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Abstract—Many scientific applications suffer from the lack of a 
unified approach to support the management and efficient 
processing of large-scale data. The Twister MapReduce 
Framework, which not only supports the traditional 
MapReduce programming model but also extends it by 
allowing iterations, addresses these problems. This paper 
describes how Twister is applied to several kinds of scientific 
applications such as BLAST, MDS Interpolation and GTM 
Interpolation in a non-iterative style and to MDS without 
interpolation in an iterative style. The results show the 
applicability of Twister to data parallel and EM algorithms 
with small overhead and increased efficiency. 
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I.INTRODUCTION

Scientific applications are required to process large 
amounts of data. In recent years, typical input data sets have 
grown in size from gigabytes to terabytes, and even petabyte-
scale input data is becoming more common. These large data 
sets already far exceed the computing capability of one 
computer, and while the computing tasks can be parallelized 
on several computers, the execution may still take days or 
weeks to complete.  

This situation demands better parallel algorithms and 
distributed computing technologies which can manage 
scientific applications efficiently. The MapReduce 
Framework [1] is one such kind technology which has 
become popular in recent years. KeyValue pairs make the 
input be distributed and processed in parallel at a fine level 
of granularity. The combination of Map tasks and Reduce 
tasks satisfies the task flow of most kinds of applications, 
and these tasks are also well managed under the runtime 
platform. 

This paper introduces the Twister MapReduce 
Framework [2], an expansion of the traditional MapReduce 
Framework. The main characteristic of Twister is that it 
supports not only non-iterative MapReduce applications but 
also an iterative MapReduce programming model to 
efficiently support Expectation-maximization (EM) 
algorithms that suffer from communication complications. 
These algorithms are common in scientific applications but 
are not well handled by previous MapReduce 
implementations such as Hadoop [3]. 

Twister uses a publish/subscribe messaging middleware 
system for command communication and data transfers. It 
supports MapReduce in the manner of “configure once, and 

run many time” [2]. Data can be easily scattered from the 
client node to compute nodes and combined back into client 
node through Twister’s API. With these features, Twister 
supports iterative MapReduce computations efficiently when 
compared to other MapReduce runtimes. Twister can be 
applied to Cloud architecture, having been successfully 
deployed on the Amazon EC2 platform [4].   

The main focus of this paper is on the applicability of 
Twister to scientific problems, as demonstrated through the 
implementation of several scientific applications. In the 
following sections, an overview of Twister is first presented, 
introducing its programming model and architecture. Then, 
four scientific applications implemented using Twister are 
discussed. Three of these applications are non-iterative 
programs (Twister BLAST, Twister GTM Interpolation, and 
Twister MDS Interpolation), while the final one is Twister 
MDS, an iterative application. Workflow and the parallel 
mechanism supported by Twister are also presented within 
this section. Finally, conclusions based on this work are 
presented in the last section. 

II.TWISTER OVERVIEW

This section gives an overview to Twister MapReduce 
Framework. Twister’s support of non-iterative and iterative 
MapReduce programming models is discussed first, followed 
by a description of the Twister architecture. 

A. Non-Iterative and Iterative MapReduce Support
Many parallel applications are only required to perform

Map and Reduce tasks once, such as WordCount [1]. 
However, some other applications such as Kmeans [5] and 
PageRank [6], operate in an iterative pattern. Their parallel 
algorithms require the program to perform Map and Reduce 
tasks in iterations in order to get the final result. 

The basic idea of Twister is to allow users to configure a 
MapReduce job only once, and then to run the job in one 
iteration or several iterations according to the client’s 
request. If one round of Map and Reduce tasks is required, 
then the job executes exactly as it would using non-iterative 
MapReduce, and the result is produced directly from the 
Reduce method. For iterative MapReduce, the output from 
the “Reduce” is collected by a “Combine” method at the end 
of each iteration. A client will send intermediate results back 
to the compute nodes as new set of KeyValue pairs in the 
next iteration of MapReduce tasks (See Fig. 1). 

