

1

Making SVG a Web Service in a Message-based MVC Architecture

Xiaohong Qiu1, 2, Shrideep Pallickara2, and Ahmet Uyar1, 2

1EECS Department, Syracuse University
2Community Grids Lab, Indiana University

Keywords
SVG, Web service, message, MVC, and publish/subscribe

Abstract
We reformulate Scalable Vector Graphics browser in a Web Service architecture separating the rendering
from the W3C DOM processing of events. We describe this in a message-based Model-View-Controller
(M-MVC) architecture and implement it with a powerful publish-subscribe messaging infrastructure. A
Web Services oriented architecture with services loosely coupled by the exchange of messages is becoming
an increasingly important feature in the deployment of Internet applications. The broad applicability of this
approach includes enterprise software, e-Learning, e-Science and e-Business. Our work provides a general
framework for integrating Desktop and Web Service applications. We summarize the performance results
from detailed tests of our prototype. These measurements demonstrate the viability of our approach and
identify some key issues influencing the performance of message-based Web and Desktop
applications. We note how our architecture elegantly supports the major paradigms for collaboration.

1. Introduction

In this paper, we discuss the conversion of Batik SVG browser [BATIK], a desktop application, into a
distributed system. Specifically, it includes decomposition of Batik SVG browser into separate “View” and
“Model” components; modification of its architecture from traditional method-based MVC [MVC] into
message-based MVC. The “View” including client interface components (Swing GUI and GVT rendering)
is dynamically downloaded to client. The “Model” consisting of DOM and JavaScript modules (see fig. 4)
naturally becomes a Web Service running on a Web server. Event-based messages, which communicate
through our messaging infrastructure ─ NaradaBrokering [NaradaBrokering], play the role of the
“Controller”.

In the following sections, we first give a brief introduction to the state-of-the-art technology in areas of
message-based (Web) service oriented technologies. Under the general background, we provide a roadmap
towards our research effort of M-MVC as a generic solution in design space for building distributed
applications. A summary of several variations of MVC applications follows by a detailed discussion in the
SVG experiments. We give elaborate performance tests and analysis corresponding results to quantify the
correlations between system behavior (semantic and performance), user interaction pattern (typical mouse
event), and environmental factors (settings of clients and messaging broker, operating system, and network).
Conclusions include the lessons we’ve learnt from these experiments.

2. Background

Rapid growth of network and Internet technologies has brought fundamental changes in the new generation
of computer technology. Particularly, continuous improvement of computer CPU speed [MOORE] and
network bandwidth [GILDER] enables design and implementation of new software architecture with
satisfactory performance that allows development of many capabilities previously impossible. On the other
hand, the latest deployment of Web Services [WEBSERVICE] and service oriented architecture (SOA)
[SOA] with loosely coupled messages is expected to replace traditional client/server and distributed system
models such as CORBA and provides a more general and dynamic framework that supports scalability and
interoperability among distributed software assets.

 2

From a technical perspective, there are some distinctive features. Traditional distributed object model
employs exchanging coupled-messages through distributed version of method calls and returns, such as
those in RPC-based and RMI-based platforms. Message-based approach produces lightweight loosely
coupled services supporting asynchronous messages linkage (e.g. one-way transmission from sender to
receiver). The messages are targeted but not directly coupled, which enable software level routing
mechanism to provide platform independent communication paradigms (e.g. publish/subscribe) with
excellent scalability. Further more, XML-based interface and specifications such as Simple Object Access
Protocol (SOAP) [SOAP] and Web Services Description Language (WSDL) [WSDL] provide a generic
interoperable platform among heterogeneous systems, which increase interoperability and reusability of
existing software components.

In architectural view, a virtual distributed operating system is forming as an intermediary layer over the
conventional bit-level Internet infrastructure (physical network and protocols such as IP, TCP UDP, HTTP,
and SSH). One current effort focuses on building of messaging infrastructure that provides assurance of
communication services (reliability, QoS, security, firewall tunneling, event notification, publish/subscribe,
overlay, and peer-to-peer) tailoring for the support of diverse applications. The separation of top level
application architecture from underlying messaging infrastructure simplifies the deployment overhead of
applications and significantly increases application portability.

