
Integrating Pig with Harp to Support Iterative
Applications with Fast Cache and Customized

Communication
Tak-Lon Wu, Abhilash Koppula, Judy Qiu

School of Informatics and Computing
Indiana University, Bloomington, IN, USA

{taklwu, akoppula, xqiu}@indiana.edu

Abstract—Use of high-level scripting languages to solve big
data problems has become a mainstream approach for
sophisticated machine learning data analysis. Often data must be
used in several steps of a computation to complete a full task.
Composing default data transformation operators with the
standard Hadoop MapReduce runtime is very convenient.
However, the current strategy of using high-level languages to
support iterative applications with Hadoop MapReduce relies on
an external wrapper script in other languages such as Python
and Groovy, which causes significant performance loss when
restarting mappers and reducers between jobs. In this paper, we
reduce the extra job startup overheads by integrating Apache Pig
with the high-performance Hadoop plug-in Harp developed at
Indiana University. This provides fast data caching and
customized communication patterns among iterations for data
analysis. The results show performance improvements of factors
from 2 to 5.

Keywords—Pig, Iterative Algorithms, Big Data, Language,
MapReduce.

I. INTRODUCTION

The MapReduce programming model has been widely
adopted by many fields of research in computer science and
scientific computing. It provides desirable features linking
pleasingly parallel computation, horizontal scalability on
complex parallel codes, and high performance on commodity
clusters and clouds. Hadoop [1] is the Java-based, open-source
project that provides the interfaces for large-scale parallel
implementations of algorithms and applications. But in order
to achieve the best performance, it requires advanced
knowledge of the MapReduce programming model and
significant programming skills in Java. Beyond MapReduce,
high-level language platforms such as Pig [2], Hive [3], and
Shark [4] are introduced to support an expressive, directed,
acyclic graph (DAG) computing model that explicitly encodes
data flow as a sequence of MapReduce jobs. These languages
hide the complexity of interleaved data transformations and
execution optimization of MapReduce programs. Instead, it
provides high level functional operators and record-based data-
type abstraction, simplifying the way for users to handle
different types of data integration in data warehouses and
iterative computation for scientific applications.

So far, these high-level language platforms have been used
by many commercial companies, including Yahoo!, Facebook,

Amazon, and LinkedIn. They have proven to be efficient in
handling daily ETL (Extract, Transform, and Load) operations
and ad hoc queries in many big data problems such as
Terabyte-level log records analysis and massive email/text
message analysis. Thousands of the MapReduce jobs submitted
daily are said to be generated as either Pig or Hive scripts in
these companies [2, 3]. However supporting iterative
applications is nontrivial. Most of these solutions require
developers to write user-defined functions (UDFs) for the
computing functions and encode with an external control-flow
script to map the data from disk to memory between iterations.
As a result the performance is limited due to submitting
multiple rounds of MapReduce jobs with extra job startup
overhead. As most of these language systems are built on top
of Hadoop, using disk based cache and disk I/O, the data
communication overhead becomes substantial causing the
overall performance loss.

In this paper, we use Pig as an example and introduce Pig
integration with Harp [5], a fast caching MPI-like collective
communication plugin with Hadoop. This is an attempt to
simplify the programming model using a high-level language
and improve the performance by providing fast data caching
and better communication patterns between iterations. The user
is to write UDFs and link multiple steps with the Pig script;
those UDFs can themselves call libraries like R [6] or Apache
Mahout [7]. Our system will provide the data caching and high
performance communication between parallel processes,
allowing the user to focus on semantics of applications.

The rest of this paper is organized as follows. Section II
introduces the background of Harp and Pig. Section III
explains our vision of system design and improvement by
integrating Pig on Harp. Section IV presents use cases for
scientific applications. Section V shows evaluation results
based on performance as well as coding efficiency complexity.,
Section VI compares our approach with related work. Section
VIII sums up our conclusions and future work.