Another important characteristic of many iterative 
algorithms is that some sets of input data remain static 



between iterations. In Twister, these static data are 
configured with a partition file, loaded into Map or Reduce 
tasks, and then reused through iterations. This mechanism 
significantly improves the performance of Twister for 
iterative MapReduce computing and makes it different from 
those methods, which mimic iterative MapReduce by simply 
re-executing MapReduce tasks without caching and reusing 
data or job configuration. In addition, because the data 
cached inside of Map and Reduce tasks are static, Twister 
maintains a “side-effect-free” nature [2].  

In this workflow, Twister also provides a fault tolerance 
solution for the iterative MapReduce programming model. 
Twister can save the execution state between iterations, and, 
if execution faults are detected, roll back a few iterations and 
resume computing. 

B. Architecture
Twister has several components. The client side is used

to drive MapReduce jobs. Daemons and workers which live 
on the compute nodes manage MapReduce tasks. 
Connections between the components are based on SSH and 
messaging software. 

The client controls MapReduce jobs through a multi-step 
process. During configuration, the client assigns MapReduce 
methods to the job, prepares KeyValue pairs and prepares 
static data for MapReduce tasks through the partition file if 
required. Once the job is configured, the client can spawn the 
MapReduce job and monitor it until completion. Between 
iterations, the client receives results collected by the 
Combine method, and, when the job is done, exits gracefully. 

Messages including control messages and KeyValue pair 
data are transmitted through a network of message brokers 
via a publish/subscribe mechanism. With a set of predefined 
interfaces, Twister can be assembled with different 
messaging software. Currently Twister supports two of 
message brokers: NaradaBrokering [7] and ActiveMQ [8].  

Daemons operate on compute nodes, loading the Map 
and Reduce classes and starting them as Map and Reduce 
workers, also known as Mappers and Reducers. During 
initialization, Map and Reduce workers load static data from 
the local disk according to records in the partition file and 
cache the data into memory. The workers then execute a 
Map or Reduce function defined by the users. Twister uses 
static scheduling for workers in order to take advantage of 
the local data cache [2]. In this hybrid computing model, 
worker threads are managed by daemon processes on each 
node, while, between nodes, daemons communicate with the 
client through messages. 

Twister uses scripts to operate on static input data and 
some output data on local disks in order to simulate some 
characteristics of distributed file systems. In these scripts, 
Twister parallel distributes static data to compute nodes and 
create partition file by invoking Java classes. For data which 
are output to the local disks, Twister uses scripts to gather 
data from all compute nodes on a single node specified by 
the user. 

Figure 1. Twister MapReduce workflow [2] 

III.TWISTER NON-ITERATIVE APPLICATIONS

Twister can support non-iterative applications which 
exhibit the “Map and then Reduce” or “Map only” pattern. 
“Map and then Reduce” is a common case in traditional 
MapReduce programming models. A classic example of this 
model is WordCount. In this case, every Map task calculates 
the word count in local partial text and sends the 
intermediate results to Reduce tasks with the word as Key 
and the count as Value. Then Reduce tasks collect the partial 
result and calculate the total count of one word. Meanwhile, 
“Map only” means data are processed by parallel Map tasks 
and then output directly. This parallelism method is also 
frequently used.  

In “Map only” style applications, parallelization is 
commonly achieved by distributing input data sets across 
several compute nodes and then executing the same stand-
alone version of a program on each node. This method, often 
called binary invoking mode, is often used in data parallel 
computations for several reasons. Many modern stand-alone 
scientific programs are complex and updated frequently with 
new features. Rewriting the parallel version of such a stand-
alone program may require too much effort to keep pace 
with required new features. Consequently, binary invoking 
has become a viable solution in many cases. The MapReduce 
framework makes this solution accessible to many 
applications because it is well suited to handling input data 
distribution and managing parallel task execution.  

