
CINET 2.0: A CyberInfrastructure for Network
Science

Sherif Abdelhamid1, Maksudul Alam1, Richard Alo2, Shaikh Arifuzzaman1, Pete Beckman3, Tirtha Bhattacharjee1,

Hasanuzzaman Bhuiyan1, Keith Bisset1, Stephen Eubank1, Albert C. Esterline4, Edward A. Fox1, Geoffrey C. Fox5,

S.M.Shamimul Hasan1, Harshal Hayatnagarkar1, Maleq Khan1, Chris J. Kuhlman1, Madhav V. Marathe1,

Natarajan Meghanathan2, Henning S. Mortveit1, Judy Qiu5, S.S. Ravi6, Zalia Shams1, Ongard Sirisaengtaksin7,

Samarth Swarup1, Anil Kumar S. Vullikanti1, and Tak-Lon Wu5

1Virginia Tech, Blacksburg, VA; 2Jackson State University, Jackson, MS; 3Argonne National Laboratory, Chicago, IL;
4North Carolina A&T State University, Greensboro, NC; 5Indiana University, Bloomington, IN;

6University at Albany, SUNY, Albany, NY; 7University of Houston, Houston, TX

Abstract—Analysis of structural properties and dynamics of
networks is currently a central topic in many disciplines including
Social Sciences, Biology and Business. CINET, a cyberinfras-
tructure for such studies, introduced the concept of supporting
network analysis as a service. The basic idea is to allow experts in
various disciplines to focus on obtaining domain-specific insights
from the results of network analyses instead of worrying about
programming details and allocation of computational resources
needed to carry out the analyses. A basic version of CINET
was released in May 2012. This paper discusses CINET 2.0, a
significantly enhanced version that supports complex network
analyses through a web portal. CINET 2.0 has already been used
for teaching courses related to Network Science at several US
universities. In this paper, we discuss how CINET 2.0 significantly
extends CINET 1.0 through enhancements to some components
and the addition of new components.

I. INTRODUCTION

A. Background

Networks are widely used to represent and study the
behavior of many real-world systems. Many tools for structural
analysis, dynamics simulation, and visualization are currently
available; some of these are mentioned in Section VIII. Many
tools are stand-alone applications that a user downloads, in-
stalls, compiles, and runs. In contrast, using cyberinfrastructure
for network analyses is a useful approach for domain experts
and novices who may not be computer experts or have access
to high performance computing platforms that are needed to
run these applications.

We present version 2.0 of the CINET cyberinfrastructure
for structural and dynamical evaluation of networks and for
network generation. CINET is an open access, web-based
system. The user interface is the front end of a distributed
system that has sophisticated applications on the back end that
run on high performance compute clusters and other compute
resources. An extensible, flexible middleware connects the
front and back ends to several additional modules that include
a digital library (DL) and resource manager (RM). Current
meta-applications are (i) Granite, an umbrella application for
network structural analysis that supports NetworkX, SNAP,

GaLib, and Gephi applications; and (ii) GDSCalc or GDSC
that computes dynamics of networks.

CINET 2.0 is designed for self-sustainability and self-
management: it now has automated capabilities for users to
contribute both networks and applications, the recent inclusion
of the SNAP [27] application being a concrete example.
Users are encouraged to contribute through an incentivization
service: providers of networks and code are listed with their
contributions in the user interface for all users to see, and the
number of times each contribution is used is made available to
providers. It is pervasive and easy to use: it is accessed through
the Internet, and provides all required hardware and software
resources. This makes CINET attractive for researchers, edu-
cators, and students whose focus is on network science, and
who may have no background in computer science. Usability
is a first-order attribute of the system: the workflows and on-
screen information make user-interaction intuitive. CINET also
serves as a prototype for open science, illustrating how data
and methods can be made publicly available. It can also serve
as a repository for massive open online courses (MOOCs), and
other multi-modal information. Content currently exists (e.g.,
links to course notes), accessible through the CINET landing
page [3], and will grow with additional use. This content also
supports research, education, and training.

We emphasize that this paper (its descriptions of the
system design, selected components, user interface, exam-
ples, data plots, and course usage) are all beyond those
of CINET 1.0 [10]. Consequently, our contributions here
are solely based on new work; for example, the data plots
presented in this paper could not have been generated with
CINET 1.0. Hence, the previous paper and this one are in
many ways complementary.

B. Contributions

Table I provides a summary of new or significantly
improved features and components compared to those of
CINET 1.0, described in [10]. Many of these are addressed in
our contributions, which emphasize changes over CINET 1.0.

1. System Usability. Usability is a major system enhancement,
reflected in a completely redesigned user interface (UI). The

324

TABLE I: CINET components and features that are new or
significantly upgraded from version 1.0 to 2.0; “–” indicates a
feature that was not supported by CINET 1.0.

Components and
Features CINET 1.0 CINET 2.0

Network
visualization

–
New. Offers network mining through
visualization.

NetScript –
New. A domain specific language enabling
programming across different graph libraries.

Resource manager –
New. Enhances performance and makes
system scalable.

Workflows – New. Provides workflows as a service.