II. BACKGROUND

Harp is a Hadoop plugin that enables loop awareness, fast
in-memory caching, and collective communication patterns for
iterative computation. It replaces the default mapper interface
with a long-running mapper that supports multi-threading and
in-memory caching. Compared with process-based task

3333

scheduling in Hadoop, it can handle large intermediate data
more efficiently in a shared memory. Harp provides MPI-like
collective communication interfaces for customized network-
based shuffling, in addition to disk-based shuffling with HDFS.
These new features enable desirable processing capabilities and
high performance for data intensive applications.

Pig Latin [8] is a platform designed for large-scale data
analysis with Hadoop MapReduce. Pig provides a high level
language that hides complicated MapReduce programs with
simple notations for a dataflow program. Internally, Pig scripts
are compiled into sequences of MapReduce jobs, which
automates parallelization and makes the code easy to maintain.
Figure 1 shows an example of WordCount written in Pig.

In a Pig dataflow, each line of code has only one data
transformation, which can be nested. The WordCount program
consists of seven lines of code, and the syntax is
straightforward and easy to understand. At the start, data is
loaded as records in a relation/outer bag, and each field in a
record is defined according to Pig’s default data types: bag,
tuple, and field; a bag is a set of unordered columnar tuples; a
tuple is a set of fields, where tuples in bag can contains flexible
length of fields and fields at the same column can have
different data type; and a field is the basic type of a piece of
data.Other than the syntax shown in this paper, Pig provides
operations and syntax patterns for various data transformations,
although the current version of Pig does not support optimized
storage structures such as indices and column groups.

Fig. 1. WordCount written in Pig [9]

Jar
Pig

Script Jar Jar

Syntax
Checking

Logical
Operators

Physical
Operators

MR
Operators

MR
Jobs

DAG Operator Plan

UDF class info is part of operator object

Submit to Hadoop

InputFormat
, Map &

Reduce Class

Fig. 2. Pig High Level Dataflow

Whenever a user submits their Pig scripts in a batch mode
or enters line-by-line data transformation commands in an
interactive mode, a default compiler handles the overall
execution flows. This compiler translates the entered Pig
scripts into operators and forms top-down Abstract Syntax
Trees (AST) in different stages. It then visits the last compiled
AST from the MapReduce operators plan compiler and
constructs MapReduce jobs in order. Figure 2 shows the

dataflow and lists all major steps. Similar to any programming
language, Pig checks syntax by parsing the user-submitted
script into a parser written in ANTLR (ANother Tool for
Language Recognition) [10]. Pig’s main driver program
converts each MapReduce operator from Map-Reduce
Operator Plan (MROperPlan) objects into Hadoop JobControl
objects with detailed descriptions, input/output linkages, and
other parameters, which are then passed along to each worker
node with a configuration in xml format. These translations
generate Java .jar files that contain the Pig default Map and
Reduce classes, including the user-defined functions. The
packages of .jar files are submitted to Hadoop Job Manager,
and job progress is monitored until completion of the tasks.

Control
Script

Terminated?

Pig Script

Result

HDFS

M M M M

R R R
YARN

Load UDF

Map UDF

Reduce UDF

Fig. 3. Iterative applications with Pig

Terminated?

Result

M M M M
Collective Communication

YARN

C C C Cin-memory
cache

Pig Script

HDFS

Load &
Map UDF

with
Cond.
Loop

Fig. 4. Iterative application with Pig+Harp

III. PIG IN SUPPORTING ITERATIVE APPLICATIONS

Pig does a good job for ETL applications, but lacks support
for iterative methods. When writing Pig programs for such
applications, the control flow should be similar to what is
shown in Figure 3. An external wrapper script is required,
because Pig syntax does not provide a control flow statement.
This causes extra overhead of job startup and cleanup time
when a program runs in several rounds of MapReduce jobs.

