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Abstract—Use of high-level scripting languages to solve big 
data problems has become a mainstream approach for 
sophisticated machine learning data analysis. Often data must be 
used in several steps of a computation to complete a full task. 
Composing default data transformation operators with the 
standard Hadoop MapReduce runtime is very convenient. 
However, the current strategy of using high-level languages to 
support iterative applications with Hadoop MapReduce relies on 
an external wrapper script in other languages such as Python 
and Groovy, which causes significant performance loss when 
restarting mappers and reducers between jobs. In this paper, we 
reduce the extra job startup overheads by integrating Apache Pig 
with the high-performance Hadoop plug-in Harp developed at 
Indiana University. This provides fast data caching and 
customized communication patterns among iterations for data 
analysis. The results show performance improvements of factors 
from 2 to 5. 

Keywords—Pig, Iterative Algorithms, Big Data, Language, 
MapReduce. 

I. INTRODUCTION

The MapReduce programming model has been widely 
adopted by many fields of research in computer science and 
scientific computing. It provides desirable features linking 
pleasingly parallel computation, horizontal scalability on 
complex parallel codes, and high performance on commodity 
clusters and clouds. Hadoop [1] is the Java-based, open-source 
project that provides the interfaces for large-scale parallel 
implementations of  algorithms and applications. But in order 
to achieve the best performance, it requires advanced 
knowledge of the MapReduce programming model and 
significant programming skills in Java. Beyond MapReduce, 
high-level language platforms such as Pig [2], Hive [3], and 
Shark [4] are introduced to support an expressive, directed, 
acyclic graph (DAG) computing model that explicitly encodes 
data flow as a sequence of MapReduce jobs. These languages 
hide the complexity of interleaved data transformations and 
execution optimization of MapReduce programs. Instead, it 
provides high level functional operators and record-based data-
type abstraction, simplifying the way for users to handle 
different types of data integration in data warehouses and 
iterative computation for scientific applications.  

So far, these high-level language platforms have been used 
by many commercial companies, including Yahoo!, Facebook, 

Amazon, and LinkedIn. They have proven to be efficient in 
handling daily ETL (Extract, Transform, and Load) operations 
and ad hoc queries in many big data problems such as 
Terabyte-level log records analysis and massive email/text 
message analysis. Thousands of the MapReduce jobs submitted 
daily are said to be generated as either Pig or Hive scripts in 
these companies [2, 3]. However supporting iterative 
applications is nontrivial. Most of these solutions require 
developers to write user-defined functions (UDFs) for the 
computing functions and encode with an external control-flow 
script to map the data from disk to memory between iterations. 
As a result the performance is limited due to submitting 
multiple rounds of MapReduce jobs with extra job startup 
overhead.  As most of these language systems are built on top 
of Hadoop, using disk based cache and disk I/O, the data 
communication overhead becomes substantial causing the 
overall performance loss.  

In this paper, we use Pig as an example and introduce Pig 
integration with Harp [5], a fast caching MPI-like collective 
communication plugin with Hadoop. This is an attempt to 
simplify the programming model using a high-level language 
and improve the performance by providing fast data caching 
and better communication patterns between iterations. The user 
is to write UDFs and link multiple steps with the Pig script; 
those UDFs can themselves call libraries like R [6] or Apache 
Mahout [7]. Our system will provide the data caching and high 
performance communication between parallel processes, 
allowing  the user to focus on semantics of applications. 

The rest of this paper is organized as follows. Section II 
introduces the background of Harp and Pig. Section III 
explains our vision of system design and improvement by 
integrating Pig on Harp. Section IV presents use cases for 
scientific applications. Section V shows evaluation results 
based on performance as well as coding efficiency complexity., 
Section VI compares our approach with related work. Section 
VIII sums up our conclusions and future work. 

II. BACKGROUND

Harp is a Hadoop plugin that enables loop awareness, fast 
in-memory caching, and collective communication patterns for 
iterative computation. It replaces the default mapper interface 
with a long-running mapper that supports multi-threading and 
in-memory caching. Compared with process-based task 
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scheduling in Hadoop, it can handle large intermediate data 
more efficiently in a shared memory. Harp provides MPI-like 
collective communication interfaces for customized network-
based shuffling, in addition to disk-based shuffling with HDFS. 
These new features enable desirable processing capabilities and 
high performance for data intensive applications. 

