be involved with GIS facet. In Machine Learning in general and for image 
processing categories we find several Clustering algorithms illustrating O(N), O(N2), and 
Metric (non-metric) space execution view facets; Levenberg-Marquardt Optimization 
and SMACOF Multi-Dimensional Scaling with Linear Algebra Kernels and Expectation 
maximization/least squares characteristic in optimization methodology facet from 
Processing view; TFIDF Search and Random Forest with Pleasingly Parallel facets. All 
exhibit the machine learning sub-facet of the processing view. In the last 3 columns of 
Table 1, we quantify this, listing facets for each SPIDAL library member for three of the 
four facet views. The analytics focus of this project implies little overlap with the Data 
Source & Style view and some of the entries are preliminary estimates which need more 
study. Further the SPIDAL project reviewed the Apache libraries MLlib and Mahout in 
choosing their library members. 
 
    Algorithm Applications Problem 

Arch View  
Execution 
View 

Processing 
View 

            Graph Analytics GA 

1 Community detection Social networks, webgraph 3, 4, 7 9S, 10I, 11, 
12G 

3, 9ML, 13 

2 Subgraph/motif finding Webgraph, biological/social 
networks 

4, 7 9D, 10I, 12G 3, 9ML, 13 

3 Finding diameter Social networks, webgraph 4, 7 9D, 10I, 12G 3, 9ML, 13 

4 Clustering coefficient Social networks 4, 7 9S, 10I, 11, 
12G 

3, 9ML, 13 

5 Page rank Webgraph 3, 4, 7 9S, 10I, 11, 
12V 

3, 9ML, 12, 
13 

6 Maximal cliques Social networks, webgraph 4, 7 9D, 10I, 12G 3, 9ML, 13 
7 Connected component Social networks, webgraph 4, 7 9D, 10I, 12G 3, 9ML, 13 

8 Betweenness centrality Social networks 6 9D, 10I, 
12G, 13N 

9ML, 13 

9 Shortest path Social networks, webgraph 
6 9D, 10I, 

12G, 13N 
9ML, 13 

          Spatial Queries and Analytics SQA    

1 Spatial relationship based 
queries 

GIS/social 
networks/pathology 
informatics (add GIS in data 
view) 
 

2 12P 6 

2 Distance based queries 1 12P 2 
3 Spatial clustering 3, 7, 8 12P 3, 9ML,EM 
4 Spatial modeling 1 12P 2 

         Core Image Processing IP 
1 Image preprocessing 

Computer vision/pathology 
informatics 
 

1 13M 2 

2 Object detection & 
segmentation 

1 13M 2, 9ML 

3 Image/object feature 
computation 

1 13M 2, 9ML 

4 3D image registration 1 13M 2, 9ML 
5 Object matching 1 13N 2, 9ML 
6 3D feature extraction 1 13N 2, 9ML 

