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ABSTRACT 
The MapReduce programming model provides an easy way to 
execute pleasantly parallel applications. Many data-intensive life 
science applications fit this programming model and benefit from 
the scalability that can be delivered using this model.  One such 
application is AutoDock, which consists of a suite of automated 
tools for predicting the bound conformations of flexible ligands to 
macromolecular targets.  However, researchers also need 
sufficient computation and storage resources to fully enjoy the 
benefit of MapReduce.  For example, a typical AutoDock based 
virtual screening experiment usually consists of a very large 
number of docking processes from multiple ligands and is often 
time consuming to run on a single MapReduce cluster.  Although 
commercial clouds can provide virtually unlimited computation 
and storage resources on-demand, due to financial, security and 
possibly other concerns, many researchers still run experiments on 
a number of small clusters with limited number of nodes that 
cannot unleash the full power of MapReduce.  In this paper, we 
present a hierarchical MapReduce framework that gathers 
computation resources from different clusters and run MapReduce 
jobs across them.  The global controller in our framework splits 
the data set and dispatches them to multiple “local” MapReduce 
clusters, and balances the workload by assigning tasks in 
accordance to the capabilities of each cluster and of each node. 
The local results are then returned back to the global controller for 
global reduction. Our experimental evaluation using AutoDock 
over MapReduce shows that our load-balancing algorithm makes 
promising workload distribution across multiple clusters, and thus 
minimizes overall execution time span of the entire MapReduce 
execution. 

Categories and Subject Descriptors 
C.2.4 [Computer-Communication Networks]: Distributed
Systems – Distributed applications.

General Terms: Design, Experimentation, Performance

Keywords: AutoDock, Cloud, FutureGrid, Hierarchical
MapReduce, Multi-Cluster

1. INTRODUCTION
Life science applications are often both compute intensive and 
data intensive. They consume large amount of CPU cycles while 
processing massive data sets that are either in large group of small 

files or naturally splittable. These kinds of applications ideally fit 
in the MapReduce [2] programming model. MapReduce differs 
from the traditional HPC model in that it does not distinguish 
computation nodes and storage nodes so each node is responsible 
for both computation and storage. Obvious advantages include 
better fault tolerance, scalability and data locality scheduling. The 
MapReduce model has been applied to life science applications by 
many researchers. Qiu et al. [15] describe their work to implement 
various clustering algorithm using MapReduce.  

AutoDock [13] is a suite of automated docking tools for 
predicting the bound conformations of flexible ligands to 
macromolecular targets. It is designed to predict how small 
molecules of substrates or drug candidates bind to a receptor of 
known 3D structure. Running AutoDock requires several pre-
docking steps, e.g., ligand and receptor preparation, and grid map 
calculations, before the actual docking process can take place. 
There are desktop GUI tools for processing the individual 
AutoDock steps, such as AutoDockTools (ADT) [13] and BDT 
[19], but they do not have the capability to efficiently process 
thousands to millions of docking processes. Ultimately, the goal 
of a docking experiment is to illustrate the docked result in the 
context of macromolecule, explaining the docking in terms of the 
overall energy landscape. Each AutoDock calculation results in a 
docking log file containing information about the best docked 
ligand conformation found from each of the docking runs 
specified in the docking parameter file (dpf). The results can then 
be summarized interactively using the desktop tools such as 
AutoDockTools or with a python script. A typical AutoDock 
based virtual screening consists of a large number of docking 
processes from multiple targeted ligands and would take a large 
amount of time to finish.  However, the docking processes are 
data independent, so if several CPU cores are available, these 
processes can be carried out in parallel to shorten the overall 
makespan of multiple AutoDock runs.  

Workflow based approaches can also be used to run multiple 
AutoDock instances; however, MapReduce runtime can automate 
data partitioning for parallel execution. Therefore our paper 
focuses on extending the MapReduce model for parallel execution 
of applications across multiple clusters.  