1 input = LOAD 'input.txt' AS
(line:chararray);

2 words = FOREACH input GENERATE
FLATTEN(TOKENIZE(line)) AS word;

3 filWords = FILTER words BY word MATCHES
'\\w+';
4 wdGroups = GROUP filWords BY word;
5 wdCount = FOREACH wdGroups GENERATE group AS

word, COUNT(filWords) AS count;
6 ordWdCnt = ORDER wdCount BY count DESC;
7 STORE ordWdCnt INTO 'result';

3434

Furthermore, inputs of iterative applications are normally
unchanged and cacheable between iterations, whereas Pig has a
DAG framework that does not cache those inputs in memory
and reuses them inefficiently.

As Pig lacks loop-awareness and in-memory caching, we
investigate a version of Pig for scientific applications based on
the DAG computation model. There are several iterative
MapReduce frameworks as candidates to integrate with Pig,
including Twister [11], Spark [12], HaLoop [13], and Harp.
We chose Harp as it is a simple MapReduce extension that
supports our required iteration features. With Harp integration,
we replace the Hadoop Mapper interface with Harp’s
MapCollective, long-running mapper to support conditional
loops. Subsequently, iterative applications implemented in
Pig+Harp can cache reusable data and replace the default
GROUP BY operation with Harp’s collective communication
interface with high performance data movement. We compare
the default Hadoop reduce stages withHarp’s collective
communications in Section 5. Figure 4 shows a dataflow that
can be applied to iterative applications.

IV. USE CASES

We use K-means clustering and PageRank, as both are
popular iterative algorithms for scientific computation. Our
approach can be extended to other algorithms using similar
user-defined functions, e.g. Naïve Bayes classifier. We
compare two implementations for these two algorithms, one
implemented on Hadoop 2.2.0 and the other on Harp 0.1.0,
both scheduled with YARN resource manager.

A. Pig K-means
Pig K-means implementation is split into three

components: a python control-flow script, a Pig data-transform
script for a single iteration, and two K-means user-defined
functions written with a Pig-provided Java interface. During
each iteration, our customized Loader in each Mapper loads the
aggregated centroids into memory as vector objects from the
distributed cache on disk before computing the Euclidean
distances for data points in the Loader stage. Each loader
outputs assigned centroids and data points as fields in a single
bag, each field in bag is defined as string data type which
further splits into tuples for matching Pig’s GROUP operation
to collect partial centroid vectors from mappers. It takes the
average of all partitions, emits to a final centroids file and
saves it to HDFS. Figure 5 shows a single iteration of K-means
written in Pig Latin.

Fig. 5. Pig K-means script for a single iteration

B. Pig+Harp K-means
In the case of running Pig+Harp K-means, a customized

Loader in each Mapper first loads the initial centroids and data
points once from HDFS to memory as cache for all iterations.
Then the UDF computes Euclidean distances and emits partial
centroids locally. Harp’s communication layer then exchanges
these partial centroids on each mapper. By default, our UDF
uses AllReduce to synchronize among all partitions. The
program reuses the same set of mapper processes until break
conditions have been reached.

The script in Figure 6 illustrates a similar idea using R.
Users only provide the parameters, such as number of mappers,
total amount of iterations, and communication patterns used for
global data synchronization. Note that users need to have good
understanding of Hadoop and Harp frameworks in order to
achieve optimal performance.

Fig. 6. Pig+Harp K-means script

Fig. 7. Pig PageRank script for a single iteration

Fig. 8. Pig+Harp PageRank script

C. Pig PageRank
For Pig PageRank, we implement a model with fewer UDF

functions in Hadoop by utilizing Pig operators. Figure 7 shows
a single iteration of the PageRank algorithm, which is created
and iteratively invoked by a Java wrapper. The script involves
the following steps: a) Load the given input file using the
custom loader into variable raw; b) Extract the outgoing URLs
and emit the outgoing URL and partial page rank from the
source URL; c) CO-GROUP above two aliases to calculate
new page rank and store it in an alias newPgRank; d) Store
new page rank in a HDFS temp file, which will be the input
file for the next iteration. One drawback of this program is that
the default Pig runtime optimizer creates extra mappers for the
final STORE step when it calls the raw and prePgRank

