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Abstract—Latent Dirichlet Allocation (LDA) is a widely
used machine learning technique in topic modeling and data
analysis. Training large LDA models on big datasets involves
dynamic and irregular computation patterns and is a major
challenge to both algorithm optimization and system design.
In this paper, we present a comprehensive benchmarking of
our novel synchronized LDA training system HarpLDA+ based
on Hadoop and Java. It demonstrates impressive performance
when compared to three other MPI/C++ based state-of-the-art
systems, which are LightLDA, F+NomadLDA, and WarpLDA.
HarpLDA+ uses optimized collective communication with a
timer control for load balance, leading to stable scalability in
both shared-memory and distributed systems. We demonstrate
in the experiments that HarpLDA+ is effective in reducing
synchronization and communication overhead and outperforms
the other three LDA training systems.

I. INTRODUCTION

Latent Dirichlet Allocation (LDA) [1] is a widely used

machine learning technique in topic modeling and data

analysis. LDA training is an iterative process, which starts

from a randomly initialized model with parameters to learn,

iteratively computing and updating the model until it con-

verges. A major challenge of scaling is due to the fact that

computation is irregular and the model size can be huge.

In the meantime, parallel workers need to synchronize the

model continually.

State-of-the-art LDA training systems (trainers) are im-

plemented to handle billions of documents, hundreds of

billion tokens, millions of topics and millions of unique

tokens [2][3][4] . However, the pros and cons of different

approaches in the existing tools are often hard to explain

because of the many trade-offs between effectiveness (con-

tributions to converge) and efficiency (computational cost)

of model updates. Note that model update efficiency should

be distinguished from the traditional parallel efficiency of

speedup over parallelism.

One of the popular approaches is to decrease the time

complexity of the computation by introducing approxima-

tions. Another widely used idea is to reduce the synchro-

nization overhead by using an asynchronous parallel system

working on a stale model, where the trainer is not using

the latest model data. Although these approaches improve

model update efficiency, they are done at the cost of the

model update effectiveness for convergence. Our approach

however, is to use a synchronized system and optimize LDA

trainers from a different perspective. The aim is to preserve

the effectiveness and at the same time improve parallel

efficiency by reducing the synchronization overhead.
Our main contributions can be summarized as follows:

• Review state-of-the-art LDA training systems and sum-

marize their design features.

• Propose new mechanisms to reduce overhead in syn-

chronized systems, dynamic scheduling for shared

memory subsystems and Timer Control for distributed

systems.

• Implement HarpLDA+ based on Hadoop while demon-

strating excellent performance and scalability.

• Summarize our system design approach and its impli-

cations for other machine learning algorithms.

In this paper, Section II introduces the background of the

LDA algorithm and related work, while Section III analyzes

the architecture and parallel efficiency of existing solutions.

Section IV describes our system design and implementation

details of HarpLDA+ and Section V presents experimental

results coupled with a performance analysis. Finally, Sec-

tion VI draws conclusions and discusses future work.

II. LDA ALGORITHM AND RELATED WORK

A. LDA with Collapsed Gibbs Sampling

Figure 1: Latent Dirichlet Allocation. N and M are suf-

ficient statistics for the probability distribution φ and θ
respectively in the original graphical model.

LDA is a topic modeling technique to discover latent

structures inside data. As shown in Fig. 1, data is represented
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as a collection of documents, where each document is a

bag of words. LDA models each document as a mixture of

latent topics and each topic as a multinomial distribution

over words.

Many algorithms have been proposed to estimate the

parameters for the LDA model. Collapsed Gibbs Sampling

(CGS) [5], a Markov chain Monte Carlo (MCMC) algorithm,

is commonly used for large scale LDA training. In the

MCMC framework, samples can be drawn according to

the unknown posterior distribution by a carefully designed

transition function that visits the whole parameter space.

Gibbs sampling is one such design that visits the parameter

space from one dimension to the other. For each iteration,

it fixes all the states of other dimensions and only updates

the current visiting one.

In CGS, each training data point or token is assigned to a

random topic denoted as zij at initialization. Then it begins

to reassign topics to each token at position i in document j,

xij = w, by sampling from a multinomial distribution of a

conditional probability of zij as shown below:

p
(
zij = k | z¬ij , x, α, β

) ∝ N¬ij
wk + β∑

w N¬ij
wk + V β

(
M¬ij

kj + α
)

(1)

Here superscript ¬ij indicates that the corresponding token

is excluded. V is the vocabulary size, Nwk is the token

count of word w assigned to topic k in K topics, and

Mkj is the token count of topic k assigned in document

j. The matrices Z, N and M , form the model to be

learned. Hyper-parameters α and β control the topic density

in the final model. The model gradually converges during

the process of iterative sampling.