Cloud computing can provide scalable computational and storage 
resources as needed.  With the correct application model and 
implementation, clouds enable applications to scale out with 
relative ease.  Because of the “pleasantly parallel” nature of the 
MapReduce programming model, it has become a popular model 
for deploying and executing applications in a cloud, and running 
multiple AutoDock jobs certainly fits well for MapReduce. 
However, many researchers still shun away from clouds for 
different reasons.  For example, some researchers may not feel 
comfortable letting their data sit in shared storage space with 
users worldwide, while others may have large amounts of data 
and computation that would be financially too expensive to move 
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into the cloud.  It is more typical for a researcher to have access to 
several research clusters hosted at his/her lab or institute. These 
clusters usually consist of only a few nodes, and the nodes in one 
cluster may be very different from those in another cluster in 
terms of various specifications including CPU frequency, number 
of cores, cache size, memory size, and storage capacity. 
Commonly a MapReduce framework is deployed in a single 
cluster to run jobs, but any such individual cluster does not 
provide enough resources to deliver significant performance gain. 
For example, at Indiana University we have access to IU Quarry, 
FutureGrid [5], and Teragrid [17] clusters but each cluster 
imposes limit on the maximum number of nodes a user can uses at 
any time. If these isolated clusters can work together, they 
collectively become more powerful. 

Unfortunately, users cannot directly deploy a MapReduce 
framework such as Hadoop on top of these clusters to form a 
single larger MapReduce cluster. Typically the internal nodes of a 
cluster are not directly reachable from outside. However, 
MapReduce requires the master node to directly communicate 
with any slave node, which is also one of the reasons why 
MapReduce frameworks are usually deployed within a single 
cluster.  Therefore, one challenge is to make multiple clusters act 
collaboratively as one so it can more efficiently run MapReduce. 
There are two possible approaches to address this challenge. One 
is to unify the underlying physical clusters as a single virtual 
cluster by adding a special infrastructure layer, and run 
MapReduce on top of this virtual cluster. The other is to make the 
MapReduce framework directly working with multiple clusters 
without needing additional special infrastructure layers. 

We propose a hierarchical MapReduce framework which takes 
the second approach to gather isolated cluster resources into a 
more capable one for running MapReduce jobs.  Kavulya et al. 
characterize MapReduce jobs into four categories based on their 
execution patterns: map-only, map-mostly, shuffle-mostly, and 
reduce-mostly, and also find that 91% of the MapReduce jobs 
they have surveyed fall into the map-only and map-mostly 
categories [10]. Our framework partitions and distributes 
MapReduce jobs from these two categories (map-only and map-
mostly) into multiple clusters to perform map-intensive 
computation, and collects and combines the outputs in the global 
node. Our framework also achieves load-balancing by assigning 
different task loads to different clusters based on the cluster size, 
current load, and specifications of the nodes.  We have 
implemented the prototype framework using Apache Hadoop. 

The rest of the paper is organized as follows. Section 2 presents 
some related works. Section 3 gives an overview of our 
hierarchical MapReduce framework. Section 4 presents more 
details on the multiple AutoDock runs using MapReduce. Section 
5 gives experiment setup and result analysis. The conclusion and 
future work are given in Section 6. 

2. RELATED WORKS
Researchers have put significant efforts to the easy submission 
and optimal scheduling of massive parallel jobs in clusters, grids, 
and clouds.  Conventional job schedulers, such as Condor [12], 
SGE [6], PBS [8], LSF [23], etc., aim to provide highly optimized 
resource allocation, job scheduling, and load balancing, within a 
single cluster environment. On the other hand, grid brokers and 
metaschedulers, e.g., Condor-G [4], CSF [3], Nimrod/G[1], 
GridWay [9], provide an entry point to multi-cluster grid 
environments. They enable transparent job submission to various 
distributed resource management systems, without worrying about 

the locality of execution and available resources there. With 
respect to the AutoDock based virtual screening, our earlier 
efforts presented at National Biomedical Computation Resource 
(NBCR) [14] Summer Institute 2009, addressed the performance 
issue of massive docking processes by distributing the jobs to the 
grid environment. We used the CSF4 [3] meta-scheduler to split 
docking jobs to heterogeneous clusters where these jobs were 
handled by local job schedulers including LSF, SGE and PBS. 