Three new non-iterative MapReduce applications, 
including Twister BLAST, Twister MDS Interpolation, and 
Twister GTM Interpolation, are introduced in the following 
sections. 

A. Twister BLAST
Twister BLAST is a parallel BLAST application based

on the Twister MapReduce framework. A brief introduction 
to the BLAST software and other parallel BLAST 
applications, along with a discussion of the characteristics of 
Twister BLAST, are presented below. Finally, a performance 
comparison of Twister BLAST and Hadoop BLAST, with 
detailed analysis, is described. 
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1) BLAST Software 
BLAST [9] is a stand-alone local gene search tool which 

exists in two versions. The original BLAST is written in C, 
while a newer version, BLAST+ is written in C++. BLAST+ 
is the version recommended by NCBI, and, consequently, the 
term BLAST used below refers to BLAST+. The version 
used here is 2.2.23. 

BLAST is a command line tool which accepts input 
parameters and outputs the result to the screen or a file after 
its execution. BLAST jobs require two sets of input, namely 
a query location and a database location [10]. The BLAST 
query is a file which contains FASTA-format gene 
sequences which will be searched against the specified input 
database. The BLAST database is a set of formatted files 
which contain gene data organized with indices. The total 
size of the database is usually large, often on the order of 
gigabytes. A BLAST search consists of three phases [11]. 
The first phase is the “Setup”, during which the query is read 
into memory and a “lookup” table is built. The next phase is 
the “Scanning” step, in which each subject sequence in the 
database is scanned for words matching the query in the 
“lookup” table. The final phase is the “Trace-back” step, 
when improved score and insertions/deletions are calculated 
for query sequences. 

A typical BLAST job is very demanding in its use of a 
system. On an IU PolarGrid [12] node with two 4-core CPUs 
(Intel Xeon CPU E5410 2.33GHz) and 16 GB memory, 
searching hundreds of gene sequences with 37 gene letters 
each through a 10 GB NR database [13], BLAST consumes 
100% of one core’s CPU and 20% of its total memory under 
the one-thread mode. Such a job can exhaust all memory on 
a machine if the input is too large or if there are too many 
hits to the database [10]. 

BLAST can also be executed under a multi-thread mode. 
Under this mode, BLAST can utilize multiple cores but still 
uses 20% of total memory. However, the BLAST job does 
not fully utilize eight cores during the entire run. For 
example, on the node with settings mentioned above but 
executing BLAST with 8 threads, CPU usage is not always 
800% but occasionally dropped down. The reason is that 
BLAST is only multi-threaded in its “Scanning” stage. The 
chart below shows the execution time comparison and the 
speedup of using 8-thread mode with different input sizes. 
The speedup value is greatly affected by database loading 
time when the input size is small and then become stable as 
the input size grows larger than 100 sequences. However, all 
of the speedup values are below 7.8, which is still less than 
8. This means using multi-thread mode will not be as 
efficient as multi-process mode in the case that the node can 
provide enough memory for the execution of multiple 
BLAST processes (See Fig. 2).  

2) BLAST Parallelism Method 
Several kinds of parallel BLAST applications have 

already been implemented, including MPI BLAST [14], 
Cloud BLAST [15], and Azure BLAST [16]. This section 
will introduce these technologies through a timeline. 

 

 
Figure 2. Execution time and speedup between 1 thread and 8 threads on 

one PG node under various input size 

MPI BLAST uses the MPI library [17] to support parallel 
BLAST computations. It modifies the original BLAST 
program through a combination of the NCBI toolkit [18] and 
the MPI library. The query and the database are both 
partitioned. Once MPI BLAST starts, it distributes the 
database partitions to all compute nodes, and then uses one 
process to dynamically schedule query chunks to different 
workers. Because of the database segmentation, every 
worker cannot produce a complete output. As a result, one 
process is used to merge the result and output it to a shared 
directory. The database is segmented because the MPI 
BLAST designers believe that the database is too large to fit 
into memory or even to be stored on local disk [19]. 
However, database segmentation also generates substantial 
communication work and modern clusters have large 
memory and disks which can easily hold gigabyte-level 
database volumes. In addition, the latest version of MPI 
BLAST is based on an older version of BLAST which may 
lack new features and performance enhancements. 
Furthermore, MPI BLAST doesn’t have fault tolerance 
support, which is a serious limitation because BLAST jobs 
usually require long execution time. 

