
High Performance Dimension Reduction and
Visualization for Large High-dimensional Data

Analysis
Jong Youl Choi∗†, Seung-Hee Bae∗†, Xiaohong Qiu∗ and Geoffrey Fox∗†

∗Pervasive Technology Institute
†School of Informatics and Computing

Indiana University, Bloomington IN, USA
{jychoi, sebae, xqiu, gcf@indiana.edu}

Abstract—Large high dimension datasets are of growing im-
portance in many fields and it is important to be able to visualize
them for understanding the results of data mining approaches
or just for browsing them in a way that distance between points
in visualization (2D or 3D) space tracks that in original high
dimensional space. Dimension reduction is a well understood
approach but can be very time and memory intensive for large
problems. Here we report on parallel algorithms for Scaling
by MAjorizing a COmplicated Function (SMACOF) to solve
Multidimensional Scaling problem and Generative Topographic
Mapping (GTM). The former is particularly time consuming
with complexity that grows as square of data set size but has
advantage that it does not require explicit vectors for dataset
points but just measurement of inter-point dissimilarities. We
compare SMACOF and GTM on a subset of the NIH PubChem
database which has binary vectors of length 166 bits. We find
good parallel performance for both GTM and SMACOF and
strong correlation between the dimension-reduced PubChem data
from these two methods.

I. INTRODUCTION

Thanks to the most recent advancement in science and
technologies, the amount of data to be processed or analyzed
is rapidly growing and it is already beyond the capacity of
the most commodity hardware we are using nowadays. To
keep up with such fast development, study for data-intensive
scientific data analyses [1] has been already emerging in
recent years. Including dimension reduction algorithms which
produce lower dimensional representation of high-dimensional
data, which we are focusing in this paper, various machine
learning algorithms and data mining techniques are also the
main tasks challenged by such large and high dimensional
data problem in this data deluge era. Unless developed and
implemented carefully to overcome such limits, techniques
will face soon the limit of usability.
Visualization of high-dimensional data in low-dimension is

the core of exploratory data analysis in which users want
to discover meaningful information obscured by the intrinsic
complexity of data, usually caused by its high dimensionality.
This task is also getting more difficult and challenged in recent
days by the fast increasing amount of data to be analyzed.
In most data analysis with such large and high-dimensional
dataset, we have observed that such task is no more CPU

bounded but rather memory bounded in that any single process
or machine cannot hold the whole data in memory any more.
In this paper, we tackle this problem for developing high

performance visualization for large and high-dimensional data
analysis by using distributed resources with parallel com-
putation. For this purpose, we will show how we devel-
oped two well-known dimension-reduction-based visualization
algorithm Multidimensional Scaling (MDS) and Generative
Topographic Mapping (GTM) in the distributed fashion so that
one can utilize distributed memories and enable to process
large and high dimensional dataset.
In this paper, we start with brief introduction of Multidimen-

sional Scaling (MDS) and Generative Topographic Mapping
(GTM), which are the dimension reduction algorithms to
generate a configuration of the given high-dimensional data
into target-dimensional space, and the correlation method we
applied to compare outputs from different data visualization
algorithms in Section II. Details of our parallelized version
of MDS and GTM will be discussed in Section III. In
the next, we show our performance results of our parallel
version of MDS and GTM in various compute cluster settings
and present the result processing up to 100,000 data points
in Section IV followed by our closing discussion and future
works in Section V.

II. BACKGROUND

There are several kinds of dimension reduction algorithms,
such as Principle Component Analysis (PCA), Generative
Topographic Mapping (GTM) [2], [3], Self-Organizing Map
(SOM) [4], Multidimensional Scaling (MDS) [5], [6], to name
a few. Among those algorithms, we focus on MDS and GTM
in our paper due to their popularity and theoretical strong
backgrounds.
Although both GTM and SOM share the same object to find

a map in low-dimensional user-defined space out of the data
in high-dimensional space, GTM, however, finds a mapping
based probability density model, which SOM lacks of. On
the other hand, MDS tries to construct a mapping in target
dimension with respect to the pairwise proximity information,
mostly dissimilarity or distance.

A. Multidimensional Scaling (MDS)
Multidimensional scaling (MDS) [5], [6] is a general term

for techniques of constructing a mapping for generally high-
dimensional data into a target dimension (typically low dimen-
sion) with respect to the given pairwise proximity information.
Mostly, MDS is used for achieving dimension reduction to vi-
sualize high-dimensional data into Euclidean low-dimensional
space, i.e. two-dimension or three-dimension.
Generally, the proximity information, which is represented

as an N ×N dissimilarity matrix (Δ = [δij]), where N is the
number of points (objects) and δij is the dissimilarity between
point i and j, is given for the MDS problem, and the dissimi-
larity matrix (Δ) should agree with the following constraints:
(1) symmetricity (δij = δji), (2) nonnegativity (δij ≥ 0), and
(3) zero diagonal elements (δii = 0). The objective of MDS
techniques is to construct a configuration of the given high-
dimensional data into low-dimensional Euclidean space, while
each distance between a pair of points in the configuration
is approximated to the corresponding dissimilarity value as
much as possible. The output of MDS algorithms could be
represented as an N × L configuration matrix X , whose
rows represent each data points xi (i = 1, . . . , N) in L-
dimensional space. It is quite straightforward to compute
Euclidean distance between xi and xj in the configuration
matrixX , i.e. dij(X) = ‖xi−xj‖, and we are able to evaluate
how well the given points are configured in the L-dimensional
space by using suggested objective functions of MDS, called
STRESS [7] or SSTRESS [8]. Definitions of STRESS (1) and
SSTRESS (2) are following:

σ(X) =
∑

i<j≤N

wij(dij(X)− δij)
2 (1)

σ2(X) =
∑

i<j≤N

wij [(dij(X))2 − (δij)
2]2 (2)

where 1 ≤ i < j ≤ N and wij is a weight value, so wij ≥ 0.
As shown in the STRESS and SSTRESS functions, the

MDS problems could be considered as a non-linear optimiza-
tion problem, which minimizes STRESS or SSTRESS function
in the process of configuring L-dimensional mapping of the
high-dimensional data.