Clouds give users a notion of virtually unlimited, on-demand 
resources for computation and storage. Attributed to its ease of 
executing pleasantly parallel applications, MapReduce has 
become a dominant programming model for running applications 
in a cloud. Researchers are discovering new ways to make 
MapReduce easier to deploy and manage, more efficient and 
scalable, and also more able to accomplish complex data 
processing tasks.  Hadoop On Demand (HOD) [7] uses the 
TORQUE resource manager [16] to provision and manage 
independent MapReduce and HDFS instances on shared physical 
nodes. The authors of [21] have identified some fundamental 
performance limitation issues in Hadoop and in the MapReduce 
model in general which make job response time unacceptably 
long when multiple jobs are submitted; by substituting their own 
scheduler implementation, they are able to overcome these 
limitations and improve the job throughput.  CloudBATCH [22] is 
a prototype job queuing mechanism for managing and dispatching 
MapReduce jobs and commandline serial jobs in a uniform way. 
Traditionally a cluster must separate MapReduce-enabled nodes 
because they are dedicated to MapReduce jobs and cannot run 
serial jobs.  But CloudBATCH uses HBase to keep various 
metadata on each job and also uses Hadoop to wrap commandline 
serial jobs as MapReduce jobs, so that both types of jobs can be 
executed using the same set of cluster nodes.  The Map-Reduce-
Merge is extended from the conventional MapReduce model to 
accomplish common relational algebra operations over distributed 
heterogeneous data sets [20].  In this extension, the Merge phase 
is a new concept that is more complex than the regular Map and 
Reduce phases, and requires the learning and understanding of 
several new components, including partition selector, processors, 
merger, and configurable iterators.  This extension also modifies 
the standard MapReduce phase to expose data sources to support 
some relational algebra operations in the Merge phase.  

Sky Computing [11] provides end user a virtual cluster 
interconnected with ViNe [18] across different domains. It aims to 
bring convenience by hiding the underlying details of the physical 
clusters. However, this transparency may cause unbalanced 
workload if a job is dispatched over heterogeneous compute nodes 
among different physical domains.   

Our hierarchical MapReduce framework, aims to enable map-only 
and map-most jobs to be run across a number of isolated clusters 
(even virtual clusters), so these isolated resources can collectively 
provide a more powerful resource for the computation.  It can 
easily achieve load-balance because the different clusters are 
visible to the scheduler in our framework.  

3. HIERARCHICAL MAPREDUCE
The hierarchical MapReduce framework we present in this paper 
consists of two layers.  The top layer has a global controller that 
accepts user submitted MapReduce jobs and distributes them 
across different local cluster domains.  Upon receiving a user job, 
the global controller divides the job into sub-jobs according to the 
capability of each local cluster.  If the input data has not been 
deployed onto the cluster already, the global controller also 
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partitions input data proportionally to the sub-jobs, and sends 
them to these clusters.  After the jobs are all finished on all 
clusters, the global controller collects the outputs to perform a 
final reduction using the global reducer which is also supplied by 
the user.  The bottom layer consists of multiple local clusters that 
each receives sub-jobs and input data partitions from the global 
controller, performs local MapReduce computation and sends 
results back to the global controller. 

Although on the surface our framework may appear structurally 
similar to the Map-Reduce-Merge model presented in [20], our 
framework is very different in nature.  As discussed in the related 
work section, the Merge phase introduced in the Map-Reduce-
Merge model is a new concept which is different and more 
complex than the conventional Map and Reduce, and 
programmers implementing jobs under this model must not only 
learn this new concept along with the components required by it, 
but also need to modify the Mappers and Reducers to expose data 
source.  Our framework, on the other hand, strictly uses the 
conventional Map and Reduce, and a programmer just needs to 
supply two Reducers – one local Reducer, and one global Reducer 
– instead of just one for the regular MapReduce. The only
requirement is that the programmer must make sure that the
formats of the local Reducer output keys/value pairs match those
of the global Reducer input key/value pairs. However, if the job is
map-only, the programmer does not need to supply any reducers,
and the global controller simply collects the map results from all
clusters and places them under a common directory.

3.1 Architecture 
Figure 1 is a high-level architecture diagram of our hierarchical 
MapReduce framework.  The top layer in our framework is the 
global controller, which consists of a job scheduler, a data 
transferer, a workload collector, and a use-supplied global 
reducer. The bottom layer consists of multiple clusters for running 
the distributed local MapReduce jobs, where each cluster has a 
MapReduce master node with a workload reporter and a job 
manager. The compute nodes inside each of the cluster are not 
accessible from the outside.  