1 pagerank = LOAD '$InputDir' using
HarpPageRank('$totalUrls',
'$numMaps', '$itrs', '$jobID')
as (result);

2 STORE pagerank INTO '$output';

1 raw = LOAD '$InputDir' USING
CmLoader('$noOfURLs','$itrs') as
(source, pagerank, out:bag{});

2 prePgRank = FOREACH raw GENERATE FLATTEN(out)
as source, pagerank/SIZE(out) as
pagerank;

3 newPgRank = FOREACH (COGROUP raw by source,
prePgRank by source OUTER)GENERATE
group as source, (1-$dpFactor) +
$dpFactor*(SUM(prePgRank.pagerank)
IS NULL?0:SUM(prePgRank.pagerank))
as pagerank, FLATTEN(raw.out)
as out;

4 STORE newPgRank INTO '$outputFile';

1 centds = LOAD $hdfsInputDir using
HarpKmeans('$initCentroidOnHDFS',
'$numOfCentroids', '$numOfMappers',
'$iteration', '$jobID', '$Comm') as
(result);

2 STORE centroids INTO '$output';

1 raw = LOAD $hdfsInputDir using
 PigKmeans('$centroids',
'$numOfCentroids') AS (datapoints);

2 dptsBag = FOREACH raw GENERATE
FLATTEN(datapoints) as dptInStr;

3 dpts = FOREACH dptsBag GENERATE
STRSPLIT(dptInStr, ',', 5) AS
splitedDP;

4 grouped = GROUP dpts BY splitedDP.$0;
5 newCens = FOREACH grouped GENERATE

CalculateNewCentroids($1);
6 STORE newCens INTO 'output';

3535

variables for CO-GROUP operators, which utilizes extra
computing and memory resources.

D. Pig+Harp PageRank
In Pig+Harp PageRank, we create a new data loader and

write UDFs to calculate probabilities for each web page. For
the first iteration, data is loaded in a graph data structure where
vertices are partitioned across all worker nodes. Each vertex
receives all in-edges information by calling regroupEdges
collective communication, and the number of out-edges is sent
to all vertices by calling an AllMsgToAllVtx operation. The
vertex and edge information is cached in memory for all
iterations. Finally, the pagerank values of each vertex are
updated during each iteration, and distributed by an AllGather
communication until the program satisfiesbreak conditions, e.g.
the end of iterations. The script shown in Figure 8 is similar to
that of Pig+Harp K-Means.

V. RESULTS

We have investigated the efficiency of code in detailed
implementations comparing Pig with other platforms. Also we
have run a baselinecomputation for each algorithm to illustrate
the performance difference. Our experiments are constructed
on vertical and horizontal scales. We keep the same ratio
between the amount of data points and amount of centroids,
and observe the data loading, cache access, and computation
overhead within the same environment. For scaling tests, we
increase the computing resources in parallel by adding more
mappers to each experiment in order to evaluate the
communication overhead. Figure 9 shows performance results
from our local cluster Madrid with Hadoop 2.2.0 and Pig
0.12.0 installations. The specification and configuration are
described as below.

Madrid: An 8-node cluster with an extra head node; each
worker has 4 AMD Opteron 8356’s at 2.30GHz with 4 cores,
totaling 16 cores per node, installed with 16GB node memory
and a 1Gbps Ethernet network connection. It runs Red Hat
Enterprise Linux Server release 6.5.

Hadoop 2.2.0: We run all master services, such as
Resource Manager, NameNode, Application Master, etc., on
the head node. Each worker starts with Node Manager and
DataNode service, and any job can obtain up to 13GB of
memory per node. By default each process spawns 1GB

memory. As Harp uses shared memory for a multi-threading
model, we configure the master process on each worker with a
total of 13GB memory.

Pig 0.12.0: it is the latest release on Oct. 13th, 2013 for Pig
applications. Harp’s MapCollective Mapper is embedded into
Pig and made it a customized version to run on top of Harp.

