
A Hierarchical Framework for Cross-Domain
MapReduce Execution

Yuan Luo1, Zhenhua Guo1, Yiming Sun1, Beth Plale1, Judy Qiu1, Wilfred W. Li 2
1 School of Informatics and Computing, Indiana University, Bloomington, IN, 47405

2 San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA, 92093
{yuanluo, zhguo, yimsun, plale, xqiu}@indiana.edu, wilfred@sdsc.edu

ABSTRACT
The MapReduce programming model provides an easy way to
execute pleasantly parallel applications. Many data-intensive life
science applications fit this programming model and benefit from
the scalability that can be delivered using this model. One such
application is AutoDock, which consists of a suite of automated
tools for predicting the bound conformations of flexible ligands to
macromolecular targets. However, researchers also need
sufficient computation and storage resources to fully enjoy the
benefit of MapReduce. For example, a typical AutoDock based
virtual screening experiment usually consists of a very large
number of docking processes from multiple ligands and is often
time consuming to run on a single MapReduce cluster. Although
commercial clouds can provide virtually unlimited computation
and storage resources on-demand, due to financial, security and
possibly other concerns, many researchers still run experiments on
a number of small clusters with limited number of nodes that
cannot unleash the full power of MapReduce. In this paper, we
present a hierarchical MapReduce framework that gathers
computation resources from different clusters and run MapReduce
jobs across them. The global controller in our framework splits
the data set and dispatches them to multiple “local” MapReduce
clusters, and balances the workload by assigning tasks in
accordance to the capabilities of each cluster and of each node.
The local results are then returned back to the global controller for
global reduction. Our experimental evaluation using AutoDock
over MapReduce shows that our load-balancing algorithm makes
promising workload distribution across multiple clusters, and thus
minimizes overall execution time span of the entire MapReduce
execution.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems – Distributed applications.

General Terms: Design, Experimentation, Performance

Keywords: AutoDock, Cloud, FutureGrid, Hierarchical
MapReduce, Multi-Cluster

1. INTRODUCTION
Life science applications are often both compute intensive and
data intensive. They consume large amount of CPU cycles while
processing massive data sets that are either in large group of small

files or naturally splittable. These kinds of applications ideally fit
in the MapReduce [2] programming model. MapReduce differs
from the traditional HPC model in that it does not distinguish
computation nodes and storage nodes so each node is responsible
for both computation and storage. Obvious advantages include
better fault tolerance, scalability and data locality scheduling. The
MapReduce model has been applied to life science applications by
many researchers. Qiu et al. [15] describe their work to implement
various clustering algorithm using MapReduce.

AutoDock [13] is a suite of automated docking tools for
predicting the bound conformations of flexible ligands to
macromolecular targets. It is designed to predict how small
molecules of substrates or drug candidates bind to a receptor of
known 3D structure. Running AutoDock requires several pre-
docking steps, e.g., ligand and receptor preparation, and grid map
calculations, before the actual docking process can take place.
There are desktop GUI tools for processing the individual
AutoDock steps, such as AutoDockTools (ADT) [13] and BDT
[19], but they do not have the capability to efficiently process
thousands to millions of docking processes. Ultimately, the goal
of a docking experiment is to illustrate the docked result in the
context of macromolecule, explaining the docking in terms of the
overall energy landscape. Each AutoDock calculation results in a
docking log file containing information about the best docked
ligand conformation found from each of the docking runs
specified in the docking parameter file (dpf). The results can then
be summarized interactively using the desktop tools such as
AutoDockTools or with a python script. A typical AutoDock
based virtual screening consists of a large number of docking
processes from multiple targeted ligands and would take a large
amount of time to finish. However, the docking processes are
data independent, so if several CPU cores are available, these
processes can be carried out in parallel to shorten the overall
makespan of multiple AutoDock runs.

Workflow based approaches can also be used to run multiple
AutoDock instances; however, MapReduce runtime can automate
data partitioning for parallel execution. Therefore our paper
focuses on extending the MapReduce model for parallel execution
of applications across multiple clusters.

Cloud computing can provide scalable computational and storage
resources as needed. With the correct application model and
implementation, clouds enable applications to scale out with
relative ease. Because of the “pleasantly parallel” nature of the
MapReduce programming model, it has become a popular model
for deploying and executing applications in a cloud, and running
multiple AutoDock jobs certainly fits well for MapReduce.
However, many researchers still shun away from clouds for
different reasons. For example, some researchers may not feel
comfortable letting their data sit in shared storage space with
users worldwide, while others may have large amounts of data
and computation that would be financially too expensive to move

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ECMLS’11, June 8, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0701-4/11/06...$10.00.

15

into the cloud. It is more typical for a researcher to have access to
several research clusters hosted at his/her lab or institute. These
clusters usually consist of only a few nodes, and the nodes in one
cluster may be very different from those in another cluster in
terms of various specifications including CPU frequency, number
of cores, cache size, memory size, and storage capacity.
Commonly a MapReduce framework is deployed in a single
cluster to run jobs, but any such individual cluster does not
provide enough resources to deliver significant performance gain.
For example, at Indiana University we have access to IU Quarry,
FutureGrid [5], and Teragrid [17] clusters but each cluster
imposes limit on the maximum number of nodes a user can uses at
any time. If these isolated clusters can work together, they
collectively become more powerful.