B. SMACOF & its Complexity
There are a lot of different algorithms to solve MDS

problem, and Scaling by MAjorizing a COmplicated Func-
tion (SMACOF) [9], [10] is one of them. SMACOF is an
iterative majorization algorithm to solve MDS problem with
STRESS criterion. The iterative majorization procedure of the
SMACOF could be thought of as Expectation-Maximization
(EM) [11] approach. Although SMACOF has a tendency
to find local minima due to its hill-climbing attribute, it is
still a powerful method since it is guaranteed to decrease
STRESS (σ) criterion monotonically. Instead of mathematical
detail explanation of SMACOF algorithm, we illustrate the
SMACOF procedure in this paper. For the mathematical details
of SMACOF algorithm, please refer to [6].

Algorithm 1 SMACOF algorithm
1: Z ⇐ X [0];
2: k ⇐ 0;
3: ε ⇐ small positive number;
4: MAX ⇐ maximum iteration;
5: Compute σ[0] = σ(X [0]);
6: while k = 0 or (Δσ > ε and k ≤ MAX) do
7: k ⇐ k + 1;
8: X [k] = V †B(X [k−1])X [k−1]

9: Compute σ[k] = σ(X [k])
10: Z ⇐ X [k];
11: end while
12: return Z;

Alg. 1 illustrates the SMACOF algorithm for MDS solution.
The main procedure of SMACOF is iterative matrix multi-
plications, called Guttman transform, as shown at Line 8 in
Alg. 1, where V † is the Moore-Penrose inverse [12], [13] (or
pseudo-inverse) of matrix V . The N × N matrices V and
B(Z) are defined as follows:

V = [vij] (3)

vij =

{
−wij if i �= j∑

i�=j wij if i = j
(4)

B(Z) = [bij] (5)

bij =

⎧⎪⎨
⎪⎩

−wijδij/dij(Z) if i �= j

0 if dij(Z) = 0, i �= j

−
∑

i�=j bij if i = j

(6)

If the weights are equal to one (wij = 1) for all pairwise
dissimilarity, then

V = N

(
I −

eet

N

)
(7)

V † =
1

N

(
I −

eet

N

)
(8)

where e = (1, . . . , 1)t is one vector whose length is N . In
this paper, equal weights is assumed and we use (8) for V †.
As in Alg. 1, the computational complexity of SMA-

COF algorithm is O(N2), since Guttman transform performs
multiplication of N × N matrix and N × L matrix twice,
typically N � L, and computing STRESS value, B(X [k]),
and D(X [k]) also take O(N2). In addition, the SMACOF
algorithm requires O(N2) memory because it needs several
N×N matrices as in Table I. Due to the trends of digitization,
data size increases enormously so it is critical to be able
to investigate large data set. However, it is impossible to
run SMACOF for large data set under a typical single node
computer due to the memory requirement increases in O(N2).
In order to remedy the shortage of memory in a single
node, the authors illustrate how to parallelize the SMACOF

332

algorithm via message passing interface (MPI) for utilizing
distributed-memory cluster systems in Section III-A .

C. Generative Topographic Mapping (GTM)
Generative TopographicMapping (GTM) is an unsupervised

learning algorithm for modeling the probability density of data
and finding a non-linear mapping of high-dimensional data
in a low-dimension space. Contrast to the Self-Organizing
Map (SOM) [4] which does not have any density model [2],
GTM defines an explicit probability density model based on
Gaussian distribution. For this reason, GTM is also known as a
principled alternative to SOM [2]. The problem challenged by
the GTM is to find the best set of parameters associated with
Gaussian mixtures by using an optimization method, notably
the Expectation-Maximization (EM) algorithm [3].
More specifically, The GTM algorithm is to find a non-

linear manifold embedding of user-defined K latent discrete
variables zk, usually form a rectangular grid, in low L-
dimension space, called latent space, such that zk ∈ R

L(k =
1, ...,K), which can optimally represent the given N data
points xn ∈ R

D(n = 1, ..., N) in the higher D-dimension
space, called data space (usually L 	 D). This is achieved
by the three steps: First, mapping the latent variables zk in
the latent space to the data space with respect to a non-
linear mapping f : R

L → R
D, such that map the point

yk �→ f(zk,W) with non-linear function f and its parameter
set W to the data space. Secondly, estimating probability
density between the mapped points yk and the data points
xn by using the radially-symmetric Gaussian model in which
the distribution is defined as an isotropic Gaussian probability
centered on yk with variance β−1, such that

N (xn|yk, β) =

(
β

2π

)D/2

exp

{
−
β

2
‖xn − yk‖

2

}
. (9)

Thirdly, finding an optimal parameter set {W , β} which
makes the following log-likelihood maximized:

L(W , β) = argmax
W ,β

N∑
n=1

ln

{
1

K

K∑
k=1

N (xn|yk, β)

}
. (10)

Since the last step is intractable, the GTM uses the EM
method [11] to find an optimized solution as follows: In
the E-step, compute the posterior probabilities, known as
responsibilities, of each mapped point yk for every data point
xn in the following form:

rkn =
N (xn|yk, β)∑K

k′=1 N (xn|yk′ , β)
. (11)

In the M-step, maximize the expectation of log-likelihood (10)
with respect to the parameterW . As a result, the optimalW
can be obtained by using the following matrix equation:

Φ
tGΦW = Φ

tRX, (12)

where Φ is the K×M design matrix which holds Y = ΦW

for the K ×D matrix Y containing mapped points, X is the
N × D matrix containing the data points, R is the K × N

responsibility whose (k, n)-th element is rkn as in (11), and
G is an K ×K diagonal matrix whose k-th diagonal element
gk =

∑N
n=1 rkn. Main matrices used in GTM are summarized

in Table II.
Since the details of GTM algorithm is out of this paper’s

scope, we recommend readers to refer to the original GTM
papers [2], [3] for more details. In Section III, we will discuss
how we develop parallel GTM implementation based on the
above algorithm.

