
Applying Twister to Scientific Applications

Bingjing Zhang1, 2, Yang Ruan1, 2, Tak-Lon Wu1, 2, Judy Qiu1, 2, Adam Hughes2, Geoffrey Fox1, 2
1School of Informatics and Computing, 2Pervasive Technology Institute

Indiana University Bloomington
{zhangbj, yangruan, taklwu, xqiu, adalhugh, gcf}@indiana.edu

Abstract—Many scientific applications suffer from the lack of a
unified approach to support the management and efficient
processing of large-scale data. The Twister MapReduce
Framework, which not only supports the traditional
MapReduce programming model but also extends it by
allowing iterations, addresses these problems. This paper
describes how Twister is applied to several kinds of scientific
applications such as BLAST, MDS Interpolation and GTM
Interpolation in a non-iterative style and to MDS without
interpolation in an iterative style. The results show the
applicability of Twister to data parallel and EM algorithms
with small overhead and increased efficiency.

Keywords-Twister; Iterative MapReduce; Cloud; Scientific
Applications

I.INTRODUCTION

Scientific applications are required to process large
amounts of data. In recent years, typical input data sets have
grown in size from gigabytes to terabytes, and even petabyte-
scale input data is becoming more common. These large data
sets already far exceed the computing capability of one
computer, and while the computing tasks can be parallelized
on several computers, the execution may still take days or
weeks to complete.

This situation demands better parallel algorithms and
distributed computing technologies which can manage
scientific applications efficiently. The MapReduce
Framework [1] is one such kind technology which has
become popular in recent years. KeyValue pairs make the
input be distributed and processed in parallel at a fine level
of granularity. The combination of Map tasks and Reduce
tasks satisfies the task flow of most kinds of applications,
and these tasks are also well managed under the runtime
platform.

This paper introduces the Twister MapReduce
Framework [2], an expansion of the traditional MapReduce
Framework. The main characteristic of Twister is that it
supports not only non-iterative MapReduce applications but
also an iterative MapReduce programming model to
efficiently support Expectation-maximization (EM)
algorithms that suffer from communication complications.
These algorithms are common in scientific applications but
are not well handled by previous MapReduce
implementations such as Hadoop [3].

Twister uses a publish/subscribe messaging middleware
system for command communication and data transfers. It
supports MapReduce in the manner of “configure once, and

run many time” [2]. Data can be easily scattered from the
client node to compute nodes and combined back into client
node through Twister’s API. With these features, Twister
supports iterative MapReduce computations efficiently when
compared to other MapReduce runtimes. Twister can be
applied to Cloud architecture, having been successfully
deployed on the Amazon EC2 platform [4].

The main focus of this paper is on the applicability of
Twister to scientific problems, as demonstrated through the
implementation of several scientific applications. In the
following sections, an overview of Twister is first presented,
introducing its programming model and architecture. Then,
four scientific applications implemented using Twister are
discussed. Three of these applications are non-iterative
programs (Twister BLAST, Twister GTM Interpolation, and
Twister MDS Interpolation), while the final one is Twister
MDS, an iterative application. Workflow and the parallel
mechanism supported by Twister are also presented within
this section. Finally, conclusions based on this work are
presented in the last section.

II.TWISTER OVERVIEW

This section gives an overview to Twister MapReduce
Framework. Twister’s support of non-iterative and iterative
MapReduce programming models is discussed first, followed
by a description of the Twister architecture.

A. Non-Iterative and Iterative MapReduce Support
Many parallel applications are only required to perform

Map and Reduce tasks once, such as WordCount [1].
However, some other applications such as Kmeans [5] and
PageRank [6], operate in an iterative pattern. Their parallel
algorithms require the program to perform Map and Reduce
tasks in iterations in order to get the final result.

The basic idea of Twister is to allow users to configure a
MapReduce job only once, and then to run the job in one
iteration or several iterations according to the client’s
request. If one round of Map and Reduce tasks is required,
then the job executes exactly as it would using non-iterative
MapReduce, and the result is produced directly from the
Reduce method. For iterative MapReduce, the output from
the “Reduce” is collected by a “Combine” method at the end
of each iteration. A client will send intermediate results back
to the compute nodes as new set of KeyValue pairs in the
next iteration of MapReduce tasks (See Fig. 1).

Another important characteristic of many iterative
algorithms is that some sets of input data remain static

between iterations. In Twister, these static data are
configured with a partition file, loaded into Map or Reduce
tasks, and then reused through iterations. This mechanism
significantly improves the performance of Twister for
iterative MapReduce computing and makes it different from
those methods, which mimic iterative MapReduce by simply
re-executing MapReduce tasks without caching and reusing
data or job configuration. In addition, because the data
cached inside of Map and Reduce tasks are static, Twister
maintains a “side-effect-free” nature [2].