Figure 1. Hierarchical MapReduce Architecture 

When a user submits a MapReduce job to the global controller, 
the job scheduler splits the job into a number of sub-jobs and 
assigns them to each local cluster based on several factors, 
including the current workload reported by the workload reporter 
from each local cluster, as well as the capability of individual 
nodes making up each cluster. This is done to achieve load-
balance by ensuring that all clusters will finish their portion of the 
job in approximately the same time. The global controller also 

partitions the input data in proportion to the sub-job sizes if the 
input data have not been deployed before-hand.  The data 
transferer would transfer the user supplied MapReduce jar and job 
configuration files with the input data partitions to the clusters. 
As soon as the data transfer finishes for a particular cluster, the 
job scheduler at the global controller notifies the job manager of 
that cluster to start the local MapReduce job.  Since data transfer 
is very expensive, we recommend that users only use the global 
controller to transfer data when the size of input data is small and 
the time spent for transferring the data is insignificant compared 
to the computation time.  For large data sets, it would be more 
efficient and effective to deploy them before-hand, so that the jobs 
get the full benefit of parallelization and the overall time does not 
get dominated by data transfer. After the local sub-jobs are 
finished on a local cluster, if the application requires, the clusters 
will transfer the output back to the global controller.  Upon 
receiving all the output data from all local clusters, the global 
reducer will be invoked to perform the final reduction task, unless 
the original job is map-only. 

3.2 Programming Model 
The programming model of our hierarchical MapReduce 
framework is the “Map-Reduce-Global Reduce” model where 
computations are expressed as three functions: Map, Reduce, and 
Global Reduce. We use the term “Global Reduce” to distinguish it 
from the “local” Reducer, but conceptually as well as 
syntactically, a Global Reducer is just another conventional 
Reducer.    The Mapper, just as a conventional Mapper does, takes 
an input pair and produces an intermediate key/value pair; 
likewise, the Reducer, just as a conventional Reducer does, takes 
an intermediate input key and a set of corresponding values 
produced by the Map task, and outputs a different set of key/value 
pairs.  Both the Mapper and the Reducer are executed on local 
clusters.  The Global Reducer is executed on the global controller 
using the output from the local clusters. Table 1 lists these 3 
functions and also the input and output data types.  The formats of 
the local Reducers output keys/value pairs must match those of 
the Global Reducer input key/value pairs. 

Table 1. Input and output types of Map, Reduce, and Global 
Reduce functions 

Function Name Input Output 

Map ሺ݇௜, ,௜ሻ ሺ݇௠ݒ  ௠ሻݒ
Reduce ሺ݇௠, ሾݒଵ௠,… , ,௡௠ሿሻ ሺ݇௥ݒ  ௥ሻݒ

Global Reduce ሺ݇௥, ሾݒଵ௥, … , ,௡௥ሿሻ ሺ݇௢ݒ  ௢ሻݒ
Figure 2 uses a tree-like structure to show the data flow sequence 
among the Map, Reduce, and Global Reduce function.  In this 
diagram, the root node is the global controller on which the 
Global Reduce takes place, and the leaf nodes represent local 
clusters that perform the Map and Reduce functions. The circled 
numbers shown in Figure 2 indicate the order in which the steps 
occur, and the arrows indicate the directions in which the data sets 
(key/value pairs) flow.  A job is submitted into the system in Step 
1, and then the input key/value pairs are passed from the root node 
(global controller) to the child nodes (local clusters) in Step 2, and 
also Map tasks are launched at the local clusters where each Map 
consumes an input key/value pair and produces a set of 
intermediate key/value pairs.  In Step 3, the set of intermediate 
pairs are passed to the Reduce tasks, which are also launched at 
the local clusters. Each Reduce task consumes an intermediate 
key with a set of corresponding values, and produces yet another 
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set of key/value pairs as output.  In Step 4, the local reduce output 
are send back to the global controller to perform the Global 
Reduce task. The Global Reduce task takes in a key and a set of 
corresponding values that were originally produced from the local 
Reducers, performs the computation, and produces the output in 
Step 5. 

Theoretically, the model we present can be extended to more than 
just two hierarchical layers, i.e. the tree structure in Figure 2 can 
have more depth by turning the leaf clusters into intermediate 
controllers similar to the global controller and each would further 
divide its assigned jobs and run them on its own set of children 
clusters.  But for all practical purposes, we do not see a need for 
more than two layers for the foreseeable future, because it could 
increase the complexity as well as the overhead introduced with 
each additional layer.  If a researcher has a large number of small 
clusters available, it is most likely more efficient to use them to 
create a broader bottom layer than to increase the depth.  

Figure 2. Programming Model 

3.3 Job Scheduling and Data Partitioning 
The main challenge of our work is how to balance the workloads 
among each local MapReduce cluster, which is closely tied to 
how the datasets are partitioned.  

The input dataset for a particular MapReduce job may be either 
submitted by the user to the global controller before execution, or 
pre-deployed on the local clusters and is exposed via a metadata 
catalog to the user who runs the MapReduce job. The scheduler 
on the global controller takes into consideration the data locality 
when partitioning the datasets and scheduling the job.  