We have set up three major batches of performance tests
for K-means: a) 100 million data points against 500 centroids;
b) 10 million data points against 5000 centroids; c) 1 million
data points against 50K centroids. All of these are executed
with different mappers and partition sizes, such as 24, 48, and
96 on the Madrid cluster. For PageRank, we perform a strong
scaling test on a dataset with 2 million vertices, and it is
executed with 8, 16, and 32 mappers and partition.

TABLE I. K-MEANS IMPLEMENTED ON PIG AND HARP

Hadoop
K-means

Pig
K-means

Harp
K-means

Pig+Harp
K-means

K-means 36 36 39 39
 Load &
Format 261 250 499 662

Reduce /
Comm. 142 56 34 34

Pig 0 10 0 3
Driver /

Wrapper 341 40 176 0

Total lines 780 393 748 738

TABLE II. PAGERANK IMPLEMENTED ON PIG AND HARP

Pig
PageRank

Harp
PageRank

Pig+Harp
PageRank

PageRank 1 56 56
Load &
Format 50 386 494

Reduce /
Comm. 0 4 4

Pig 4 0 3
Driver /

Wrapper 70 90 0

Total lines 125 536 557

A. Coding Style
Table I has shown the lines of code for a K-means

application implemented on Pig and other platforms. In
general, applications written in Pig require less code, as it does

0

500

1000

1500

2000

100m * 500 10m * 5000 1m * 50000 100m * 500 10m * 5000 1m * 50000 100m * 500 10m * 5000 1m * 50000

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Data Size (Data points * Centriods Size)

Hadoop Pig
Harp Pig+Harp

24 mappers

48 mappers

96 mappers

Fig. 9. K-means clustering performance comparison across different platforms

3636

not include the control flow statements. By contrast, the native
Hadoop MapReduce implementation requires more code lines
to define the variables and data transformation functions. But
in some sense these complex data transformations are
implemented exactly the same both in Hadoop/Harp and Pig’s
UDFs. In our Pig+Harp K-means examples, the amount of
code is almost identical to Harp K-means; the UDFs contain
customized data loading, computation and user-defined
communication. This is similar to PageRank as shown in Table
II, except that Pig PageRank implementation has less code, as
we only rewrite a customized data loader. These tables record
the "Load & Format" row that covers the lines of codes that
load and store data from/to the file system. It also includes
lines that transform abstracted data type to java primitive data
type before any computation, and convert java primitive data
type to Harp data type when using collective communication.
In our projected scientific Pig prototype, this capability would
be included within the framework rather than the responsibility
of the user.

We stress that our tests do not demonstrate a key advantage
of “Scientific Pig”; namely the ability to efficiently link
multiple analysis (pipeline) steps on the same data sample.

B. Performance and Parallelism
Figure 9 shows K-means performance, where most of the

Pig tests are slower than pure Hadoop cases and Harp cases.
The performance difference is due to the implementation of
using Pig, which generates larger intermediate data when
emitting the partial centroids result as a data bag instead of
key-value pairs; the shuffling stage before the reduce
computation also takes longer time. In addition, for the 1
million data points with 50K centroids tests, both Hadoop and
Pig have a huge performance loss, as they reload the centroids
for each iteration, and the computation of centroids array
grows beyond L2 & L3 cache and impacts the mapper
computation time. In summary, Harp performs the best, as it is
highly optimized java implementation. Meanwhile, Pig Harp
achieves a comparable performance.

We have increased the timing detail between Harp and
Pig+Harp, as shown in Figure 10. In most cases, the overhead
of using Pig as an external wrapper is small, and it is
interesting to observe that Pig+Harp running as multi-
processing model also has good performance and performs as
close as Harp multi-threading model. Few cases of Pig+Harp
implementations, e.g. running 24 mappers on 50k centroids
against 1 million data points, are running slightly faster. Those

performance advances are due to more stable non-shared
processor level memory address space allocation. But there is a
special case for running 96 mappers on 50k centroids against 1
million data points, Harp shows the advantages of its default
multi-threading computation, while Pig+Harp implementation
have the same L2 & L3 cache effect of in-memory caching for
large centroids; the pure mapper computation time is 2 times
slower. Pig+Harp’s data communication takes longer, as more
processes generate more messages, and it lacks in-node global
data reduction. Harp communication model is highly optimized
for object serialization and deserialization, therefore the multi-
processing computation and communication overhead in our
Pig+Harp tests is acceptable.