In this workflow, Twister also provides a fault tolerance
solution for the iterative MapReduce programming model.
Twister can save the execution state between iterations, and,
if execution faults are detected, roll back a few iterations and
resume computing.

B. Architecture
Twister has several components. The client side is used

to drive MapReduce jobs. Daemons and workers which live
on the compute nodes manage MapReduce tasks.
Connections between the components are based on SSH and
messaging software.

The client controls MapReduce jobs through a multi-step
process. During configuration, the client assigns MapReduce
methods to the job, prepares KeyValue pairs and prepares
static data for MapReduce tasks through the partition file if
required. Once the job is configured, the client can spawn the
MapReduce job and monitor it until completion. Between
iterations, the client receives results collected by the
Combine method, and, when the job is done, exits gracefully.

Messages including control messages and KeyValue pair
data are transmitted through a network of message brokers
via a publish/subscribe mechanism. With a set of predefined
interfaces, Twister can be assembled with different
messaging software. Currently Twister supports two of
message brokers: NaradaBrokering [7] and ActiveMQ [8].

Daemons operate on compute nodes, loading the Map
and Reduce classes and starting them as Map and Reduce
workers, also known as Mappers and Reducers. During
initialization, Map and Reduce workers load static data from
the local disk according to records in the partition file and
cache the data into memory. The workers then execute a
Map or Reduce function defined by the users. Twister uses
static scheduling for workers in order to take advantage of
the local data cache [2]. In this hybrid computing model,
worker threads are managed by daemon processes on each
node, while, between nodes, daemons communicate with the
client through messages.

Twister uses scripts to operate on static input data and
some output data on local disks in order to simulate some
characteristics of distributed file systems. In these scripts,
Twister parallel distributes static data to compute nodes and
create partition file by invoking Java classes. For data which
are output to the local disks, Twister uses scripts to gather
data from all compute nodes on a single node specified by
the user.

Figure 1. Twister MapReduce workflow [2]

III.TWISTER NON-ITERATIVE APPLICATIONS

Twister can support non-iterative applications which
exhibit the “Map and then Reduce” or “Map only” pattern.
“Map and then Reduce” is a common case in traditional
MapReduce programming models. A classic example of this
model is WordCount. In this case, every Map task calculates
the word count in local partial text and sends the
intermediate results to Reduce tasks with the word as Key
and the count as Value. Then Reduce tasks collect the partial
result and calculate the total count of one word. Meanwhile,
“Map only” means data are processed by parallel Map tasks
and then output directly. This parallelism method is also
frequently used.

In “Map only” style applications, parallelization is
commonly achieved by distributing input data sets across
several compute nodes and then executing the same stand-
alone version of a program on each node. This method, often
called binary invoking mode, is often used in data parallel
computations for several reasons. Many modern stand-alone
scientific programs are complex and updated frequently with
new features. Rewriting the parallel version of such a stand-
alone program may require too much effort to keep pace
with required new features. Consequently, binary invoking
has become a viable solution in many cases. The MapReduce
framework makes this solution accessible to many
applications because it is well suited to handling input data
distribution and managing parallel task execution.

Three new non-iterative MapReduce applications,
including Twister BLAST, Twister MDS Interpolation, and
Twister GTM Interpolation, are introduced in the following
sections.

A. Twister BLAST
Twister BLAST is a parallel BLAST application based

on the Twister MapReduce framework. A brief introduction
to the BLAST software and other parallel BLAST
applications, along with a discussion of the characteristics of
Twister BLAST, are presented below. Finally, a performance
comparison of Twister BLAST and Hadoop BLAST, with
detailed analysis, is described.

26

1) BLAST Software
BLAST [9] is a stand-alone local gene search tool which

exists in two versions. The original BLAST is written in C,
while a newer version, BLAST+ is written in C++. BLAST+
is the version recommended by NCBI, and, consequently, the
term BLAST used below refers to BLAST+. The version
used here is 2.2.23.

BLAST is a command line tool which accepts input
parameters and outputs the result to the screen or a file after
its execution. BLAST jobs require two sets of input, namely
a query location and a database location [10]. The BLAST
query is a file which contains FASTA-format gene
sequences which will be searched against the specified input
database. The BLAST database is a set of formatted files
which contain gene data organized with indices. The total
size of the database is usually large, often on the order of
gigabytes. A BLAST search consists of three phases [11].
The first phase is the “Setup”, during which the query is read
into memory and a “lookup” table is built. The next phase is
the “Scanning” step, in which each subject sequence in the
database is scanned for words matching the query in the
“lookup” table. The final phase is the “Trace-back” step,
when improved score and insertions/deletions are calculated
for query sequences.