         General Machine Learning GML 

1 DA Vector Clustering Accurate Clusters 
3, 7, 8 9D, 10I, 11, 

12V, 13M, 
14N 

9ML, 9EM, 
12 



2 DA Non-metric Clustering Accurate Clusters, Biology, 
Web 

3, 7, 8 9S, 10R, 11, 
12BI, 13N, 
14NN 

9ML, 9EM, 
12 

3 Kmeans; Basic, Fuzzy and 
Elkan Fast Clustering 

3, 7, 8 9D, 
10I(Elkan), 
11, 12V, 
13M, 14N 

9ML, 9EM 

4 Levenberg-Marquardt 
Optimization 

Non-linear Gauss-Newton, 
use in MDS 

3, 7, 8 9D, 10R, 11, 
12V, 14NN 

9ML, 9NO, 
9LS, 9EM, 
12 

5 DA, Weighted SMACOF MDS with general weights 
3, 7, 8 9S, 10R, 11,  

12BI, 13N, 
14NN 

9ML, 9NO, 
9LS, 9EM, 
12, 14 

6 TFIDF Search Find nearest neighbors in 
document corpus  

1 9S, 10R, 
12BI, 13N, 
14N 

2, 9ML 

7 All-pairs similarity search 
Find pairs of documents with 
TFIDF distance below a 
threshold 

3, 7, 8 9S, 10R, 
12BI, 13N, 
14NN 

9ML 

8 Support Vector Machine SVM Learn and Classify 
3, 7, 8 9S, 10R, 11, 

12V, 13M, 
14N 

7, 8, 9ML 

9 Random Forest Learn and Classify 
1 9S, 10R, 

12BI, 13N, 
14N 

2, 7, 8, 9ML 

10 Gibbs sampling (MCMC) Solve global inference 
problems 

3, 7, 8 9S, 10R, 11, 
12BW, 13N, 
14N 

9ML, 9NO, 
9EM 

11 
Latent Dirichlet Allocation LDA 
with Gibbs sampling or Var. 
Bayes 

Topic models (Latent factors) 
3, 7, 8 9S, 10R, 11, 

12BW, 13N, 
14N 

9ML, 9EM 

12 Singular Value Decomposition 
SVD 

Dimension Reduction and 
PCA 

3, 7, 8 9S, 10R, 11, 
12V, 13M, 
14NN 

9ML, 12 

13 Hidden Markov Models (HMM) Global inference on sequence 
models 

3, 7, 8 9S, 10R, 11, 
12BI 

2, 9ML, 12 

Table 1: The proposed members of SPIDAL library  [13] and the Ogre facets that they support. There are no 
SPIDAL library members directly addressing Data Source & Style View (except spatial analytics and GIS) and 
so that is omitted. 

3.2. Well Established Data Systems and Database Benchmarks 

Big Data has an excellent base set of benchmarks coming from the long established 
efforts of the database community with important Industry contributions. We build on 
Baru and Rabl’s excellent tutorial [15], which has a thorough discussion of benchmarks 
including the TPC series [16], HiBench [17], Yahoo Cloud Serving Benchmark [18], 
BigDataBench [19], BigBench [20] and Berkeley Big Data Benchmark [21] that quantify 
the Ogre Data Source & Style facets. We summarize these and other important 
benchmarks from Europe [22], SPEC [23] and other micro-benchmark  [24, 25] and 
analytics and social networking studies [26-29] in the following sections.  

3.2.1. Micro Benchmarks 

The SPEC Benchmarks [23] are well known here and they cover a variety of areas 
including CPU, HPC, Servers, Power, Virtualization and the Web. SPEC has set up a 



Big Data working group [30] that will further improve SPEC benchmarks in this area. 
There are several studies of I/O performance including use of flash storage [24] and 
HDFS [25]. These types of benchmarks correspond to Ogre facets that include DV3-4 
and PV1-2. 

3.2.2. Enterprise Database Benchmarks: TPC 

The Transaction Processing Performance Council TPC [16] benchmarks are well-
known and central to the database industry. TPC covers multiple areas including OLTP 
online transaction processing with the PC-C and TPC-E sets. Business Intelligence is 
represented by the warehouse TPC-H benchmark with non-trivial fixed schema and 
arbitrary scale factor 1GB to 100TB. There is also the database oriented TPC-DS 
benchmarks featuring nontrivial processing. The TPCx-HS Benchmark [31] is aimed at 
Hadoop Systems. These benchmarks correspond to OGRE facets AV2, EV10 DV1, 2, 4, 
PV3, 6. 

3.2.3. Enterprise Database Benchmarks: BigBench 

BigBench [32, 33] is an industry-led effort to define a comprehensive Big Data 
benchmark that emerged with a proposal appearing in the first workshop on Big Data 
benchmarking (WBDB) [34]. It is a paper and pencil specification, but comes with a 
reference implementation to get started. BigBench models a retailer and benchmarks 30 
queries around it covering 5 business categories depicted in the McKinsey report [35]. 
The retailer data model in BigBench addresses the three V’s – volume, variety, and 
velocity – of Big Data systems. It covers variety by introducing structured, semi-
structured, and unstructured data in the model. While the first is an adaptation from the 
TPC-DS benchmark’s data model, the semi-structured data represents the click stream 
on the site, and unstructured data denotes product reviews submitted by users. Volume 
and velocity are covered with a scale factor in the specification. BigBench is aimed at 
modern parallel databases like Hive Impala and Shark and covers Ogre facets AV2, EV4-
6,9,10 DV1, 2, 4, PV3, 6. 