Pig Latin [8] is a platform designed for large-scale data 
analysis with Hadoop MapReduce. Pig provides a high level 
language that hides complicated MapReduce programs with 
simple notations for a dataflow program. Internally, Pig scripts 
are compiled into sequences of MapReduce jobs, which 
automates parallelization and makes the code easy to maintain. 
Figure 1 shows an example of WordCount written in Pig. 

In a Pig dataflow, each line of code has only one data 
transformation, which can be nested. The WordCount program 
consists of seven lines of code, and the syntax is 
straightforward and easy to understand.  At the start, data is 
loaded as records in a relation/outer bag, and each field in a 
record is defined according to Pig’s default data types: bag, 
tuple, and field; a bag is a set of unordered columnar tuples; a 
tuple is a set of fields, where tuples in bag can contains flexible 
length of fields and fields at the same column can have 
different data type; and a field is the basic type of a piece of 
data.Other than the syntax shown in this paper, Pig provides 
operations and syntax patterns for various data transformations, 
although the current version of Pig does not support optimized 
storage structures such as indices and column groups. 

Fig. 1. WordCount written in Pig [9] 
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Whenever a user submits their Pig scripts in a batch mode 
or enters line-by-line data transformation commands in an 
interactive mode, a default compiler handles the overall 
execution flows. This compiler translates the entered Pig 
scripts into operators and forms top-down Abstract Syntax 
Trees (AST) in different stages. It then visits the last compiled 
AST from the MapReduce operators plan compiler and 
constructs MapReduce jobs in order. Figure 2 shows the 

dataflow and lists all major steps. Similar to any programming 
language, Pig checks syntax by parsing the user-submitted 
script into a parser written in ANTLR (ANother Tool for 
Language Recognition) [10]. Pig’s main driver program 
converts each MapReduce operator from Map-Reduce 
Operator Plan (MROperPlan) objects into Hadoop JobControl 
objects with detailed descriptions, input/output linkages, and 
other parameters, which are then passed along to each worker 
node with a configuration in xml format. These translations 
generate Java .jar files that contain the Pig default Map and 
Reduce classes, including the user-defined functions. The 
packages of .jar files are submitted to Hadoop Job Manager, 
and job progress is monitored until completion of the tasks. 
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III. PIG IN SUPPORTING ITERATIVE APPLICATIONS

Pig does a good job for ETL applications, but lacks support 
for iterative methods. When writing Pig programs for such 
applications, the control flow should be similar to what is 
shown in Figure 3. An external wrapper script is required, 
because Pig syntax does not provide a control flow statement. 
This causes extra overhead of job startup and cleanup time 
when a program runs in several rounds of MapReduce jobs. 

1 input    = LOAD 'input.txt' AS  
(line:chararray); 

2 words    = FOREACH input GENERATE 
FLATTEN(TOKENIZE(line)) AS word; 

3 filWords = FILTER words BY word MATCHES 
'\\w+'; 
4 wdGroups = GROUP filWords BY word; 
5 wdCount  = FOREACH wdGroups GENERATE group AS 

word, COUNT(filWords) AS count; 
6 ordWdCnt = ORDER wdCount BY count DESC; 
7 STORE ordWdCnt INTO 'result'; 
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Furthermore, inputs of iterative applications are normally 
unchanged and cacheable between iterations, whereas Pig has a 
DAG framework that does not cache those inputs in memory 
and reuses them inefficiently.  

As Pig lacks loop-awareness and in-memory caching, we 
investigate a version of Pig for scientific applications based on 
the DAG computation model. There are several iterative 
MapReduce frameworks as candidates to integrate with Pig, 
including  Twister [11], Spark [12], HaLoop [13], and Harp. 
We chose Harp as it is a simple MapReduce extension that 
supports our required iteration features. With Harp integration, 
we replace the Hadoop Mapper interface with Harp’s 
MapCollective, long-running mapper to support conditional 
loops. Subsequently, iterative applications implemented in 
Pig+Harp can cache reusable data and replace the default 
GROUP BY operation with Harp’s collective communication 
interface with high performance data movement. We compare 
the default Hadoop reduce stages withHarp’s collective 
communications in Section 5. Figure 4 shows a dataflow that 
can be applied to iterative applications. 