Although CGS generally requires a large number of

iterations to converge, it is memory efficient and therefore

scalable for large models. In this paper, we focus on the

LDA trainers under the CGS algorithm family.

B. Related Work on Parallel LDA-CGS

Gibbs sampling in LDA-CGS is a strictly sequential pro-

cess. Approximate Distributed LDA (AD-LDA)[6] proposed

to relax the requirement of sequential sampling of topic

assignments based on the observation that the dependence

between the update of one topic assignment zij and the

update of any other topic assignment zi′j′ is weak. In AD-

LDA, the distributed approach is to partition the training

data for different workers, run local CGS training and

synchronize the model by merging back to a single and

consistent set of N . PLDA [7] implemented the AD-LDA

algorithm in both MPI and MapReduce, where the Allreduce

operation was used for synchronization.

A synchronized algorithm that requires global synchro-

nization at each iteration sometimes may not seem feasible

or efficient; Therefore, an asynchronous solution becomes

the alternative choice. Async-LDA [8] extended AD-LDA to

an asynchronous solution by a gossip protocol. YahooLDA

[9][10] was the first production level LDA trainer. The

mechanism is an asynchronous reconciliation of the model,

one word at a time for all samplers. Furthermore, Parameter

Server [11] was introduced as a general framework that

scaled to thousands of nodes. Another advancement was

presented by [12]. It proposed a “mixed” approach SSP

(Stale Synchronous Parallel), which is a parameter server

that can limit the maximum age of the staleness.

Some researchers have investigated synchronized algo-

rithms. For instance, PLDA+ [13] proposed to reduce the

overhead of synchronization by partitioning the word-topic

model and pipelining the sampling and communication on

granularity of word bundle. A novel data partitioning scheme

[14] was proposed to avoid memory access conflicts on

GPUs. The basic idea is to partition the training data into

blocks, where all samplers start from the diagonal blocks

and then shift to the right neighbor all together. In contrast, a

general machine learning framework Petuum Strads [15][16]

extended this idea, where parameters of the ML program

were partitioned for different workers. As a kind of all-to-

all communication observed in the asynchronous trainers is

hard to optimize, synchronized designs were proposed with

collective communication operators [17] which achieved bet-

ter performance. Finally, F+NomadLDA [18] was introduced

based on the idea of NOMAD [19], in which each variable

(one row of N ) becomes the basic unit to be scheduled, and

the ownership of a variable is asynchronously transferred

between workers in a decentralized fashion.

Other research involves optimization to the sampling al-

gorithm. According to Equation (1), a naive implementation

involves drawing a sample from a discrete distribution which

contains two steps: first calculate the probability of each

event as p(zij = k), k ∈ K, secondly generate a random

number uniformly from [0−1) and search linearly along the

array of the probabilities, stopping when the accumulation

of probability mass is greater than or equal to the random

number. The time complexity for this is O(K). SparseLDA

[20] decomposed the numerator of Equation (1) into three

parts: αβ, β ∗ M¬ij
kj and N¬ij

wk (M¬ij
kj + α). The first part

is a constant; while the second part is non-zero only when

Mkj is non-zero, and the third part is non-zero only when

Nwk is non-zero. Both the probability calculation and search

part can benefit from utilizing the characteristics of this

sparseness pertaining to the model. When using this feature,

the computation time complexity drops to O(Kd + Kw),
which is equivalent to the average number of non-zero items

in column of M and row of N and is typically much

smaller than K. F+NomadLDA provides an optimization

on the search part by using a O(logK) binary tree search

instead of a O(K) linear search by a tree data structure.

Based on Alias Table which allows us to draw subsequent

samples from the same distribution in O(1) time, Alias-LDA

[21] uses the Metropolis Hasting (MH) sampling process



245

Trainer Sampler Sampling Intra-node Inter-node ModelTime Complexity Design Design Comm
PLDA PlainLDA O(K) Allreduce Allreduce collective stale
YahooLDA SparseLDA O(Kd +Kw) Allreduce Asynchronous async stale
StradsLDA SparseLDA O(Kd +Kw) Allreduce Rotation async stale
LightLDA MH O(1) Asynchronous Asynchronous async stale
F+NomadLDA F+Tree O(logKd + logKw) Rotation Rotation async latest
WarpLDA MH O(1) DelayUpdates Rotation collective stale
HarpLDA+ SparseLDA O(Kd +Kw) Rotation Rotation collective latest

Table I: System Architectures of LDA Trainers. AllReduce, works on a stale model and does synchronization on model

replicas. Asynchronous, works on local replicas and synchronizes them in a best effort through a group of parameter servers.