A typical BLAST job is very demanding in its use of a
system. On an IU PolarGrid [12] node with two 4-core CPUs
(Intel Xeon CPU E5410 2.33GHz) and 16 GB memory,
searching hundreds of gene sequences with 37 gene letters
each through a 10 GB NR database [13], BLAST consumes
100% of one core’s CPU and 20% of its total memory under
the one-thread mode. Such a job can exhaust all memory on
a machine if the input is too large or if there are too many
hits to the database [10].

BLAST can also be executed under a multi-thread mode.
Under this mode, BLAST can utilize multiple cores but still
uses 20% of total memory. However, the BLAST job does
not fully utilize eight cores during the entire run. For
example, on the node with settings mentioned above but
executing BLAST with 8 threads, CPU usage is not always
800% but occasionally dropped down. The reason is that
BLAST is only multi-threaded in its “Scanning” stage. The
chart below shows the execution time comparison and the
speedup of using 8-thread mode with different input sizes.
The speedup value is greatly affected by database loading
time when the input size is small and then become stable as
the input size grows larger than 100 sequences. However, all
of the speedup values are below 7.8, which is still less than
8. This means using multi-thread mode will not be as
efficient as multi-process mode in the case that the node can
provide enough memory for the execution of multiple
BLAST processes (See Fig. 2).

2) BLAST Parallelism Method
Several kinds of parallel BLAST applications have

already been implemented, including MPI BLAST [14],
Cloud BLAST [15], and Azure BLAST [16]. This section
will introduce these technologies through a timeline.

Figure 2. Execution time and speedup between 1 thread and 8 threads on

one PG node under various input size

MPI BLAST uses the MPI library [17] to support parallel
BLAST computations. It modifies the original BLAST
program through a combination of the NCBI toolkit [18] and
the MPI library. The query and the database are both
partitioned. Once MPI BLAST starts, it distributes the
database partitions to all compute nodes, and then uses one
process to dynamically schedule query chunks to different
workers. Because of the database segmentation, every
worker cannot produce a complete output. As a result, one
process is used to merge the result and output it to a shared
directory. The database is segmented because the MPI
BLAST designers believe that the database is too large to fit
into memory or even to be stored on local disk [19].
However, database segmentation also generates substantial
communication work and modern clusters have large
memory and disks which can easily hold gigabyte-level
database volumes. In addition, the latest version of MPI
BLAST is based on an older version of BLAST which may
lack new features and performance enhancements.
Furthermore, MPI BLAST doesn’t have fault tolerance
support, which is a serious limitation because BLAST jobs
usually require long execution time.

Cloud BLAST uses the Hadoop MapReduce Framework
to support parallel BLAST on cloud platforms. Hadoop is
used here for resolving issues like data splitting, finding
worker nodes, load balancing, and fault tolerance [15].
MapReduce computing is used in “Map only” style, and
original data are split into small chunks and distributed to
workers. On each node, input data chunks are processed by
invoking the BLAST binary and searching through a local
database copy. The outputs are stored in HDFS [20]. Due to
this computing style, Cloud BLAST has a lower
communication cost. It has been proved that this kind of
architecture performs better than MPI BLAST, as well as
being scalable, maintainable and fault tolerable [15].

Azure BLAST is very similar to Cloud BLAST in
computing style, but is directly supported by the Azure
Cloud Platform [21] rather than a MapReduce framework.
However, compared with Hadoop, the Azure platform still

27

provides similar functionalities such as data splitting, finding
workers, load balancing, and fault tolerance.

3) Twister BLAST Solution
Twister BLAST is a parallel BLAST application which is

supported by Twister. Based on the analysis of the three
existing parallel BLAST applications discussed above,
Twister BLAST also uses the state-of-the-art binary invoking
parallelism. As mentioned previously, this style brings
scalability and simplicity to program and database
maintenance. The flexibility of the Twister framework
allows this program to run on a single machine, a cluster, or
Amazon EC2 cloud platform.

Before Twister BLAST execution, query chunks are
distributed to all compute nodes through Twister scripts
because the gene query could be sufficiently large that it
cannot be loaded into the client’s memory all at once. The
gene query is then sent through twister scripts and a partition
file is created to record the location of these query chunks.
The partition file will replace KeyValue pairs and be
configured to Map tasks as input information.