In this paper, we focus on the situation where input dataset is 
submitted by the user.  If the user manually split the dataset and 
run separate sub-jobs on different clusters, it would be time 
consuming and error-prone. Our global controller is able to 
automatically count the total number of records in the input 
dataset using user-implemented InputFormat and RecordReader, 
and divides the dataset and assigns the correct number of records 
to each cluster. 

We make the assumption that all map tasks of a MapReduce 
application are computation intensive and take approximately the 
same amount of time to run – this is a reasonable assumption as 
we will see in the next section that applying MapReduce to 
running multiple AutoDock instances displays exactly this kind of 
behavior. The scheduling algorithm we use for our framework is 
as follows. Let ݎ݁݌݌ܽܯݔܽܯ௜ be the maximum number of 
Mappers that can be run concurrently on ݎ݁ݐݏݑ݈ܥ௜; ݊ݑܴݎ݁݌݌ܽܯ௜ 
be the number of Mappers currently running on ݎ݁ݐݏݑ݈ܥ௜; ݈݅ܽݒܣݎ݁݌݌ܽܯ௜	be the number of available Mappers that can be 
added for execution on ݎ݁ݐݏݑ݈ܥ௜; ܰ݁ݎ݋ܥ݉ݑ௜ be the total number 
of CPU Cores on ݎ݁ݐݏݑ݈ܥ௜, where i is the cluster number, and i ∈ ሼ1, . . . , nሽ.  We also use ߩ௜ to define how many map tasks a user 
assigns to each core, that is, 

௜ݎ݁݌݌ܽܯݔܽܯ   ൌ ௜ߩ ൈ  ௜   (1)݁ݎ݋ܥ݉ݑܰ

Normally we set ߩ௜ ൌ 1 in the local MapReduce clusters for 
computation intensive jobs, so we get 

௜݈݅ܽݒܣݎ݁݌݌ܽܯ       ൌ ௜ݎ݁݌݌ܽܯݔܽܯ െ  ௜   (2)݊ݑܴݎ݁݌݌ܽܯ

For simplicity, let 

௜ߛ   ൌ ௜݈݅ܽݒܣݎ݁݌݌ܽܯ    (3)

The weight of each sub-job can be calculated from (4) where the 
factor ߠ௜ is the computing power of each cluster, e.g., the CPU 
speed, memory size, storage capacity, etc. The actual ߠ௜ varies 
depending on the characteristics of the jobs, i.e., whether they are 
computation intensive or I/O intensive ܹ݄݁݅݃ݐ௜ ൌ ఊ೔ൈఏ೔∑ ఊ೔ൈఏ೔೔ಿసభ    (4)

Let ݌ܽܯܾ݋ܬ௫ be the total number of Map tasks for a particular job 
x, which can be calculated from the number of keys in the input to 
the Map tasks, and ݌ܽܯܾ݋ܬ௫,௜	 be the number of Map tasks to be 
scheduled to ݎ݁ݐݏݑ݈ܥ௜ for job x, so that 

௫,௜݌ܽܯܾ݋ܬ   	ൌ ௜ݐ݄ܹ݃݅݁	 ൈ	݌ܽܯܾ݋ܬ௫	   (5) 

After partitioning the MapReduce job to Sub-MapReduce jobs 
using equation (5), we number the data items of the datasets and 
move the data items accordingly, either from global controller to 
local clusters, or from local cluster to local cluster. 

4. AUTODOCK MAPREDUCE
We apply the MapReduce paradigm to running multiple 
AutoDock instances using the hierarchical MapReduce 
framework to prove the feasibility of our approach. We take the 
outputs of AutoGrid (one tool in the AutoDock suite) as input to 
the AutoDock. The key/value pairs of the input of the Map tasks 
are ligand names and the location of ligand files. We designed a 
simple input file format for AutoDock MapReduce jobs. Each 
input record, which contains 7 fields shown in Table 2, 
corresponds to a map task. 

Table 2. AutoDock MapReduce input fields and descriptions 

Field Description

ligand_name Name of the ligand 

autodock_exe Path to AutoDock executable 

input_files Input files of AutoDock 

output_dir Output directory of AutoDock 

autodock_parameters AutoDock parameters

summarize_exe Path to summarize script 

summarize_parameters Summarize script parameters 

For our AutoDock MapReduce, the Map, Reduce, and Global 
Reduce functions are implemented as follows: 

1) Map: The Map task takes a ligand to run the AutoDock binary
executable against a shared receptor, and then runs a Python script
summarize_result4.py to output the lowest energy result using a
constant intermediate key.