Rotation, works on distributed model partitions and the model partitions ‘rotate’ among the workers while at the same time

keeping model updates conflict free.

to draw each sample correctly from the stale alias table

and achieves O(Kd) complexity. LightLDA [2] extends the

Alias-LDA idea by decomposing Equation (1) into two parts

and alternating the proposals into a cycle proposal, thus

achieving O(1) complexity. WarpLDA [4] introduces a more

aggressive approach based on the idea of MH to delay all

the updates after sampling one pass of Z, by drawing the

proposals for all tokens before computing any acceptance

rates.

HarpLDA+, however, adopts the standard SparseLDA

sampling algorithm which is less efficient but preserves the

effectiveness of the model update. We focus on investigating

the importance of system design of improving the parallel

efficiency.

III. PARALLEL DESIGN PRINCIPLES

A. Parallel Efficiency

Parallelizing a sequential algorithm inevitably introduces

overhead. Parallel efficiency can be measured by Speedup,

which is defined as parallel performance over original se-

quential performance in parallel processing, where we have:

Speedup =
T1

TP
=

1

f + s+ 1−f
P

(2)

With P workers, f is the serial portion that cannot be

parallelized and parallelism introduces a time overhead of

s x T1. In parallel CGS, f is small, so the overhead time of

s becomes the major issue in order to achieve good parallel

efficiency. Communication overhead comes from the addi-

tional cost of moving data among the parallel workers. In a

shared memory system, this overhead is generally ignored

with the assumption of a uniform memory access cost. In a

distributed system, asynchronous communication or pipelin-

ing can be used to overlap communication with computation

and reduce this overhead. Synchronization overhead comes

from the additional cost of coordinating parallel workers

that reach the same state in order to finish a task together.

Asynchronous trainers try to reduce this type of overhead by

avoiding a global consensus, relaxing the consistency of the

model and working in an independent fashion. Synchronized

trainers, however, will face the issue of load imbalance,

which is a major source of synchronization overhead.

Some data partitioning algorithms have been proposed

that aim to improve load balancing for LDA training. For

example, random permutations on the document usually

give good results. Some algorithms partition the word-topic

model, whereas randomized algorithms do not perform as

well as greedy algorithms [17][4] since the word frequency

follows the power-law distribution. Unfortunately, even op-

timal partitioning algorithms cannot completely solve the

load imbalance problem. Sampling algorithms may perform

differently on the same number of tokens with different

distributions. In practice, variations of node performance and

stragglers are not uncommon even in homogeneous HPC

clusters.

B. System Architectures

Machine learning algorithms can generally tolerate some

kind of staleness in the model. Using stale models in

computation can degrade the convergence rate but potentially

boost the system efficiency because it relaxes the constraints

for system design. For example, the sum of the topic count∑
w Nwk in the denominator of Equation (1) is hard to keep

in strict consistency while in a parallel situation, because

using locks on data being frequently accessed will give poor

performance. A typical solution is to remove the locks and

keep using a local copy of the model. Furthermore, synchro-

nizing the model at the end of each epoch is sufficient as

the deviations are small. However, the decision of whether

to use stale values of Nwk and Mkj in the numerator of

Equation (1) is more sensitive to model convergence.

In order to better present HarpLDA+’s design, we sum-

marize the features and parallel architectures of current CGS

trainers in a model centric view (see Table I).

IV. HARPLDA+: DESIGN AND IMPLEMENTATION

HarpLDA+ builds upon Harp1, which includes a Java

collective communication library released as a plugin for

1https://dsc-spidal.github.io/harp/
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Hadoop. While our previous work [17] optimizes commu-

nications in different architectures, HarpLDA+ focuses on

the Rotation architecture and reducing the synchronization

overhead.

A. Programming Model Based on Collective Communica-
tion

Collective communication within a Rotation design is

easy to program. For each iteration, all workers concurrently

sample on a local training data partition with a local model

split without conflicts in model updates. Afterwards, a call

to a collective communication operator ‘rotate’ is made,

in order to exchange the model partitions globally. (see

Algorithm 1)

Algorithm 1: HarpLDA+ Parallel Pseudo Code

input : training data X , P workers, model A0, number of

iterations T
output: AT

1 parallel for worker p ∈ [1, P ] do
2 for t = 1 to T do

// initialize: model At0 is At−1

3 for i = 1 to P do
// update local model split by

sampling on local training
data

4 Ati
p′ = Sampling(Xp, A

ti−1

p′ )

// synchronization to exchange
model splits

5 rotate(Ati
p′ )

A concrete scheduling strategy is built into the ‘rotate’

operator. So long as each model split is owned by only one

worker, the scheduling strategy guarantees to be conflict free.