Cloud BLAST uses the Hadoop MapReduce Framework 
to support parallel BLAST on cloud platforms. Hadoop is 
used here for resolving issues like data splitting, finding 
worker nodes, load balancing, and fault tolerance [15]. 
MapReduce computing is used in “Map only” style, and 
original data are split into small chunks and distributed to 
workers. On each node, input data chunks are processed by 
invoking the BLAST binary and searching through a local 
database copy. The outputs are stored in HDFS [20]. Due to 
this computing style, Cloud BLAST has a lower 
communication cost. It has been proved that this kind of 
architecture performs better than MPI BLAST, as well as 
being scalable, maintainable and fault tolerable [15]. 

Azure BLAST is very similar to Cloud BLAST in 
computing style, but is directly supported by the Azure 
Cloud Platform [21] rather than a MapReduce framework. 
However, compared with Hadoop, the Azure platform still 
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provides similar functionalities such as data splitting, finding 
workers, load balancing, and fault tolerance. 

3) Twister BLAST Solution
Twister BLAST is a parallel BLAST application which is

supported by Twister. Based on the analysis of the three 
existing parallel BLAST applications discussed above, 
Twister BLAST also uses the state-of-the-art binary invoking 
parallelism. As mentioned previously, this style brings 
scalability and simplicity to program and database 
maintenance. The flexibility of the Twister framework 
allows this program to run on a single machine, a cluster, or 
Amazon EC2 cloud platform.  

Before Twister BLAST execution, query chunks are 
distributed to all compute nodes through Twister scripts 
because the gene query could be sufficiently large that it 
cannot be loaded into the client’s memory all at once. The 
gene query is then sent through twister scripts and a partition 
file is created to record the location of these query chunks. 
The partition file will replace KeyValue pairs and be 
configured to Map tasks as input information.  

The BLAST Database is also replicated to all of the 
compute nodes. Though copying the entire database through 
network may by very costly, it nevertheless makes it easy to 
manage database versions and brings efficiency for later 
BLAST execution. In order to replicate the database across 
the network quickly, compression techniques are used here. 
A BLAST Database, such as the 10 GB NR database, will be 
compressed into 3 GB and then be distributed. Once the 
database copies arrive at compute nodes, they are extracted 
in parallel through a set of Map tasks. This reduces the time 
needed for replication to one third of the original time. 

Twister BLAST also uses Map tasks to parallelize 
BLAST jobs. The Twister BLAST client sends job property 
messages through a set of message brokers to drive Map 
tasks. Then Twister starts Map tasks according to the 
partition file. Each Map task invokes the BLAST program 
with the query file location and other input command 
variables defined by user. Once jobs are completed, Twister 
reports the status to the client program. Outputs can be 
collected to one node by Twister scripts (See Fig. 3). 

In addition, another important fact observed by domain 
experts may give us a chance to extend the Twister BLAST 
solution. Gene queries generated by Bioinformatics 
researchers can easily contain duplicates. There are already 
several tools to remove the duplication [22-26]. However, 
there is no scalable solution to handle large inputs. Here, 
Twister can be used to solve this problem by using a 
WordCount like MapReduce job before executing the 
parallel BLAST job. Once the original query is partitioned 
and distributed to all nodes, Map tasks can remove local 
duplicates, and then send KeyValue pairs, each of which 
uses a gene sequence as Key and a tag as Value. After 
receiving these KeyValue pairs, Reduce tasks can generate 
non-duplicate gene sequences with a unique tag. Assuming 
that this result set can be much smaller than the original data 
set, we can use the Twister Combine method to collect these 
gene sequences back to the client and then re-assign them to 
KeyValue pairs and send them back to Map tasks to do 
parallel BLAST. Depending on the quality of the inputs, 

Twister BLAST can likely provide a significant 
improvement in overall BLAST throughput utilizing this 
method. 