Incentivization –
New. DL service giving credits to users for
new contribution to CINET.

Digital library (DL)
Basic
features.

Re-architected. Memoization has been
completely reworked.

Graph libraries
GaLib, Net-
workX [21].

New addition. SNAP [27] application.

Service: add new
network.

Basic
service with
manual
processing.

Fully automated with validity checking for
new networks.

Service: add new
network algorithm.

Basic
service with
manual
processing.

Fully automated with sandbox isolation
feature for executables.

Granite user
interface.

Basic user
interface.

Re-designed to integrate new features and
enhance usability.

Middleware
Basic
features.

Re-designed to enhance scalability and
efficiency.

Compute
(hardware)
resources

Two VT
HPC
clusters.

New addition. FutureGrid [26].

Numbers of
networks; network
algorithms; parallel
algorithms; network
generators.

Numbers,
respectively,
are: 85, 95,
2 and 17.

Numbers have increased to 112, 144, 9 and
28, respectively.

landing page [3] content includes descriptions of the applica-
tions and selected networks as well as links to applications and
other resources. Granite and the Graph Dynamical Systems
Calculator (GDSC) applications are made available through
the Tools menu item. Granite UI screens are automatically
populated with descriptions of networks and graph measures
when they are highlighted, whereas in the previous version,
extra button clicks were required to view this information.
Search functions enable networks and software modules (i.e.,
implementations of algorithms; also called measures) to be
searched based on name and other attributes that can be filtered
(e.g., networks can be searched based on the numbers of
vertices and edges, and whether graphs are weighted, labeled,
or connected). When multiple networks and measures are
selected, the running list is displayed so that they can easily
be tracked. Graph visualizations are provided with networks,
and for graphs where these do not exist, a user can request
their generation (new digital library services also help in this
regard). These visualizations are then available to all users. All
jobs for a user are provided in a single screen, with real-time
status updates for analyses in-progress, in order to improve
user feedback. Similar improvements have also been made in
the UI for GDSC, but are not presented here for space reasons.
Output data and plots can be viewed on-screen, downloaded
to a user’s local machine, and in the case of Granite, can be
archived.

2. Software and hardware infrastructure. Cloud computing
(i.e., FutureGrid) resources totaling 5000 cores, are now avail-
able within CINET to complement the 2000 cores provided by

two HPC clusters at Virginia Tech. A new resource manager
(RM) dynamically assigns jobs to hardware platforms. Beyond
this resource allocator, a cloud integrator manages jobs as-
signed to different cloud resources. Four digital library (DL)
services are new or significantly enhanced. These include a
memoization service that has been completely rebuilt based
on a new design, and extended to store previously computed
results (version 1.0 had a prototype implementation). Among
other things, this module improves user experience by quickly
returning pre-computed results where available. Other services
include the ability to add new networks and new measures;
these features are now fully automated with error checking
and sandbox capabilities, respectively. The incentivization
service—to give proper credit to CINET contributors—was
also redesigned.

3. Domain specific language software service. NetScript is a
new domain specific language (DSL) developed for CINET.
We view NetScript as a software service since one of its
main purposes is to compose reusable workflows that combine
or pipeline applications (through their inputs and outputs) to
produce results that no single application can provide. It offers
a common platform for programming across different graph
libraries (e.g., GaLib, NetworkX, SNAP).

4. New and enhanced applications. Features of two exist-
ing applications (GaLib and GDSC) have been significantly
extended. For example, the number of parallel algorithms in
Table I—all of which were built for incorporation into GaLib—
has increased four-fold. These parallel implementations are
based on new state-of-the-art algorithms (e.g., [13, 12, 18]).
The numbers of networks, algorithms, and graph generators
within Granite have also increased, as indicated in Table I.
GDSC has been enhanced as described in [11]. We have
integrated new algorithms from NetworkX. The SNAP graph
analysis application [27] is newly integrated into CINET.
Gephi [15] has also been integrated for graph visualization.

II. SYSTEM OVERVIEW

Fig. 1 shows the major components of CINET. The
components are loosely coupled and communicate primarily
through the blackboard, whose implementation is a JavaSpace.
Components produce requests for services that are then put on
the blackboard. Execution brokers monitor these requests and
act on the ones that they know how to fulfill. In the process
of fulfilling a request, another request may be put on the
blackboard for some other execution broker to fulfill. Requests
are not merely data objects, but rather are Java objects that
contain run parameters and methods that describe workflows.

The web applications, Granite and GDSCalc (or GDSC),
are distinct entities, each with its own UI. A user provides
information through the UI and submits a job. The submission
process generates a job request in a format recognized by the
cyberinfrastructure. This request is then put on the blackboard.
Metadata may be obtained from the DL. Jobs are executed by
(software) applications (e.g., NetworkX, GaLib, SNAP, GDSC,
Gephi) that reside on computing resources as shown in Fig. 1.
Decisions regarding what applications and hardware to use are
made by the RM. Data may be retrieved from storage, guided
by the RM. Results are put in storage and DL metadata may be
updated. Results are returned to the web application through
the blackboard.