The overall innovation and advancement in computer technologies provides a great opportunity and
foundation for deploying sophisticated distributed applications (e.g. Internet collaboration enabling virtual
enterprises and large-scale distributed computing). Over the decade, the architecture of network-based
applications keeps evolving ─ from earlier client/server, to multi-tier, middleware, peer-to-peer and overlay
models. There’re also many systems provide framework and standard APIs to address interoperable
relationship between client user interface (GUI) and server side application behavior. Typical examples are
JSP [JSP] for J2EE (or similarly ASP for .Net), JSR-168 [JSR168] and WSRP [WSRP], and REST [REST].
Each example addresses issues in targeted problem scope. However, one still needs a paradigm with a
highly flexible architecture adapting to fast changes and requirements in real world. This motivates us to
look into some intrinsic design concepts of client system (MVC [MVC]), parallel system (messaging
[MPI]), distributed system (Web Services [WEBSERVICE]), and Internet collaboration (double-linked
multiple-stage pipeline model [FOX03]). We pursue a generalization of the existing models aimed at
simplicity of building applications with following properties:

 separation of application architecture from underlying messaging infrastructure for generality
(independent of specific platform, programming language, and network protocols) and portability

 proposing message-based MVC (M-MVC) approach to address the problem of traditional tightly
coupled model, view, and controller classes for scalability and universality

 extending M-MVC architecture to legacy desktop applications so as to have a uniform Web
Services model with messaging linkage for reusability and interoperability

 providing a paradigm with automatic collaboration and universal access (including thin client
interface such as PDA and cellular phone) capabilities

As our approach is based on investigation of MVC paradigm and message-based Web services, which are
fundamental design models from desktop to distributed applications, deployment of a uniform architecture
for desktop and distributed applications with automatic collaboration capability has general importance and
we have detailed discussions of the design principles in another paper [QIU-09-07-04]. In this paper, we
will provide our solutions to the following questions with focus on SVG implementation:

 Can MVC be implemented in a message-based fashion?
 What principles are there to govern the decomposition of a given application into MVC

components?
 What is the performance of the message-based MVC and what factors influence it?
 How does it depend on the operating system, the application, machines and network?
 What is the relationship of collaboration and Web services with MVC paradigm?
 How easy is it to covert an existing application to message-based MVC?
 What are the architectural and implementation principles to be used in building applications from

scratch in a message-based MVC paradigm?

3

3. Overview of MVC approaches

3.1 Variants of MVC

The concept of Model-View-Controller (MVC) [MVC] initially appeared openly in Smalltalk-80
[SMALLTALK]. It inherited from object-oriented programming idea of Simula 67 [SIMULA67] with
integration of graphical user interfaces and interactive program execution. MVC proposed the logical
separation of presentation from behavior and data structure in an interactive multiple windows
programming environment with the triad of Model, View, and Controller components. Classic MVC
paradigm is frequently used in almost all modern desktop architecture design and is popular in interactive
applications. As a design paradigm, MVC is nothing new in the object-oriented programming world.
However, it is the realization ─ the MVC pattern is particularly well-suited to addressing many of the
fundamental problems inherent in building Web-based or distributed applications that rejuvenates the MVC
concept.

There’re many ways to classify MVC approaches according to the properties of decomposition strategies,
interactive pattern, and communication mechanism. We present three examples to illustrate how
interoperable relationship between the model and the view components impacts an application’s
architecture. The approaches depicted in fig. 1 are: a) classic method-based model; b) request/response
model in method-based or message-based style; c) message-based publish/subscribe model. Note that the
controller can be implemented as a separate class, combined with model and/or view components, or
contained in messages in the scenarios. The sub-graphics of a, b, and c delineate a trend of system design
from tight coupling to loose coupling, which fairly reflects the trace of evolution of standalone desktop
application (single-user environment), client/server Web application, and distributed application with group
communication enhancement. A more detailed summarization with each category and corresponding
applications is shown in table 1.

In the communication column, “method-based” and “message-based” mechanism defines the interaction
interface: either through a coupled pair of method call and return or uncoupled messages. Accordingly, the
degree of coupling is indicated by this feature. However, in terms of timing, a typical runtime method call
(e.g. Java) in a standalone single processor environment is at microsecond level while millisecond and 100
milliseconds are typically found for the communication in intranet and internet scope [FOX04]. As these
different timescales imply different fundamental building ground for application architecture and viability,
we give in depth analysis of performance through our experiments with batik SVG browser [BATIK],
which converts a desktop application to a distributed system.