2) Reduce: The Reduce task takes all the values corresponding to
the constant intermediate key and sorts the values by the energy
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from low to high, and outputs the sorted results to a file using a 
local reducer intermediate key.  

3) Global Reduce: The Global Reduce finally takes all the values
of the local reducer intermediate key, sorts and combines them
into a single file by the energy from low to high.

5. EVALUATIONS
We evaluate our model by prototyping a Hadoop based 
hierarchical MapReduce system. The system is written in Java 
and Shell scripts. We use ssh and scp scripts to finish the data 
stage-in and stage-out. On the local clusters’ side, the workload 
reporter is a component that exposes Hadoop cluster load 
information accessed by global scheduler. Our original design was 
to make it a separate program without touching Hadoop source 
code. Unfortunately, Hadoop does not expose the load 
information we need to external applications, and we had to 
modify Hadoop code to add an additional daemon that collects 
load data by using Hadoop Java APIs.  

In our evaluation, we use several clusters including the IU Quarry 
cluster and two clusters in FutureGrid. IU Quarry is a classic HPC 
cluster which has several login nodes that are publicly accessible 
from outside. After a user logins, he/she can do various job-
related tasks, including job submission, job status query and job 
cancellation. The computation nodes however, cannot be accessed 
from outside. Several distributed file systems (Lustre, GPFS) are 
mounted to each computation node for storing input data accessed 
by the jobs.  FutureGrid partitions the physical cluster into several 
parts, and each of which provides a different testbed such as 
Eucalyptus, Nimbus, and HPC.  

Table 3. Cluster Node Specifications. 

Cluster CPU Cache size Memory 

Hotel Intel Xeon 2.93GHz 8192KB 24GB 

Alamo Intel Xeon 2.67GHz 8192KB 12GB 

Quarry Intel Xeon 2.33GHz 6144KB 16GB 

To deploy Hadoop to traditional HPC clusters, we first use the 
built-in job scheduler (PBS) to allocate nodes. To balance 
maintainability and performance, we install the Hadoop program 
in shared directory while store data in local directory, because the 
Hadoop program (Java jar files, etc.) is loaded only once by 
Hadoop daemons whereas the HDFS data is accessed multiple 
times.  

We use three clusters for evaluations – IU Quarry, FutureGrid 
Hotel and FutureGrid Alamo. Each cluster has 21 nodes.  They all 
run Linux 2.6.18 SMP.  Within each cluster, one node is a 
dedicated master node (HDFS namenode and MapReduce 
jobtracker) and other nodes are data nodes and task trackers. 
Each node in these clusters has an 8-core CPU.  The 
specifications of these cluster nodes are listed in Table 3. 

Considering AutoDock being a CPU-intensive application, we set ߩ௜ ൌ 1 per section 3.3 so that the maximum number of map tasks 
on each node is equal to the number of cores on the node. The 
version of AutoDock we use is 4.2 which is the latest stable 
version. The global controller does not care about low-level 
execution details because our local job managers hide the 
complexity. 

In our experiments, we use 6,000 ligands and 1 receptor. One of 
the most important configuration parameters is ga_num_evals - 

number of evaluations. The larger its value is, the higher the 
probability that better results may be obtained. Based on prior 
experiences, the ga_num_evals is typically set from 2,500,000 to 
5,000,000. We configure it to 2,500,000 in our experiments.  

Figure 3: Number of running map tasks for an Autodock 
MapReduce instance 

Figure 3 plots the number of running map tasks within one cluster 
during the job execution. The cluster has 20 data nodes and task 
trackers, so the maximum number of running map tasks at any 
moment is 20 * 8 = 160. From the plot, we can see that the 
number of running map tasks quickly grows to 160 in the 
beginning and stays approximately constant for a long time. 
Towards the end of job execution, it drops to a small value 
quickly (roughly 0 - 5). Notice there is a tail near the end, 
indicating that node usage ratio is low. At this moment, if new 
MapReduce tasks come in, the available mappers will be occupied 
by those new tasks. 

Table 4. MapReduce execution time on different clusters 
under different number of map tasks.  