325

Computing Resources

Software
NetScript

Hardware

Digital Library
Metadata

Memoization
Incentivization

...

CINET Web Apps/User Interfaces

Granite
Structural Analysis

Visualization
Workflow

Add new network
Add new measure

GDSC
Dynamical Analysis

Visualization

Blackboard

Resource Manager

Resource Allocator

Cloud Integrator

Networks
Measures

Visualization Results
Analysis Results

Storage

HPC Clusters
VT Cluster 1
VT Cluster 2

Cloud
FutureGrid

GaLib
NetworkX

SNAP
Gephi
GDSC

Fig. 1: Primary CINET system components.

III. APPLICATIONS

In this section, we survey Granite applications and GDSC,
with a pronounced emphasis on the former.

A. Granite

1) Granite User Interface: We present a series of UI
screens from Granite in order to illustrate the web-application’s
capabilities and its usability features. Fig. 2 provides a sum-
mary of all of a user’s analyses (the screen is cropped for
space reasons). For each analysis, its name is given, along
with the network(s) and measure(s) used, time of last update,
and current status. At the top of the screen are the Granite
first-order capabilities: Network Analysis, Network Generation,
Networks, and Measures. The Archive creates a backup of a
user’s data, and Admin is for administrator functions.

A new network analysis is started with the +New Analysis
button shown in Fig. 2. An analysis executes one or more
measures (e.g., compute degree distribution, compute number
of connected components) on one or more existing networks.
Fig. 3 shows a clipped view of networks on the left side. The
Miami contact network is highlighted, and a description of
it, along with some of its attributes, are given in the right
half of the screen. Note that this includes the contributor.
Those contributing to CINET in terms of graphs, measures,
and graph generators are acknowledged each time that entity
is browsed. At the top of the screen is a list of three networks
selected, including the Miami network. This is how the user
easily keeps track of the networks selected for analysis. Fig. 4

| Visit CINET

Network Analysis Network Generators Networks Measures Archive Admin

Network Analysis

| Help CentreAdministrator

Search Analysis

BFS Miami Contact Net… BFS Tree Wed May 14 2014 20:33:3… IN-PROGRESS Kill Hide

Betweenness Cent… Dolphins' Social Ne… Betweenness Cent… Wed May 14 2014 20:32:3… COMPLETED View Report Hide

k-Core Karate network k-Core Wed May 14 2014 20:31:5… COMPLETED View Report Hide

Analysis Networks Measures Updated On Status Actions Display

Fig. 2: Cropped view of Granite UI showing records of
network analyses for the Admin user. A user can submit a new
network analysis request by clicking the +New Analysis button
at the right and then selecting a set of networks and network
algorithms, and providing input parameters for the algorithms.

Fig. 3: Multiple graph selections (see top of cropped screen).
Current selection is a Miami contact network.

is a cropped screen capture showing select graph measures.
The minimum spanning tree (MST) and PageRank measures
are highlighted, and the root node for the MST computation is
shown at the right. If the Details button was clicked instead of
the Parameters tab, the measure contributor would be provided,
among other data. The top of the figure shows that four
measures have been selected. This figure and the previous one
illustrate how one network analysis job can consist of multiple
measures executed on multiple graphs.

To add a new measure, a user clicks the Measures button
shown at the top of Fig. 2. The user is taken to the screen
shown in Fig. 5. Existing graph measures are displayed and a
new one can be added by clicking the +New Measure button.
Another screen (not shown) requests inputs from the user,
including the software to be uploaded. Analogous procedures
exist for adding networks.

2) Granite Compute Engines: Granite now contains three
graph applications: GaLib, NetworkX [21] and SNAP [27].
Table II summarizes the types of modules (algorithms) im-
plemented and the numbers of modules implemented per
application. Table III provides analogous data for the networks
in Granite. Fig. 6 shows how the numbers of networks and

326

Fig. 4: Multiple measure selections. Current selection is mini-
mum spanning tree, and to the right, the root node of the MST
is specified. The screen capture is cropped at top and bottom.

Fig. 5: A partial list of graph measures, with the articulation
point graph measure from SNAP highlighted. To add a new
measure to CINET, click the +New Measure button.

modules in CINET have grown over time. Fig. 7 illustrates
the speedup (scalability) of the parallel triangle counting
algorithms [13] for large graphs. The degree distribution of
a 1-billion node Preferential Attachment graph generated by a
parallel algorithm [12] is shown in Fig. 8.

B. GDS Calculator

A graph dynamical system (GDS) is a discrete dynamical
system consisting of four elements: (i) a graph G where
vertices are agents and an edge from vertex va to vb means va
influences the dynamics of vb; (ii) a set F of vertex functions
fa, where fa describes how va updates its state; (iii) an update
scheme W that specifies how the vertex functions are ordered;
(iv) a state set K for vertices. GDSC provides users with
an interface to specify different combinations of these four
inputs, and computes, among other things, the long-term cycle
structure of the dynamical system. Informally, since G and
K are both of finite size, deterministic GDSs will eventually
repeat system states (i.e., the states of all vertices in a graph),
giving rise to limit cycles of repeating states. Limit cycles

TABLE II: Statistics of available network modules (algorithms
and generators) in CINET.