Unfortunately, users cannot directly deploy a MapReduce
framework such as Hadoop on top of these clusters to form a
single larger MapReduce cluster. Typically the internal nodes of a
cluster are not directly reachable from outside. However,
MapReduce requires the master node to directly communicate
with any slave node, which is also one of the reasons why
MapReduce frameworks are usually deployed within a single
cluster. Therefore, one challenge is to make multiple clusters act
collaboratively as one so it can more efficiently run MapReduce.
There are two possible approaches to address this challenge. One
is to unify the underlying physical clusters as a single virtual
cluster by adding a special infrastructure layer, and run
MapReduce on top of this virtual cluster. The other is to make the
MapReduce framework directly working with multiple clusters
without needing additional special infrastructure layers.

We propose a hierarchical MapReduce framework which takes
the second approach to gather isolated cluster resources into a
more capable one for running MapReduce jobs. Kavulya et al.
characterize MapReduce jobs into four categories based on their
execution patterns: map-only, map-mostly, shuffle-mostly, and
reduce-mostly, and also find that 91% of the MapReduce jobs
they have surveyed fall into the map-only and map-mostly
categories [10]. Our framework partitions and distributes
MapReduce jobs from these two categories (map-only and map-
mostly) into multiple clusters to perform map-intensive
computation, and collects and combines the outputs in the global
node. Our framework also achieves load-balancing by assigning
different task loads to different clusters based on the cluster size,
current load, and specifications of the nodes. We have
implemented the prototype framework using Apache Hadoop.

The rest of the paper is organized as follows. Section 2 presents
some related works. Section 3 gives an overview of our
hierarchical MapReduce framework. Section 4 presents more
details on the multiple AutoDock runs using MapReduce. Section
5 gives experiment setup and result analysis. The conclusion and
future work are given in Section 6.

2. RELATED WORKS
Researchers have put significant efforts to the easy submission
and optimal scheduling of massive parallel jobs in clusters, grids,
and clouds. Conventional job schedulers, such as Condor [12],
SGE [6], PBS [8], LSF [23], etc., aim to provide highly optimized
resource allocation, job scheduling, and load balancing, within a
single cluster environment. On the other hand, grid brokers and
metaschedulers, e.g., Condor-G [4], CSF [3], Nimrod/G[1],
GridWay [9], provide an entry point to multi-cluster grid
environments. They enable transparent job submission to various
distributed resource management systems, without worrying about

the locality of execution and available resources there. With
respect to the AutoDock based virtual screening, our earlier
efforts presented at National Biomedical Computation Resource
(NBCR) [14] Summer Institute 2009, addressed the performance
issue of massive docking processes by distributing the jobs to the
grid environment. We used the CSF4 [3] meta-scheduler to split
docking jobs to heterogeneous clusters where these jobs were
handled by local job schedulers including LSF, SGE and PBS.

Clouds give users a notion of virtually unlimited, on-demand
resources for computation and storage. Attributed to its ease of
executing pleasantly parallel applications, MapReduce has
become a dominant programming model for running applications
in a cloud. Researchers are discovering new ways to make
MapReduce easier to deploy and manage, more efficient and
scalable, and also more able to accomplish complex data
processing tasks. Hadoop On Demand (HOD) [7] uses the
TORQUE resource manager [16] to provision and manage
independent MapReduce and HDFS instances on shared physical
nodes. The authors of [21] have identified some fundamental
performance limitation issues in Hadoop and in the MapReduce
model in general which make job response time unacceptably
long when multiple jobs are submitted; by substituting their own
scheduler implementation, they are able to overcome these
limitations and improve the job throughput. CloudBATCH [22] is
a prototype job queuing mechanism for managing and dispatching
MapReduce jobs and commandline serial jobs in a uniform way.
Traditionally a cluster must separate MapReduce-enabled nodes
because they are dedicated to MapReduce jobs and cannot run
serial jobs. But CloudBATCH uses HBase to keep various
metadata on each job and also uses Hadoop to wrap commandline
serial jobs as MapReduce jobs, so that both types of jobs can be
executed using the same set of cluster nodes. The Map-Reduce-
Merge is extended from the conventional MapReduce model to
accomplish common relational algebra operations over distributed
heterogeneous data sets [20]. In this extension, the Merge phase
is a new concept that is more complex than the regular Map and
Reduce phases, and requires the learning and understanding of
several new components, including partition selector, processors,
merger, and configurable iterators. This extension also modifies
the standard MapReduce phase to expose data sources to support
some relational algebra operations in the Merge phase.

Sky Computing [11] provides end user a virtual cluster
interconnected with ViNe [18] across different domains. It aims to
bring convenience by hiding the underlying details of the physical
clusters. However, this transparency may cause unbalanced
workload if a job is dispatched over heterogeneous compute nodes
among different physical domains.