4) Performance Tests and Comparison with Hadoop
BLAST 

A set of performance tests has also been conducted for 
Twister BLAST on the Indiana University Polar Grid Cluster 
by using 32 nodes. Each node has two 4-core CPUs (Intel 
Xeon CPU E5410 2.33GHz) and 16 GB memory, along with 
a Gigabit Ethernet network interface. Here, Twister BLAST 
is compared with the Hadoop BLAST implementation.   

Hadoop BLAST basically has the same style as the 
implementation mentioned in the Cloud BLAST paper. It 
uses HDFS to hold the compressed BLAST program and 
database, and then uses a distributed cache to allocate them 
to the local disk. Hadoop BLAST equally splits the query file 
into sequence chunks, and copies them to HDFS. Once the 
program and data are prepared, they are downloaded, 
extracted and taken as input by the assigned Map task. 

Query sequences are selected from the data provided by 
Center for Genomics and Bioinformatics [27]. It consists of 
115 million sequences and each of them has a uniform length 
of 37 DNA letters. For fairness, removing duplicates are not 
considered in this experiment. The BLAST job is 
parallelized by using 256 map tasks. By changing input size, 
the performance is examined as the growth of total execution 
time with the input size. 

Together, replication of the NR database and query 
distribution took 1006 seconds for transferring 2.9 GB 
compressed data and extracting them using Twister BLAST, 
while Hadoop BLAST uses 693 seconds for the same 
operations. For the BLAST execution stage, the result, as 
shown in Fig. 4, shows that the execution time is 
proportional to the number of gene sequences. Compared 
with Hadoop BLAST, Twister BLAST has little overhead to 
computation and is also slightly faster than Hadoop BLAST 
due to Twister’s lightweight [2]. 

Figure 3. Twister-BLAST workflow and architecture  
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Figure 4. Performance comparison with Twister BLAST and Hadoop 

BLAST on 32 PG nodes 

However, because of Twister’s static scheduler, it cannot 
dynamically schedule queries to Map tasks. In the 
experiment, due to the characteristics of the queries, the 
result shows that Map tasks have different execution times 
and the final execution time is decided by the longest Map 
task execution time. By randomizing the input data, this 
issue can be improved but not solved.  

B. Twister MDS Interpolation 
Twister MDS Interpolation is a parallel method for MDS 

Interpolation using the Twister Framework. The 
implementation and performance testing of this program are 
discussed below. 

1) MDS Interpolation 
Multidimensional scaling (MDS) [28] is known as a 

dimension reduction algorithm which is widely used in 
statistics analysis. It is usually used to investigate large data 
points which may approach 100k in quantity. However, if 
this algorithm is computed directly, its time complexity is OሺNଶሻ level, where N is the total number of points. Because 
storing and calculating matrix requires large memory, this 
algorithm is also memory-bound. As a result, it is very 
difficult to run MDS on over 1 million data points. Now, 
with MDS interpolation, these problems can be overcome by 
processing the full dataset based on the result from a subset 
of it. 

MDS interpolation is an out-of-sample problem [29]. The 
data subset which is produced from a full MDS calculation is 
the sample, and the rest of the dataset are the out-of-sample 
points. The time complexity of MDS interpolation is OሺKMሻ, 
where K is the number of sample points and M is the number 
of out-of-sample points. This greatly reduces the time 
required to do dimension reduction of MDS and makes 
processing millions of points possible. 