(a) Different types of network mod-
ules.

Type Modules

Centrality 32
Shortest path 19
Connectivity 11
Subgraph count 13
Net. generator 28

Others 41

Total 144

(b) Network modules adopted from
different graph libraries.

Graph library Modules

GaLib 71
NetworkX [21] 62
SNAP [27] 11

Total 144

TABLE III: Statistics of available networks in CINET.

(a) Different types of networks.

Type Number

Social 21
Co-appearance 6
Collaboration 19
Transportation 9

Web 5
Biological 2
Autonomous 20
Infrastructure 5

Others 25

Total 112

(b) Networks collected from different
sources.

Source Networks

SNAP [27] 41
Pajek [16] 9

M. Newman [30] 10
SocioPatterns [9] 11
NDSSL [14] 20
ITZ [24] 5
Gephi [15] 2
Others 14

Total 112

are of interest because they represent the GDS’s long-term
dynamics.

IV. NETSCRIPT: A DOMAIN SPECIFIC LANGUAGE FOR
NETWORK ANALYTICS

NetScript [32] is an embedded DSL written in Python.
We chose Python for its short learning curve and extension
modules for integration with different programming languages.
As a result, any existing graph library or tool can be plugged
into NetScript and can be used through a high level interface.
NetScript currently works with GaLib and NetworkX, and
Matplotlib [5], a Python 2D plotting library, as a visualization
tool. It provides a simple computational interface for domain
experts to specify workflow of cross library graph modules and
to visualize and plot the networks and outputs, respectively. It
functions as a meta-graph library providing a superset of graph
modules and visualization features from different libraries.

It offers data structures for collections, such as Graph,
Edge, Node, Property (weight, label, etc.), overloaded oper-
ators and methods for the data structures, and functions for
different graph modules. Moreover, it supports many atomic
operations, e.g., add or remove nodes and edges, on Graphs
and compute XOR, Union, etc., among them. NetScript maps
the functions to graph modules of different libraries and hides
all the complexities, such as converting between network
formats, from users. It further supports error handling across
the libraries.

A workflow is the execution of a multi-step network

327

●

●

●

●

●

0

50

100

150

2010 2011 2012 2013 2014
Year

N
um

be
rs

● Modules

Networks

Fig. 6: Collection of networks and mod-
ules (network algorithms and genera-
tors) growing over time.

0

20

40

60

80

0 100 200 300
Number of Processors

Sp
ee

du
p

Fa
ct

or

PA�100M

PA�25M

PA�50M

PA�5M

Fig. 7: Parallel algorithms in GaLib
are highly scalable, e.g., parallel trian-
gle counting [13] algorithm shows good
scalability for networks with billions of
edges. Here, PA − nM are Preferen-
tial Attachment networks with n million
nodes and an average degree of 50.

●

●
●
●
●
●
●
●
●●●
●●●●●●●●●●●

●●●●●●●●●
●●●
●
●●●●●●●●●

●●●●●●●●●●●●●
●
●●●
●

●

●
●
●
●

●

●
●●●
●●
●

●
●
●●
●

●
●
●

●
●
●●

●
●●
●
●●

●

●

●

●
●
●
●

●●

●
●

●
●
●
●

●

●
●

●●●
●●
●
●

●

●●
●
●
●●

●

●

●●
●
●●

●●●

●

●●●

●●●●

●●●●●●●●●

●●

●

●
●

●●●●●

●

●

●

●

●

●●●●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●● ●100

101

102

103

104

105

100 101 102 103

Degree

N
um

be
r o

f N
od

es

Fig. 8: Degree distribution of a large
Preferential Attachment graph with 1
billion nodes and 4 billion edges. Par-
allel algorithm for Preferential Attach-
ment model [12] in GaLib was used to
generate this graph.

analysis, i.e., a sequence of computational modules, where the
output of one module can be fed as an input to the next module.
A set of predefined workflows has been integrated into Granite.
Users can run such workflows in one network analysis from the
Granite UI. Moreover, users can design their own workflows
using NetScript. The Add New Measure service further allows
users to add these workflows to Granite and use them for
analyzing networks through the Granite UI. The following is
an example of a workflow illustrating the utility of NetScript.

Example 1: Generate a set of, say 10, Erdős-Rényi ran-
dom graphs with the number of nodes n = 1000, probability of
picking each possible edge p = 0.1 (i.e., average degree 100),
and a specific property (e.g., diameter ≥ 4). Both NetworkX
and GaLib have Erdős-Rényi graph generators but neither of
them supports graph generation with user defined properties.
We provide a code snippet below for generating an Erdős-
Rényi graph with the specified property using NetScript.