3.2.4. Enterprise Database Benchmarks: Yahoo Cloud Serving Benchmark 

This Yahoo cloud serving benchmark [18] benchmarks basic (CRUD) operations (insert, 
read, update, delete, scan) store for major NoSQL key-value systems Accumulo, 
Cassandra, Dynamo, HBase, HyperTable, JDBC, MongoDB, and Redis Voldemort. This 
exhibits Ogre Facets DV1,4 and PV6. 

3.2.5. Enterprise Database Benchmarks: Berkeley Big Data Benchmark 

The Berkeley Big Data Benchmark [21] investigates parallel SQL and Hadoop 
environments: Redshift, Hive, Shark, Impala, Stinger/Tez. It takes workloads and 4 
distinct SQL style queries from an earlier work from Brown University and collaborators 
(called CALDA) that produced a similar Hadoop benchmark [36, 37]. This shows Ogre 
Facets AV2,12 EV9,10 DV1,2,4, PV3,6. 

3.2.6. HiBench and Hadoop Oriented Benchmarks from Database to Analytics 

Here we summarize several Hadoop oriented benchmarks with HiBench [17, 38]  as 
the most comprehensive. It has five components including: 



1. Micro benchmarks including sort, WordCount, and TeraSort, which is a Hadoop-
based sort benchmark [11] from Apache. Further the HDFS DFSIO benchmark [39] 
is enhanced as EnhancedDFSIO. 

2. HiBench includes a Web search benchmark built around Apache Nutch (web 
crawler) Indexing, and PageRank. 

3. It includes some Machine learning with Bayesian Classification (training) and K-
means Clustering from Apache Mahout [40] 

4. It has OLAP analytical query with Join and Aggregation from Hive performance 
benchmark [41].   

5. HiBench recently added an ETL-Recommendation Pipeline, which updates 
structured web sales data and the unstructured web logs data, and then recalculates 
the up-to-date item-item similarity matrix, which is the core of online 
recommendation. [42]  
Other Hadoop benchmarks include one [43] from IBM that includes Terasort and 

the trace-based SWIM [44, 45] (Statistical Workload Injector for MapReduce), a 
benchmark representing a real-world big data workload developed by University of 
California at Berkley in close cooperation with Facebook. Gridmix [46] is another 
Hadoop trace-based benchmark and Terasort is extended [47] with several related 
benchmarks testing I/O subsystems: GraySort, MinuteSort, and CloudSort. The work of 
[48] seems similar to the analytics and HDFS side of HiBench. Indiana University has 
several papers on benchmarks of Iterative and classic Mapreduce extending the analytics 
side of HiBench and merging with current Facet analysis [49-55]. The benchmarks in 
this subsection exhibit facets AV2,3,7,8,12 EV9,10, DV1,2,4 and PV1,3,5,6,7,8,9,12.   

3.2.7. Integrated Datasystem Benchmarks: BigDataBench 

The integrated BigDataBench suite from China [19] has a growing number of 
components, with version 3.1 covering search, social networks, e-commerce, multimedia 
and bioinformatics domains. Kernels and micro-benchmarks include database read, write, 
scan, sort, grep, wordcount, BFS breadth first search, index, PageRank, Kmeans, 
connected components, collaborative filtering, naive Bayes and Bioinformatics SAND 
and BLAST. BigDataBench is hosted on Hbase, MySQL, Nutch, MPI, Spark, Hadoop, 
Hive, Shark, and Impala. Facets probed are AV1,2,3,4,7,8,12 EV11, DV1,2 and 
PV1,2,3,5,6,7,8,9,11,12,13. 