IV. USE CASES

We use K-means clustering and PageRank, as both are 
popular iterative algorithms for scientific computation. Our 
approach can be extended to other algorithms using similar 
user-defined functions, e.g. Naïve Bayes classifier. We 
compare two implementations for these two algorithms, one 
implemented on Hadoop 2.2.0 and the other on Harp 0.1.0, 
both scheduled with YARN resource manager. 

A. Pig K-means
Pig K-means implementation is split into three

components: a python control-flow script, a Pig data-transform 
script for a single iteration, and two K-means user-defined 
functions written with a Pig-provided Java interface. During 
each iteration, our customized Loader in each Mapper loads the 
aggregated centroids into memory as vector objects from the 
distributed cache on disk before computing the Euclidean 
distances for data points in the Loader stage. Each loader 
outputs assigned centroids and data points as fields in a single 
bag, each field in bag is defined as string data type which 
further splits into tuples for matching Pig’s GROUP operation 
to collect partial centroid vectors from mappers. It takes the 
average of all partitions, emits to a final centroids file and 
saves it to HDFS. Figure 5 shows a single iteration of K-means 
written in Pig Latin. 

Fig. 5. Pig K-means script for a single iteration 

B. Pig+Harp K-means
In the case of running Pig+Harp K-means, a customized

Loader in each Mapper first loads the initial centroids and data 
points once from HDFS to memory as cache for all iterations. 
Then the UDF computes Euclidean distances and emits partial 
centroids locally. Harp’s communication layer then exchanges 
these partial centroids on each mapper. By default, our UDF 
uses AllReduce to synchronize among all partitions. The 
program reuses the same set of mapper processes until break 
conditions have been reached.  

The script in Figure 6 illustrates a similar idea using R. 
Users only provide the parameters, such as number of mappers, 
total amount of iterations, and communication patterns used for 
global data synchronization. Note that users need to have good 
understanding of Hadoop and Harp frameworks in order to 
achieve optimal performance. 

Fig. 6. Pig+Harp K-means script  

Fig. 7. Pig PageRank script for a single iteration 

Fig. 8. Pig+Harp PageRank script 

C. Pig PageRank
For Pig PageRank, we implement a model with fewer UDF

functions in Hadoop by utilizing Pig operators. Figure 7 shows 
a single iteration of the PageRank algorithm, which is created 
and iteratively invoked by a Java wrapper. The script involves 
the following steps: a) Load the given input file using the 
custom loader into variable raw; b) Extract the outgoing URLs 
and emit the outgoing URL and partial page rank from the 
source URL; c) CO-GROUP above two aliases to calculate 
new page rank and store it in an alias newPgRank; d) Store 
new page rank in a HDFS temp file, which will be the input 
file for the next iteration. One drawback of this program is that 
the default Pig runtime optimizer creates extra mappers for the 
final STORE step when it calls the raw and prePgRank 

1 pagerank = LOAD '$InputDir' using 
HarpPageRank('$totalUrls',  
'$numMaps', '$itrs', '$jobID') 
as (result); 

2 STORE pagerank INTO '$output'; 

1 raw       = LOAD '$InputDir' USING 
CmLoader('$noOfURLs','$itrs') as   
(source, pagerank, out:bag{}); 

2 prePgRank = FOREACH raw GENERATE FLATTEN(out) 
as source, pagerank/SIZE(out) as 
pagerank; 

3 newPgRank = FOREACH (COGROUP raw by source, 
prePgRank by source OUTER)GENERATE   
group as source, (1-$dpFactor) +   
$dpFactor*(SUM(prePgRank.pagerank) 
IS NULL?0:SUM(prePgRank.pagerank)) 
as pagerank, FLATTEN(raw.out)  
as out; 

4 STORE newPgRank INTO '$outputFile'; 

1 centds = LOAD $hdfsInputDir using 
HarpKmeans('$initCentroidOnHDFS',  
'$numOfCentroids', '$numOfMappers', 
'$iteration', '$jobID', '$Comm') as 
(result); 

2 STORE centroids INTO '$output'; 

1 raw     = LOAD $hdfsInputDir using 
 PigKmeans('$centroids', 
'$numOfCentroids') AS (datapoints); 

2 dptsBag = FOREACH raw GENERATE 
FLATTEN(datapoints) as dptInStr; 

3 dpts    = FOREACH dptsBag GENERATE 
STRSPLIT(dptInStr, ',', 5) AS 
splitedDP; 

4 grouped = GROUP dpts BY splitedDP.$0; 
5 newCens = FOREACH grouped GENERATE  

CalculateNewCentroids($1); 
6 STORE newCens INTO 'output'; 
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variables for CO-GROUP operators, which utilizes extra 
computing and memory resources. 