1 G = generateGraphNP(1000, 0.1)
2 while diameter(G) < 4:
3 G = shuffle(G, 0.2)

The first line uses a NetworkX function generateGraphNP
for generating an Erdős-Rényi graph. Another NetworkX func-
tion diameter is used to measure the diameter of the graph.
The third line uses a GaLib function shuffle that randomly
switches the end points of 20% of the edges of the graph,
thus changing the diameter of the given graph. GaLib and
NetworkX use different graph representations that require a
graph conversion between line 2 and 3 as shown in Fig. 9.
NetScript hides these low-level concerns (graph conversion
and data structure passing) from the users and makes it easy
to interleave functionalities of different graph libraries from a
simple interface.

V. VISUALIZATION

Our network visualization tool is a newly developed and
integrated service that can give useful insights into a network

NetworkX
(Python Lib.)

NetworkX
(Python Lib.)

Graph conversion &
data structure

passing

GaLib
(C++ Lib.)

1 2 3

Fig. 9: Use of different graph libraries in the three-line code
snippet given in Example 1. NetScript provides a user-friendly
high level interface by hiding the complexities of graph conver-
sion and data structure passing across different graph libraries.

by highlighting important nodes, edges and communities in
a graph or a subgraph. The primary features and benefits of
visualization are: (i) it provides eight layout algorithms from
the literature such as Force Atlas, Yifan Hu and Fruchterman
Reingold; (ii) it offers feature-based organization, i.e., the
node sizes can be proportional to their degrees, betweenness
centrality and pagerank values, and thus helps network mining
by finding influential nodes and links; (iii) it allows for finding
and coloring different communities by using community detec-
tion algorithms from the literature; (iv) it can visualize node
and edge attributes; (v) it supports interactive visualizations,
e.g., zoom in, zoom out and focusing on neighbors of a
selected node; (vi) it offers visualization of subgraphs that
is very useful, especially for massive networks; and (vii) it
has a download option in different formats (e.g., pdf, jpg).
Some visualizations of the Miami social contact [14] and
Amazon co-purchase [7] networks are shown in Figs. 10 and
11 respectively.

A high level overview of the functionality of visualization
service is depicted in Fig. 12. We have used SigmaJS, a
JavaScript library for rendering a (graph) object within a UI at
the front end and the Gephi library [15] in the back end. Gephi
is an interactive visualization and exploration platform for
networks. Our work then became primarily one of integration.
We have chosen Gephi because it is open source, modular and
easily extensible through plugins. It also offers many visualiza-
tion features. If a user requests a visualization of a network, the
network is converted into gexf format, an XML representation,

328

Fig. 10: Visualization of the
communities in a 1000 node
subgraph of Miami social
contact network [14].

Fig. 11: Visualization of
an Amazon co-purchase net-
work [7].

that allows for dynamically adding multiple attributes to nodes
and edges. Then, user-specified layout algorithms determine
object locations. Other measures (betweenness, pagerank, de-
gree, etc.) are computed and applied to fix the size and color of
the nodes and edges. Finally, the rendered graph is visualized
to the user through a web rendering script after storing it in
cooperation with the DL. The user interface shows a static
view of the visualization by default. Clicking on the static
visualization pops up a new window providing a detailed and
interactive visualization. All visualizations are stored along
with their input parameters, thus allowing users to access and
download any previous visualization. This is another feature
facilitated by the memoization service of the DL (described in
the next section).

User CINET
Web

Server

Sigma
JS

Graph
Core

Rendered
Core

Layout
Core

Analysis
Core

Digital Library

Visualization Module

Fig. 12: Functionality of the visualization service. Our work
involved integrating Gephi, SigmaJS with the DL and other
parts of CINET.

VI. CYBERINFRASTRUCTURE

In this section, we discuss the new and upgraded compo-
nents of the cyberinfrastructure, i.e., compute resources, RM,
and DL services.

A. Compute Resources

FutureGrid [26] is a cloud infrastructure comprised of
geographically distributed heterogeneous HPC clusters. Fu-
tureGrid has collectively more than 5000 processing cores, and
has been recently integrated with CINET.

B. Resource Manager

The RM [17] ensures compute resource availability and
sharing, data reliability and transfer, security, assignment of
jobs to specific resources, and reliability of assigned jobs. RM
handles the complexities associated with shared and distributed
memory for parallel algorithms to run on heterogeneous re-
sources. It performs these tasks transparently; no user input is
required. Currently, jobs are assigned to one of the two VT
clusters or to FutureGrid resources. RM has the following two
major components.

1. Resource Allocator (RA). This component allocates re-
sources for job execution based on dynamic allocation policies
adopted through consideration of both resource availability and
analysis profile.

2. Cloud Integrator (CI). This component is deployed in a
cloud infrastructure to achieve synchronization between job
submission and resource availability and to optimize resource
consumption. In a shared cloud environment, research groups
act as tenants with restricted permissions and rated resource
consumption. This motivated the adoption of a self-initiating
and self-sustainable cluster of virtual machines (VMs) man-
aged by the portable batch system (PBS)-based Torque Re-
source Manager. The PBS cluster hosts the execution brokers
and establishes a Master-Worker relationship based on the
dynamic compute environment with VM’s as nodes. So we
introduce the modified concept of a VM-aware PBS cluster.