3.2.8. Integrated Datasystem Benchmarks: CloudSuite 

The Cloudsuite [22, 56] benchmark collection from Europe has some distinctive 
features including use of the Faban (from SPEC) [57] workload generator, a simulator 
and provision of benchmarks as ready to go virtual machine images. It covers data 
analytics based on a standard Wikipedia Mahout+Hadoop benchmark with Bayes 
Classifier plus graph analytics TunkRank from GraphLab [58]. Data Caching has a 
streaming simulated Twitter test using memcached but not Apache Storm. Data serving 
is based on Yahoo work in section 3.2.4 while other applications include media streaming, 
software testing, web search and web serving. Software covered includes Darwin, 
Cloud9, Nutch, Tomcat, Nginx, Olio and MySQL. Facets include AV1,2,4,7,8,12 
EV9,10,12, DV 1,2,4 and PV1,2,3,6,7,9,13. 



3.3. Machine Learning, Graph and Other Benchmarks 

The processing view has the well-known Graph500 [26] benchmarks (and associated 
machine ranking), but of course libraries like R [59], Mahout [40] and MLlib [60] also 
include many candidates for analytics benchmarks. Section 3.1 covered a rich set of 
analytics and 3.2 largely database benchmarks (with some modest analytics) and here we 
cover other analytics benchmarks. The benchmarks in section 3.3 exhibit Ogre facets 
AV2,3,4,6,7,8 EV12, DV2,4 and PV2,3,7,8,9,12,13. 

3.3.1. Graph500 Benchmarks 

There are [26] currently two kernels and 6 sizes from 17GB to 1.1PB which are used to 
produce the Graph 500 ranking of supercomputers. The first kernel constructs a tree and 
the second does a breadth first search (BFS). This covers facets AV2,4,6,7,8, EV4 and 
PV1,3,13. Note that there are several excellent libraries with a rich set of graph 
algorithms including Oracle PGX [61], GraphLab [58], Intel GraphBuilder [62], GraphX 
[63], CINET [64], and Pegasus [65].  

3.3.2. Minebench 

Minebench [27] is a comprehensive data-mining library with 15 members covering five 
categories: classification, clustering, association rule mining, structure learning and 
optimization. OpenMP implementations are given for many kernels. There are also 
specialized machine learning libraries such as Caffe [66], Torch [67] and Theano [68] 
for deep learning that can form the basis of benchmarks. 

3.3.3. BG and LinkBench Benchmarks 

BG [28] emulates read and write actions performed on a social networking datastore, 
mimicking small transactions on Facebook, and benchmarks them against a given service 
level agreement. LinkBench [29], developed by Facebook,  is intended to serve as a 
synthetic benchmark to predict the performance of a database system serving Facebook’s 
production data. 

4. Illustrating Ogres with Initial Benchmarking 

4.1. SPIDAL Codes 

This section looks at two SPIDAL clustering codes GML1 and GML2 of Table 2 
corresponding to metric and non-metric space scenarios [69]. Both use deterministic 
annealing DA and are believed to be the best available codes for cases when accurate 
clusters are needed [70] – non-metric DA pairwise clustering (DA-PWC) [71] and the 
metric DA vector sponge (DA-VS) [1, 72]. Both were originally written in C# and built 
on MPI.NET and threads running on Windows HPC clusters. They now have been 
converted to Java and actually get better performance sequentially and in parallel than 
the original C# versions. More details are available online [73] and the parallel 
performance of DA-VS has been presented in detail for C# version [74]. We use DA-VS 
to motivate Micro-benchmarks but focus on DA-PWC here. 



 

4.2. Benchmarking Environment 

We used two IU School of Informatics and Computing clusters, Madrid and Tempest, 
and one FutureGrid [75] cluster – India, as described below. 
• Tempest: 32 nodes, each has 4 Intel Xeon E7450 CPUs at 2.40GHz with 6 cores, 

totaling 24 cores per node; 48 GB node memory and 20Gbps Infiniband (IB) 
network connection. It originally ran Windows Server 2008 R2 HPC Edition – 
version 6.1 (Build 7601: Service Pack 1). Currently it runs Red Hat Enterprise Linux 
release version 5.11 (Tikanga) 

• Madrid: 8 nodes, each has 4 AMD Opteron 8356 at 2.30GHz with 4 cores, totaling 
16 cores per node; 16GB node memory and 1Gbps Ethernet network connection. It 
runs Red Hat Enterprise Linux Server release 6.5 

• India cluster on FutureGrid (FG): 128 nodes, each has 2 Intel Xeon X5550 CPUs 
at 2.66GHz with 4 cores, totaling 8 cores per node; 24GB node memory and 20Gbps 
IB network connection. It runs Red Hat Enterprise Linux Server release 5.10. 
 