D. Correlation measurement for comparison
In the fields of data analysis and machine learning area,

we have various types of visualization algorithms available to
use and each of them has its own purposes and characteristics
which will differentiate its output from others even with using
the same dataset as an input. To compare such different
outputs, we need to quantify similarities (or dissimilarities)
of outputs generated from different algorithms.
In our paper, we have measured correlations between two

outputs by using so-called Canonical Correlations Analysis
(CCA). CCA is a classical statistical method to measure cor-
relations between two sets of variables in their linear relation-
ships [14]. Different from ordinary correlation measurement
methods, CCA has the ability to measure correlations of
multidimensional datasets by finding an optimal projection to
maximize the correlation in the subspace spanned by features
and it has been successfully used in various areas [15]–[17].
Given two column vectors X = (x1, ..., xm)t and Y =

(y1, ..., yn)
t of random variables with finite second moments,

one may define the cross-covariance ΣXY = cov(x, y) to
be the n × m matrix whose (i, j)-th entry is the covariance
cov(xi, yj). CCA seeks two coefficient vectors a and b, known
as canonical variables, such that the random variables atX
and btY maximize the correlation such that

ρ = argmax
a,b

cov(atX, btY)

||atX || ||btY ||
(13)

We call the random variables u = atX and v = btY are
the first pair of canonical variables. Then, one seeks vectors
uncorrelated with the first pair of canonical variables; this
gives the second pair of canonical variables. This procedure
continues min(m,n). In a nutshell, canonical variables U and
V are can be obtained by

a = eig(Σ−1
11 Σ12Σ

−1
22 Σ21) (14)

b = eig(Σ−1
22 Σ21Σ

−1
11 Σ12) (15)

where Σ12 = cov(X,Y), Σ11 = cov(X,X), Σ22 =
cov(Y, Y), and eig(A) computes eigenvectors of matrix A.
More detailed steps for derivation can be found from [15],
[18], [19]

III. HIGH PERFORMANCE VISUALIZATION
We have observed that processing very large dataset is

no more cpu-bounded computation but rather it is memory-
bounded in that memory consumption is beyond the ability

333

TABLE I
MAIN MATRICES USED IN SMACOF

Matrix Size Description
Δ N ×N Matrix for the given pairwise dissimilarity [δij]

D(X) N ×N Matrix for the pairwise Euclidean distance of
mapped in target dimension [dij]

V N ×N Matrix defined the value vij in (3)
V † N ×N Matrix for pseudo-inverse of V

B(Z) N ×N Matrix defined the value bij in (5)
W N ×N Matrix for the weight of the dissimilarity [wij]

X [k] N × L Matrix for current L-dimensional configuration
of N data points x[k]

i (i = 1, . . . , N)

X [k−1] N × L Matrix for previous L-dimensional configuration
of N data points x[k−1]

i (i = 1, . . . , N)

of a single process or even a single machine. Thus, running
machine learning algorithms to process large dataset, including
MDS and GTM discussed in this paper, in a distributed
fashion is crucial so that we can utilize multiple processes and
distributed resources to handle very large data which usually
not fit in the memory of a single process or a compute node.
The problem becomes more obvious if the running OS is 32-bit
which can handle at most 4GB virtual memory per process. To
process large data with efficiency, we have developed parallel
version of MDS and GTM by using Message Passing Interface
(MPI) fashion. In the following we will discuss more details
how we decompose the MDS and GTM algorithm to fit in a
memory limit in a single process or machine and implemented
them by using MPI primitives.

A. Parallel SMACOF

Table I describes frequently used matrices in SMACOF
algorithm, and memory requirement of SMACOF algorithm
increases quadratically as N increases. For the small dataset,
memory would not be any problem. However, it turns out to
be critical problem when we deal with large data set, such
as thousands or even millions. For instance, if N = 10, 000,
then one N × N matrix of 8-byte double-precision numbers
consumes 800 MB of main memory, and if N = 100, 000,
then one N × N matrix uses 80 GB of main memory. To
make matters worse, SMACOF algorithm generally needs six
N ×N matrices, so at least 480 GB of memory is required to
run SMACOF with 100,000 data points without considering
two N × L configuration matrices in Table I.
If the weight is uniform (wij = 1, ∀i, j), we can use only

four constants for representing N × N V and V † matrices
in order to saving memory space. We, however, still need at
least three N×N matrices, i.e. D(X), Δ, and B(X), which
requires 240 GB memory for the above case, which is still
infeasible amount of memory for a typical computer. That is
why we have to implement parallel version of SMACOF with
MPI.
To parallelize SMACOF, it is essential to ensure load bal-

anced data decomposition as much as possible. Load balance
is important not only for memory distribution but also for

M00 M01 M02

M10 M11 M12

Fig. 1. N ×N matrix decomposition of parallel SMACOF with 6 processes
and 2 × 3 block decomposition. Dashed line represents where diagonal
elements are.