In order to find a new mapping position for an out-of-
sample point, we first do normal MDS on the selected n 
points as sample points from the full dataset to reduce the 
dimension toL, and then select k nearest neighbors pଵ,ڮ , p୩ 
from the sample points for an x  from the out-of-sample 
points. By using this information, we can construct a 

STRESS function and minimize it. This method which is 
similar to an MDS algorithm is known as SMACOF [30]. 
Since only one point is movable among the sample points, 
we set the weight to 1 for simplification. The STRESS 
function is σሺXሻ ൌ ∑ ൫d୧୨ሺXሻ െ δ୧୨൯ଶ୧ழ௝ஸே ൌ C ൅ ∑ d୧୶୩୧ୀଵ െ2∑ δ୧୶d୧୶୩୧ୀଵ   (1) 

Here δ୧୨ is the original dissimilarity value between p୧ and x, d୧୶  is the Euclidean distance in L dimension between p୧ 
and x, and C is a constant. 

According to Seung-Hee Bae’s method [31], we can 
minimize this STRESS function by the following equation. xሾ୲ሿ ൌ p ൅ ଵ୩∑ ஔ౟౮ୢ౟౰ ሺxሾ୲ିଵሿ െ p୧ሻ୩୧ୀଵ   (2) 

Here d୧୸ ൌ ฮp୧ െ xሾ୲ିଵሿฮ  and  p  is the average of k 
sample points’ mapping results. The stopping criteria for this 
algorithm would be ∆σ൫Sሾ୲ሿ൯ ൌ σ൫Sሾ୲ିଵሿ൯ െ σ൫Sሾ୲ሿ൯ ൏  (3) ߠ

Here S ൌ P ׫ ሼxሽ and θ is the given threshold value. We 
then take this xሾ୲ሿ as our result. 

2) Parallel MDS Interpolation Approach 
There are already some types of parallel MDS 

interpolation methods [32], such as the applications under 
MPI.net [33] and Dryad [34]. But this time we are going to 
show how to use Twister to do it. Even though MDS 
interpolation can dramatically reduce the time required to 
perform the dimension reduction computation, the memory 
issue cannot be solved by the algorithm itself because 
distance matrix file for 1 million data points could require up 
to 6 TB and it is very costly to move this distance file around 
the compute nodes. As a result, in Twister MDS 
interpolation, the algorithm implementation is vector-based, 
and the raw dataset is read instead of the Euclidean distance 
dataset. The raw-data file is split into equally sized files and 
distributed over compute nodes. Twister then uses the 
partition file to locate the raw data chunks. Then Twister 
MDS Interpolation creates map tasks on each node and uses 
“Map only” mode to start map tasks according to the data 
locations in the partition file. Data are processed by functions 
encapsulating the MDS interpolation algorithm in each map 
task and output can be collected by Twister Script. 

3) Performance Test 
Performance tests are done for Twister MDS 

Interpolation on the Indiana University PolarGrid machine 
which is mentioned in Section 3.1. The numbers of nodes 
used in the tests are 8 nodes, 16 nodes and 32 nodes. The 
respective tests utilize 64 cores, 128 cores and 256 cores. 
The input dataset is taken from PubChem [35], its original 
size is 18 million data points. In the experiment, we take 4 
million and 8 million data points from this original set (See 
Fig. 5). 
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Figure 5. Twister MDS Interpolation execution time and parallel efficiency 

In Fig. 5, parallel efficiency is shown on the right y-axis 
and computation time is shown on the left y-axis. The x-axis 
shows the core number. The efficiency of computing is 
calculated as following: ParallelEfficiencyሺη୧ሻ ൌ Tሺ୮భሻ஑.Tሺ୮౟ሻ (4)  

Here Tሺp୧ሻ  is the execution time on i  nodes, pଵ  is the 
smallest number of nodes running the program, and α ൌp୧ pଵ⁄ . 

The parallel efficiency is around 1 even as the number of 
cores increases; this is because there is no communication 
between nodes when we run the MDS Interpolation in 
parallel. So, with increasing number of cores, Twister MDS 
interpolation performs better. 