Both our clustering codes are written to use a mix of MPI and Thread parallelism 

and used Microsoft TPL for thread parallelism in a C# .NET 4.0 and MPI.NET 1.0.0 
environment. There was no consensus Java OpenMP package we could use to replace 
TPL for Java codes. We chose to use a novel Java parallel tasks library called Habanero 
Java (HJ) library from Rice University [76, 77], which requires Java 8.   

Figure 2: Comparison of OpenMPI 1.8.1 C, OpenMPI 1.8.1 Java and FastMPJ 1.0_6. We evaluate four MPI 
Collectives: SendReceive, Broadcast, AllReduceand AllGather. Different MPI implementations with message 
size ranging from 0 bytes (B) up to one megabyte (MB). These are averaged values over patterns 1x1x8, 
1x2x8, and 1x4x8 where pattern format is number of concurrent tasks (CT) per process x number of processes 
per node x  number of nodes (i.e. TxPxN). 



4.3. Micro-benchmarks 

One important issue for data analytics is that many important codes are not in the 

C++/Fortran ecosystem familiar from HPC. There are in particular no well-established 
Java technologies for the core parallel computing technologies MPI and OpenMP. There 
have been several message passing frameworks for Java [78], but the choice is restricted 
if you need support for Infiniband (IB) network as discussed in [79]. The situation has 
clarified recently as OpenMPI now has an excellent Java binding [80], which is an 
adaptation from the original mpiJava library [81]. This uses wrappers around their C MPI 
library and we also evaluate FastMPJ 1.0_6, which is a pure Java implementation of 
mpiJava 1.2 [82] specification and supports IB as does OpenMPI where we use version 
1.8.1 unless specified differently.  

The SPIDAL codes DA-VS and DA-PWC code rely heavily on a few MPI 
operations – AllReduce, SendReceive, Broadcast, and AllGather. We studied their Java 
performance against native implementations with micro-benchmarks adapted from OSU 
micro-benchmarks suite [83]. Initially C outperformed Java but around November 2013, 
support to represent data for communications as Java direct buffers (outside the managed 
heap) was added (around OpenMPI trunk r30301) avoiding earlier Java JNI and object 
serialization costs resulting in similar performance between Java and C versions of MPI, 
as reported in figure 2. Note that FastMPJ has good performance for large messages but 
especially for AllReduce, and is significantly slower than OpenMPI for messages below 
1 KB in size. 

Figures 3 (a) and (b) show MPI AllReduce and SendReceive performance with and 
without Infiniband IB. While the decrease in communication times with IB is as 
expected, the near identical performance of Java with native benchmark in both IB and 
Ethernet cases is promising for the goal of high performance Java libraries. These 
figures use OMPI-trunk (r30301), which is older than OMPI 1.8.1 but has similar 
characteristics because of the fact that it was using direct buffers, which are the main 
improvement over earlier versions of OpenMPI. 

a)AllReduce 
b) SendReceive 

Figure 3: Comparison of MPI performance on machines with Infiniband (FG FutureGrid) and without an 
Infiniband Network (Madrid) for MPI a) AllReduce and b) SendReceive. These are averaged values over 
patterns 1x1x8, 1x2x8, and 1x4x8 where pattern format is number of concurrent tasks (CT) per process x 
number of processes per node x  number of nodes (i.e. TxPxN) 