The communication patterns refer to the three models depicted in fig. 1. Interactive pattern describes the
interoperating relationship between the model and the view: one-to-one, one-to-many, and many-to-many.
The power of MVC modularity is enabling component reusability and we propose Single Model Multiple
View (SMMV) and Multiple Model Multiple View (MMVC) as the models corresponding to the latter two
patterns. SMMV is widely used in client/server Web applications with multiple clients (through Web

View Model

C
o

n
tr

o
l

MessagesView Model

Figure 1 Three MVC approaches based on different communication mechanism
and interactive pattern between model and view

View Model

BrokerBroker

Pub/Sub

a) classic
(method-based)

b) request/response
(method-based or message-based)

c) publish/subscribe
(message-based)

View Model

C
o

n
tr

o
l

View Model

C
o

n
tr

o
l

MessagesView ModelMessagesView Model

Figure 1 Three MVC approaches based on different communication mechanism
and interactive pattern between model and view

View Model

BrokerBroker

Pub/Sub

a) classic
(method-based)

b) request/response
(method-based or message-based)

c) publish/subscribe
(message-based)

 4

browsers) accessing a server, as well as legacy interactive applications (e.g. Microsoft Windows and Office)
with multiples window layouts sharing the same data structure. The problem of SMMV is that it does not
provide direct support for universal access (for clients of heterogeneous platform or interface); rather it
requires extra customization for the view. For example, to make a SVG browser accessible for both
Windows and cellular phone clients with consistent semantics and visual output, an adaptor class is needed
for the thin client rendering. MMMV is a generalization of SMMV, which enables ubiquity with the
customization done from the model at server side. JavaServer Faces (JSF) [JSF], which extends JavaServer
Pages (JSP) [JSP] and Java Servlet [SERVLET] technology, allows a multi-tier model component with a
JSP Web tier and backend business logic. This illustrates that our classification is incomplete as often the
Web tier has multiple models but there is only single business logic. One would classify these systems as
SMMV or MMMV depending on the relative importance of Web tier and business logic. For further
discussion, we provided details of participatory learning vs. instructor-led learning as collaborative Web
Service models based on MMVC vs. SMMV [QIU-09-07-04], which extend the idea of “shared input port”
vs. “shared output port” collaboration framework [FOX03].

Web Services for Remote Portlets (WSRP) [WSRP] is a communication protocol between portal servers
and backend portlet containers, while Java Specification Request (JSR) 168 [JSR168] is a Java API for
portlets to work with WSRP portals. These two standards enable aggregation of portlets so that different
portal products are available to an organization, typically through a Web browser at client tier. JSR-168 and
WSRP are in orthogonal direction in architecture space and they can be implemented in either method-
based or message-based manner. However, they define the nature of the messaging for message-based
MVC, which produces an important technology in support of Web Service applications.

Representational State Transfer (REST) [REST] proposed a simplified version of message-based approach
that extended from client/server Web application architecture. M-MVC and REST both are message-based
architecture. The distinctions are: a) REST addresses scalability, reliability, tunneling through firewall and
security (SSL) issues within the containing system; M-MVC assumes that application level architecture is
separated from underlying messaging infrastructure and the latter provides various communication services
(e.g. QoS, fault-tolerance, event notification, and publish/subscribe). b) REST is suitable for less time
critical collaboration through sharing of application state over HTTP protocol; M-MVC support both
asynchronous and synchronous collaboration through sharing of event (the change of application state) and
allows dynamic binding to transportation protocols. For the timescales of synchronous collaboration, the
affordable latency for an audio/video conferencing system (over UDP) is 200 milliseconds with client
buffering and pre-fetching and 20 milliseconds for SVG Web Services experiment (over TCP) of this paper
with vector events and combined rendering optimization. c) REST is designed for Web application; M-
MVC is proposed as a uniform architecture for both client and distributed application. d) REST is a SMMV
model that uses request/response interactive interface; M-MVC can be deployed in either SMMV or
MMMV with publish/subscribe scheme.

Table 1 Variants of MVC applications

Communication Interactive pattern Application type mechanism pattern

client/
desktop

distribu
ted

Degree
of

coupling method
based

message
based

method
call

request/
response

publish/
subscribe

SMMV MMMV

Microso
ft Office √ + + √ √ √

JSP/JSF √ + √ √ √ √
JSR-168
&
WSRP

√ n/a √ √ √ n/a n/a

REST √ − √ √ √
M-MVC √ √ − √ √ √ √

In summary, table 1 shows different MVC application examples that decrease in degree of coupling
between model and view components ─ from client to distributed domain with method-based to message-
based interoperation. At meanwhile, loosely coupled messages facilitate the overall system design with a

5

more distributed, scalable and interoperable communication mechanism, which enables a general
framework over heterogeneous platforms. M-MVC is a high-level application architecture that converges
desktop application and distributed application with automatic collaboration and universal access support.
Web Service is naturally fitting in to M-MVC and we elaborate the composition in subsequent section.

3.3 Message-based MVC and Web Services

Web Services provide interfaces for service oriented architecture (SOA). Ultimately, the services would
offer GUI to end users for access. Nevertheless, Web Services (or SOA) do not address system
decomposition issue and application developers have to determine which component should reside in the
service vs. client interface. Instead of making general remarks based on component functions (e.g. business
logic and query for database belong to service), here we illustrate a systematic approach with a Message-
based MVC architecture.