The BLAST Database is also replicated to all of the
compute nodes. Though copying the entire database through
network may by very costly, it nevertheless makes it easy to
manage database versions and brings efficiency for later
BLAST execution. In order to replicate the database across
the network quickly, compression techniques are used here.
A BLAST Database, such as the 10 GB NR database, will be
compressed into 3 GB and then be distributed. Once the
database copies arrive at compute nodes, they are extracted
in parallel through a set of Map tasks. This reduces the time
needed for replication to one third of the original time.

Twister BLAST also uses Map tasks to parallelize
BLAST jobs. The Twister BLAST client sends job property
messages through a set of message brokers to drive Map
tasks. Then Twister starts Map tasks according to the
partition file. Each Map task invokes the BLAST program
with the query file location and other input command
variables defined by user. Once jobs are completed, Twister
reports the status to the client program. Outputs can be
collected to one node by Twister scripts (See Fig. 3).

In addition, another important fact observed by domain
experts may give us a chance to extend the Twister BLAST
solution. Gene queries generated by Bioinformatics
researchers can easily contain duplicates. There are already
several tools to remove the duplication [22-26]. However,
there is no scalable solution to handle large inputs. Here,
Twister can be used to solve this problem by using a
WordCount like MapReduce job before executing the
parallel BLAST job. Once the original query is partitioned
and distributed to all nodes, Map tasks can remove local
duplicates, and then send KeyValue pairs, each of which
uses a gene sequence as Key and a tag as Value. After
receiving these KeyValue pairs, Reduce tasks can generate
non-duplicate gene sequences with a unique tag. Assuming
that this result set can be much smaller than the original data
set, we can use the Twister Combine method to collect these
gene sequences back to the client and then re-assign them to
KeyValue pairs and send them back to Map tasks to do
parallel BLAST. Depending on the quality of the inputs,

Twister BLAST can likely provide a significant
improvement in overall BLAST throughput utilizing this
method.

4) Performance Tests and Comparison with Hadoop
BLAST

A set of performance tests has also been conducted for
Twister BLAST on the Indiana University Polar Grid Cluster
by using 32 nodes. Each node has two 4-core CPUs (Intel
Xeon CPU E5410 2.33GHz) and 16 GB memory, along with
a Gigabit Ethernet network interface. Here, Twister BLAST
is compared with the Hadoop BLAST implementation.

Hadoop BLAST basically has the same style as the
implementation mentioned in the Cloud BLAST paper. It
uses HDFS to hold the compressed BLAST program and
database, and then uses a distributed cache to allocate them
to the local disk. Hadoop BLAST equally splits the query file
into sequence chunks, and copies them to HDFS. Once the
program and data are prepared, they are downloaded,
extracted and taken as input by the assigned Map task.

Query sequences are selected from the data provided by
Center for Genomics and Bioinformatics [27]. It consists of
115 million sequences and each of them has a uniform length
of 37 DNA letters. For fairness, removing duplicates are not
considered in this experiment. The BLAST job is
parallelized by using 256 map tasks. By changing input size,
the performance is examined as the growth of total execution
time with the input size.

Together, replication of the NR database and query
distribution took 1006 seconds for transferring 2.9 GB
compressed data and extracting them using Twister BLAST,
while Hadoop BLAST uses 693 seconds for the same
operations. For the BLAST execution stage, the result, as
shown in Fig. 4, shows that the execution time is
proportional to the number of gene sequences. Compared
with Hadoop BLAST, Twister BLAST has little overhead to
computation and is also slightly faster than Hadoop BLAST
due to Twister’s lightweight [2].

Figure 3. Twister-BLAST workflow and architecture

28

Figure 4. Performance comparison with Twister BLAST and Hadoop

BLAST on 32 PG nodes

However, because of Twister’s static scheduler, it cannot
dynamically schedule queries to Map tasks. In the
experiment, due to the characteristics of the queries, the
result shows that Map tasks have different execution times
and the final execution time is decided by the longest Map
task execution time. By randomizing the input data, this
issue can be improved but not solved.

B. Twister MDS Interpolation
Twister MDS Interpolation is a parallel method for MDS

Interpolation using the Twister Framework. The
implementation and performance testing of this program are
discussed below.

1) MDS Interpolation
Multidimensional scaling (MDS) [28] is known as a

dimension reduction algorithm which is widely used in
statistics analysis. It is usually used to investigate large data
points which may approach 100k in quantity. However, if
this algorithm is computed directly, its time complexity is OሺNଶሻ level, where N is the total number of points. Because
storing and calculating matrix requires large memory, this
algorithm is also memory-bound. As a result, it is very
difficult to run MDS on over 1 million data points. Now,
with MDS interpolation, these problems can be overcome by
processing the full dataset based on the result from a subset
of it.