D. Pig+Harp PageRank
In Pig+Harp PageRank, we create a new data loader and

write UDFs to calculate probabilities for each web page. For 
the first iteration, data is loaded in a graph data structure where 
vertices are partitioned across all worker nodes. Each vertex 
receives all in-edges information by calling regroupEdges 
collective communication, and the number of out-edges is sent 
to all vertices by calling an AllMsgToAllVtx operation. The 
vertex and edge information is cached in memory for all 
iterations. Finally, the pagerank values of each vertex are 
updated during each iteration, and distributed by an AllGather 
communication until the program satisfiesbreak conditions, e.g. 
the end of iterations. The script shown in Figure 8 is similar to 
that of Pig+Harp K-Means. 

V. RESULTS

We have investigated the efficiency of code in detailed 
implementations comparing Pig with other platforms. Also we 
have run a baselinecomputation for each algorithm to illustrate 
the performance difference. Our experiments are constructed 
on vertical and horizontal scales. We keep the same ratio 
between the amount of data points and amount of centroids, 
and observe the data loading, cache access, and computation 
overhead within the same environment. For scaling tests, we 
increase the computing resources in parallel by adding more 
mappers to each experiment in order to evaluate the 
communication overhead. Figure 9 shows performance results 
from our local cluster Madrid with Hadoop 2.2.0 and Pig 
0.12.0 installations. The specification and configuration are 
described as below. 

Madrid: An 8-node cluster with an extra head node; each 
worker has 4 AMD Opteron 8356’s at 2.30GHz with 4 cores, 
totaling 16 cores per node, installed with 16GB node memory 
and a 1Gbps Ethernet network connection. It runs Red Hat 
Enterprise Linux Server release 6.5. 

Hadoop 2.2.0: We run all master services, such as 
Resource Manager, NameNode, Application Master, etc., on 
the head node. Each worker starts with Node Manager and 
DataNode service, and any job can obtain up to 13GB of 
memory per node. By default each process spawns 1GB 

memory. As Harp uses shared memory for a multi-threading 
model, we configure the master process on each worker with a 
total of 13GB memory. 

Pig 0.12.0: it is the latest release on Oct. 13th, 2013 for Pig 
applications. Harp’s MapCollective Mapper is embedded into 
Pig and made it a customized version to run on top of Harp.  

We have set up three major batches of performance tests 
for K-means: a) 100 million data points against 500 centroids; 
b) 10 million data points against 5000 centroids; c) 1 million
data points against 50K centroids. All of these are executed
with different mappers and partition sizes, such as 24, 48, and
96 on the Madrid cluster. For PageRank, we perform a strong
scaling test on a dataset with 2 million vertices, and it is
executed with 8, 16, and 32 mappers and partition.

TABLE I. K-MEANS IMPLEMENTED ON PIG AND HARP

Hadoop  
K-means 

Pig  
K-means 

Harp  
K-means 

Pig+Harp  
K-means 

K-means 36 36 39 39 
 Load  & 
Format 261 250 499 662 

Reduce / 
Comm. 142 56 34 34 

Pig 0 10 0 3 
Driver / 

Wrapper 341 40 176 0 

Total lines 780 393 748 738 

TABLE II.  PAGERANK IMPLEMENTED ON PIG AND HARP 

Pig 
PageRank 

Harp 
PageRank 

Pig+Harp 
PageRank 

PageRank 1 56 56 
Load  & 
Format 50 386 494 

Reduce / 
Comm. 0 4 4 

Pig 4 0 3 
Driver / 

Wrapper 70 90 0 

Total lines 125 536 557 

A. Coding Style
Table I has shown the lines of code for a K-means

application implemented on Pig and other platforms. In 
general, applications written in Pig require less code, as it does 
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not include the control flow statements. By contrast, the native 
Hadoop MapReduce implementation requires more code lines 
to define the variables and data transformation functions. But 
in some sense these complex data transformations are 
implemented exactly the same both in Hadoop/Harp and Pig’s 
UDFs. In our Pig+Harp K-means examples, the amount of 
code is almost identical to Harp K-means; the UDFs contain 
customized data loading, computation and user-defined 
communication. This is similar to PageRank as shown in Table 
II, except that Pig PageRank implementation has less code, as 
we only rewrite a customized data loader. These tables record 
the "Load & Format" row that covers the lines of codes that 
load and store data from/to the file system. It also includes 
lines that transform abstracted data type to java primitive data 
type before any computation, and convert java primitive data 
type to Harp data type when using collective communication. 
In our projected scientific Pig prototype, this capability would 
be included within the framework rather than the responsibility 
of the user. 