For instance, when a rotate call returns, all the workers can

continue sampling concurrently without causing conflicts

when updating the model. A default strategy shifts the model

splits to their neighbor nodes (see Fig. 2a). Selecting the

neighbor on a random permutation of the node list is also

easy to implement. Furthermore, a priority based scheduler

and a work load based scheduler can be implemented in this

framework without losing the simplicity of the programming

model.

Algorithm 1 presents a general framework for scheduling,

where multi-threading and distributed parallelism can adopt

the same procedure. We can however improve it to reduce

synchronization overhead, leveraging the computation char-

acteristics in these two different environments.

B. Dynamic Scheduling in Shared Memory systems

Dynamic scheduling provides a low cost solution to

remove synchronization overhead in the shared memory

(a) model rotation (b) dynamic scheduling

Figure 2: Model Rotation Framework and Dynamic schedul-

ing in Shared Memory

system. It dynamically assigns workload to idle threads in

order to increase the throughput of tasks. This is an effective

solution, which is also used in parallel matrix factorization

for recommender systems [22].

In Fig. 2b, training data is partitioned into blocks, with

the row partition using a random permutation of document

id and the column partition using a greedy algorithm based

on word frequency. Indexes are constructed during the

initialization phase in order to build the map from word id to

the related documents appearing in each block. In this case,

the minimal unit for scheduling is a block. Furthermore, the

number of partitions is larger than the number of threads,

which means that there are always ‘free’ rows and columns

when one thread finishes its current task. In this example,

thread 1 finishes first, then the scheduler selects a new

block randomly from the ‘free’ blocks, which are the white

blocks in the figure. Because thread 2 and thread 3 are still

working, the rows and columns are occupied accordingly as

denoted by the gray blocks. In a shared memory system,

the scheduler does not move data but instead assigns data

addresses of selected free blocks to the idle threads. The

wait time of the threads is bounded by the overhead of the

scheduler. In the case the number of threads is P and the

number of splits is L, so a L×L matrix maintains a two level

status: free, or finished. The scheduler can randomly select

a free block by scanning the matrix with time complexity

of no more than O(L2). The larger the L, the lower the

number of conflicts and lower the wait time, but the more

overhead introduced by the scheduler itself. Thus, there is a

trade-off. By experimentation, we found that L =
√
2P is a

good choice in most cases.

C. Pipelining and Timer Control in Distributed Systems

In distributed systems, the cost of data movement cannot

be ignored. As shown in Fig. 2a, each worker holds a static

row partition of the training data and corresponding docu-

ment related model. Only the word-topic model partitions

move among the workers. To reduce the synchronization

overhead, the first step is to reduce the overhead of the
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communication inside the rotate operator. Pipelining is a

broadly used technique to solve this kind of problem, by

overlapping I/O threads with computing threads. First, each

block is split further into two slices horizontally, and the

inner loop of algorithm 1 is modified to become a loop over

each slice. Consequently, the original rotate call becomes

two rotate calls on each slice. As long as the communication

time is less than the computing time spent on one slice,

the pipeline will be effective in hiding the overhead from

communication.

Another overhead of a rotate call is the time taken

waiting for all workers to complete their computation. In

the presence of load imbalance, all workers wait for the

slowest one to finish. To solve this problem, we first discuss

the sampling order of the Gibbs Sampling Algorithms. We

note that LDA trainers can use two common scan orders:

random scan and deterministic scan. For a Gibbs sampler,

the usual deterministic-scan order proceeds by updating first

x1, then x2, then x3, . . . xd and back to x1, visiting the

state space X by a sequential order. Another random scan

version usually proceeds at each iteration by choosing i
uniformly from 1, 2, ..., d. It has been demonstrated [23] that

the sampling order affects the convergence rate of different

models but a deterministic scan is commonly used to gain the

benefits of data locality. This is the situation in current LDA

trainers, in which sampling occurs over document or over

word on Z via deterministic scan. Generally, the order with

a better memory cache hit rate gives a better performance.

For large datasets with V � D, word order is better. It

is hard to achieve good performance with a pure random

scan due to the cache miss issues. However, HarpLDA+

uses a quasi-random order. The dynamic scheduler picks

a block uniformly from the free block list. While inside

the block, we still keep the word sampling order. Although

no significant performance difference is observed for the

different sampling orders in LDA-CGS, we found that the

random sampling order provides a natural solution for load

balancing.