MDS interpolation is an out-of-sample problem [29]. The
data subset which is produced from a full MDS calculation is
the sample, and the rest of the dataset are the out-of-sample
points. The time complexity of MDS interpolation is OሺKMሻ,
where K is the number of sample points and M is the number
of out-of-sample points. This greatly reduces the time
required to do dimension reduction of MDS and makes
processing millions of points possible.

In order to find a new mapping position for an out-of-
sample point, we first do normal MDS on the selected n
points as sample points from the full dataset to reduce the
dimension toL, and then select k nearest neighbors pଵ,ڮ , p୩
from the sample points for an x from the out-of-sample
points. By using this information, we can construct a

STRESS function and minimize it. This method which is
similar to an MDS algorithm is known as SMACOF [30].
Since only one point is movable among the sample points,
we set the weight to 1 for simplification. The STRESS
function is σሺXሻ ൌ ∑ ൫d୧୨ሺXሻ െ δ୧୨൯ଶ୧ழ௝ஸே ൌ C ൅ ∑ d୧୶୩୧ୀଵ െ2∑ δ୧୶d୧୶୩୧ୀଵ (1)

Here δ୧୨ is the original dissimilarity value between p୧ and x, d୧୶ is the Euclidean distance in L dimension between p୧
and x, and C is a constant.

According to Seung-Hee Bae’s method [31], we can
minimize this STRESS function by the following equation. xሾ୲ሿ ൌ p ൅ ଵ୩∑ ஔ౟౮ୢ౟౰ ሺxሾ୲ିଵሿ െ p୧ሻ୩୧ୀଵ (2)

Here d୧୸ ൌ ฮp୧ െ xሾ୲ିଵሿฮ and p is the average of k
sample points’ mapping results. The stopping criteria for this
algorithm would be ∆σ൫Sሾ୲ሿ൯ ൌ σ൫Sሾ୲ିଵሿ൯ െ σ൫Sሾ୲ሿ൯ ൏ (3) ߠ

Here S ൌ P ׫ ሼxሽ and θ is the given threshold value. We
then take this xሾ୲ሿ as our result.

2) Parallel MDS Interpolation Approach
There are already some types of parallel MDS

interpolation methods [32], such as the applications under
MPI.net [33] and Dryad [34]. But this time we are going to
show how to use Twister to do it. Even though MDS
interpolation can dramatically reduce the time required to
perform the dimension reduction computation, the memory
issue cannot be solved by the algorithm itself because
distance matrix file for 1 million data points could require up
to 6 TB and it is very costly to move this distance file around
the compute nodes. As a result, in Twister MDS
interpolation, the algorithm implementation is vector-based,
and the raw dataset is read instead of the Euclidean distance
dataset. The raw-data file is split into equally sized files and
distributed over compute nodes. Twister then uses the
partition file to locate the raw data chunks. Then Twister
MDS Interpolation creates map tasks on each node and uses
“Map only” mode to start map tasks according to the data
locations in the partition file. Data are processed by functions
encapsulating the MDS interpolation algorithm in each map
task and output can be collected by Twister Script.

3) Performance Test
Performance tests are done for Twister MDS

Interpolation on the Indiana University PolarGrid machine
which is mentioned in Section 3.1. The numbers of nodes
used in the tests are 8 nodes, 16 nodes and 32 nodes. The
respective tests utilize 64 cores, 128 cores and 256 cores.
The input dataset is taken from PubChem [35], its original
size is 18 million data points. In the experiment, we take 4
million and 8 million data points from this original set (See
Fig. 5).

29

Figure 5. Twister MDS Interpolation execution time and parallel efficiency

In Fig. 5, parallel efficiency is shown on the right y-axis
and computation time is shown on the left y-axis. The x-axis
shows the core number. The efficiency of computing is
calculated as following: ParallelEfficiencyሺη୧ሻ ൌ Tሺ୮భሻ஑.Tሺ୮౟ሻ (4)

Here Tሺp୧ሻ is the execution time on i nodes, pଵ is the
smallest number of nodes running the program, and α ൌp୧ pଵ⁄ .

The parallel efficiency is around 1 even as the number of
cores increases; this is because there is no communication
between nodes when we run the MDS Interpolation in
parallel. So, with increasing number of cores, Twister MDS
interpolation performs better.

C. Twister GTM Interpolation
Twister GTM Interpolation is a new method of

parallelizing GTM Interpolation. We use the binary GTM
program and information from the results of running the full
GTM algorithm to design the new program.