We stress that our tests do not demonstrate a key advantage 
of “Scientific Pig”; namely the ability to efficiently link 
multiple analysis (pipeline) steps on the same data sample. 

B. Performance and Parallelism
Figure 9 shows K-means performance, where most of the

Pig tests are slower than pure Hadoop cases and Harp cases. 
The performance difference is due to the implementation of 
using Pig, which generates larger intermediate data when 
emitting the partial centroids result as a data bag instead of 
key-value pairs; the shuffling stage before the reduce 
computation also takes longer time. In addition, for the 1 
million data points with 50K centroids tests, both Hadoop and 
Pig have a huge performance loss, as they reload the centroids 
for each iteration, and the computation of  centroids array 
grows beyond L2 & L3 cache and impacts the mapper 
computation time. In summary, Harp performs the best, as it is 
highly optimized java implementation. Meanwhile, Pig Harp 
achieves a comparable performance. 

We have increased the timing detail between Harp and 
Pig+Harp, as shown in Figure 10. In most cases, the overhead 
of using Pig as an external wrapper is small, and it is 
interesting to observe that Pig+Harp running as multi-
processing model also has good performance and performs as 
close as Harp multi-threading model. Few cases of Pig+Harp 
implementations, e.g. running 24 mappers on 50k centroids 
against 1 million data points, are running slightly faster. Those 

performance advances are due to more stable non-shared 
processor level memory address space allocation. But there is a 
special case for running 96 mappers on 50k centroids against 1 
million data points, Harp shows the advantages of its default 
multi-threading computation, while Pig+Harp implementation 
have the same L2 & L3 cache effect of in-memory caching for 
large centroids; the pure mapper computation time is 2 times 
slower. Pig+Harp’s data communication takes longer, as more 
processes generate more messages, and it lacks in-node global 
data reduction. Harp communication model is highly optimized 
for object serialization and deserialization, therefore the multi-
processing computation and communication overhead in our 
Pig+Harp tests is acceptable.  
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Figure 11 displays several variations of PageRank 
implementations, including the native Pig versus Harp’s 
integrations. All the cases implemented on Harp run 10 times 
faster than the Pig implementation. This is because the loop-
unawareness record-based computation of native Pig PageRank 
takes longer time; data is reloaded every iteration, Pig data type 
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conversion time between bags and fields cost extra overhead, 
and compute processes are restarted with every job. 
Additionally, as shown in Figure 12, the Pig+Harp integration 
performs close to the native Harp multi-threading and multi-
processing implementation. Due to AllGather communication 
used in Harp for PageRank values updated between iterations, 
alarger number of partitions is likely to increase the overall 
communication time; this is also similar reason of a native Pig 
implementation where reduce stages take longer for the case of 
32 mappers. 

C. Coding Complexity
Rewriting all the code from Hadoop MapReduce to Pig is

not complicated by default, as Pig is designed to run data 
warehouse applications on top of Hadoop. The only problems 
we encounter here are the logic of how the data is stored in 
Pig’s data format and how it could retrieve the correct form of 
data from abstracted data formats before passing it to the 
computation. If a legacy code is written from other languages, 
as long as it is convertible to Java, the rewriting process will 
look for suitable Java libraries or rewrite the function in Java to 
replace the legacy libraries. For Pig with Harp integration, it 
might be a bit difficult for beginners, as they need to 
understand the background of Hadoop, Pig, and Harp, 
respectively. 

VI. RELATED WORK

DataFu [14] is an Apache open-source project that provides 
a collection of libraries for working with large-scale data in 
Hadoop and Pig, especially the subdivision of DataFu Pig, 
which provides a good set of standard MapReduce UDFs for 
developers working in data mining and statistics. Our project 
shares these similarities, but we focus on the performance for 
iterative applications with global data dependencies and 
research purposes using Apache open source stacks for data 
scientists.  