Salient features of VM-aware PBS cluster are as follows.
(i) Job Isolation: VM environment provides a sandbox feature
for any malicious codes uploaded by users. (ii) Optimized
resource consumption: The suite builds a wrapper over the
Torque and Maui scheduler to offer a stable and light-weight
PBS. RM constantly monitors system health and efficiently
spins up/down VMs as per PBS queue weight. (iii) Data
Reliability and Transfer: The data is procured by worker VM’s
from an internal NFS server hosting persistent data containers
(logical volumes). Data movement is restricted to an intranet
except in the transfer of analysis results. (iv) Portability and
Self-sustainability: CI provides platform independent deploy-
ment and can be exported to supported cloud infrastructures
(Openstack/Eucalyptus). (v) Parallelization: It facilitates dis-
tributed and parallel execution of jobs through rule-based
policies. (vi) Fault Tolerance: RM provides seamless fail-over
multiple clusters (or cloud domains). Pluggable resources make
the system more flexible and scalable.

C. Digital Library and Services

The DL of CINET acts as a central repository of informa-
tion and uses the 5S formal framework [20]. The DL supports
modeling and simulation by retrieving and archiving metadata
for networks, network analysis algorithms, generators, visual-
izations, analyses results, and users, and by offering various
DL services. Metadata Service is the core DL service that sup-
ports execution of network analysis jobs by providing metadata
through the DL broker (see [10] for detail). The digital library
has been completely redesigned for improved usability and
scalability of the system. We confine our discussion to four
recently integrated or significantly enhanced services.

1. Memoization Service [22]. If a network analysis job is
requested for the first time by any user, this service captures

329

and archives the input parameters, metadata and output files
generated by the system. If the same job is requested again by
any user, the memoization service retrieves and provides the
archived results to the user instead of recomputing the results.
This is illustrated in Fig. 13. Thus, memoization significantly
enhances the user experience by indexing, archiving, preserv-
ing, and reusing network analysis results, yielding reduced
turn-around-time to provide the user with results. Since this
service has been integrated, about 63% (542 out of 856)
of the network analyses have used the memoization service
to retrieve archived results without recomputing, thus saving
around 1.8 GB of space. As CINET grows, this benefit is
expected to increase.

User
Interface

Matching
Engine

Match
Found

Match Not
Found

Memoization
DB

Net. Analysis
Metadata

Result

Archive Net.
Analysis Metadata

and Result

Query DB
Submit Net.

Analysis

Result

CLIENT MATCH STORE

Result

Net. Analysis
Metadata

Fig. 13: Memoization framework.

2. Incentivization Service. This service captures and archives
contributors of networks, algorithms, generators, compute re-
sources and visualization features in the DL. CINET uses
this information to attribute methods and data in UI screens
and in output artifacts to ensure that contributors are properly
recognized.

3. Add New Network Service. This service allows users
to add new networks to Granite. An uploaded network is
automatically validated through semantic and syntactic checks.
Metadata are specified by the user for a valid network. Users
have the choice of keeping the network visibility as private
(visible only to the user who contributed) or public (visible to
all users).

4. Add New Measure Service. Users can add new measures
(algorithms) with the help of a system administrator. This
process is fully automated where a new measure is added with
detailed information of input and output parameters. Users are
prompted to provide valid range and type of input parameters,
that are later used in determining validity of user inputs for
network analysis requests. Moreover, users just provide the
graph library name and are insulated from the complexities of
cross platform executions. When a new measure is added to
Granite, RM executes the binaries (executables) in a VM to
ensure the isolation of the binary. Only safe-to-run (certified by
RM) measures are added to Granite. Similar services exist for
adding new network generators as well. These fully automated
services make the system self-sustainable.

VII. EDUCATIONAL USE

CINET was used as the primary software tool in two
network science courses in the Computer Science departments

at North Carolina A&T State University (NCAT), Greensboro,
NC, USA during Spring 2014 and the University at Albany—
State University of New York (UAlbany), Albany, NY, during
Fall 2013. Both of these courses used the book by Easley and
Kleinberg as the required text [19]. CINET has been used in a
few undergraduate courses at University of Maryland–College
Park and in graduate and undergraduate courses at Virginia
Tech (VT). University of Houston and Jackson State University
will use CINET in Fall 2014 courses.

The course at NCAT was named “Web Science” and
the class consisted of seven undergraduate and six graduate
students. CINET was used for both classroom lectures and for
homework assignments. CINET was used in combination with
other tools. For example, the Python Facebook SDK was used
to generate networks, which were then analyzed with CINET.
NCAT envisions offering another course for non-computer
scientists, where Granite and NetScript would be the only
computational resources used. CINET was used at UAlbany
in a combined graduate/undergraduate course in much the
same ways as at NCAT; the course instructors collaborated
in developing curricula. The UAlbany course also included a
course project that used CINET. The class at UAlabany was
well received and the students found CINET easy to use,
and extremely useful in understanding the concepts. Three
students enrolled in a subsequent independent study course
to explore additional topics in Network Science. In a graduate
course at VT in Spring 2014 on digital libraries, a homework
assignment focused on the DL aspects of CINET. In another
graduate course at VT on multimedia, CINET was used for
both classroom instruction and homework assignments.