0

200

400

600

800

1000

1200

1400

1600

8 16 32

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

NUMBER OF CORES

Harp MP Harp MT
Pig Pig+Harp

Fig. 11. PageRank performance comparison

0

20

40

60

80

100

120

140

160

Harp MT
8m

Harp MP
8m

Pig+Harp
MP 8m

Harp MT
16m

Harp MP
16m

Pig+Harp
MP 16m

Harp MT
32m

Harp MP
32m

Pig+Harp
MP 32m

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Job Startup & Cleanup
Data loading
Compute
AllGather
Store result

Fig. 12. Performance details of PageRank

Figure 11 displays several variations of PageRank
implementations, including the native Pig versus Harp’s
integrations. All the cases implemented on Harp run 10 times
faster than the Pig implementation. This is because the loop-
unawareness record-based computation of native Pig PageRank
takes longer time; data is reloaded every iteration, Pig data type

0

50

100

150

200

250

300

350

Pig Harp
24

Mappers

Harp 24
Mappers

Pig Harp
48

Mappers

Harp 48
Mappers

Pig Harp
96

Mappers

Harp 96
Mappers

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Job start up Centroids broadcast
Data points loading Map computation
Coll. comm. & reduce Job cleanup
Centroids merge & store

0

50

100

150

200

250

300

350

Pig Harp
24

Mappers

Harp 24
Mappers

Pig Harp
48

Mappers

Harp 48
Mappers

Pig Harp
96

Mappers

Harp 96
Mappers

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Job start up Centroids broadcast
Data points loading Map computation
Coll. comm. & reduce Job cleanup
Centroids merge & store

0

50

100

150

200

250

300

350

400

Pig Harp
24

Mappers

Harp 24
Mappers

Pig Harp
48

Mappers

Harp 48
Mappers

Pig Harp
96

Mappers

Harp 96
Mappers

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Job start up Centroids broadcast
Data points loading Map computation
Coll. comm. & reduce Job cleanup
Centroids merge & store

a. 1 million data points with 50000 centroids b. 10 million data points with 5000 centroids c. 100 million data points with 500 centroids
Fig. 10. Performance details of Pig+Harp K-means and Harp K-means

3737

conversion time between bags and fields cost extra overhead,
and compute processes are restarted with every job.
Additionally, as shown in Figure 12, the Pig+Harp integration
performs close to the native Harp multi-threading and multi-
processing implementation. Due to AllGather communication
used in Harp for PageRank values updated between iterations,
alarger number of partitions is likely to increase the overall
communication time; this is also similar reason of a native Pig
implementation where reduce stages take longer for the case of
32 mappers.

C. Coding Complexity
Rewriting all the code from Hadoop MapReduce to Pig is

not complicated by default, as Pig is designed to run data
warehouse applications on top of Hadoop. The only problems
we encounter here are the logic of how the data is stored in
Pig’s data format and how it could retrieve the correct form of
data from abstracted data formats before passing it to the
computation. If a legacy code is written from other languages,
as long as it is convertible to Java, the rewriting process will
look for suitable Java libraries or rewrite the function in Java to
replace the legacy libraries. For Pig with Harp integration, it
might be a bit difficult for beginners, as they need to
understand the background of Hadoop, Pig, and Harp,
respectively.

VI. RELATED WORK

DataFu [14] is an Apache open-source project that provides
a collection of libraries for working with large-scale data in
Hadoop and Pig, especially the subdivision of DataFu Pig,
which provides a good set of standard MapReduce UDFs for
developers working in data mining and statistics. Our project
shares these similarities, but we focus on the performance for
iterative applications with global data dependencies and
research purposes using Apache open source stacks for data
scientists.