computation distribution, since parallelization makes implicit
benefit to computation as well as memory distribution, due to
less computing per process. One simple approach of data de-
composition is that we assume p = n2, where p is the number
of processes and n is an integer. Though it is relatively less
complicated decomposition than others, one major problem of
this approach is that it is a quite strict constraint to utilize
available computing processors (or cores). In order to release
that constraint, we decompose an N × N matrix to m × n
block decomposition, where m is the number of block rows
and n is the number of block columns, and the only constraint
of the decomposition is m × n = p, where 1 ≤ m,n ≤ p.
Thus, each process requires only approximately 1/p of full
memory requirements of SMACOF algorithm. Fig. 1 illustrates
how we decompose each N × N matrices with 6 processes
and m = 2, n = 3. Without loss of generality, we assume
N%m = N%n = 0 in Fig. 1.
A process Pk, 0 ≤ k < p (sometimes, we will use Pij for

matching Mij) is assigned to one rectangular block Mij with
respect to simple block assignment equation in (16):

k = i× n+ j (16)

where 0 ≤ i < m, 0 ≤ j < n. For N × N matrices, such
as Δ,V †,B(X [k]), and so on, each block Mij is assigned
to the corresponding process Pij , and for X [k] and X [k−1]

matrices, N×L matrices, each process has full N×L matrices
because these matrices are relatively much small size and it
results in reducing a number of additional message passing.
By scattering decomposed blocks to distributed memory, now
we are able to run SMACOF with huge data set as much
as distributed memory allows in the cost of message passing
overheads and complicated implementation.
At the iteration k in Alg. 1, the application should be

possible to acquire following information to do Line 8 and
Line 9 in Alg. 1: Δ, V †, B(X [k−1]), X [k−1], and σ[k].
One good feature of SMACOF algorithm is that some of
matrices are invariable, i.e. Δ and V †, through the iteration.
On the other hand, B(X [k−1]) and STRESS (σ[k]) value
keep changing at each iteration, since dij(X [k]) varies every

334

x =

M

M00 M01 M02

M10 M11 M12

X0

X1

X2

C0

C1

CX

Fig. 2. Parallel matrix multiplication of N ×N matrix and N × L matrix
based on the decomposition of Fig. 1

iteration. In addition, in order to update B(X [k−1]) and
STRESS (σ[k]) value in each iteration, we have to take N×N
matrices information into account, so related processes should
communicate via MPI primitives to obtain necessary infor-
mation. Therefore, it is necessary to design message passing
schemes to do parallelization for calculating B(X [k−1]) and
STRESS (σ[k]) value as well as parallel matrix multiplication
in Line 8 in Alg. 1.
Computing STRESS in (1) can be implemented simply

through MPI_Allreduce. On the other hand, calculation of
B(X [k−1]) and parallel matrix multiplication is not simple,
specially for the case of m �= n. Fig. 2 depicts how parallel
matrix multiplication applies between an N × N matrix M

and an N × L matrix X . Parallel matrix multiplication for
SMACOF algorithm is implemented in three-step of message
communication via MPI primitives. Block matrix multiplica-
tion of Fig. 2 for acquiring Ci (i = 0, 1) can be written as
follows:

Ci =
∑

0≤j<3

Mij ·Xj (17)

Since Mij of N × N matrix is accessed only by the corre-
sponding process Pij , computingMij ·Xj part is done by Pij ,
and the each computed sub-matrix, which is N

2 ×L matrix for
Fig. 2, is sent to the process assigned Mi0 by MPI primitives,
such as MPI_Send and MPI_Receive. Then the process
assignedMi0, say Pi0, sums the received sub-matrices to gen-
erate Ci, and send Ci block to P00. Finally, P00 combines sub-
matrix block Ci 0 ≤ i < m to construct N×L matrix C, and
broadcast it to all other processes by MPI_Broadcast. Each
arrows in Fig. 2 represents message passing direction. Thin
dashed arrow lines describes message passing of N

2 × L sub-
matrices by MPI_Send and MPI_Receive, and message
passing of matrix C by MPI_Broadcast is represented by
thick dashed arrow lines. The pseudo code for parallel matrix
multiplication in SMACOF algorithm is in Alg. 2
For the purpose of parallel computing B(X [k−1]), whose

elements bij is defined in (6), message passing mechanism
in Fig. 3 should be applied under 2 × 3 block decompo-
sition as in Fig. 1. Since bss = −

∑
s�=j bsj , a process

Pij , which is assigned to Bij , should communicate a vector
sij , whose element is the sum of corresponding rows, with

Algorithm 2 Pseudo-code for distributed parallel matrix mul-
tiplication in SMACOF algorithm
Input: M ij ,X
1: /* m = Row Blocks, n = Column Blocks */
2: /* i = Rank-In-Row, j = Rank-In-Column */
3: T ij = M ij ·Xj

4: if j �= 0 then
5: Send T ij to Pi0

6: else
7: for j = 1 to n− 1 do
8: Receive T ij from Pij

9: end for
10: Generate Ci

11: end if

12: if i == 0 and j == 0 then
13: for i = 1 to m− 1 do
14: Receive Ci from Pi0

15: end for
16: Combine C with Ci where i = 0, . . . ,m− 1
17: Broadcast C to all processes
18: else if j == 0 then
19: Send Ci to P00

20: Receive Broadcasted C

21: else
22: Receive Broadcasted C

23: end if

B00 B01 B02

B11 B12B10

Fig. 3. Calculation of B(X [k−1]) matrix with regard to the decomposition
of Fig. 1.

processes assigned sub-matrix of the same block-row Pik,
where k = 0, . . . , n− 1, unless the number of column blocks
is 1 (n == 1). In Fig. 3, the diagonal dashed line indicates the
diagonal elements, and the green colored blocks are diagonal
blocks for each block-row. Note that the definition of diagonal
blocks is a block which contains at least one diagonal element
of the matrix B(X [k]). Also, dashed arrow lines illustrate
message passing direction. Alg. 3 shows the pseudo-code of
computing sub-block Bij in process Pij with MPI primitives.