4.4. SPIDAL Clustering Benchmarks 

Here we do not discuss FastMPJ as our Java DA-PWC implementation gave 
frequent runtime errors with this MPI version. We have performed [73] an extensive 
performance analysis of the two clustering codes comparing C# and Java and looking at 

different parallelism choices in the nodes; MPI or threading. We give some illustrative 
results here. DA-PWC should scale in execution time like problem size squared and 
Figure 4 shows Java results consistent with this; the 40K problem size runs faster than 
16 times 10K execution time due to increased communication on a smaller problem. The 
C# results are not consistent with the expected model and illustrative of other anomalies 
we found with C#. We did not explore more as Microsoft has abandoned this platform. 
Figure 5 examines this for fixed problem size (strong scaling) increasing parallelism from 
64 to 256. 

Figure 6 summarizes speedups and parallel efficiencies for all datasets across 
parallelisms from 1 to 256. The intention of this is to illustrate the behavior with 
increasing parallelism for different data sizes. It shows that DA-PWC scales well with 

Figure 6: Strong Scaling expressed as speedup and efficiency on FutureGrid for 3 datasets (12K, 20K, 
40K) as a function of parallelism from 1 to 256. Apart from sequential case, all runs ran 8-way parallel 
on each node; results are averaged over that node parallelism being 8 MPI processes, 2 threads, 4 MPI 
processes or 4 threads, 2 MPI processes 

Figure 4: DA-PWC performance as a function of 
problem size for C# and Java. The Java results come 
from FutureGrid and C# from Tempest with C# results 
scaled by 0.7 to reflect measured relative sequential 
performance of machines. We used 32 nodes each 
running with 8 way parallelism (MPI internally and 
between nodes) totaling 256 way parallelism. 

Figure 5: Speedup of 40K point DA-PWC on 8, 16 
and 32 nodes for case where 8 MPI processes run 
on each node. . The Java results come from 
FutureGrid and C# from Tempest with C# results 
scaled by 0.7. Results are scaled to performance of 
8 node run. 



the increase in parallelism up to the limit of 256 for 20K and 40K data sets. The 12K data 
set shows reasonable scaling within 8 and 64 way parallelisms, but not outside this range. 
This is the usual issue that small problems increase their communication fraction as you 
increase parallelism with strong scaling. 

Figures 7 and 8 
compare the use of threads 
and MPI process with runs 
labelled TxPxN where T 
threads and P MPI 
processes are run in each of 
N nodes. In figure 7, we 
compare PxQx8 with 
QxPx8 for (P,Q) choices 
(1,2) (1,4) (2,4) (1,8) with 
best performance occurring 
at 1x8x8 for C# and 1x4x8 
for Java. Figure 8 looks at 
DA-PWC with parallelisms 
from 1 to 32 realized in 
different choices between 
threads and MPI. There are 

a set of 6 speedup groups for the same parallelism – 1, 2, 4, 8, 16, and 32. These lead to 
plateaus in plot corresponding to MPI and threads giving similar speedups, except for 
the 8x1xN cases, which shows lower performance. This effect occurs as the machine 
(India) has 2 physical CPUs each with 4 cores, so running 1 process with more than 4 
concurrent tasks appears to introduce thread switches between CPUs, which is expensive. 

The best approach in this case is to restrict number of threads to be <= number of threads 
per CPU and use MPI across CPUs. We note that DA-PWC is a simpler algorithm than 
DA-VS and gets more reliable answers. We intend to run DA-VS on much larger datasets.  

This section has shown that data analytics performance can be analyzed 
quantitatively using techniques familiar from parallel computing. One needs to use the 

Figure 7: Comparison of C# and Java with MPI and Threads for 
DA-VS SPIDAL clustering of 240K points and about 25000 
clusters studied in [1]. The Java results come from FutureGrid 
OpenMPI trunk r30301 and C# from Tempest with C# results 
scaled by 0.7 to reflect measured relative sequential performance 
of machines. The runs are labelled TxPxN where T threads and P 
MPI processes are run in each of N nodes.  