M-MVC is a SOA that decomposes a system into the model (“computation core”) and the View
(visual component) with messaging linkage. The model component naturally becomes the
“service” while the view component represents client interface.
M-MVC employs a double-linked multiple-stage pipeline model that refines MVC partition into
small grained stages with messages exchanging between the neighbor stages in both directions.
This structure has following advantages: a) the uniform stages and pipeline communication
behavior with input and output interfaces forms a regular modularized structure. Theoretically, this
pattern can be applied to decomposition at any part within the system embracing natural event
linkages and produces multiple coordinated objects in a single application. Each stage or object, a
primary distributed component, forms the core of a Web Service. b) This modular multiple-stage
approach facilitates the system process being controlled in a fine grained fashion for distribution,
which is impossible in a canonical two-tier client-server model for Web applications and MVC
model for desktop applications. c) Each stage along the pipeline forms a synchronization point for
collaboration. d) Bi-directional traversal between adjoining stages enables invertible changes of
system state, which is an effective method for participatory components to reach a common stage.
e) The messages, which contain event or rendering information, provide a uniformed format for
flexible dissemination over diverse communication protocols and patterns (e.g. unicast and
multicast)

Among many decomposition possibilities, fig. 2 delineates M-MVC architecture being deployed in a three-
stage pipeline model. A complete pass of an interactive process starts with an input event initiated by user
input (e.g. a mouse click or a key stroke), interpretation and computation along the multiple stages, and
ends with an output mostly consisting of text or graphics for re-display of the updated image buffer, each
stage effectively is passed by twice during the procedure ─ one is along event propagation path; the other is
on rendering approach. Mapping to the SVG browser experiment (see fig. 4), Raw UI events represent
mouse (or key) events while High Level UI and Semantic events imply DOM and application events. Note

6

that decoupled messages are exchanged via event brokers of our underlying messaging infrastructure,
NaradaBorkering [NARADABROKERING], in a publish/subscribe scheme. We’ve elaborated this
mechanism in another paper for two collaborative patterns based on SMMV and MMMV model [QIU-23-
07-04].

The Web Services composition of M-MVC is further depicted in fig. 3, which embracing three elements:
NaradaBrokering (NB) that provides communication services (e.g. HTTP, UDP, and TCP transportation
protocols); SOAP (header, body, and encoding rules); and application (event messages). Normally, SOAP
messages use text encoding (XML format) and are carried with HTTP protocol through port 80. However,
the overhead of replicated information in each envelope and header, XML parsing, and HTTP protocol etc.
added up can make this approach very inefficient. We use a high performance approach ─ namely, only
keeping initial negotiation message (e.g. message 1) with XML format whilst encoding subsequent
messages (message i) with agreed “mapped SOAP” format (e.g. native format for serialized event object)
through NB transports in a changed port. This can be achieved by special encoding rules with proper
settings in SOAP header [HPSTREAMING]. Next release of NaradaBorkering will include implementation
of this algorithm in support of high performance streaming for Web Services. Apart from performance
gains, which particularly important for time critical applications, it allows a uniform interface for native
transportation and Web Services conformation. Our performance testing with SVG experiments generate
consistent results for both scenarios.

3.4 Message-based MVC and SVG

Traditionally, desktop applications employ MVC paradigm in method-based interactions between the
components to achieve high performance for interactive applications. Publish/subscribe scheme enables
event-based programming to link event source component and event listeners’ components asynchronously
through callback methods while event messages are hidden at system level. This approach is widely used in
object-oriented systems including Java AWT, Swing, and applications built on top of them such as Batik
SVG browser. We propose a different approach of “explicit message-based MVC” paradigm (M-MVC) for
applications deployment [QIU-23-06-03], which replaces hidden method-based events at Java run-time
level by exposed messages. By doing so, the tightly coupled connections between different parts of an
application are replaced by a loosely coupled messaging linkage service model with flexibility, distribution,
and scaling advantages.

We have a complete analysis of constituent components and their interactive relationship for the Batik SVG
browser. The logistic components can be decomposed into a three-stage pipeline, as illustrated in fig. 4.
Theoretically, any parts with natural event linkage between client user interface and computation core can
produce web services coordinated in a single application. We performed substantial experimentations to
find the best decomposition point, which preserved system functionalities while avoiding excessive re-
engineering of the software. We chose to split the SVG browser between the DOM and GVT tree, which
allows generalization to other DOM applications.