335

Algorithm 3 Pseudo-code for calculating assigned sub-matrix
Bij defined in (6) for distributed-memory decomposition in
SMACOF algorithm
Input: M ij ,X
1: /* m = Row Blocks, n = Column Blocks */
2: /* i = Rank-In-Row, j = Rank-In-Column */
3: /* We assume that subblock Bij is assigned to process

Pij */
4: Find diagonal blocks in the same row (row i)
5: if Bij /∈ diagonal blocks then
6: compute elements bst of Bij

7: Send a vector sij , whose element is the sum of corre-
sponding rows, to Pik , where Bik ∈ diagonal blocks

8: else
9: compute elements bst of Bij , where s �= t
10: Receive a vector sik , whose element is the sum of

corresponding rows, where k = 1, . . . , n from other
processes in the same block-row

11: Send sij to other processes in the same block-row ∈
diagonal blocks

12: Compute bss elements based on the row sums.
13: end if

TABLE II
MAIN MATRICES USED IN GTM FORN DATA POINTS IN D-DIMENSION

WITHK LATENT POINTS IN L-DIMENSION.

Matrix Size Description
Z K × L Matrix for K latent points zk(k = 1, ...,K)

Φ K ×M Design matrix with M-dimension
W M ×D Matrix for parameters
Y K ×D Matrix for K mapped points yk(k = 1, ...,K)

X N ×D Matrix for N data points xn(n = 1, ...,N)

R K ×N Matrix for K responsibilities for each N data points

B. Parallel GTM

Among many matrices allocated in memory for processing
in GTM as summarized in Table II, the responsibility matrix
R is the most biggest one. For example, the matrix R for
8,000 latent points, corresponding to 20x20x20 3D grid, with
100,000 data points needs at least 6.4GB memory space saving
8-byte double precision numbers and even without considering
additional memory requirements for other matrices, this easily
prevents us from processing large data set in GTM by using
a single process or machine. Thus, we have focused on
the decomposition of responsibility matrix R in developing
parallel GTM.
As shown in Fig. 4, in our parallel GTM we decompose

the design matrix Φ ∈ R
K×M into m row-based sub-blocks

denoted by {Φi}
m−1
i=0 so that each sub-block Φi has approxi-

mately K/m rows of Φ. In the same way, we also decompose
the data matrix X into n row-based sub-blocks {Xj}

n−1
j=0 ,

each of which having approximately N/n rows of X . Then,
we can compute the sub-matrix Rij (i = 0, ...,m − 1, j =
0, ..., n− 1) for the latent points Y i = ΦiW (Y i is also i-th

R00

R10

R01 R02

R12R11

Φ1

Φ2

X1 X2 X3

Fig. 4. Data decomposition of parallel GTM for computing responsibility
matrix R by using 2-by-3 mesh of computing nodes.

row-based sub-block of Y) and data pointsXj on the m-by-n
mesh of logical compute grid where (i, j)-th node computes
Rij which consumes only 1/mn of memory space for the
full matrix R. Without loss of generality, we assume that
K%m = N%n = 0 and denote K̄ = K/m and N̄ = N/n.
Since our parallel GTM algorithm is not a pleasingly

parallel application in which no dependency is needed between
compute nodes but rather a typical parallel problem which
can be solved by using a general map-reduce approach. To
have systematic communication model, we can use MPI’s
cartesian grid topology in our m-by-n compute grid so that
each node belongs to both row communications and column
communications, denoted by ROW-COMM and COL-COMM
respectively hereafter.
More details of our parallel GTM algorithm is as follows.
1) Initialization Prepare subblock data {Φi}

m−1
i=0 and

{Xj}
n−1
j=0 and distribute them to i-th row members

and j-th column members respectively in the m-by-n
compute grid.

2) Responsibility Initialize the responsibility matrix Rij

by setting (a, b)-th element rab = N (xb|ya), as defined
in (9), for a = 0, ..., K̄−1 and b = 0, ..., N̄−1. Compute
the column sum cij ∈ R

N̄ of Rij and exchange it with
row members to get ci =

∑n−1
j=0 cij and compute

Rij = Rij (ectj) (18)

where e is a vector of (1, ..., 1)t ∈ R
K̄ and represents

element-wise division.
3) Optimization Compute a row-sum vector gij = Rije

and exchange it with row members to get gi =∑n−1
j=0 gij . Compute a matrix Ai = Φ

t
iGiΦi where

Gi is a diagonal matrix whose diagonal elements are
gi and exchange with column members to compute
A =

∑m−1
i=0 Ai. Prepare another matrix Bij =

Φ
t
iRijXj and exchange it with row-members to get

Bi =
∑n−1

j=0 Bij , followed by exchanging with column
members to compute B =

∑m−1
i=0 Bi. Finally, solve

AW = B with respect to the parameter matrixW and
update latent points Y i = ΦiW . The last two steps will

336

Algorithm 4 Pseudo-code for distributed parallel GTM com-
puting running on (i, j)-th compute node.
Input: Φi,Xj

1: Prepare Rij ∈ R
K̄×N̄ by setting its (a, b)-th by (9)

2: cij ← Rt
ije where e = (1, ..., 1)t

3: cj ← MPI_Allreduce(cij , MPI_SUM,COL_COMM)
4: Rij ← Rij � (ectj)
5: gij ← Rije
6: gi ← MPI_Allreduce(gij ,MPI_SUM,ROW_COMM)
7: Ai = Φ

t
iGiΦi where Gi = diag(gi)

8: A← MPI_Allreduce(Ai,MPI_SUM,COL_COMM)
9: Bij = Φ

t
iRijXj

10: Bi ← MPI_Allreduce(Bij ,MPI_SUM,ROW_COMM)
11: B ← MPI_Allreduce(Bi, MPI_SUM, COL_COMM)
12: Solve W = A−1B
13: Update Y i ← ΦiW

continue to run until we find the parameter matrix W

converged.
Exchanging data with row (or column) members of the grid

and collecting them, we can use a MPI primitive function
MPI_Allreduce with MPI_SUM collective opeartion. A
pseudo code with MPI functions is shown in Alg. 4.