Figure 3: Timer to Control the Synchronization Point

For a given worker in Fig. 3 the white space between two

rotate operations denotes the wait time between the end of

the computation and the start of synchronization. If we adjust

the synchronization point ahead before the computation

finishes, the gap of wait time can be closed. Under the

deterministic scan order, the adjustment is harder to achieve

due to the housekeeping work needed and the original scan

order is lost. For a random scan, this adjustment does not

change the property of the uniform random selection of

blocks. The third rotate call demonstrates this mechanism

in Fig. 3.

We further propose a simple solution for the LDA-CGS

trainer. Each sampler only works for the same period of

time and then the samplers do synchronization all together.

They all use a timer to control the synchronization point

rather than waiting until all the blocks to finish. Because the

model size shrinks and the computation time drops during

the process of convergence, we’ve designed an auto-tuning

mechanism to set the value of the timer for each iteration

in HarpLDA+.

First, the timer works best when the communication can

be fully overlapped by computation, where the computation

time or the number of training data points being processed

should have a lower bound L. Secondly, we make sure

that all workers stop at the same time before any of them

complete their work. This implies an upper bound H . L and

H are set as input parameters. In normal cases, L = 40%,

H = 80% are good choices.

We set up heuristic rules to automatically determine the

values of timer ti based on the L,H settings.

• Rule 1: During the first iteration, we set the timer to

a constant t0, and obtain the processing ratio R0 for

each worker at the end of the iteration.

• Rule 2: When Ri is found to be smaller than L, adjust

ti+1 = ti ∗ 2 in order to quickly catch up. (In the first

iteration, repeat this step until Ri+1 is in the range of

L and H .)

• Rule 3: When Ri is found to be larger than H , ti+1

will be reduced in half.

D. Other Implementation Issues

For a high performance parallel LDA trainer, besides

the key factor of the original sampling algorithm and the

parallel system design, implementation details may also be

important. HarpLDA+ is a Java application, where primitive

data types are used in critical data structures. For instance,

we found that using primitive arrays with array indexing

for the model matrix is significantly faster than using a

hashmap in HarpLDA+. Furthermore, minor improvements

for SparseLDA are very helpful. Topic counts are sorted

periodically to reduce the linear search time of sampling.

Caching is also used to avoid repeat calculations. When

sampling multiple tokens with the same word and document,

the topic probabilities calculated for the first token are reused

for the tokens that follow.

V. EXPERIMENTAL EVALUATION

A. Setup of Experiments

Five datasets are used in the experiments (see Table II),

which are open datasets in related work. Here, pubmed2m
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Figure 4: Single Node Performance with 3 rows corresponding to 3 datasets nytimes (K = 1000), pubmed2m (K = 1000),

enwiki (K = 10000) respectively. The columns are different observables with columns 1 to 3 reporting sequential single

thread measurements and column 4 with 32 threads. Column 5 plots the results against different thread counts. Each column

corresponds to an evaluation metric denoted in the title.

Dataset Docs V ocabulary Tokens DocLen
nytimes 299K 101K 99M 332/178
pubmed2m 2M 126K 149M 74/33
enwiki 3.7M 1M 1B 293/523
bigram 3.8M 20M 1.6B 434/767
clueweb30b 76M 1M 29B 392/532

Table II: Datasets for LDA Training, where DocLen repre-

sents mean and std. dev. values of document length.

is a subset of Pubmed Dataset2, clueweb30b is a subset of

ClueWeb09 Dataset3, enwiki is built from English articles

from Wikipedia and bigram is a bigram version of enwiki

dataset.

trainer language multithreading communication
LightLDA C++ Pthread Zeromq+MPI
NomadLDA C++ Intel TBB MPI
WarpLDA C++ OpenMP MPI
HarpLDA+ Java Java Thread Harp Collective

Table III: Trainers for Experiments

We select four state-of-the-art CGS trainers for com-

parison in Table III. They represent the different system

designs described in Section III-B. Also different versions of

HarpLDA+ are included, e.g., Harp-nods without dynamic

scheduling, and Harp-notimer without timer control.