NB

SOAP

Application

NB

SOAP

Application

1

1 1

1

1
i

i

i

ii

Mapped SOAP
Mapped SOAP

i > 1

Figure 3 Web Services composition of M−MVC application, SOAP, and NB

NB

SOAP

Application

NB

SOAP

Application

NB

SOAP

Application

NB

SOAP

Application

1

1 1

1

1
i

i

i

ii

Mapped SOAP
Mapped SOAP

i > 1

Figure 3 Web Services composition of M−MVC application, SOAP, and NB

7

4. Performance

We have performed a series of performance measurements to test the effectiveness of our approach. There
are many variables including position of Model, View, and Event Broker (NaradaBrokering) and the choice
of type of host computer and network connection. One can also vary the application running in the Model
Web service. One can investigate either the single Model and View or the collaborative models. We list
scenarios for a set of performance tests in this paper: system configurations in table 2 and testing
environment settings in table 3. Tables 4 to 6 contain a selection of measured data while more extensive
information including histograms can be found in [M-MVC].

Table 2 System configurations

Computer Hardware Software
No. Type Brand Processor CPU (MHz) RAM OS
1 desktop Dell Dimension 8100 Intel Pentium 4 1500 523,344KB Windows 2000
2 desktop Dell Dimension 8100 Intel Pentium 4 1500 512MB Windows XP
3 desktop (highend) Dell Dimension XPS Intel Pentium 4 2990 1GB Windows XP
4 Solaris

(ripvanwinkle/complexity)
SUNW, Sun-Fire-880 UltraSPARC III 900 16GB Solaris 5.9

5 Linux (gridfarm1) Angstrom, Phython Intel Xeon 2400 2GB Linux 2.4
6 Linux cluster

(supercomputer node)
IBM 470 processors 1.1 Teraflops 0.5 TB Linux 2.4 SMP

Table 3 Testing environment settings

Test scenarios Environment Settings
Broker distance No Description Event Broker

(NB0.97 Server)
View

(Client)
Model

(Web Service)
Network

connection area hop
1 Switch connects

Desktop server
desktop2 desktop1 desktop2 switch 10 meters 1

2 Switch connects
High-end Desktop server

desktop3 desktop3 desktop2 switch 10 meters 1

3 Office area
Solaris server

solaris desktop1 desktop2 hub 100 meters 1

4 Office area
Linux server

linux desktop1 desktop2 hub 100 meters 1

5 Campus area
Linux cluster node server

linux cluster desktop1 desktop2 routers 5 miles n/a

Figure 4 Decomposition of SVG browser in stages of pipeline

SVG parser
Output (Renderer)

(update image buffer)

Input (UI events)
(e.g. Mouse and

key events)

JavaScript
(access and

manipulate DOM
element)DOM tree

(before mutation)
(DOM events)

DOM tree’
(after mutation)

GVT tree’
(GraphicsNode changes)

GVT tree
(GraphicsNode events)

Decomposition
Point

View Model

T0

T1

T’1

T2T4 T3

Figure 4 Decomposition of SVG browser in stages of pipeline

SVG parserSVG parser
Output (Renderer)

(update image buffer)

Output (Renderer)
(update image buffer)

Input (UI events)
(e.g. Mouse and

key events)

Input (UI events)
(e.g. Mouse and

key events)

JavaScript
(access and

manipulate DOM
element)

JavaScript
(access and

manipulate DOM
element)DOM tree

(before mutation)
(DOM events)

DOM tree’
(after mutation)

GVT tree’
(GraphicsNode changes)

GVT tree
(GraphicsNode events)

Decomposition
Point

View Model

T0

T1

T’1

T2T4 T3

 8

6 Inter-city area
Solaris server

solaris desktop1 desktop2 routers 50 miles n/a

The results tables 4 to 5 record times between the processing markers T0, T1, and T4 shown in fig. 4 (times
for other markers are given in [M-MVC]). Each row of the table corresponds to averages over many event
processing sequences i.e. to averages over processing of mouse events with understanding that for
efficiency strings of mouse move events (generated by the system as each pixel is passed) are passed as
single vector events. Note from the figure that events start on the View as a User Interface Mouse action
and the pipeline sends them through the Model and back to the View. In tables 4 and 5, we used the same
JavaScript chess program described in earlier papers [SVGOPEN03]. All events are W3C DOM compliant
as required by the SVG application. T0 represents the time that messages are transmitted from View to
Model after initial processing in View of mouse event. T1, recorded in the View, represents the time that the
associated events are returned from the Model to the View. A given user interface event generates several
model events which are sent back to the View as separate messages and we record in tables 4 and 5 the
times of the first and last messages in this returned sequence. The final time recorded T4 corresponds to the
end of the rendering update in the View component. All times are recorded relative to the processing
marker T0. We record mean, statistical error in the mean and standard deviation of the distribution.
Essentially all plots show broad distributions with large standard deviations.