IV. PERFORMANCE AND CORRELATION MEASUREMENT
For the performance analysis of both parallel SMACOF and

parallel GTM discussed in this paper, we have applied our par-
allel algorithms for high-dimensional data visualization in low-
dimension to the dataset obtained from PubChem database1,
which is a NIH-funded repository for over 60 million chemical
molecules and provides their chemical structure fingerprints
and biological activities, for the purpose of chemical infor-
mation mining and exploration. Among 60 Million PubChem
dataset, in this paper we have used randomly selected up to
100,000 chemical subsets and all of them have a 166-long
binary value as a fingerprint, which corresponds to maximum
input of 100,000 data points having 166 dimensions. With
those data as inputs, we have performed our experiments on
our two decent compute clusters as summarized in Table III.
In the following, we will show the performance results of

our parallel SMACOF and GTM implementation with respect
to 10,000, 20,000, 50,000 and 100,000 data points having 166
dimensions, represented as 10K, 20K, 50K, and 100K dataset
respectively and discuss the correlation measurement between
SMACOF and GTM results by using CCA.

A. Performance of Parallel SMACOF
Fig. 5 shows the performance comparisons for 10K and 20K

PubChem data with respect to how to decompose the given
N ×N matrices with 32, 64, and 128 cores in Cluster-I and
Cluster-II. A significant characteristic of those plots in Fig. 5
is that skewed data decompositions, such as p × 1 or 1 × p,
which decompose by row-base or column-base, are always
worse in performance than balanced data decompositions, such
as m× n block decomposition which m and n are similar as

1PubChem,http://pubchem.ncbi.nlm.nih.gov/

much as possible. The reason of the above results is cache line
effect that affects cache reusability, and generally balanced
block decomposition shows better cache reusability so that it
occurs less cache misses than the skewed decompositions [20],
[21]. As in Fig. 5, Difference of data decomposition almost
doubled the elapsed time of 1× 128 decomposition compared
to 8 × 16 decomposition with 10K PubChem data. From
the above investigation, the balanced data decomposition is
generally good choice. Furthermore, Cluster-II performs better
than Cluster-I in Fig. 5, although the clock speed of cores is
similar to each other. There are two different factors between
Cluster-I and Cluster-II in Table III which we believe that those
factors result in Cluster-II outperforms than Cluster-I, i.e. L2
cache size and Networks, and the L2 cache size per core is 4
times bigger in Cluster-II than Cluster-I. Since SMACOF with
large data is memory-bound application, it is natural that the
bigger cache size results in the faster running time.
In addition to data decomposition experiments, we mea-

sured the parallel performance of parallel SMACOF in terms
of the number of processes p. The authors investigate the
scalability of parallel SMACOF by running with different
number of processes, e.g. p = 64, 128, 256, and 384. On
the basis of the above data decomposition experimental result,
the balanced decomposition has been applied to this process
scaling experiments. As p increases, the elapsed time should
be decreased, but linear performance improvement could not
be achieved due to the parallel overhead. In Fig. 6, both 50k
and 100k data sets show the performance gain as p increases.
However, performance enhancement ratio is reduced, because
the ratio of message passing overhead over the assigned
computation per each node increases due to more messaging
and less computing per node as p increases. Note that we
used 16 computing nodes in Cluster-II (total number of cores
in 16 computing nodes is 384 cores) to perform the scaling
experiment with large data set, i.e. 50k and 100k PubChem
data, since SMACOF algorithm requires 480 GB memory
for dealing with 100,000 data points, as we disscussed in
Section III-A, and Cluster-II is only feasible to perform that
with more than 10 nodes.

B. Performance of Parallel GTM
We have measured performance of parallel GTM with re-

spect to each possible m-by-n decomposition of responsibility
matrix R to use p = 32, 64, and 128 cores in Cluster-
I and Cluster-II for 10k and 20k PubChem dataset. In the
following experiments, we have fixed other parameters such
as K = 8, 000, D = 166, and M = 9.
As shown in Fig. 7, the performance of parallel GTM shows

the similar pattern of the parallel SMACOF performance in
which the balanced decomposition performs better than the
skewed decomposition due to the cache line effect.

C. Correlation measurement by CCA
By using the CCA algorithm, we have measured similarity

between MDS and GTM results for using 100K PubChem
dataset . As a result shown in Fig. 8, the maximum correlation

337

TABLE III
CLUSTER SYSTEMS USED FOR THE PERFORMANCE ANALYSIS

Features Cluster-I Cluster-II
Nodes 8 32
CPU AMD Opteron 8356 2.3GHz Intel Xeon E7450 2.4 GHz
CPU / # Cores per node 4 / 16 4 / 24
Total Cores 128 768
L2 Cache per core 512 KB 2 MB
Memory per node 16 GB 48 GB
Network Giga bit Ethernet 20 Gbps Infiniband
Operating System Windows Server 2008 HPC Edition

(Service Pack 2) - 64 bit
Windows Server 2008 HPC Edition
(Service Pack 2) - 64 bit

Decomposition

E
la

ps
ed

 T
im

e
(m

in
)