C. Twister GTM Interpolation  
Twister GTM Interpolation is a new method of 

parallelizing GTM Interpolation. We use the binary GTM 
program and information from the results of running the full 
GTM algorithm to design the new program. 

1) GTM Interpolation 
The Generative Topographic Mapping (GTM) algorithm 

is used to find an optimal representation of data from high 
dimensional space to low dimensional space. It seeks a non-
linear mapping of user-defined K  points in the low 
dimensional space for N data points in a way that these K 
points can represent the N data points in the original high 
dimensional space [36]. The time complexity of this problem 
is OሺKNሻ. Although this algorithm is faster than MDS, since K ൏ ܰ, it is still a challenge to compute large datasets, such 
as 8 million data points. 

To solve this issue, GTM Interpolation was designed to 
first perform normal GTM on a subset of the full dataset, 
known as samples. The remaining out-of-sample data can be 
learned from previous samples. Since the out-of-sample data 
are not involved in the computing intensive learning process, 
GTM Interpolation can be very fast. However, for more 
complicated data, there are some complex ways to 
interpolate GTM [37-39]. 

 
Figure 6. Twister GTM Interpolation execution time and parallel efficiency 

According to Jong Choi’s work [31], a simple 
interpolation can be accomplished as described here. For 
example, to process 26 million data points, 100k data are 
first sampled from the original dataset. Then GTM is 
performed on this sample data to find an optimal K cluster 
center and a coefficient β  for this sample set. This 
information is stored in several files. After that, for the 
remaining out-of-sample data M, a K ൈ M pairwise distance 
matrix D is computed with entries d୧୨  which is a Gaussian 
probability between the sample data and out-of-sample data. 
So the responsibility matrix R can be computed as R ൌ D׎ሺee୲Dሻ (5) 

Here e ൌ ሺ1,ڮ ,1ሻ୲ԖR୩  and ׎  represents element wise 
division. 

Finally, with this information, we can construct a GTM 
map Z ൌ R୲Z as where Z is the matrix representation of the 
sample points. 

2) Parallel GTM Interpolation Approach 
Previously, GTM Interpolation has been parallelized by 

using Dryad, Hadoop and Amazon EC2 [32]. Here, we 
present the Twister parallelization of this program. The 
Twister GTM Interpolation software can split the raw data 
file from the out-of-sample data file. Each partition will have 
a mapper created to process that chunk. Once this is done, 
Twister will invoke GTM Interpolation on each chunk to 
process the data. The mappers will process each block 
individually, and, the results can be collected by using 
Twister script commands. 

3) Performance Test 
The performance test is also done on Indiana University 

PolarGrid. 4 million and 8 million points from the PubChem 
data [35] are selected, and the sample data size is 100k.  

As can be seen in Fig. 6, GTM-Interpolation runs very 
fast on PolarGrid, requiring 76 seconds to run on 4 nodes (32 
cores), and Twister’s parallel efficiency remains above 0.85 
as the number of cores increases. This indicates favorable 
performance for a parallel program, and we anticipate that  
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Figure 7. Twister MDS execution time and parallel efficiency  

with increasing number of cores, even above 256 cores, the 
parallel efficiency will remain above 0.8 and become more 
stable. 

IV.TWISTER ITERATIVE APPLICATIONS 
The unique feature of Twister is to support the iterative 

MapReduce programming model, in which the client can 
drive Twister to finish a MapReduce job in iterations. The 
performance is optimized by caching static data to be used 
throughout the computation and by using a message 
infrastructure for communication. Faults are handled 
between iterations. Here, Twister MDS is introduced to 
illustrate how iterative MapReduce works in Twister. 

A. Twister MDS 
Multidimensional scaling (MDS) is a set of algorithms 

which can map high dimensional data to low dimensional 
data with respect to the pairwise proximity information. In 
this algorithm, the pairwise Euclidean distance within the 
target dimension of each pair is approximated to the 
corresponding original proximity value. This procedure is 
called STRESS [40], and a non-linear optimization algorithm 
to find the low-dimensional dataset which minimizes the 
objective function. 