In table 4, we record the difference between types of mouse events by recording both all mouse down
processing sequences and the results averaged over mouse move, mouse down and mouse up. Table 5
records times for a special bounce back event generated automatically for these runs by the Model
component as soon as it receives a message from the View. Table 6 does not concern Batik and SVG at all.
It records times for the View sending a message to NaradaBrokering and recording its return (2 hop events
in table 6); the 4 hop events correspond to messages going from View location to NaradaBrokering to
Model location and back. In all cases for table 6, a simple Java program generating events of the same
structure as used in SVG was used. However this program did no further work on the message – only its
communication. So this table 6 records the natural overhead from NaradaBrokering. This is about 2
milliseconds per event but is increased in some entries in table 6 and in the bounce-back event of table 5 by
interference between communication and other active threads on the Model and View computers. This
interference probably accounts for the broad distribution seen in essentially all results. We have studies of
clean unloaded Linux and Windows machines documenting the 2 millisecond per hop NaradaBrokering
natural overhead. Note configuration 2 includes the fastest client – desktop3 – and this impact is very clear
in all the tables. It is worth noting that Moore’s law helps M-MVC for increasing client performance will
reduce the M-MVC overhead and the better results on desktop3 highlight this.

Table 4 Average performance

Mousedown events Average of all mouse events (mousedown, mousemove, and mouseup)
Test First return – Send time:

T1-T0 (milliseconds)
First return – Send time:
T1-T0 (milliseconds)

Last return – Send time:
T’1-T0 (milliseconds)

End Rendering
T4-T0 (microseconds)

No mean ± error stddev mean ± error stddev mean ± error stddev mean ± error stddev
1 33.6 ± 3.0 14.8 37.9 ± 2.1 18.7 48.90± 2.7 23.7 294.0± 20.0 173.0
2 18.0 ± 0.57 2.8 18.9 ± 0.89 9.07 31.0 ± 1.7 17.6 123.0 ± 8.9 91.2
3 17.0 ± 0.91 4.3 24.8 ± 1.6 12.8 48.4 ± 3.0 23.3 404.0 ± 20.0 160.0
4 14.9 ± 0.65 2.8 21.0 ± 1.3 10.2 43.9 ± 2.6 20.5 414.0 ± 23.6 185.0
5 20.0 ± 1.1 4.8 29.7 ± 1.5 13.6 49.5 ± 3.0 26.3 333.8 ± 22.0 194.0
6 20.0 ± 1.3 6.4 29.6 ± 1.7 15.3 50.5 ± 3.4 25998.0 336.7 ± 22.0 189.0

Table 5 Immediate bouncing back event

Boucing back event Average of all mouse events (mousedown, mousemove, and mouseup)

Test Bounce back – Send time:
(milliseconds)

First return – Send time:
T1-T0 (milliseconds)

Last return – Send time:
T’1-T0 (milliseconds)

End Rendering
T4-T0 (milliseconds)

No mean ± error stddev mean ± error stddev mean ± error stddev mean ± error stddev
1 36.8 ± 2.7 19.0 52.1 ± 2.8 19.4 68.0 ± 3.7 25.9 405.0 ± 23.0 159.0
2 20.6 ± 1.3 12.3 29.5 ± 1.5 13.8 49.5 ± 3.1 29.4 158.0 ± 12.0 109.0
3 24.3 ± 1.5 11.0 36.3 ± 1.9 14.2 54.2 ± 2.9 21.9 364.0 ± 22.0 166.0

 9

4 15.4 ± 1.1 7.6 26.9 ± 1.6 11.6 46.7 ± 2.9 20.6 329.0 ± 25.0 179.0
5 18.1 ± 1.3 8.8 31.8 ± 2.2 14.5 54.6 ± 4.9 32.8 351.0 ± 27.0 179.0
6 21.7 ± 1.4 9.8 37.8 ± 2.7 19.3 55.6 ± 3.4 23.6 364.0 ± 25.0 176.0

Table 6 Basic NB performance in 2 hops and 4 hops

2 hops

(View – Broker – View)
4 hops

(View – Broker – Model – Broker – View)
 Test

milliseconds milliseconds
No mean ± error stddev mean ± error stddev
1 7.65 ± 0.61 3.78 13.4 ± 0.98 6.07
2 4.46 ± 0.41 2.53 11.4 ± 0.66 4.09
3 9.16 ± 0.60 3.69 16.9 ± 0.79 4.85
4 7.89 ± 0.61 3.76 14.1 ± 1.1 6.95
5 7.96 ± 0.60 3.68 14.0 ± 0.74 4.54
6 7.96 ± 0.60 3.67 16.8 ± 0.72 4.47

Note that much of the time delay from Model to View comes from waiting for a CPU that has been
scheduled to a different (from the communication) Batik thread. For example comparing the first two rows
of tables 5 and 6 (Bounce back time versus 4 hops), the two tables are measuring the same computation and
communication time but table 5 is 10-20 milliseconds longer than table 6. This can be explained by the
large (extraneous to message passing) computations on the Model and View in table 5 which delay the
processing of messages which increases both the mean and the standard deviation – as this delay in
scheduling the communication thread has a large variability.