1) GTM Interpolation
The Generative Topographic Mapping (GTM) algorithm

is used to find an optimal representation of data from high
dimensional space to low dimensional space. It seeks a non-
linear mapping of user-defined K points in the low
dimensional space for N data points in a way that these K
points can represent the N data points in the original high
dimensional space [36]. The time complexity of this problem
is OሺKNሻ. Although this algorithm is faster than MDS, since K ൏ ܰ, it is still a challenge to compute large datasets, such
as 8 million data points.

To solve this issue, GTM Interpolation was designed to
first perform normal GTM on a subset of the full dataset,
known as samples. The remaining out-of-sample data can be
learned from previous samples. Since the out-of-sample data
are not involved in the computing intensive learning process,
GTM Interpolation can be very fast. However, for more
complicated data, there are some complex ways to
interpolate GTM [37-39].

Figure 6. Twister GTM Interpolation execution time and parallel efficiency

According to Jong Choi’s work [31], a simple
interpolation can be accomplished as described here. For
example, to process 26 million data points, 100k data are
first sampled from the original dataset. Then GTM is
performed on this sample data to find an optimal K cluster
center and a coefficient β for this sample set. This
information is stored in several files. After that, for the
remaining out-of-sample data M, a K ൈ M pairwise distance
matrix D is computed with entries d୧୨ which is a Gaussian
probability between the sample data and out-of-sample data.
So the responsibility matrix R can be computed as R ൌ D׎ሺee୲Dሻ (5)

Here e ൌ ሺ1,ڮ ,1ሻ୲ԖR୩ and ׎ represents element wise
division.

Finally, with this information, we can construct a GTM
map Z ൌ R୲Z as where Z is the matrix representation of the
sample points.

2) Parallel GTM Interpolation Approach
Previously, GTM Interpolation has been parallelized by

using Dryad, Hadoop and Amazon EC2 [32]. Here, we
present the Twister parallelization of this program. The
Twister GTM Interpolation software can split the raw data
file from the out-of-sample data file. Each partition will have
a mapper created to process that chunk. Once this is done,
Twister will invoke GTM Interpolation on each chunk to
process the data. The mappers will process each block
individually, and, the results can be collected by using
Twister script commands.

3) Performance Test
The performance test is also done on Indiana University

PolarGrid. 4 million and 8 million points from the PubChem
data [35] are selected, and the sample data size is 100k.

As can be seen in Fig. 6, GTM-Interpolation runs very
fast on PolarGrid, requiring 76 seconds to run on 4 nodes (32
cores), and Twister’s parallel efficiency remains above 0.85
as the number of cores increases. This indicates favorable
performance for a parallel program, and we anticipate that

30

Figure 7. Twister MDS execution time and parallel efficiency

with increasing number of cores, even above 256 cores, the
parallel efficiency will remain above 0.8 and become more
stable.

IV.TWISTER ITERATIVE APPLICATIONS
The unique feature of Twister is to support the iterative

MapReduce programming model, in which the client can
drive Twister to finish a MapReduce job in iterations. The
performance is optimized by caching static data to be used
throughout the computation and by using a message
infrastructure for communication. Faults are handled
between iterations. Here, Twister MDS is introduced to
illustrate how iterative MapReduce works in Twister.

A. Twister MDS
Multidimensional scaling (MDS) is a set of algorithms

which can map high dimensional data to low dimensional
data with respect to the pairwise proximity information. In
this algorithm, the pairwise Euclidean distance within the
target dimension of each pair is approximated to the
corresponding original proximity value. This procedure is
called STRESS [40], and a non-linear optimization algorithm
to find the low-dimensional dataset which minimizes the
objective function.

Because a large high dimension distance matrix is
involved, MDS is a very data intensive computing. The
iterative MapReduce programming model has been applied
to this algorithm in an attempt to facilitate its execution on
ever-larger datasets. Specifically, the Twister MDS
application is implemented and its performance and
scalability is evaluated.

To reduce the memory requirement on a single node, the
original distance matrix is partitioned into chunks by rows.
These chunks are distributed to all compute nodes, and the
partition information is recorded in a partition file. These
data chunks are assigned to Map tasks in a one to one
mapping and then held in memory and used throughout the
subsequent iterations.

Twister MDS shows how the concept of “configure once
and run several times” works. After initialization, it

configures three Twister jobs. Two of them are matrix-vector
multiplications and the other is a STRESS value calculation.
Once these jobs are configured, the client begins to do
iterations. In each loop, the client will invoke these three jobs
sequentially. The matrix result obtained from the previous
job is collected by the client and used as KeyValue pairs
input for the following job. Since the intermediate matrix
result is required by all Map tasks of the next job according
to the algorithm, they are sent through the
runMapReduceBCast method which can broadcast the data
value to all nodes with different keys. Once a loop is done,
the mapping matrix result and STRESS values are used as
input for next loop. The client can control the number of
iterations, and once the maximum number of iterations have
completed, the client stops computing.