Figure 8: Speed up of DA-PWC for a variety of threading/MPI parallelism choices from sequential 
through 32 way parallelism on the 12K dataset. The runs are labelled TxPxN where T threads and P MPI 
processes are run in each of N nodes. These runs are on FutureGrid using OpenMPI 1.7.5 which is similar 
in performance to 1.8.1 



execution facets EV2-5 to specify the parameters of the testing environment. The trade-
off between MPI and thread parallelism needs attention, as does use of GPUs not covered 
here. 

5. Ogre-Driven Benchmarking 

First, we note some qualitatively different types of benchmarks. There are at the 
simplest level “micro-benchmarks” PV1 which capture core machine performance. Then 
we have “atomic” kernels – simple non-trivial algorithms or problems that cannot 
usefully be broken up. Then we see a class we call “mini-apps” that are the most complex 
and can be constructed in two different ways: top-down and bottom-up. In the top-down 
case, we start with a real complex application and simplify it to capture some “key” 
capabilities but we do not necessarily make it “atomic”. In the bottom-up approach, we 
take multiple “atomic kernels” and link them together such as in benchmarking Mahout’s 
clustering algorithm reading data from Hbase. This comment is relevant as most of the 
facets not covered in Table A would be addressed by composite Ogre instances, which 
for example would cover Fusion and Dataflow in Problem Architecture view AV9, 10. 
One striking area not covered in Section 3 is streaming with facets AV-5 DV-8 and PV-
10. Further veracity (EV-7), the object store – file comparison (DV3), metadata (DV7) 
and HPC simulations DV-9 all certainly need to be addressed. 
 

Our suggested process is to choose benchmarks that cover a broad range of facets. 
As discussed above and seen in Tables 1 and A, the currently identified benchmarks do 
not cover some of the facets. This can be explained by the fact that facets come from an 
analysis of full applications and Table 1 has by design only analytics kernels. We expect 
that an addition of a few extra “atomic” Ogre instances and a set of mini-apps or 
composite instances will lead to a rather good facet coverage. There is quite a lot of 
redundancy in current benchmarks and here again the strategy of covering but not over 
covering all facets provides systematics principles. 
 

One must also address the many well-studied general points of benchmarking, such 
as agreeing on datasets with various sizes (Volume facet in Execution view), requiring 
correct answers for each implementation, and the choice between pencil and paper and 
source code specification of a benchmark. 

6. Appendix Table A: Detailed Facet Listing with Benchmark Coverage 

Facet and View Comments SP DB NI 
Facets in Problem Architecture View (AV) 

1 Pleasingly Parallel Clear qualitative property overlapping Local 
Analytics M S H 

2 Classic MapReduce Clear qualitative property of non-iterative algorithms M H H 
3 Map-Collective Clear qualitative property of much machine learning H S H 
4 Map Point-to-Point (graphs) Clear qualitative property of graphs and simulation H S M 

5 Map Streaming Property of growing importance. Not well 
benchmarked N N H 

6 Shared memory (as opposed to 
distributed parallel algorithm) 

Corresponds to problem where shared memory 
implementations important. Tend to be dynamic 
asynchronous  

S N S 



7 Single Program Multiple Data 
SPMD 

Clear qualitative property famous in parallel 
computing H M H 

8 Bulk Synchronous Processing BSP Needs to be defined but reasonable qualitative 
property H M H 

9 Fusion Only present for composite Ogres N N H 
10 Dataflow Only present for composite Ogres N N H 
11 Agents Clear but uncommon qualitative property N N S 
12 Orchestration (workflow) Only present for composite Ogres N H H 

 
Facets in Execution View (EV) 

1 Performance Metrics Result of Benchmark - - - 

2 Flops per Byte (Memory or I/O). 
Flops per watt (power). 

I/O Not needed for “pure in memory” benchmark. 
Value needs detailed quantitative study. Could 
depend on implementation 

- - - 

3 

Execution Environment (LN = 
Libraries needed, C= Cloud, HPC = 
HPC, T=Threads, MP= Message 
Passing) 

Depends on how benchmark set up. Could include 
details of machine used for benchmarking here - - - 