The measurements in the first two columns are an upper limit on the overhead due to the decomposition
and this varies from 20-40 ms with most measurements at the lower end of this range. This holds for all
broker positions from collocation in the desktop to remote location (in Indianapolis with the Clients in
Bloomington). We call this an upper limit as it is processed concurrently with essential computation (the
thread scheduling issue) and we get some improvement in M-MVC due to concurrent processing between
Model and View for operations sequentialized in the conventional version. The difference between column
1 and column 3 of table 5 measures the 30 ms typically spent on Model processing; this is an underestimate
as it does not include the scheduling delay discussed above – an overestimate is gotten by replacing column
1 numbers from table 5 with the 4 hop measurements of table 6. Comparing columns 1 and 2 of table 4
shows that mouse down events are processed quicker than average – that is because most of chess
application processing used in the Model occurs for Mouse up events. Comparing columns 1 and 2 of table
5 shows the 10-15 ms processing needed on the Model before any events are generated in response to a
given mouse event received from the View.

In summary, these early results show the main issues to be the algorithmic effect of breaking the code into
two, the network and broker overhead, and thread scheduling interference of operating system between
interfaces of SVG application and messaging brokers. Our initial tests show the client to server and back
transit time is only 20% of the total processing time in the scenarios where the message broker is local.
Note that the Batik SVG Browser already uses a 20 ms buffer in its rendering engine to collect all updates
occurring in time windows of this size; M-MVC adds a similar overhead. Little optimization has been
attempted as the current results indicate that the processing overheads to be already acceptable. We will in
the near future use Linux clients and study the large thread scheduling effects in more detail.

Conclusions

We've presented a uniform architecture with message-based MVC service model which unifies desktop and
Web applications. Our experiments with SVG suggest that the structural change from traditional method-
based MVC to message-based MVC is a viable approach that converts a tightly coupled system to a
distributed system of SOA with loose messaging linkage. However, building applications centered on
messages should provide consistent functionalities and acceptable performance for both design spaces. This
approach requires the procedure of deployment to follow some principles: it is essential for the system to

10

have a strict modularized structure for the split (or distribution), an effective interactive model with
sequential event processing design for synchronization, and serialization capability of streaming event
messages for communication. The performance testing results show that the overall system performance is
influenced by factors inherent from the logistics of the split of the code into two parts, messaging cost (e.g.
network latency and overhead of event broker) and environment fluctuation (e.g. operating system and
thread scheduling). Other research is undergoing in our laboratory in extension of these ideas to other
presentation style applications including OpenOffice and PowerPoint using vendor APIs.

References

1) [BATIK] Apache Batik project of Scalable Vector Graphics at http://xml.apache.org/batik
2) [FOX03] Geoffrey Fox, Dennis Gannon, Sung-Hoon Ko, Sangmi Lee, Shrideep Pallickara, Marlon

Pierce, Xiaohong Qiu, Xi Rao, Ahmet Uyar, Minjun Wang, and Wenjun Wu, Peer-to-Peer Grids,
Chapter 18 of Grid Computing: Making the Global Infrastructure a Reality, edited by Fran Berman,
Geoffrey Fox and Tony Hey, John Wiley & Sons, Chicester, England, ISBN 0-470-85319-0, March
2003.

3) [FOX04] Geoffrey Fox, The rule of the millisecond, CISE magazine (http://www.computer.org/cise/),
March/April 2004. Available at http://grids.ucs.indiana.edu/ptliupages/publications/cisejano4.pdf

4) [GILDER] Gilder’s law is an assertion by George Gilder, visionary author of the book Telecosm: The
World After Bandwidth Abundance, Free Press, 07 May, 2002, which states that "network bandwidth
grows at least three times faster than computer power."
http://www.netlingo.com/pocketdictionary.cfm?term=Gilder’s%20Law

5) [HPSTREAMING] Geoffrey Fox, Harshawardhan Gadgil, Shrideep Pallickara, Marlon Pierce, Robert
L. Grossman, Yunhong Gu, David Hanley, Xinwei Hong, High Performance Data Streaming in
Service Architecture, technical report, July 2004.
http://grids.ucs.indiana.edu/ptliupages/publications/HighPerfDataStreaming.pdf