Shark [4] integrates Spark [12] with Apache Hive to
support the SQL community. They have implemented Hive K-
means as an example shown on their project website. The use
of Spark and RDDs [15] provides the possibility of writing
iterative applications with Scala script by first extracting the
read-only data into RDDs, then computing the core iterative
algorithms with the Spark runtime. We intend to compare
Shark with Pig+Harp in our future work.

Cascading [16] is a Java library built on top of Hadoop to
support data-parallel pipelines. It is similar to Pig but instead
constructs data pipelines as DAG flow from source tap to sink
tap programmatically by writing linkage for each component in
a pipe that maps into MapReduce jobs. Unlike our work,
Cascading naturally supports iterative applications as a
dependency ordered DAG, where developers need to write the
correct Riffle annotations to link the input and output as source
and sink between iterations. Although Cascading considers
unchanged data source/sink as reusable logic unit, it does not
support in-memory data caching between iterations. Cascading
as a library maintaining the full expressivity of Java is expected
to be more powerful than Pig as a specialized language. We

hope to look at a Harp enhanced Cascading as a technical data
analysis environment in the future.

Apache Tez [17] is an Apache incubator project that
optimizes Pig/Hive’s script compiler to construct a complex
DAG dataflow, originally compiled into multiple MapReduce
jobs, into a single MapReduce job which boosts the
performance and reuses the same set of mappers and reducers.
Still, this approach does not support loop-aware computation
and in-memory caching from the default Pig/Hive language
syntax, and the Pig community does not have any alpha release
for version 0.12.x on this track.

HaLoop is another academic project that extends Hadoop to
support loop-aware task scheduling and on-disk caching for
iterative applications. Users of HaLoop need be less aware of
the system and write and set fewer java classes for data passing
between iterations, where inter-iteration data shuffling is
optimized by the modified task scheduler to reuse the same
physical node. Currently, HaLoop does not provide high-level
language support, but we believe that our integration with Harp
could also be applied on HaLoop to achieve the same goals.

Apache Hadoop 2.3.0+ supports off-heap in-memory
caching where the NameNode of HDFS caches given paths or
files for any read-only data frequently queried by the user.
Compared to our integration with Harp, we have one set of on-
heap vector objects, the read-only X-dimensions data points
convert from files, and our approach still saves computation
cycles for such data transformation. Furthermore, lifelong
running workers and MPI-like data communication in Harp
saves the job restart overheads and boosts the overall
performance.

VII. CONCLUSION

We have successfully integrated Pig with Harp and have
presented the idea of writing loop-aware applications in a
single Pig script. Our results show that Pig+Harp can achieve
nearly the same performance compared to pure Harp
implementations, although a user must have basic knowledge
of and familiarity with MapReduce, Harp architecture, and
programming skills. Moreover, we have shown the possibility
of providing user-friendly libraries. One may harbor doubts
such as, “Why don’t we use RHadoop [18] or other scripting
libraries directly instead of integrating Pig with Hadoop or
Harp to achieve similar goals?” Our approach is motivated by
the fact that Hadoop and Apache open-source stacks are
designed as the mainstream tools for handling big data
problems. In order to achieve the best performance, we should
leverage these building blocks to maximize the usage of
existing features, such as expressiveness of data type and data
structure, automatic parallelization for applications, and
algorithms. This motivated our switch [19, 20] from custom
iterative MapReduce such as our successful Twister system
[10] to development of a Hadoop plug-in to support Iterative
MapReduce. To support large-scale iterative applications in
Pig+Harp, we suggest developers should minimize the
overhead of using Pig; one should avoid the slow record-based
computation and replace aggregation operators by writing
customized collective communication. In addition, as
Pig+Harp integration is compatible with existing Pig operators

3838

and functions, users can select the best UDFs run on different
platforms and construct the ideal Pig pipeline for their data
analysis.