Shark [4] integrates Spark [12] with Apache Hive to 
support the SQL community. They have implemented Hive K-
means as an example shown on their project website. The use 
of Spark and RDDs [15] provides the possibility of writing 
iterative applications with Scala script by first extracting the 
read-only data into RDDs, then computing the core iterative 
algorithms with the Spark runtime. We intend to compare 
Shark with Pig+Harp in our future work. 

Cascading [16] is a Java library built on top of Hadoop to 
support data-parallel pipelines. It is similar to Pig but instead 
constructs data pipelines as DAG flow from source tap to sink 
tap programmatically by writing linkage for each component in 
a pipe that maps into MapReduce jobs. Unlike our work, 
Cascading naturally supports iterative applications as a 
dependency ordered DAG, where developers need to write the 
correct Riffle annotations to link the input and output as source 
and sink between iterations. Although Cascading considers 
unchanged data source/sink as reusable logic unit, it does not 
support in-memory data caching between iterations. Cascading 
as a library maintaining the full expressivity of Java is expected 
to be more powerful than Pig as a specialized language. We 

hope to look at a Harp enhanced Cascading as a technical data 
analysis environment in the future. 

Apache Tez [17] is an Apache incubator project that 
optimizes Pig/Hive’s script compiler to construct a complex 
DAG dataflow, originally compiled into multiple MapReduce 
jobs, into a single MapReduce job which boosts the 
performance and reuses the same set of mappers and reducers. 
Still, this approach does not support loop-aware computation 
and in-memory caching from the default Pig/Hive language 
syntax, and the Pig community does not have any alpha release 
for version 0.12.x on this track.      

HaLoop is another academic project that extends Hadoop to 
support loop-aware task scheduling and on-disk caching for 
iterative applications. Users of HaLoop need be less aware of 
the system and write and set fewer java classes for data passing 
between iterations, where inter-iteration data shuffling is 
optimized by the modified task scheduler to reuse the same 
physical node. Currently, HaLoop does not provide high-level 
language support, but we believe that our integration with Harp 
could also be applied on HaLoop to achieve the same goals. 

Apache Hadoop 2.3.0+ supports off-heap in-memory 
caching where the NameNode of HDFS caches given paths or 
files for any read-only data frequently queried by the user. 
Compared to our integration with Harp, we have one set of on-
heap vector objects, the read-only X-dimensions data points 
convert from files, and our approach still saves computation 
cycles for such data transformation. Furthermore, lifelong 
running workers and MPI-like data communication in Harp 
saves the job restart overheads and boosts the overall 
performance. 

VII. CONCLUSION

We have successfully integrated Pig with Harp and have 
presented the idea of writing loop-aware applications in a 
single Pig script. Our results show that Pig+Harp can achieve 
nearly the same performance compared to pure Harp 
implementations, although a user must have  basic knowledge 
of and familiarity with MapReduce, Harp architecture, and 
programming skills. Moreover, we have shown the possibility 
of providing user-friendly libraries. One may harbor doubts 
such as, “Why don’t we use RHadoop [18] or other scripting 
libraries directly instead of integrating Pig with Hadoop or 
Harp to achieve similar goals?” Our approach is motivated by 
the fact that Hadoop and Apache open-source stacks are 
designed as the mainstream tools for handling big data 
problems. In order to achieve the best performance, we should 
leverage these building blocks to maximize the usage of 
existing features, such as expressiveness of data type and data 
structure, automatic parallelization for applications, and 
algorithms. This motivated our switch [19, 20] from custom 
iterative MapReduce such as our successful Twister system 
[10] to development of a Hadoop plug-in to support Iterative
MapReduce. To support large-scale iterative applications in
Pig+Harp, we suggest developers should minimize the
overhead of using Pig; one should avoid the slow record-based
computation and replace aggregation operators by writing
customized collective communication. In addition, as
Pig+Harp integration is compatible with existing Pig operators
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and functions, users can select the best UDFs run on different 
platforms and construct the ideal Pig pipeline for their data 
analysis.  

Our current results have not considered and investigated 
data access patterns, general data abstractions, optimization of 
Pig operators, or using Pig to link scientific data pipelines as an 
end-to-end solution in the contextof using high-level languages 
to solve parallel computing problems. We may go further in 
this direction as future work which aims at a version of Pig 
optimized for technical data analytics. 
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