Number of 
Map Tasks 
Per Cluster 

Execution Time on Three Clusters 

Hotel 
(seconds) 

Alamo 
(seconds) 

Quarry 
(seconds) 

100 1004 821 1179

500 1763 1771 2529

1000 2986 2962 4370

1500 4304 4251 6344

2000 5942 5849 8778

Test Case 1: 
Our first test case is a base test case without involving the Global 
Controller to find out how each of our local Hadoop clusters 
performs under different numbers of map tasks. We ran 
AutoDock in the Hadoop to process 100, 500, 1000, 1500 and 
2000 ligand/receptor pairs in each of the three clusters. See Table 
4 for results.  

As is reflected in Figure 4,  the total execution time vs. the 
number of map tasks in test case 1 on each cluster is close to 
linear, regardless of the startup overhead of the MapReduce jobs. 
The total execution time of the jobs running on the Quarry cluster 
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is approximately 50% slower than running on Alamo and Hotel. 
The main reason is that nodes of the Quarry cluster have slower 
CPUs compared with that of Alamo and Hotel.  

Figure 4. Local cluster MapReduce execution time based on 
different number of map tasks. 

Test Case 2: 
Our second test case shows the performance of executing 
MapReduce jobs with ߛ-weighted partitioned datasets on different 
clusters, which is based on the following parameters setup. For 
equation (4) from section 3.3, we set ߠ௜ ൌ  where C is a ,ܥ
constant, and i ∈ ሼ1, 2, 3ሽ	 for our three clusters. Our calculation 
shows ߛଵ ൌ ଶߛ ൌ ଷߛ ൌ 160, given no MapReduce jobs are 
running beforehand. Therefore, the weight of map tasks 
distribution on each cluster is ܹ݄݁݅݃ݐ௜ ൌ 1/3. We then equally 
partition the dataset (apart from shared dataset) into 3 pieces, 
stage the data together with the jar executable and job 
configuration file to local clusters for execution in parallel. After 
the local MapReduce execution, the output files will be staged 
back to the global controller for the final global reduce. Figure 5 
shows the data movement cost in the stage-in and stage-out 
contexts.  

Figure 5. Two-way data movement cost of ࢽ-weighted 
partitioned datasets: local MapReduce inputs and outputs 

The input dataset of AutoDock contains 1 receptor and 6000 
ligands. The receptor is described as a set of approximately 20 
gridmap files totaling 35MB in size, and the 6000 ligands are 
stored in 6000 separate directories, each of which is 
approximately 5-6 KB large.  In addition, the executable jar and 
job configuration file together has a total of 300KB in size.  For 

each cluster, the global controller creates a 14MB tarball 
containing 1 receptor file set, 2000 ligands directories, the 
executable jar, and job configuration files, all compressed, and 
transfers it to the destination cluster, where the tarball is 
decompressed. We call this global-to-local procedure “data stage-
in.” Similarly, when the local MapReduce jobs finish, the output 
files together with control files (typically 300-500KB in size) are 
compressed into a tarball and transferred back to the global 
controller. We call this local-to-global procedure “data stage-out.” 
As we can see from Figure 5, the data stage-in procedure takes 
13.88 to 17.3 seconds to finish, while the data stage-out procedure 
takes 2.28 to 2.52 seconds to finish. The Alamo cluster takes a 
little longer to transfer the data but the difference is insignificant 
compare to the relatively long duration of local MapReduce 
executions. 

The time it takes to run 2000 map tasks on each of the local 
MapReduce clusters varies due to the different specification of the 
clusters. The local MapReduce execution makespan, including 
data movement costs (both data stage-in and stage-out) is shown 
in Figure 6. The Hotel and Alamo clusters take similar amount of 
time to finish their jobs, but the Quarry cluster takes 
approximately 3,000 more seconds to finish, about 50% more than 
Hotel and Alamo. The Global Reduce task is only invoked after 
all the local results are ready in the global controller, and it takes 
only 16 seconds to finish. Thus, the relatively poor performance 
on Quarry becomes the bottleneck on the current job distribution.  