Our hierarchical MapReduce framework, aims to enable map-only
and map-most jobs to be run across a number of isolated clusters
(even virtual clusters), so these isolated resources can collectively
provide a more powerful resource for the computation. It can
easily achieve load-balance because the different clusters are
visible to the scheduler in our framework.

3. HIERARCHICAL MAPREDUCE
The hierarchical MapReduce framework we present in this paper
consists of two layers. The top layer has a global controller that
accepts user submitted MapReduce jobs and distributes them
across different local cluster domains. Upon receiving a user job,
the global controller divides the job into sub-jobs according to the
capability of each local cluster. If the input data has not been
deployed onto the cluster already, the global controller also

16

partitions input data proportionally to the sub-jobs, and sends
them to these clusters. After the jobs are all finished on all
clusters, the global controller collects the outputs to perform a
final reduction using the global reducer which is also supplied by
the user. The bottom layer consists of multiple local clusters that
each receives sub-jobs and input data partitions from the global
controller, performs local MapReduce computation and sends
results back to the global controller.

Although on the surface our framework may appear structurally
similar to the Map-Reduce-Merge model presented in [20], our
framework is very different in nature. As discussed in the related
work section, the Merge phase introduced in the Map-Reduce-
Merge model is a new concept which is different and more
complex than the conventional Map and Reduce, and
programmers implementing jobs under this model must not only
learn this new concept along with the components required by it,
but also need to modify the Mappers and Reducers to expose data
source. Our framework, on the other hand, strictly uses the
conventional Map and Reduce, and a programmer just needs to
supply two Reducers – one local Reducer, and one global Reducer
– instead of just one for the regular MapReduce. The only
requirement is that the programmer must make sure that the
formats of the local Reducer output keys/value pairs match those
of the global Reducer input key/value pairs. However, if the job is
map-only, the programmer does not need to supply any reducers,
and the global controller simply collects the map results from all
clusters and places them under a common directory.

3.1 Architecture
Figure 1 is a high-level architecture diagram of our hierarchical
MapReduce framework. The top layer in our framework is the
global controller, which consists of a job scheduler, a data
transferer, a workload collector, and a use-supplied global
reducer. The bottom layer consists of multiple clusters for running
the distributed local MapReduce jobs, where each cluster has a
MapReduce master node with a workload reporter and a job
manager. The compute nodes inside each of the cluster are not
accessible from the outside.

Figure 1. Hierarchical MapReduce Architecture

When a user submits a MapReduce job to the global controller,
the job scheduler splits the job into a number of sub-jobs and
assigns them to each local cluster based on several factors,
including the current workload reported by the workload reporter
from each local cluster, as well as the capability of individual
nodes making up each cluster. This is done to achieve load-
balance by ensuring that all clusters will finish their portion of the
job in approximately the same time. The global controller also

partitions the input data in proportion to the sub-job sizes if the
input data have not been deployed before-hand. The data
transferer would transfer the user supplied MapReduce jar and job
configuration files with the input data partitions to the clusters.
As soon as the data transfer finishes for a particular cluster, the
job scheduler at the global controller notifies the job manager of
that cluster to start the local MapReduce job. Since data transfer
is very expensive, we recommend that users only use the global
controller to transfer data when the size of input data is small and
the time spent for transferring the data is insignificant compared
to the computation time. For large data sets, it would be more
efficient and effective to deploy them before-hand, so that the jobs
get the full benefit of parallelization and the overall time does not
get dominated by data transfer. After the local sub-jobs are
finished on a local cluster, if the application requires, the clusters
will transfer the output back to the global controller. Upon
receiving all the output data from all local clusters, the global
reducer will be invoked to perform the final reduction task, unless
the original job is map-only.

3.2 Programming Model
The programming model of our hierarchical MapReduce
framework is the “Map-Reduce-Global Reduce” model where
computations are expressed as three functions: Map, Reduce, and
Global Reduce. We use the term “Global Reduce” to distinguish it
from the “local” Reducer, but conceptually as well as
syntactically, a Global Reducer is just another conventional
Reducer. The Mapper, just as a conventional Mapper does, takes
an input pair and produces an intermediate key/value pair;
likewise, the Reducer, just as a conventional Reducer does, takes
an intermediate input key and a set of corresponding values
produced by the Map task, and outputs a different set of key/value
pairs. Both the Mapper and the Reducer are executed on local
clusters. The Global Reducer is executed on the global controller
using the output from the local clusters. Table 1 lists these 3
functions and also the input and output data types. The formats of
the local Reducers output keys/value pairs must match those of
the Global Reducer input key/value pairs.