2https://archive.ics.uci.edu/ml/datasets/bag+of+words
3http://lemurproject.org/clueweb09.php/

To evaluate the performance, we use the following met-

rics. Firstly, we choose Model log likelihood of the word-

topic model to represent the status of convergence. Results

on the doc-topic model are similar and not included. Sec-

ondly, we select three main evaluation metrics as follows: 1)

Convergence rate evaluates the effectiveness of the algorithm

by depicting the relationship between convergence level and

model update count. 2) Throughput evaluates the efficiency

in a system view by measuring the model update counts

per second. 3) Convergence speed is the metric to evaluate

a trainer’s overall performance, which depicts the relation

between convergence level and training time. It represents

the overall performance resulting from the combination of

efficiency and effectiveness of model updates. Initialization

time is only a tiny part of execution time for training

on large datasets, but differs much because of different

implementations, therefore is excluded.

In regards to hardware configuration, all experiments are

conducted on a 128-node Intel Haswell cluster at Indiana

University. Among them, 32 nodes each have two 18-core

Xeon E5-2699 v3 processors (36 cores in total), and 96

nodes each have two 12-core Xeon E5-2670 v3 processors

(24 cores in total). All the nodes have 128 GB memory

and are connected by QDR InfiniBand. As for the software

configuration, all C++ trainers are compiled with gcc 4.9.2

and -O3 compilation optimization. HarpLDA+ compiles

with Java 1.8.0 64 bit Server VM and runs on Hadoop 2.6.0.

The MPI runtime is mvapich2 2.3a for F+NomadLDA and
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mpich2 3.0.4 for LightLDA. For MH trainers, we set the MH

step parameter to 1 for WarpLDA, select the best one for

LightLDA, 16 for clueweb30b and 4 in the other datasets.

We set the hyper-parameters α = 50/K and β = 0.01 in

all the experiments. The setting of experiment runs with n
nodes and m threads on each node and is denoted as n×m
in the following diagrams. On a similar note, K signifies

the number of topics used in the LDA trainers.

B. Experimental Results

1) Performance of Sequential Algorithm: We first analyze

the performance of the sampling algorithm by evaluating the

trainers in a single thread setup.

As shown in Fig. 4, in column 1 of Convergence Speed,

WarpLDA is the fastest trainer due to its successful trade-

off between the efficiency and effectiveness of updates.

Furthermore, F+NomadLDA is faster than HarpLDA+ and

demonstrates even better performance than WarpLDA in

the case of large K. For this assessment, LightLDA is

consistently the slowest.

Column 2 of Convergence Rate shows that F+Nomad-

LDA, a standard SparseLDA sampler, always runs the

fastest. HarpLDA+ is a bit slower due to the caching of the

model for identical words. Both MH samplers, LightLDA

and WarpLDA are significantly slower since they are an

approximation for the original CGS, while WarpLDA is the

slowest because of its update delay strategy making each

update much less effective. The rank of convergence rate is

consistent in parallel versions of these trainers.

In column 3 of Throughput, WarpLDA shows much better

throughput than the others due to optimization of memory

use obtained from removing the random matrix access.

Among the others, F+NomadLDA performs slightly better.

2) Intra-node Parallel Efficiency: We run a test by in-

creasing number of threads in order to evaluate its impact on

performance. As seen in Fig. 4, column 4, the convergence

speed at 32 threads shows that the performance rank of

F+NomadLDA drops, and HarpLDA+ takes its place and

runs as well as WarpLDA at K = 1000 and exceeds its

performance for K = 10000. In Fig. 4 column 5 of Speedup
in Throughput, HarpLDA+ demonstrates the best parallel

efficiency which explains the boost of its performance from

a single thread to a large number of threads.

Concurrency Analysis by VTune Amplifier4 is utilized

to exhibit the time breakdown with normalized results

in Table IV. WarpLDA demonstrates excellent efficiency,

as it not only decouples the memory access to the two

model matrices but also removes the model update conflicts,

in which all threads are running in a pleasingly parallel

fashion programmed in OpenMP. In this implementation,

load imbalance is observed to contribute to the 9% wait

time. This may come from the default static scheduler in

4https://software.intel.com/en-us/intel-vtune-amplifier-xe

Trainer CPU Time Wait
Effective Spin Overhead Time

WarpLDA 0.91 0 0 0.09
NomadLDA 0.75 0.24 0 0
LightLDA 0.25 0 0 0.74
HarpLDA+ 0.98 0 0 0.02
Harp-nods 0.75 0 0 0.24

Table IV: Time Breakdown by VTune Concurrency Anal-

ysis. Effective Time is CPU time spent in the user code,

Spin time is wait time during which the CPU is busy, and

Overhead time is CPU time spent on the overhead of known

synchronization and threading libraries, Wait Time occurs

when software threads are waiting due to APIs that block

or cause synchronization. The enwiki dataset is used in

experiments (K = 1000) and runs on 32 threads of a single

node.