Figure 6.  Local MapReduce turnaround time of ࢽ-weighted 
datasets, including data movement cost 

Test Case 3: 
In our third test case, we evaluate the performance of executing 
MapReduce jobs with ߠߛ-weighted partitioned datasets on 
different clusters, which is based on the following setup. From 
test cases 1 and 2, we have observed that although all clusters are 
assigned the same number of compute nodes and cores to process 
the same amount of data, they take significantly different amount 
of time to finish.  Among the three clusters, Quarry is much 
slower than Alamo and Hotel. The specifications of the cores on 
Quarry, Alamo and Hotel are Intel(R) Xeon(R) E5410 2GHz, 
Intel(R) Xeon(R)  X5550 2.67GHz, and Intel(R) Xeon(R)  X5570 
2.93GHz, respectively. The inverse ratio of CPU frequency and 
that of processing time match roughly. So we hypothesize that the 
difference in processing time is mainly due to the different core 
frequencies, therefore, it is not enough to merely factor in the 
number of cores for load balancing, and the computation 
capabilities of each core are also important. We refine our 
scheduling policy to add CPU frequency as a factor to set 	ߠ௜. 
Here we set ߠଵ ൌ 2.93 for Hotel, ߠଶ ൌ 2.67 for Alamo, and ߠଷ ൌ 2 for Quarry. As is for test case 2, we again have calculated 
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ଵߛ ൌ ଶߛ ൌ ଷߛ ൌ 160, given no MapReduce jobs are running 
beforehand. Thus, the weights are ܹ݄݁݅݃ݐଵ ൌ ଶݐ݄ܹ݃݅݁  ,0.3860 ൌ 0.3505, and ܹ݄݁݅݃ݐଷ ൌ 0.2635 for Hotel, Alamo, 
and Quarry respectively. The dataset is also partitioned according 
to the new weight. Table 5 shows how the dataset is partitioned.  

Table 5. Number of Map Tasks and MapReduce Execution 
Time on Each Cluster 

Cluster Number of Map Tasks 
Execution Time 

(Seconds) 

Hotel 2316 5915

Alamo 2103 5888

Quarry 1581 6395

Figure 7 shows the data movement cost in the weighted partition 
scenario. The variations in the size of tarball different number of 
ligands sets are quite small, which is smaller than 2MB.  As we 
can see from the graph, the data stage-in procedure takes 12.34 to 
17.64 seconds to finish, while the data stage-out procedure takes 
2.2 to 2.6 seconds to finish. Alamo takes a little bit longer to 
transfer the data but the difference is also insignificant given the 
relatively long duration of local MapReduce executions as in the 
previous test case. 

Figure 7. Two-way data movement cost of ࣂࢽ-weighted 
partitioned datasets: local MapReduce inputs and outputs 

Figure 8.  Local MapReduce turnaround time of ࣂࢽ-weighted 
datasets, including data movement cost 

With weighted partition, the local MapReduce execution 
makespan, including data movement costs (both data stage-in and 
stage-out) are shown in Figure 8. All three clusters take similar 
amount of time to finish the local MapReduce jobs. We can see 
that our refined scheduler configuration improves performance by 

balancing workload among clusters. In the final stage, the global 
reduction combines partial results from lower-level clusters and 
sorts the results. The average global reduce time taken after 
processing 6000 map tasks (ligand/receptor docking) is 16 
seconds.  

6. CONCLUSION AND FUTURE WORK
In this paper, we have presented a hierarchical MapReduce 
framework that can gather computation resources from different 
clusters and run MapReduce jobs across them. The applications 
implemented in this framework adopt the “Map-Reduce-Global 
Reduce” model where computations are expressed as three 
functions: Map, Reduce, and Global Reduce. The global 
controller in our framework splits the data set and maps them onto 
multiple “local” MapReduce clusters to run Map and Reduce 
functions, and the local results are returned back to the global 
controller to run the Global Reduce function. We use resource 
capacity-aware algorithm to balance the workload among clusters. 
We use multiple AutoDock runs as a test case to evaluate the 
performance of our framework. The result shows that the 
workloads are well balanced and the total makespan is kept in 
minimum. 

There are several potential improvements we will address in our 
future work. Based on the compute-intensive nature of the 
application, our scheduling algorithm only takes consideration of 
the CPU specifications. It will not be the case when an application 
has larger data sets that data movement becomes significant. 
Other scheduling metrics such as disk I/O and network I/O need 
to be considered. The remote job submission and data movement 
in our current prototype are built upon the combination of ssh and 
scp, which may not work well in a heterogeneous environment. 
However, they can be replaced by other solutions. One possible 
solution for remote job submission is to integrate our framework 
with a meta-scheduler, e.g., CSF and Nimrod/G.  Data movement 
can also be switched to solutions that are more scalable and work 
well in heterogeneous environments, such as gridftp.  As an 
alternative to transferring data explicitly from site to site, we will 
also explore the feasibility of using a shared file system to share 
data sets among global controller and local Hadoop clusters.  
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