Table 1. Input and output types of Map, Reduce, and Global
Reduce functions

Function Name Input Output

Map ሺ݇௜, ,௜ሻ ሺ݇௠ݒ ௠ሻݒ
Reduce ሺ݇௠, ሾݒଵ௠,… , ,௡௠ሿሻ ሺ݇௥ݒ ௥ሻݒ

Global Reduce ሺ݇௥, ሾݒଵ௥, … , ,௡௥ሿሻ ሺ݇௢ݒ ௢ሻݒ
Figure 2 uses a tree-like structure to show the data flow sequence
among the Map, Reduce, and Global Reduce function. In this
diagram, the root node is the global controller on which the
Global Reduce takes place, and the leaf nodes represent local
clusters that perform the Map and Reduce functions. The circled
numbers shown in Figure 2 indicate the order in which the steps
occur, and the arrows indicate the directions in which the data sets
(key/value pairs) flow. A job is submitted into the system in Step
1, and then the input key/value pairs are passed from the root node
(global controller) to the child nodes (local clusters) in Step 2, and
also Map tasks are launched at the local clusters where each Map
consumes an input key/value pair and produces a set of
intermediate key/value pairs. In Step 3, the set of intermediate
pairs are passed to the Reduce tasks, which are also launched at
the local clusters. Each Reduce task consumes an intermediate
key with a set of corresponding values, and produces yet another

17

set of key/value pairs as output. In Step 4, the local reduce output
are send back to the global controller to perform the Global
Reduce task. The Global Reduce task takes in a key and a set of
corresponding values that were originally produced from the local
Reducers, performs the computation, and produces the output in
Step 5.

Theoretically, the model we present can be extended to more than
just two hierarchical layers, i.e. the tree structure in Figure 2 can
have more depth by turning the leaf clusters into intermediate
controllers similar to the global controller and each would further
divide its assigned jobs and run them on its own set of children
clusters. But for all practical purposes, we do not see a need for
more than two layers for the foreseeable future, because it could
increase the complexity as well as the overhead introduced with
each additional layer. If a researcher has a large number of small
clusters available, it is most likely more efficient to use them to
create a broader bottom layer than to increase the depth.

Figure 2. Programming Model

3.3 Job Scheduling and Data Partitioning
The main challenge of our work is how to balance the workloads
among each local MapReduce cluster, which is closely tied to
how the datasets are partitioned.

The input dataset for a particular MapReduce job may be either
submitted by the user to the global controller before execution, or
pre-deployed on the local clusters and is exposed via a metadata
catalog to the user who runs the MapReduce job. The scheduler
on the global controller takes into consideration the data locality
when partitioning the datasets and scheduling the job.

In this paper, we focus on the situation where input dataset is
submitted by the user. If the user manually split the dataset and
run separate sub-jobs on different clusters, it would be time
consuming and error-prone. Our global controller is able to
automatically count the total number of records in the input
dataset using user-implemented InputFormat and RecordReader,
and divides the dataset and assigns the correct number of records
to each cluster.

We make the assumption that all map tasks of a MapReduce
application are computation intensive and take approximately the
same amount of time to run – this is a reasonable assumption as
we will see in the next section that applying MapReduce to
running multiple AutoDock instances displays exactly this kind of
behavior. The scheduling algorithm we use for our framework is
as follows. Let ݎ݁݌݌ܽܯݔܽܯ௜ be the maximum number of
Mappers that can be run concurrently on ݎ݁ݐݏݑ݈ܥ௜; ݊ݑܴݎ݁݌݌ܽܯ௜
be the number of Mappers currently running on ݎ݁ݐݏݑ݈ܥ௜; ݈݅ܽݒܣݎ݁݌݌ܽܯ௜	be the number of available Mappers that can be
added for execution on ݎ݁ݐݏݑ݈ܥ௜; ܰ݁ݎ݋ܥ݉ݑ௜ be the total number
of CPU Cores on ݎ݁ݐݏݑ݈ܥ௜, where i is the cluster number, and i ∈ ሼ1, . . . , nሽ. We also use ߩ௜ to define how many map tasks a user
assigns to each core, that is,

௜ݎ݁݌݌ܽܯݔܽܯ ൌ ௜ߩ ൈ ௜ (1)݁ݎ݋ܥ݉ݑܰ

Normally we set ߩ௜ ൌ 1 in the local MapReduce clusters for
computation intensive jobs, so we get

௜݈݅ܽݒܣݎ݁݌݌ܽܯ ൌ ௜ݎ݁݌݌ܽܯݔܽܯ െ ௜ (2)݊ݑܴݎ݁݌݌ܽܯ

For simplicity, let

௜ߛ ൌ ௜݈݅ܽݒܣݎ݁݌݌ܽܯ (3)

The weight of each sub-job can be calculated from (4) where the
factor ߠ௜ is the computing power of each cluster, e.g., the CPU
speed, memory size, storage capacity, etc. The actual ߠ௜ varies
depending on the characteristics of the jobs, i.e., whether they are
computation intensive or I/O intensive ܹ݄݁݅݃ݐ௜ ൌ ఊ೔ൈఏ೔∑ ఊ೔ൈఏ೔೔ಿసభ (4)

Let ݌ܽܯܾ݋ܬ௫ be the total number of Map tasks for a particular job
x, which can be calculated from the number of keys in the input to
the Map tasks, and ݌ܽܯܾ݋ܬ௫,௜	 be the number of Map tasks to be
scheduled to ݎ݁ݐݏݑ݈ܥ௜ for job x, so that

௫,௜݌ܽܯܾ݋ܬ 	ൌ ௜ݐ݄ܹ݃݅݁	 ൈ	݌ܽܯܾ݋ܬ௫	 (5)

After partitioning the MapReduce job to Sub-MapReduce jobs
using equation (5), we number the data items of the datasets and
move the data items accordingly, either from global controller to
local clusters, or from local cluster to local cluster.