4 Volume Depends on data size. Benchmark measure - M - 

5 Velocity Associated with streaming facet but value depends on 
particular problem N S H 

6 Variety Most useful for composite Ogres N S H 

7 Veracity Most problems would not discuss but potentially 
important N N M 

8 
Communication Structure 
(D=Distributed, I=Interconnect, 
S=Synchronization) 

Qualitative property – related to BSP and Shared 
memory U U U 

9 D=Dynamic or S=Static Clear qualitative properties. Importance familiar from 
parallel computing 

H H H 
10 R=Regular or I=Irregular H H H 

11 Iterative? 
Clear qualitative property. Highlighted by Iterative 
MapReduce and always present in classic parallel 
computing 

H S H 

12 

Data Abstraction(K= key-value, 
BW= bag of words, BI = bag of 
items, P= pixel/spatial, V= 
vectors/matrices, S= sequence, G= 
graph) 

Clear quantitative property although important data 
abstractions not agreed upon. All should be supported 
by Programming model and run time 

H M H 

13 M= Metric Space or N= not? Clear qualitative property discussed in [69] H N H 
14 NN= O(N2) or N= O(N)? Clear qualitative property highlighted in [3] H N H 

 
Facets in Data Source & Style View (DV) 

1 SQL/NoSQL/NewSQL? Clear qualitative property. Can add NoSQL sub-
categories such as key-value, graph, document … N H H 

2 Enterprise data model (warehouses) Clear qualitative property of data model highlighted 
in database community / industry benchmarks N H M 

3 Files/Objects? Clear qualitative property of data model where files 
important in Science; objects in industry N S H 

4 HDFS/Lustre/GPFS? Clear qualitative property where HDFS important in 
Apache stack but not much used in science N H H 

5 Archive/Batched/Streaming Clear qualitative property but not for kernels as it 
describes how data is collected N N H 

6 Shared/Dedicated/Transient/Perman
ent 

Clear qualitative property of data whose importance 
is not well studied N N H 

7 Metadata/Provenance Clear qualitative property but not for kernels as 
important aspect of data collection process N N H 

8 Internet of Things Dominant source of commodity data in future N N H 
9 HPC Simulations Important in science research especially at exascale N N H 

10 Geographic Information Systems Clear property but not for kernels S N H 
 



Facets in Processing View (PV) 
1 Micro-benchmarks Important subset of small kernels N H N 
2 Local Analytics or Informatics Well defined but overlaps Pleasingly Parallel H H H 

3 Global Analytics or Informatics Clear qualitative property that includes parallel 
Mahout (E.g. Kmeans) and Hive (database) H H H 

4 Base Statistics Describes simple statistical averages needing simple 
MapReduce. MRStat in [7] N N M 

5 Recommender Engine Clear type of machine learning of especial 
importance commercially N M H 

6 Search/Query/Index Clear important class of algorithms  in industry S H H 
7 Classification Clear important class of algorithms S M H 
8 Learning Includes deep learning as category S S H 

9 

Optimization Methodology ( ML= 
Machine Learning, NO = Nonlinear 
Optimization, LS = Least Squares, 
EM = expectation maximization, 
LQP = Linear/Quadratic 
Programming, CO = Combinatorial 
Optimization) 

LQP and CO overshadowed by machine learning but 
important where used. ML includes many analytics 
which are often NO and EM and sometimes LS (or 
similar Maximum Likelihood) 

H M H 

10 Streaming 
Clear important class of algorithms associated with 
Internet of Things. Can be called DDDAS Dynamic 
Data-Driven Application Systems 

N N H 

11 Alignment Clear important class of algorithms as in BLAST N S M 
12 Linear Algebra Kernels Important property of some analytics H S H 
13 Graph Algorithms Clear important class of algorithms – often hard H M M 

14 Visualization Clearly important aspect of data analysis but different 
in character to most other facets S N H 

Table A: The four views and their constituent facets: H: High Use; M: Medium use; S: Small use; N: essentially 
no use; - inapplicable; U: Unknown. SP is SPIDAL project of section 3.1 [13]. DB is Database analysis of 
section 3.2 [15]. NI is NIST Public Working Group Use Case Working Group analysis [7] 
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