40

45

50

55

32x1 16x2 8x4 4x8 2x16 1x32

Node
Cluster−I

Cluster−II

(a) 10K with 32 cores

Decomposition

E
la

ps
ed

 T
im

e
(m

in
)

30

40

50

60

70

64x1 32x2 16x4 8x8 4x16 2x32 1x64

Node
Cluster−I

Cluster−II

(b) 10K with 64 cores

Decomposition

E
la

ps
ed

 T
im

e
(m

in
)

16

18

20

22

24

26

28

128x1 64x2 32x4 16x8 8x16 4x32 2x64 1x128

Node
Cluster−II

(c) 10K with 128 cores

Decomposition

E
la

ps
ed

 T
im

e
(m

in
)

160

180

200

220

32x1 16x2 8x4 4x8 2x16 1x32

Node
Cluster−I

Cluster−II

(d) 20K with 32 cores

Decomposition

E
la

ps
ed

 T
im

e
(m

in
)

80

90

100

110

120

130

140

150

64x1 32x2 16x4 8x8 4x16 2x32 1x64

Node
Cluster−I

Cluster−II

(e) 20K with 64 cores

Decomposition

E
la

ps
ed

 T
im

e
(m

in
)

50

55

60

65

70

128x1 64x2 32x4 16x8 8x16 4x32 2x64 1x128

Node
Cluster−II

(f) 20K with 128 cores

Fig. 5. Performance of Parallel SMACOF for 10K and 20K PubChem data with 32,64, and 128 cores in Cluster-I and Cluster-II w.r.t. data decomposition
of N ×N matrices.

of both results is about 0.90 which is close to the maximum
(1.0) and so we can conclude that both MDS and GTM
algorithms produces very similar output for the 100k dataset.
Also, we have used the colors in Fig. 8 to identify two
clusters as an output of k-mean (k = 2) clustering in the
original 166-dimensional space. The output shows both MDS
and GTM successfully preserved the cluster information in
low dimension.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we have described two different dimension
reduction algorithms, called MDS (SMACOF) and GTM, and
how to utilize those algorithms for the huge data set. Main
issues to deal with a large amount of data points are not only
lots of computation but also huge memory requirements. As
we described in Section III-A, it takes 480 GB of memory to

338

number of processes

E
la

ps
ed

 T
im

e
(m

in
)

27.5

28

28.5

29

29.5

210

210.5

26 26.5 27 27.5 28 28.5

Size
100k

50k

Fig. 6. Performance of parallel SMACOF for 50K and 100K PubChem data
in Cluster-II w.r.t. the number of processes. Based on the data decomposition
experiment, we choose balanced decomposition as much as possible, i.e. 8×8
for 64 processes. Note that both x and y axes are log-scaled.

run SMACOF algorithm with 100,000 data points. Paralleliza-
tion via traditional MPI approach in order to utilize distributed
memory computing system, which can extend the accessible
memory size, is proposed as a solution for the amendment of
memory shortage to treat large data with SMACOF and GTM
algorithms.
As we discussed in the performance analysis, the data

decomposition structure is important to maximize the per-
formance of parallelized algorithm since it highly affects to
message passing routines and message passing overhead as
well as cache-line effect. Balanced data decomposition (m×n)
is generally better than skewed decomposition (p×1 or 1×p)
for both algorithms, specially for the MDS algorithm.
Another interesting aspect we found here is that the MDS

and GTM results of the same data are highly correlated with
each other as in Fig. 8 (c) even though the detailed mappings
to low dimension are visually distinct as shown in Fig. 8(a)
and (b).
There are important problems for which the data set size

is too large for even our parallel algorithms to be practical.
Because of this, we are now developing interpolation ap-
proaches for both algorithms. Here we run MDS or GTMs
with a (random) subset of the dataset, and the dimension
reduction of the remaining points are interpolated. We will
report on this extension in a later paper where we will test
on the full 60 million PubChem dataset. We will also present
results elsewhere on cases such as gene sequences where only
dissimilarities and not vectors are involved. We will compare
different choices (as suggested by Sammon’s algorithm [22])
for the weight function wij in (1) and (2).

ACKNOWLEDGEMENT

We would like to thank to Professor David Wild and
Dr. Qian Zhu in the School of Informatics and Computing,
Indiana University, for their valuable advices and feedbacks

on PubChem data and analysis. We would also like to thank
Microsoft for their collaboration and support.

REFERENCES
[1] G. Fox, S. Bae, J. Ekanayake, X. Qiu, and H. Yuan, “Parallel data

mining from multicore to cloudy grids,” in Proceedings of HPC 2008
High Performance Computing and Grids workshop, Cetraro, Italy, July
2008.

[2] C. Bishop, M. Svensén, and C. Williams, “GTM: A principled alternative
to the self-organizing map,” Advances in neural information processing
systems, pp. 354–360, 1997.

[3] ——, “GTM: The generative topographic mapping,” Neural computa-
tion, vol. 10, no. 1, pp. 215–234, 1998.

[4] T. Kohonen, “The self-organizing map,” Neurocomputing, vol. 21, no.
1-3, pp. 1–6, 1998.

[5] J. B. Kruskal and M. Wish, Multidimensional Scaling. Beverly Hills,
CA, U.S.A.: Sage Publications Inc., 1978.

[6] I. Borg and P. J. Groenen, Modern Multidimensional Scaling: Theory
and Applications. New York, NY, U.S.A.: Springer, 2005.

[7] J. B. Kruskal, “Multidimensional scaling by optimizing goodness of fit
to a nonmetric hypothesis,” Psychometrika, vol. 29, no. 1, pp. 1–27,
1964.

[8] Y. Takane, F. W. Young, and J. de Leeuw, “Nonmetric individual
differences multidimensional scaling: an alternating least squares method
with optimal scaling features,” Psychometrika, vol. 42, no. 1, pp. 7–67,
1977.