4. AUTODOCK MAPREDUCE
We apply the MapReduce paradigm to running multiple
AutoDock instances using the hierarchical MapReduce
framework to prove the feasibility of our approach. We take the
outputs of AutoGrid (one tool in the AutoDock suite) as input to
the AutoDock. The key/value pairs of the input of the Map tasks
are ligand names and the location of ligand files. We designed a
simple input file format for AutoDock MapReduce jobs. Each
input record, which contains 7 fields shown in Table 2,
corresponds to a map task.

Table 2. AutoDock MapReduce input fields and descriptions

Field Description

ligand_name Name of the ligand

autodock_exe Path to AutoDock executable

input_files Input files of AutoDock

output_dir Output directory of AutoDock

autodock_parameters AutoDock parameters

summarize_exe Path to summarize script

summarize_parameters Summarize script parameters

For our AutoDock MapReduce, the Map, Reduce, and Global
Reduce functions are implemented as follows:

1) Map: The Map task takes a ligand to run the AutoDock binary
executable against a shared receptor, and then runs a Python script
summarize_result4.py to output the lowest energy result using a
constant intermediate key.

2) Reduce: The Reduce task takes all the values corresponding to
the constant intermediate key and sorts the values by the energy

18

from low to high, and outputs the sorted results to a file using a
local reducer intermediate key.

3) Global Reduce: The Global Reduce finally takes all the values
of the local reducer intermediate key, sorts and combines them
into a single file by the energy from low to high.

5. EVALUATIONS
We evaluate our model by prototyping a Hadoop based
hierarchical MapReduce system. The system is written in Java
and Shell scripts. We use ssh and scp scripts to finish the data
stage-in and stage-out. On the local clusters’ side, the workload
reporter is a component that exposes Hadoop cluster load
information accessed by global scheduler. Our original design was
to make it a separate program without touching Hadoop source
code. Unfortunately, Hadoop does not expose the load
information we need to external applications, and we had to
modify Hadoop code to add an additional daemon that collects
load data by using Hadoop Java APIs.

In our evaluation, we use several clusters including the IU Quarry
cluster and two clusters in FutureGrid. IU Quarry is a classic HPC
cluster which has several login nodes that are publicly accessible
from outside. After a user logins, he/she can do various job-
related tasks, including job submission, job status query and job
cancellation. The computation nodes however, cannot be accessed
from outside. Several distributed file systems (Lustre, GPFS) are
mounted to each computation node for storing input data accessed
by the jobs. FutureGrid partitions the physical cluster into several
parts, and each of which provides a different testbed such as
Eucalyptus, Nimbus, and HPC.

Table 3. Cluster Node Specifications.

Cluster CPU Cache size Memory

Hotel Intel Xeon 2.93GHz 8192KB 24GB

Alamo Intel Xeon 2.67GHz 8192KB 12GB

Quarry Intel Xeon 2.33GHz 6144KB 16GB

To deploy Hadoop to traditional HPC clusters, we first use the
built-in job scheduler (PBS) to allocate nodes. To balance
maintainability and performance, we install the Hadoop program
in shared directory while store data in local directory, because the
Hadoop program (Java jar files, etc.) is loaded only once by
Hadoop daemons whereas the HDFS data is accessed multiple
times.

We use three clusters for evaluations – IU Quarry, FutureGrid
Hotel and FutureGrid Alamo. Each cluster has 21 nodes. They all
run Linux 2.6.18 SMP. Within each cluster, one node is a
dedicated master node (HDFS namenode and MapReduce
jobtracker) and other nodes are data nodes and task trackers.
Each node in these clusters has an 8-core CPU. The
specifications of these cluster nodes are listed in Table 3.

Considering AutoDock being a CPU-intensive application, we set ߩ௜ ൌ 1 per section 3.3 so that the maximum number of map tasks
on each node is equal to the number of cores on the node. The
version of AutoDock we use is 4.2 which is the latest stable
version. The global controller does not care about low-level
execution details because our local job managers hide the
complexity.

In our experiments, we use 6,000 ligands and 1 receptor. One of
the most important configuration parameters is ga_num_evals -

number of evaluations. The larger its value is, the higher the
probability that better results may be obtained. Based on prior
experiences, the ga_num_evals is typically set from 2,500,000 to
5,000,000. We configure it to 2,500,000 in our experiments.

Figure 3: Number of running map tasks for an Autodock
MapReduce instance

Figure 3 plots the number of running map tasks within one cluster
during the job execution. The cluster has 20 data nodes and task
trackers, so the maximum number of running map tasks at any
moment is 20 * 8 = 160. From the plot, we can see that the
number of running map tasks quickly grows to 160 in the
beginning and stays approximately constant for a long time.
Towards the end of job execution, it drops to a small value
quickly (roughly 0 - 5). Notice there is a tail near the end,
indicating that node usage ratio is low. At this moment, if new
MapReduce tasks come in, the available mappers will be occupied
by those new tasks.