OpenMP. NomadLDA has zero wait time, but this does

not necessarily signal efficiency. All threads keep trying

to pop a model column from the concurrent queue to run

sampling, and yield when the pop call fails. A large number

of yield calls are observed to give 24% on spin time. Load

imbalance is the main reason behind the inefficiency as well.

F+NomadLDA supports different kinds of schedulers, but

in our test, the default Shift version and the Load Balance

version do not show much differences. LightLDA shows a

very high Wait Time ratio. After analysis of the hot-spots,

a problem is found in the thread safe queue code. At the

end of each iteration, all sampling threads push the updated

model (delta value) to a shared queue which will later be

pushed to the parameter server by aggregator threads. High

contention for this object causes reduced parallel efficiency.

HarpLDA+ performs the best with only 2% wait time, which

is much less than that of Harp-nods, the trainer without

dynamic scheduling. When comparing with other trainers,

the overhead in our Java dynamic scheduler is much less as

shown in Fig. 5.

Figure 5: Load Balance and Overhead Ratio. CV (coefficient

of variation) is the ratio of the standard deviation to the mean

of the sampling time. Overhead time for each thread is the

iteration time excluding the actual sampling time.

In order to further breakdown the actual working time, we

add thread level logs to record the actual sampling time in

each iteration. See Fig. 5a, F+NomadLDA has a very large

CV level depicting serious problems with load imbalance.
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Figure 6: Distributed Performance. Columns 1 to 4, enwiki (K = 10000) with 8x16 (nodes×threads) in row 1, clueweb30b

(K = 5000) with 40×16 in row 2. Column 5 shows plots speedup versus node count with 16 threads each. The initial

word-topic model size is 2.6GB for enwiki and 12.7GB for clueweb30b.

Fig. 5b, F+NomadLDA again shows a high overhead ratio.

LightLDA is better but still larger than 10%. In contrast,

HarpLDA+ presents a relatively large initial overhead, which

diminishes over time. This is due to a fixed timer being set

to 1 second in the first iteration, while constant overheads

of hundreds of milliseconds make the overhead ratio appear

high. As seen in the charts, HarpLDA+ demonstrates the best

load balance and a small overhead. WarpLDA is excluded

in this experiment because it is implemented with OpenMP

and thread log cannot be added.

3) Distributed Parallel Efficiency: In this section, we

test the LDA trainers in distributed mode. WarpLDA is

not included because the official source code release does

not support distributed mode. Moreover, we expect that the

distributed design presented in its paper might not scale well

because of the need to exchange a much larger model Z in

each iteration among all the workers. F+NomadLDA runs

on an InfiniBand network directly supported by mvapich2,

but lightlda runs on IPoIB (TCP/IP protocol on InfiniBand

network) supported by mpich2, and as a Java application,

HarpLDA+ runs on IPoIB too. This means F+NomadLDA

can potentially utilize a bandwidth which is at least two

times larger in these experiments and is easier to scale.

As shown in Fig. 6, column 1 represents convergence

speed, where HarpLDA+ has the best overall performance.

In column 2 of Convergence Time Ratio, we calculate the

speedup in time of other trainers with respect to HarpLDA+,

defined as the ratio of the training time to reach a given

Model Log-Likelihood which is the abscissa of the graph.

HarpLDA+ is more than 6x faster than LightLDA, 2x

faster than NomadLDA and about 50% slower when timer

control is not used. In columns 3 and 4, Load Balance of
Computation and Overhead, HarpLDA+ demonstrates sig-

nificant differences from Harp-notimer, which is the factor

behind the boost in performance.

LightLDA, as an asynchronous approach, has less prob-

lems of load imbalance than the synchronized approaches.

The default staleness is set to one which can tolerate

any performance undulations only if the lag of the local

model replica is less than two iterations. This mechanism is

effective in order to provide stability and good scalability for

different cluster configurations. This is showcased in column

5. On the other hand, LightLDA has a lower convergence

rate stemming from its asynchronous design and is less

efficient during the multi-threading parallel implementation.

F+NomadLDA is observed to have the most load imbal-

ance problems and also exhibits a very high overhead ratio.

In the ewniki 10K experiment, the overhead even reaches

90%, i.e., most of the workers are waiting for data. When

using a rotation architecture and running directly on the

InifiBand network, this result is not expected. One possible

reason for this is the task granularity. It takes very small

granularity to schedule on each column of the word-topic

model, which seems to have a large overhead, especially

when K increases to a large number.