To evaluate the performance of Twister MDS, a Twister
environment with one ActiveMQ message broker was
established, and Twister MDS was run with 100 iterations. A
metagenomics dataset comprised of 30000 data points with
nearly 1 billion pair-wise distances is tested here. Because
this large dataset cannot be handled on a single machine, the
method for calculating parallel efficiency used in the sections
above is applied again. In other words, parallel efficiency is
calculated with respect to the minimum number of CPU
cores used in the experiment.

However, parallel efficiency drops greatly as the number
of cores increases (See Fig. 7), and total execution time
grows beyond a certain number of cores. The reason for this
degraded performance is that the cost of data broadcasting
increases as the number of cores grows. For example, in the
case where 288 cores are used, more than half of the
execution time is used in data transmission. Though the
communication burden of broadcasting data is due to the
nature of the algorithm itself and the problem can be eased
by using more than one broker, this illustrates the limitation
of one message broker and that broadcasting data through the
broker should be implemented carefully in Twister iterative
application design.

V.CONCLUSIONS AND FUTURE WORK
In this paper, we present four parallel applications:

Twister BLAST, Twister MDS Interpolation, Twister GTM
Interpolation, and Twister MDS, along with details about
their implementations and associated performance
measurements. We show that Twister can be applied not
only to applications with a non-iterative MapReduce
programming model, but also to an iterative MapReduce
programming model. New implementations extend the scope
of existing applications using Twister. With iterative
MapReduce functions, data partitioning, caching, and
reusable configuration, Twister can solve problems in a
flexible and efficient fashion.

As a runtime of iterative MapReduce, Twister aims to
provide functionalities to accelerate the computation of
iterative algorithms. However, it is limited by the availability
of messaging middleware. Though having a flexible
interface to allow the use of multiple messaging software
packages is advantageous, Twister’s performance largely
depends on the performance of the specific messaging

31

middleware adopted. For instance, the messaging
performance of Twister implementation of the MDS iterative
algorithm, are clearly influenced by the large volume of
temporary results that must be broadcasted between
iterations. This highlights an interesting research issue of
balancing the requirement of employing an iterative
algorithm with the capability of the messaging middleware.
Twister scripts can simulate some functions of distributed
file systems but needs further optimization. In future work,
we will integrate Twister with a customized messaging
middleware and a distributed file system.

ACKNOWLEDGMENT
Twister BLAST is supported by the National Institutes of

Health under grant 5 RC2 HG005806-02.

REFERENCES
[1] J. Dean and S. Ghemawat, MapReduce: simplified data processing on

large clusters. Commun. ACM, 2008. 51(1): p. 107-113.
[2] J.Ekanayake, et al., Twister: A Runtime for iterative MapReduce, in

Proceedings of the First International Workshop on MapReduce and
its Applications of ACM HPDC 2010 conference June 20-25, 2010.
2010, ACM: Chicago, Illinois.

[3] Apache, Apache Hadoop, Retrieved April 20, 2010, from ASF:
http://hadoop.apache.org/core/.http://hadoop.apache.org/core/.

[4] Amazon, Amazon Web Services.http://aws.amazon.com/.
[5] J. B. MacQueen. Some Methods for classification and Analysis of

Multivariate Observations. in 5-th Berkeley Symposium on
Mathematical Statistics and Probability: University of California
Press.

[6] S. Brin and L. Page. The Anatomy of a Large-Scale Hypertextual
Web Search Engine; Available from:
http://infolab.stanford.edu/~backrub/google.html.

[7] NaradaBrokering. Scalable Publish Subscribe System, 2010
[accessed 2010 May]; Available from:
http://www.naradabrokering.org/.

[8] Apache, "ActiveMQ," http://activemq.apache.org/, 2009.
[9] NCBI. BLAST, 2010; Available from:

http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=B
lastNews#1.

[10] NCBI. BLAST Command Line Applications User Manual, 2010;
Available from:
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=helpblast&part
=CmdLineAppsManual.

[11] C. Camacho, et al., BLAST+: architecture and applications. BMC
Bioinformatics 2009, 10:421, 2009.

[12] PolarGrid. Cyberinfrastructure for Polar Expeditions, 2010
[accessed 2010 January]; Available from:
http://www.polargrid.org/polargrid/index.php/Main_Page.

[13] NCBI. Databases available for BLAST search; Available from:
http://www.ncbi.nlm.nih.gov/blast/blast_databases.shtml.