Table 4. MapReduce execution time on different clusters
under different number of map tasks.

Number of
Map Tasks
Per Cluster

Execution Time on Three Clusters

Hotel
(seconds)

Alamo
(seconds)

Quarry
(seconds)

100 1004 821 1179

500 1763 1771 2529

1000 2986 2962 4370

1500 4304 4251 6344

2000 5942 5849 8778

Test Case 1:
Our first test case is a base test case without involving the Global
Controller to find out how each of our local Hadoop clusters
performs under different numbers of map tasks. We ran
AutoDock in the Hadoop to process 100, 500, 1000, 1500 and
2000 ligand/receptor pairs in each of the three clusters. See Table
4 for results.

As is reflected in Figure 4, the total execution time vs. the
number of map tasks in test case 1 on each cluster is close to
linear, regardless of the startup overhead of the MapReduce jobs.
The total execution time of the jobs running on the Quarry cluster

19

is approximately 50% slower than running on Alamo and Hotel.
The main reason is that nodes of the Quarry cluster have slower
CPUs compared with that of Alamo and Hotel.

Figure 4. Local cluster MapReduce execution time based on
different number of map tasks.

Test Case 2:
Our second test case shows the performance of executing
MapReduce jobs with ߛ-weighted partitioned datasets on different
clusters, which is based on the following parameters setup. For
equation (4) from section 3.3, we set ߠ௜ ൌ where C is a ,ܥ
constant, and i ∈ ሼ1, 2, 3ሽ	 for our three clusters. Our calculation
shows ߛଵ ൌ ଶߛ ൌ ଷߛ ൌ 160, given no MapReduce jobs are
running beforehand. Therefore, the weight of map tasks
distribution on each cluster is ܹ݄݁݅݃ݐ௜ ൌ 1/3. We then equally
partition the dataset (apart from shared dataset) into 3 pieces,
stage the data together with the jar executable and job
configuration file to local clusters for execution in parallel. After
the local MapReduce execution, the output files will be staged
back to the global controller for the final global reduce. Figure 5
shows the data movement cost in the stage-in and stage-out
contexts.

Figure 5. Two-way data movement cost of ࢽ-weighted
partitioned datasets: local MapReduce inputs and outputs

The input dataset of AutoDock contains 1 receptor and 6000
ligands. The receptor is described as a set of approximately 20
gridmap files totaling 35MB in size, and the 6000 ligands are
stored in 6000 separate directories, each of which is
approximately 5-6 KB large. In addition, the executable jar and
job configuration file together has a total of 300KB in size. For

each cluster, the global controller creates a 14MB tarball
containing 1 receptor file set, 2000 ligands directories, the
executable jar, and job configuration files, all compressed, and
transfers it to the destination cluster, where the tarball is
decompressed. We call this global-to-local procedure “data stage-
in.” Similarly, when the local MapReduce jobs finish, the output
files together with control files (typically 300-500KB in size) are
compressed into a tarball and transferred back to the global
controller. We call this local-to-global procedure “data stage-out.”
As we can see from Figure 5, the data stage-in procedure takes
13.88 to 17.3 seconds to finish, while the data stage-out procedure
takes 2.28 to 2.52 seconds to finish. The Alamo cluster takes a
little longer to transfer the data but the difference is insignificant
compare to the relatively long duration of local MapReduce
executions.

The time it takes to run 2000 map tasks on each of the local
MapReduce clusters varies due to the different specification of the
clusters. The local MapReduce execution makespan, including
data movement costs (both data stage-in and stage-out) is shown
in Figure 6. The Hotel and Alamo clusters take similar amount of
time to finish their jobs, but the Quarry cluster takes
approximately 3,000 more seconds to finish, about 50% more than
Hotel and Alamo. The Global Reduce task is only invoked after
all the local results are ready in the global controller, and it takes
only 16 seconds to finish. Thus, the relatively poor performance
on Quarry becomes the bottleneck on the current job distribution.

Figure 6. Local MapReduce turnaround time of ࢽ-weighted
datasets, including data movement cost

Test Case 3:
In our third test case, we evaluate the performance of executing
MapReduce jobs with ߠߛ-weighted partitioned datasets on
different clusters, which is based on the following setup. From
test cases 1 and 2, we have observed that although all clusters are
assigned the same number of compute nodes and cores to process
the same amount of data, they take significantly different amount
of time to finish. Among the three clusters, Quarry is much
slower than Alamo and Hotel. The specifications of the cores on
Quarry, Alamo and Hotel are Intel(R) Xeon(R) E5410 2GHz,
Intel(R) Xeon(R) X5550 2.67GHz, and Intel(R) Xeon(R) X5570
2.93GHz, respectively. The inverse ratio of CPU frequency and
that of processing time match roughly. So we hypothesize that the
difference in processing time is mainly due to the different core
frequencies, therefore, it is not enough to merely factor in the
number of cores for load balancing, and the computation
capabilities of each core are also important. We refine our
scheduling policy to add CPU frequency as a factor to set 	ߠ௜.
Here we set ߠଵ ൌ 2.93 for Hotel, ߠଶ ൌ 2.67 for Alamo, and ߠଷ ൌ 2 for Quarry. As is for test case 2, we again have calculated

20

ଵߛ ൌ ଶߛ ൌ ଷߛ ൌ 160, given no MapReduce jobs are running
beforehand. Thus, the weights are ܹ݄݁݅݃ݐଵ ൌ ଶݐ݄ܹ݃݅݁ ,0.3860 ൌ 0.3505, and ܹ݄݁݅݃ݐଷ ൌ 0.2635 for Hotel, Alamo,
and Quarry respectively. The dataset is also partitioned according
to the new weight. Table 5 shows how the dataset is partitioned.