4) Communication Intensive Case Study: The following

experiment runs on the bigram dataset, which has a 20

million vocabulary size that is used to test the special

communication intensive case in the distributed mode. We

set the parameter of the bound in HarpLDA+ to [150%,

350%] to overlap the communication time in this special

case, i.e., the dynamic scheduler keeps assigning those

sampled blocks to free threads until the timer is timed out.

This trainer is named Harp-repeat.

Fig. 7d shows that when the communication time dom-

inates in the training process, all the trainers have a large

overhead ratio. In LightLDA, as SSP forces the workers to

keep the staleness of the local model within a range, the

problem of the wait time comes back. Harp-repeat signifi-

cantly decreases the overhead and increases the throughput,
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Figure 7: Performance on bigram with 10× 8 K=500

but at the same time, the effectiveness drops in 7b, to be

worse than LightLDA. Hence, harp-repeat does not gain in

overall performance. In contrast, Harp-notimer retains the

best overall performance. Further optimization should focus

on how to decrease the size of the model that needs to be

exchanged.

5) Straggler Case Study: The notion of a straggler is

a situation in cloud computations, where some nodes are

significantly slower than others in a job for different reasons.

In our experiment on the HPC cluster, we also encounter

stragglers more often than expected.

Figure 8: Straggler Test on clueweb30b with 40×16 K=5000

In Fig. 8, all the trainers except for HarpLDA+ have

been greatly affected by stragglers. When the CV value

increases up to around 1.0, the overhead ratio increases

more than 80%, throughput drops sharply, and as a result

the overall performance drops sharply. For instance, the

task does not even converge in 60,000(s) time where a

normal run needs about 10,000(s). LightLDA benefits by its

SSP design to represent a stable and scaleable trainer in a

cluster with minor variances. However, it cannot handle large

variances such as the straggler, in which case it stalls. In

contrast, F+NomadLDA has a load balance scheduler which

is designed to deal with these kinds of situations. When

some nodes are detected to be slow and the number of tasks

in its task queue is too large, the scheduler will decrease the

probability of sending a new model to the node. However,

the performance results are poor due to implementation

issues. HarpLDA+ demonstrates a stable performance in the

case of straggler. The speedup on the convergence speed

of a normal run without a straggler (HarpLDA+-normal) is

about 1.25, which means losing about 25% performance in

the presence of a straggler.
6) Large Model Case Study: Finally, we test the trainers

on very large models, with K set to 100 thousand and 1

million respectively. F+NomadLDA fails in such settings

with out-of-memory errors.

Figure 9: Big Model Test on clueweb30b with 30×30

For Convergence Speed in Fig. 9b, when K increases

to 1 million, LightLDA runs much faster than HarpLDA+

due to time complexity of O(1) in the MH sampling

algorithm. However this only happens at the beginning of the

training phase. Afterwards it slows down and is surpassed

by HarpLDA+ because of its ineffectiveness of computation,

despite using a very large MH step parameter such as 128

in Fig. 9. In this big model experiment, HarpLDA+ demon-

strates impressive performance, given that the algorithm has

a time complexity of O(Kd +Kw) while that of LightLDA

is O(1).

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we investigate the system design of large

scale LDA trainers with a focus on parallel efficiency. Based

on these, we introduce HarpLDA+, selecting the Rotation

architecture and proposing a new synchronized LDA training

system with reduced overhead. This entails a two level

parallelism design, in which a dynamic scheduler is used

for multi-threading, while rotation with timer control is used

for distributed parallelism. Through extensive experiments,

we demonstrate that the HarpLDA+ outperforms the other

approaches in scaling and stability. We note that all 4 train-

ing systems being evaluated are compared on the identical

Haswell cluster with the same configuration.
From HarpLDA+, we’ve gained useful insights in design-

ing a large scale Machine Learning system.
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• Optimization of a sequential algorithm does not neces-

sarily lead to high performance parallel systems. Im-

plementation details including programming languages

and high performance off-the-shelf communication li-

braries do not always guarantee good performance as

seen in Tables I and III. The choices of data structures

and parallel system design are critical for good perfor-

mance in our Java HarpLDA+, as shown in Figures 4

and 6.

• Asynchronous parallel designs are favorable for scala-

bility and robustness. However, with increasing paral-

lelism and computation capacity provided by manycore

and GPU servers, synchronized parallel designs can

achieve better performance on a moderate sized cluster

for big data problems in Table II.

Incorporating more parallelism, such as vectorization, into

LDA trainers can be further explored in future work. Also,

the similarity between the LDA-CGS trainer and the MF-

SGD trainer implies some intrinsic relationship between

these two large families of Machine Learning algorithms,

which are potential future directions to explore.
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