[14] A. Darling, L. Carey, and W. Feng, The Design, Implementation, and
Evaluation of mpiBLAST. In: Proc ClusterWorld, 2003. 2003.

[15] A. Matsunaga, M. Tsugawa, and J. Fortes. CloudBLAST: Combining
MapReduce and Virtualization on Distributed Resources for
Bioinformatics Applications. in IEEE Fourth International
Conference on eScience (eScience '08). 2008. Indianapolis, IN.

[16] W. Lu, J. Jackson, and R. Barga, AzureBlast: A Case Study of
Developing Science Applications on the Cloud, in ScienceCloud: 1st
Workshop on Scientific Cloud Computing co-located with HPDC
2010 (High Performance Distributed Computing). 2010, ACM:
Chicago, IL.

[17] "MPI," Message Passing Interface, http://www-
unix.mcs.anl.gov/mpi/, 2009.

[18] NCBI, NCBI
Toolkit.http://www.ncbi.nlm.nih.gov/BLAST/developer.shtml

[19] H. Lin, et al., Massively Parallel Genomic Sequence Search on the
Blue Gene/P Architecture, in SC2008. 2008.

[20] Hadoop Distributed File System HDFS, 2009 [accessed 2009
December]; Available from: http://hadoop.apache.org/hdfs/.

[21] Windows Azure Platform, Retrieved April 20, 2010, from Microsoft:
http://www.microsoft.com/windowsazure/.http://www.microsoft.com/
windowsazure/.

[22] ElimDupes; Available from:
http://hcv.lanl.gov/content/sequence/ELIMDUPES/elimdupes.html.

[23] geneious; Available from:
http://www.geneious.com/default,1266,new_features.sm.

[24] V. Seguritan and F. Rohwer, FastGroup: A program to dereplicate
libraries of 16S rDNA sequences. BMC Bioinformatics, 2001.
2:9.http://www.ncbi.nlm.nih.gov/pmc/articles/PMC59723/

[25] D. Kerk, et al., The Complement of Protein Phosphatase Catalytic
Subunits Encoded in the Genome of Arabidopsis. Plant Physiology,
2002. 129: p. 908–925.

[26] S. Drabenstot, et al., FELINES: a utility for extracting and examining
EST-defined introns and exons. Nucleic Acids Research, 2003. 31.

[27] Center for Genomics and Bioinformatics; Available from:
http://cgb.indiana.edu/.

[28] J. Kruskal and M. Wish, Multidimensional Scaling. 1978: Sage
Publications Inc.

[29] M. Trosset and C. Priebe, The Out-of-Sample Problem for Classical
Multidimensional Scaling. 2006, Bloomington, IN: Indiana
University.

[30] I. Borg and P. Groenen, Modern Multidimensional Scaling: Theory
and Applications. 2005: Springer.

[31] J. Choi, S. Bae, J. Qiu, G. Fox, Dimension Reduction and
Visualization of Large High-dimensional Data via Interpolation, in
HPDC'10 2010: Chicago, Illinois USA.

[32] T. Gunarathne, T. Wu, J. Qiu, and G. Fox, Cloud Computing
Paradigms for Pleasingly Parallel Biomedical Applications, in
Proceedings of the Emerging Computational Methods for the Life
Sciences Workshop of ACM HPDC 2010 conference. 2010: Chicago,
Illinois.

[33] Indiana University Bloomington Open Sysem Lab. MPI.NET, 2008;
Available from: http://osl.iu.edu/research/mpi.net/.

[34] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, Dryad:
Distributed data-parallel programs from sequential building blocks, in
ACM SIGOPS Operating Systems Review. 2007, ACM Press. p. 59-
72.

[35] NCBI. PubChem; Available from: http://pubchem.ncbi.nlm.nih.gov/.
[36] C. Bishop, M. Svensén, and C. Williams, GTM: The generative

topographic mapping. Neural computation, 1998. 10: p. 215--234.
[37] M. Carreira-Perpinan and Z. Lu. The Laplacian eigenmaps latent

variable model. in 11th Int. Workshop on Artifical Intelligence and
Statistics. 2007.

[38] A. Kaban. A scalable generative topographic mapping for sparse data
sequences. in the International Conference on Information
Technology: Coding and Computing. 2005.

[39] F. Nie S. Xiang, Y. Song, C. Zhang and C. Zhang, Embedding new
data points for manifold learning via coordinate propagation.
Knowledge and Information Systems, 2009. 19(2): p. 159-184.

[40] J. Kruskal, Multidimensional scaling by optimizing goodness of fit to
a nonmetric hypothesis. Psychometrika, 1964. 29: p. 1-27.

32