VIII. RELATED WORK

We have compared CINET with several existing graph
algorithm libraries and dynamic simulation tools, such as
NetworkX [21], SNAP [27], NodeXL [6], Pajek [16], Network
Workbench [31], Pegasus [8] and DVD [33] in our previous
paper [10] and we do not repeat them here. Many libraries and
tools have been developed in the recent years. Among them,
Giraph [1] is a distributed graph processing platform that is
built on top of Hadoop’s MapReduce implementation. Giraph
is the open source counterpart to Pregel [29], a graph pro-
cessing architecture developed by Google. The GraphLab [28]
project develops a parallel computation framework tailored to
machine learning and data mining. Twitter has an open source
big graph processing library, Cassovary [2], for the Java Virtual
Machine. It can analyze graphs that are up to billions of edges
in size. Green-Marl [23] is a DSL for parallel graph algorithms
that allows users to describe algorithms in intuitive ways.
The Green-Marl compiler translates a given DSL program
into an equivalent, parallelized, high-performing program in
C++. JUNG [4] is a software library providing a visualization
framework and a number of algorithms from graph theory.
Gephi [15] is an open source interactive visualization platform
for networks. It also offers some networks and a few network
algorithms.

Each existing graph library or tool focuses on a few specific
features, such as networks, static analysis, dynamic analy-
sis, visualization and workflows. Pegasus, Giraph, GraphLab,
Green-Marl and CINET have platforms for parallel algorithms.
Network Workbench, Pegasus and CINET provide web portals

330

for network analysis with compute resources in the back-end.
However, none of the existing tools provide a superset of
features, such as a rich set of networks, network algorithms
and generators, dynamic simulation engine, visualization, ap-
proximate and parallel algorithms, workflows, domain specific
language, HPC resources, resource manager, and contributor-
based content that support education and collaborative research
through a web portal, as does CINET. In addition, various
integrating services (add new networks, network algorithms,
generators and memoization) make CINET self-manageable
and self-sustainable in the long run, which is a novel feature.
The system continues to grow in terms of numbers of networks,
algorithms, services, and computing resources.

IX. CONCLUSION

CINET 2.0 has been described in this paper. It is a signifi-
cant step forward from CINET 1.0 [10], with new software and
hardware capabilities including resource manager, NetScript,
and cloud computing resources. Others have been literally
reworked from scratch for better usability, scalability, and
enhanced feature sets: the UIs for both Granite and GDSC, and
four services of the DL. The latter includes fully automated
services for adding new networks and measures, which are
critical for a self-sustainable and self-manageable CINET.

By the end of year 2014, the number of networks and
methods will grow to over 200 and 150, respectively. Also,
we will have at least a prototype version of InterSim [25]
operational, which will enable agent-based simulations, and
DL services will be expanded. We have approached NSF for
XSEDE resources and Argonne National Laboratory’s compute
resources will also be integrated through the RM. Integrating
support for the human in the loop, e.g., monitoring experiment
execution step by step through visualization, can be very
useful, especially for teaching purposes. CINET can also be
expanded to a general data analytic library to address the
analysis of big data from diverse areas, such as computational
biology, life science, business and finance.

ACKNOWLEDGMENT

We thank our external collaborators, members of the Net-
work Dynamics and Simulation Science Laboratory (NDSSL),
and anonymous reviewers for their suggestions and com-
ments. This work has been partially supported by DTRA
CNIMS Contract HDTRA1-11-D-0016-0001, DTRA Grant
HDTRA1-11-1-0016, NIH MIDAS Grant 5U01GM070694-
11, NSF CAREER Grant CNS-0845700, DOE Grant DE-
SC0003957, NSF NetSE Grant CNS-1011769, and NSF SDCI
Grant OCI-1032677. FutureGrid is supported in part by NSF
Grant 0910812.

REFERENCES

[1] “Apache Giraph,” https://giraph.apache.org/, [Online; accessed 1-May-
2014].

[2] “Cassovary,” https://blog.twitter.com/2012/
cassovary-big-graph-processing-library, [Online; accessed 1-May-
2014].

[3] “CINET website,” http://cinet.vbi.vt.edu/, [Online; accessed 1-May-
2014].

[4] “JUNG,” http://jung.sourceforge.net/, [Online; accessed 1-May-2014].
[5] “Matplotlib,” http://matplotlib.org/, [Online; accessed 1-May-2014].

[6] “NodeXL,” http://nodexl.codeplex.com/, [Online; accessed 1-May-
2014].

[7] “Orgnet LLC,” http://www.orgnet.com/, [Online; accessed 1-May-2014].
[8] “Project Pegasus,” http://www.cs.cmu.edu/∼pegasus/, [Online; accessed

1-May-2014].
[9] “SocioPatterns,” http://www.sociopatterns.org/datasets/, [Online; ac-

cessed 1-May-2014].
[10] S. Abdelhamid, R. Alo, S. Arifuzzaman et al., “CINET: A CyberInfras-

tructure for Network Science,” in e-Science, 2012, pp. 1–8.
[11] S. Abdelhamid, C. Kuhlman, M. Marathe et al., “GDSCalc: A Web-

Based Application for Discrete Graph Dynamical Systems,” NDSSL,
Virginia Tech, May 2014, NDSSL Technical Report Number: 14-061.