Table 5. Number of Map Tasks and MapReduce Execution
Time on Each Cluster

Cluster Number of Map Tasks
Execution Time

(Seconds)

Hotel 2316 5915

Alamo 2103 5888

Quarry 1581 6395

Figure 7 shows the data movement cost in the weighted partition
scenario. The variations in the size of tarball different number of
ligands sets are quite small, which is smaller than 2MB. As we
can see from the graph, the data stage-in procedure takes 12.34 to
17.64 seconds to finish, while the data stage-out procedure takes
2.2 to 2.6 seconds to finish. Alamo takes a little bit longer to
transfer the data but the difference is also insignificant given the
relatively long duration of local MapReduce executions as in the
previous test case.

Figure 7. Two-way data movement cost of ࣂࢽ-weighted
partitioned datasets: local MapReduce inputs and outputs

Figure 8. Local MapReduce turnaround time of ࣂࢽ-weighted
datasets, including data movement cost

With weighted partition, the local MapReduce execution
makespan, including data movement costs (both data stage-in and
stage-out) are shown in Figure 8. All three clusters take similar
amount of time to finish the local MapReduce jobs. We can see
that our refined scheduler configuration improves performance by

balancing workload among clusters. In the final stage, the global
reduction combines partial results from lower-level clusters and
sorts the results. The average global reduce time taken after
processing 6000 map tasks (ligand/receptor docking) is 16
seconds.

6. CONCLUSION AND FUTURE WORK
In this paper, we have presented a hierarchical MapReduce
framework that can gather computation resources from different
clusters and run MapReduce jobs across them. The applications
implemented in this framework adopt the “Map-Reduce-Global
Reduce” model where computations are expressed as three
functions: Map, Reduce, and Global Reduce. The global
controller in our framework splits the data set and maps them onto
multiple “local” MapReduce clusters to run Map and Reduce
functions, and the local results are returned back to the global
controller to run the Global Reduce function. We use resource
capacity-aware algorithm to balance the workload among clusters.
We use multiple AutoDock runs as a test case to evaluate the
performance of our framework. The result shows that the
workloads are well balanced and the total makespan is kept in
minimum.

There are several potential improvements we will address in our
future work. Based on the compute-intensive nature of the
application, our scheduling algorithm only takes consideration of
the CPU specifications. It will not be the case when an application
has larger data sets that data movement becomes significant.
Other scheduling metrics such as disk I/O and network I/O need
to be considered. The remote job submission and data movement
in our current prototype are built upon the combination of ssh and
scp, which may not work well in a heterogeneous environment.
However, they can be replaced by other solutions. One possible
solution for remote job submission is to integrate our framework
with a meta-scheduler, e.g., CSF and Nimrod/G. Data movement
can also be switched to solutions that are more scalable and work
well in heterogeneous environments, such as gridftp. As an
alternative to transferring data explicitly from site to site, we will
also explore the feasibility of using a shared file system to share
data sets among global controller and local Hadoop clusters.

7. ACKNOWLEDGMENTS
This work funded in part by the Pervasive Technology Institute
and Microsoft. Our special thanks to Dr. Geoffrey Fox for
providing us early access to FutureGrid resources and valuable
feedback on our work. We also would like to express our thanks
to Chathura Herath for discussions.

8. REFERENCES
[1] Buyya, R., Abramson, D., Giddy, J. Nimrod/G: an

architecture for a resource management and scheduling
system in a global computational grid, in: Proceedings of the
HPC ASIA'2000, China, IEEE CS Press, USA, 2000.

[2] Dean, J. and Ghemawat, S. 2008. MapReduce: simplified
data processing on large clusters. Commun. ACM 51, 1
(January 2008), 107-113. DOI=10.1145/1327452.1327492
http://doi.acm.org/10.1145/1327452.1327492

[3] Ding, Z., Wei, X., Luo, Y., Ma, D., Arzberger, P. W., Li, W.
W. Customized Plug-in Modules in Metascheduler CSF4 for
Life Sciences Applications, New Generation Computing
Volume 25, Number 4, 373-394, 2007, DOI:
10.1007/s00354-007-0024-6
http://dx.doi.org/10.1007/s00354-007-0024-6

21

[4] Frey, J., Tannenbaum, T., Livny, M., Foster, I., Tuecke, S.
2002. Condor-G: A Computation Management Agent for
Multi-Institutional Grids. Cluster Computing 5, 3 (July
2002), 237-246. DOI=10.1023/A:1015617019423
http://dx.doi.org/10.1023/A:1015617019423