6) [JSF] Sun Microsystems, JavaServer Faces (JSF) Technology, Sun Microsystems,
http://java.sun.com/j2ee/javaserverfaces/overview.html

7) [JSP] Sun Microsystems, JavaServer Paces (JSP) Technology, Sun Microsystems,
http://java.sun.com/products/jsp/overview.html

8) [JSPWHITEPAPER] Sun Microsystems, JavaServer Page Technolgoy – White Paper, Sun
Microsystems, http://java.sun.com/products/jsp/whitepaper.html

9) [JSR168] Sun Microsystems, Java Specification Requests: Portlet Specification, Sun Microsystems,
http://www.jcp.org/en/jsr/detail?id=168

10) [M-MVC] Xiaohong Qiu, Message-based MVC Architecture for Distributed and Desktop Applications,
Ph.D. dissertation, Syracuse University, 2004.

11) [MOORE] Gordon E. Moore, co-founder of Intel Corporation, Moore’s law on computer performance
increasing exponentially in time is available at http://en.wikipedia.org/wiki/Moore’s_Law. According
to Moore’s law, computer processing powers can double every 18 months.

12) [MPI] MPIF, MPI: A Message Passing Interface Standard, http://www.mpi-forum.org/docs/mpi-11-
html/mpi-report.html

13) [MVC] G. Lee, Object oriented GUI application development. Prentice Hall, 1994. ISBN: 0-13-
363086-2.

14) [NARADABROKERING] Open Source Messaging Internet System from the Community Grids
Laboratory at http://www.naradabrokering.org

15) [QIU-23-06-03] Xiaohong Qiu, Bryan Carpenter and Geoffrey C. Fox, Internet Collaboration using
the W3C Document Object Model, Proceedings of the 2003 International Conference on Internet
Computing, Las Vegas June 2003

16) [QIU-09-07-04] Xiaohong Qiu, Building Desktop Applications with Web Service in a Message-based
MVC Paradigm, IEEE International Conference on Web Services, San Diego, California, July 2004

17) [QIU-23-07-04] Xiaohong Qiu and Anumit Jooloor, Web Services Architecture for e-Learning,
International Conference on Education and Information Systems: Technologies and Applications,
Orlando, Florida, July 2004

18) [REST] Roy Thomas Fielding, Architectural Styles and the Design of Network-based Software
Architectures, Ph.D. dissertation, 2000. Representational State Transfer (REST) is the name of the

11

architectural style for distributed hypermedia systems of the thesis. Available at
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf

19) [SERVLET] Sun Microsystems, Java Servlet Technology, Sun Microsystems,
http://java.sun.com/products/servlet/index.jsp

20) [SIMULA67] Graham M. Birtwistle, Ole-Johan Dahl, Bjoern Myhrhaug, and Kristen Nygaard,
SIMULA BEGIN, Studentlitteratur, Lund, Sweden, 1973. ISBN 91-44-06211-7. Simula67 was the first
object-oriented programming language and a predecessor of Smalltalk and C++.

21) [SMALLTALK] A Goldberg. Smalltalk-80: The Interactive Programming Environmen. Addison
Wesley, 1984.

22) [SOA] Service Oriented Architecture Service Oriented Architecture or SOA is a loosely coupled
linkage of distributed software. See D. DeRoure, A. Dunlop, G. Fox, P. Henderson, A. Hey, N. Paton,
S. Newhouse, S. Parastatidis, A. Tefethen, and P. Watson, “Web Service Grids: an Evolutionary
Approach”, UK e-Science Core Programme Directorate Position Paper, July 2004.

23) [SOAP] W3C, Simple Object Access Protocol (SOAP), W3C, http://www.w3.org/TR/soap/
24) [SVGOPEN03] Xiaohong Qiu, Bryan Carpenter and Geoffrey C. Fox Collaborative SVG as A Web

Service in Proceedings of SVG Open, Vancouver, Canada, July 2003
http://www.svgopen.org/2003/papers/CollaborativeSVGasAWebService/#S.Bibliography

25) [WEBSERVICE] W3C, Web Service Architecture, http://www.w3.org/TR/2004/NOTE-ws-arch-
20040211/. According to W3C, Web services provide “a standard means of interoperating between
different software applications, running on a variety of platforms and/or frameworks.”

26) [WSDL] W3C, Web Services Description Language (WSDL) 1.1, W3C, March, 2001.
http://www.w3.org/TR/wsdl

27) [WSRP] OASIS, Web Services for Remote Portlets (WSRP) is an OASIS standard for Portals to access
and display portlets that are hosted on a remote server. http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsrp

	Making SVG a Web Service in a Message-based MVC Architecture
	Recommended Citation

	Microsoft Word - MakingSVGaWebServiceinaMessageBasedMVCArchitecture_final.doc