[12] M. Alam, M. Khan, and M. Marathe, “Distributed-memory Parallel Al-
gorithms for Generating Massive Scale-free Networks Using Preferential
Attachment Model,” in SuperComputing (SC), 2013, pp. 91:1–91:12.

[13] S. Arifuzzaman, M. Khan, and M. Marathe, “PATRIC: A Parallel
Algorithm for Counting Triangles in Massive Networks,” in CIKM, 2013,
pp. 529–538.

[14] C. Barrett, R. Beckman, M. Khan, V. Kumar, M. Marathe, P. Stretz,
T. Dutta, and B. Lewis, “Generation and analysis of large synthetic
social contact networks,” in Proceedings of the 2009 Winter Simulation
Conference (WSC), 2009, pp. 1003–1014.

[15] M. Bastian, S. Heymann, and M. Jacomy, “Gephi: An Open Source
Software for Exploring and Manipulating Networks,” in AAAI ICWSM,
2009.

[16] V. Batagelj and A. Mrvar, “Pajek - Program for Large Network Analysis,”
Connections, vol. 21, no. 2, pp. 47–57, 1998.

[17] T. Bhattacharjee, H. Hayatnagarkar, J. Qiu, K. Bisset et al., “VM-aware
PBS Cluster: Resource Manager to Integrate Cloud Infrastructures with
CINET,” NDSSL, Virginia Tech, May 2014, NDSSL Technical Report
Number: 14-054.

[18] H. Bhuiyan, J. Chen, M. Khan, and M. Marathe, “Fast Parallel Algo-
rithms for Edge-Switching to Achieve a Target Visit Rate in Heteroge-
neous Graphs,” in ICPP, Minneapolis, MN, USA, 2014.

[19] D. Easley and J. Kleinberg, Networks, Crowds and Markets: Reasoning
About A Highly Connected World. New York, NY: Cambridge Univer-
sity Press, 2010.

[20] E. Fox, M. Goncalves, and R. Shen, Theoretical Foundations for Digital
Libraries: The 5S (Societies, Scenarios, Spaces, Structures, Streams)
Approach. San Francisco: Morgan & Claypool Publishers, July 2012.

[21] A. Hagberg, D. Schult, and P. Swart, “Exploring Network Structure,
Dynamics, and Function using NetworkX,” in SciPy, Pasadena, CA,
USA, Aug. 2008, pp. 11–15.

[22] S. Hasan, K. Bisset, E. Fox, K. Hall, J. Leidig, and M. Marathe, “An
Extensible Digital Library Service to Support Network Science,” in
ICCS, 2013, pp. 419–428.

[23] S. Hong, H. Chafi, E. Sedlar, and K. Olukotun, “Green-Marl: A DSL
for Easy and Efficient Graph Analysis,” in ASPLOS XVII. NY, USA:
ACM, 2012, pp. 349–362.

[24] S. Knight, H. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The Internet Topology Zoo,” Selected Areas in Communications, IEEE
Journal on, vol. 29, no. 9, pp. 1765–1775, October 2011.

[25] C. Kuhlman, A. Kumar, M. Marathe et al., “A General-Purpose Graph
Dynamical System Modeling Framework,” in Winter Simulation Confer-
ence (WSC), Dec 2011, pp. 296–308.

[26] G. Laszewski, G. Fox, F. Wang et al., “Design of the FutureGrid
Experiment Management Framework,” in GCE, Nov 2010, pp. 1–10.

[27] J. Leskovec et al., “Stanford Network Analysis Project,” http://snap.
stanford.edu/, [Online; accessed 1-May-2014].

[28] Y. Low, D. Bickson, J. Gonzalez et al., “Distributed GraphLab: A
Framework for Machine Learning and Data Mining in the Cloud,” Proc.
VLDB Endow., vol. 5, no. 8, pp. 716–727, Apr. 2012.

[29] G. Malewicz, M. Austern et al., “Pregel: A System for Large-scale Graph
Processing,” in ACM SIGMOD 2010, NY, USA, pp. 135–146.

[30] M. Newman, “Network data,” http://www-personal.umich.edu/∼mejn/
netdata/, [Online; accessed 1-May-2014].

[31] NWB Team, “Network Workbench Tool. Indiana University, Northeast-
ern University, and University of Michigan,” http://nwb.cns.iu.edu, 2006,
[Online; accessed 1-May-2014].

[32] Z. Shams, K. Bisset, S. Gupta et al., “NetScript: A Domain Specific
Language for Network Analytics,” NDSSL, Virginia Tech, May 2014,
NDSSL Technical Report Number: 14-053.

[33] H. Vastani, N. Eriksson, R. Laubenbacher et al., “Discrete Visualizer
of Dynamics (DVD) v1.0,” http://dvd.vbi.vt.edu/cgi-bin/git/dvd.pl, 2012,
[Online; accessed 1-May-2014].

331