[9] J. de Leeuw, “Applications of convex analysis to multidimensional
scaling,” Recent Developments in Statistics, pp. 133–145, 1977.

[10] ——, “Convergence of the majorization method for multidimensional
scaling,” Journal of Classification, vol. 5, no. 2, pp. 163–180, 1988.

[11] A. Dempster, N. Laird, and D. Rubin, “Maximum likelihood from
incomplete data via the em algorithm,” Journal of the Royal Statistical
Society. Series B, pp. 1–38, 1977.

[12] E. H. Moore, “On the reciprocal of the general algebraic matrix,”
Bulletin of American Mathematical Society, vol. 26, pp. 394–395, 1920.

[13] R. Penrose, “A generalized inverse for matrices,” Proceedings of the
Cambridge Philosophical Society, vol. 51, pp. 406–413, 1955.

[14] H. Hotelling, “Relations between two sets of variates,” Biometrika,
vol. 28, no. 3, pp. 321–377, 1936.

[15] D. Hardoon, S. Szedmak, and J. Shawe-Taylor, “Canonical correlation
analysis: an overview with application to learning methods,” Neural
Computation, vol. 16, no. 12, pp. 2639–2664, 2004.

[16] H. Glahn, “Canonical correlation and its relationship to discriminant
analysis and multiple regression,” Journal of the Atmospheric Sciences,
vol. 25, no. 1, pp. 23–31, 1968.

[17] O. Friman, J. Cedefamn, P. Lundberg, M. Borga, and H. Knutsson, “De-
tection of neural activity in functional MRI using canonical correlation
analysis,” Magnetic Resonance in Medicine, vol. 45, no. 2, pp. 323–330,
2001.

[18] N. Campbell and W. Atchley, “The geometry of canonical variate
analysis,” Systematic Zoology, pp. 268–280, 1981.

[19] B. Thompson, Canonical correlation analysis uses and interpretation.
Sage, 1984.

[20] X. Qiu, G. C. Fox, H. Yuan, S.-H. Bae, G. Chrysanthakopoulos, and
H. F. Nielsen, “Data mining on multicore clusters,” in Proceedings
of 7th International Conference on Grid and Cooperative Computing
GCC2008. Shenzhen, China: IEEE Computer Society, Oct. 2008, pp.
41–49.

[21] S.-H. Bae, “Parallel multidimensional scaling performance on multicore
systems,” in Proceedings of the Advances in High-Performance E-
Science Middleware and Applications workshop (AHEMA) of Fourth
IEEE International Conference on eScience. Indianapolis, Indiana:
IEEE Computer Society, Dec. 2008, pp. 695–702.

[22] J. Sammon, “A nonlinear mapping for data structure analysis,” IEEE
Transactions on computers, vol. 18, no. 5, pp. 401–409, 1969.

339

Decomposition

E
la

ps
ed

 ti
m

e
pe

r i
te

ra
tio

n
(s

ec
)

0.08

0.10

0.12

0.14

32x1 16x2 8x4 4x8 2x16 1x32

Node
Cluster−I

Cluster−II

(a) 10K with 32 cores

Decomposition

E
la

ps
ed

 ti
m

e
pe

r i
te

ra
tio

n
(s

ec
)

0.06

0.08

0.10

0.12

0.14

64x1 32x2 16x4 8x8 4x16 2x32 1x64

Node
Cluster−I

Cluster−II

(b) 10K with 64 cores

Decomposition

E
la

ps
ed

 ti
m

e
pe

r i
te

ra
tio

n
(s

ec
)

0.05

0.10

0.15

0.20

0.25

0.30

0.35

128x1 64x2 32x4 16x8 8x16 4x32 2x64 1x128

Node
Cluster−II

(c) 10K with 128 cores

Decomposition

E
la

ps
ed

 ti
m

e
pe

r i
te

ra
tio

n
(s

ec
)

0.14

0.16

0.18

0.20

0.22

32x1 16x2 8x4 4x8 2x16 1x32

Node
Cluster−I

Cluster−II

(d) 20K with 32 cores

Decomposition

E
la

ps
ed

 ti
m

e
pe

r i
te

ra
tio

n
(s

ec
)

0.10

0.12

0.14

0.16

0.18

0.20

0.22

64x1 32x2 16x4 8x8 4x16 2x32 1x64

Node
Cluster−I

Cluster−II

(e) 20K with 64 cores

Decomposition
E

la
ps

ed
 ti

m
e

pe
r i

te
ra

tio
n

(s
ec

)

0.10

0.15

0.20

0.25

0.30

0.35

0.40

128x1 64x2 32x4 16x8 8x16 4x32 2x64 1x128

Node
Cluster−II

(f) 20K with 128 cores

Fig. 7. Performance of Parallel GTM for 10K and 20K PubChem data with 32, 64, and 128 cores running on Cluster-I and Cluster-II w.r.t. the m-by-ndata
decomposition running on compute grids. The elapsed time is an average running time per iteration.

(a) MDS for 100K PubChem (b) GTM for 100K PubChem

1st Canonical Variable for GTM

1s
t C

an
on

ic
al

 V
ar

ia
bl

e
fo

r M
D

S

−2e−05

−1e−05

0e+00

1e−05

2e−05

−2e−05 −1e−05 0e+00 1e−05

(c) Canonical variables plot for MDS and GTM

Fig. 8. MDS and GTM results for 100K PubChem dataset are shown in (a) and (b). MDS and GTM correlation computed by CCA is shown in (c) as a
plot with canonical variables. The optimal correlation, so-called canonical correlation coefficient, is 0.90 (maximum is 1.00) which shows strong correlation
between MDS and GTM.

340