Because a large high dimension distance matrix is 
involved, MDS is a very data intensive computing.  The 
iterative MapReduce programming model has been applied 
to this algorithm in an attempt to facilitate its execution on 
ever-larger datasets. Specifically, the Twister MDS 
application is implemented and its performance and 
scalability is evaluated.  

To reduce the memory requirement on a single node, the 
original distance matrix is partitioned into chunks by rows. 
These chunks are distributed to all compute nodes, and the 
partition information is recorded in a partition file. These 
data chunks are assigned to Map tasks in a one to one 
mapping and then held in memory and used throughout the 
subsequent iterations.  

Twister MDS shows how the concept of “configure once 
and run several times” works. After initialization, it 

configures three Twister jobs. Two of them are matrix-vector 
multiplications and the other is a STRESS value calculation. 
Once these jobs are configured, the client begins to do 
iterations. In each loop, the client will invoke these three jobs 
sequentially. The matrix result obtained from the previous 
job is collected by the client and used as KeyValue pairs 
input for the following job. Since the intermediate matrix 
result is required by all Map tasks of the next job according 
to the algorithm, they are sent through the 
runMapReduceBCast method which can broadcast the data 
value to all nodes with different keys. Once a loop is done, 
the mapping matrix result and STRESS values are used as 
input for next loop. The client can control the number of 
iterations, and once the maximum number of iterations have 
completed, the client stops computing. 

To evaluate the performance of Twister MDS, a Twister 
environment with one ActiveMQ message broker was 
established, and Twister MDS was run with 100 iterations. A 
metagenomics dataset comprised of 30000 data points with 
nearly 1 billion pair-wise distances is tested here. Because 
this large dataset cannot be handled on a single machine, the 
method for calculating parallel efficiency used in the sections 
above is applied again. In other words, parallel efficiency is 
calculated with respect to the minimum number of CPU 
cores used in the experiment.  

However, parallel efficiency drops greatly as the number 
of cores increases (See Fig. 7), and total execution time 
grows beyond a certain number of cores. The reason for this 
degraded performance is that the cost of data broadcasting 
increases as the number of cores grows. For example, in the 
case where 288 cores are used, more than half of the 
execution time is used in data transmission. Though the 
communication burden of broadcasting data is due to the 
nature of the algorithm itself and the problem can be eased 
by using more than one broker, this illustrates the limitation 
of one message broker and that broadcasting data through the 
broker should be implemented carefully in Twister iterative 
application design. 

V.CONCLUSIONS AND FUTURE WORK 
In this paper, we present four parallel applications: 

Twister BLAST, Twister MDS Interpolation, Twister GTM 
Interpolation, and Twister MDS, along with details about 
their implementations and associated performance 
measurements. We show that Twister can be applied not 
only to applications with a non-iterative MapReduce 
programming model, but also to an iterative MapReduce 
programming model. New implementations extend the scope 
of existing applications using Twister. With iterative 
MapReduce functions, data partitioning, caching, and 
reusable configuration, Twister can solve problems in a 
flexible and efficient fashion.  

As a runtime of iterative MapReduce, Twister aims to 
provide functionalities to accelerate the computation of 
iterative algorithms. However, it is limited by the availability 
of messaging middleware. Though having a flexible 
interface to allow the use of multiple messaging software 
packages is advantageous, Twister’s performance largely 
depends on the performance of the specific messaging 
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middleware adopted. For instance, the messaging 
performance of Twister implementation of the MDS iterative 
algorithm, are clearly influenced by the large volume of 
temporary results that must be broadcasted between 
iterations. This highlights an interesting research issue of 
balancing the requirement of employing an iterative 
algorithm with the capability of the messaging middleware. 
Twister scripts can simulate some functions of distributed 
file systems but needs further optimization. In future work, 
we will integrate Twister with a customized messaging 
middleware and a distributed file system. 
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