[5] FutureGrid, http://www.futuregrid.org

[6] Gentzsch, W. (Sun Microsystems). 2001. Sun Grid Engine:
Towards Creating a Compute Power Grid. In Proceedings of
the 1st International Symposium on Cluster Computing and
the Grid (CCGRID '01). IEEE Computer Society,
Washington, DC, USA, 35-39

[7] Hadoop On Demand,
http://hadoop.apache.org/common/docs/r0.17.2/hod.html

[8] Henderson, R. L.. 1995. Job Scheduling Under the Portable
Batch System. In Proceedings of the Workshop on Job
Scheduling Strategies for Parallel Processing (IPPS '95),
Dror G. Feitelson and Larry Rudolph (Eds.). Springer-
Verlag, London, UK, 279-294.

[9] Huedo, E., Montero, R. S., and Llorente, I. M. 2004. A
framework for adaptive execution in grids. Softw. Pract.
Exper. 34, 7 (June 2004), 631-651. DOI=10.1002/spe.584
http://dx.doi.org/10.1002/spe.584

[10] Kavulya, S., Tan, J., Gandhi, R., and Narasimhan, P. 2010.
An Analysis of Traces from a Production MapReduce
Cluster. In Proceedings of the 2010 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid
Computing (CCGRID '10). IEEE Computer Society,
Washington, DC, USA, 94-103.
DOI=10.1109/CCGRID.2010.112
http://dx.doi.org/10.1109/CCGRID.2010.112

[11] Keahey, K., Tsugawa, M., Matsunaga, A., and Fortes, J.
2009. Sky Computing. IEEE Internet Computing 13, 5
(September 2009), 43-51. DOI=10.1109/MIC.2009.94
http://dx.doi.org/10.1109/MIC.2009.94

[12] Litzkow, M. J., Livny, M., Mutka, M. W. Condor - A Hunter
of Idle Workstations. ICDCS 1988:104-111

[13] Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F.,
Belew, R. K., Goodsell, D. S. and Olson, A. J. (2009),
AutoDock4 and AutoDockTools4: Automated docking with
selective receptor flexibility. Journal of Computational
Chemistry, 30: 2785–2791. doi: 10.1002/jcc.21256

[14] National Biomedical Computation Resource, http://nbcr.net

[15] Qiu, J., Ekanayake, J., Gunarathne, T., Choi, J. Y., Bae, S.
Ruan, Y., Ekanayake, S., Wu, S., Beason, S., Fox, G., Rho,

M., Tang, H., “Data Intensive Computing for
Bioinformatics”, In Data Intensive Distributed Computing,
IGI Publishers, 2010

[16] Staples, G. 2006. TORQUE resource manager. In
Proceedings of the 2006 ACM/IEEE Conference on
Supercomputing (SC '06). ACM, New York, NY, USA,
Article 8. DOI=10.1145/1188455.1188464
http://doi.acm.org/10.1145/1188455.1188464

[17] Teragrid, http://www.teragrid.org

[18] Tsugawa, M., and Fortes, J. A. B. 2006. A virtual network
(ViNe) architecture for grid computing. In Proceedings of the
20th International Conference on Parallel and Distributed
Processing (IPDPS'06). IEEE Computer Society,
Washington, DC, USA, 148-148.

[19] Vaqué, M., Arola, A., Aliagas, C., and Pujadas, G. 2006.
BDT: an easy-to-use front-end application for automation of
massive docking tasks and complex docking strategies with
AutoDock. Bioinformatics 22, 14 (July 2006), 1803-1804.
DOI=10.1093/bioinformatics/btl197
http://dx.doi.org/10.1093/bioinformatics/btl197

[20] Yang, H., Dasdan, A., Hsiao, R., and Parker, D. S. 2007.
Map-Reduce-Merge: Simplified Relational Data Processing
on Large Clusters. In Proceedings of the 2007 ACM
SIGMOD International Conference on Management of Data
(SIGMOD '07). ACM, New York, NY, USA, 1029-1040.
DOI=10.1145/1247480.1247602
http://doi.acm.org/10.1145/1247480.1247602

[21] Zaharia, M., Borthakur, D, Sarma, J. S., Elmeleegy, K.,
Shenker, S., and Stoica, I. Job Scheduling for Multi-User
MapReduce Clusters, Technical Report UCB/EECS-2009-
55, University of California at Berkeley, April 2009.

[22] Zhang, C., De Sterck, H., "CloudBATCH: A Batch Job
Queuing System on Clouds with Hadoop and HBase," Cloud
Computing Technology and Science, IEEE International
Conference on, pp. 368-375, 2010 IEEE Second
International Conference on Cloud Computing Technology
and Science, 2010

[23] Zhou, S, Zheng, X., Wang, J., and Delisle, P. 1993. Utopia: a
load sharing facility for large, heterogeneous distributed
computer systems. Softw. Pract. Exper. 23, 12 (December
1993), 1305-1336. DOI=10.1002/spe.4380231203
http://dx.doi.org/10.1002/spe.4380231203

22