Our current results have not considered and investigated
data access patterns, general data abstractions, optimization of
Pig operators, or using Pig to link scientific data pipelines as an
end-to-end solution in the contextof using high-level languages
to solve parallel computing problems. We may go further in
this direction as future work which aims at a version of Pig
optimized for technical data analytics.

ACKNOWLEDGMENT
This project is in part supported by NSF Grant OCI-

1032677 and NSF CAREER Grant. We would like to thank
our colleagues Xiaoming Gao and Bingjing Zhang of the
SALSA team at Indiana University and Dr. Geoffrey Fox for
their support and comments.

REFERENCES
[1] "Apache Hadoop," http://hadoop.apache.org/.
[2] A. F. Gates, O. Natkovich, S. Chopra, P. Kamath, S. M.

Narayanamurthy, C. Olston, B. Reed, S. Srinivasan, and U. Srivastava,
“Building a high-level dataflow system on top of Map-Reduce: the Pig
experience,” Proc. VLDB Endow., vol. 2, no. 2, pp. 1414-1425, 2009.

[3] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu,
P. Wyckoff, and R. Murthy, “Hive: a warehousing solution over a map-
reduce framework,” Proc. VLDB Endow., vol. 2, no. 2, pp. 1626-1629,
2009.

[4] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker, and I.
Stoica, “Shark: SQL and rich analytics at scale,” in Proceedings of the
2013 ACM SIGMOD International Conference on Management of Data,
New York, New York, USA, 2013, pp. 13-24.

[5] B. Zhang. "Apache Harp Project," http://salsaproj.indiana.edu/harp/.

[6] R. D. C. Team, R: A Language and Environment for Statistical
Computing: R Foundation for Statistical Computing, 2011.

[7] "Apache Mahout," https://mahout.apache.org/.
[8] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig

latin: a not-so-foreign language for data processing,” in Proceedings of
the 2008 ACM SIGMOD international conference on Management of
data, Vancouver, Canada, 2008, pp. 1099-1110.

[9] "Pig Programming Tools,"
http://en.wikipedia.org/wiki/Pig_(programming_tool).

[10] T. Parr. "http://www.antlr.org/," http://www.antlr.org/.
[11] J.Ekanayake, H.Li, B.Zhang, T.Gunarathne, S.Bae, J.Qiu, and G.Fox,

“Twister: A Runtime for iterative MapReduce,” in Proceedings of the
First International Workshop on MapReduce and its Applications of
ACM HPDC 2010 conference June 20-25, 2010, Chicago, Illinois,
2010.

[12] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster Computing with Working Sets,” in 2nd USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud '10), Boston,
2010.

[13] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, “HaLoop: Efficient
Iterative Data Processing on Large Clusters,” in The 36th International
Conference on Very Large Data Bases, Singapore, 2010.

[14] M. Hayes, and S. Shah, "Hourglass: A library for incremental processing
on Hadoop." pp. 742-752.

[15] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M.
J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: a
fault-tolerant abstraction for in-memory cluster computing,” in
Proceedings of the 9th USENIX conference on Networked Systems
Design and Implementation, San Jose, CA, 2012, pp. 2-2.

[16] "Cascading," http://www.cascading.org/.
[17] "Apache Tez," http://tez.incubator.apache.org/.
[18] "RHadoop," https://github.com/RevolutionAnalytics/RHadoop.
[19] J. Qiu, S. Jha, A. Luckow, and G. C. Fox, Towards HPC-ABDS: An

Initial High-Performance Big Data Stack, 2014.
[20] S. Jha, J. Qiu, A. Luckow, P. Mantha, and G. C. Fox, “A Tale of Two

Data-Intensive Approaches: Applications, Architectures and
Infrastructure,” in 3rd International IEEE Congress on Big Data
Application and Experience Track, 2014.

3939

http://hadoop.apache.org/
http://salsaproj.indiana.edu/harp/
http://en.wikipedia.org/wiki/Pig_(programming_tool)
http://www.antlr.org/,
http://www.antlr.org/
http://www.cascading.org/
http://tez.incubator.apache.org/

