
Mining Hidden Mixture Context With ADIOS-P
To Improve Predictive Pre-fetcher Accuracy

Jong Youl Choi∗, Hasan Abbasi∗, David Pugmire∗, Norbert Podhorszki∗, Scott Klasky∗,
Cristian Capdevila†, Manish Parashar‡, Matthew Wolf§, Judy Qiu¶ and Geoffrey Fox¶

∗ Scientific Data Group, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
† Electrical Engineering and Computer Science, The University of Tennessee, Knoxville, Tennessee, USA

‡ Electrical and Computer Engineering, Rutgers University, Piscataway, New Jersey, USA
§ School of Computer Science, Georgia Institute of Technology, Atlanta, Georgia, USA
¶ School of Informatics and Computing, Indiana University, Bloomington, Indiana, USA

{choij, habbasi, pugmire, pnorbert, klasky}@ornl.gov,

ccapdevi@utk.edu, parashar@rutgers.edu, mwolf@cc.gatech.edu, {xqiu, gcf}@indiana.edu

Abstract—Predictive pre-fetcher, which predicts future data
access events and loads the data before users requests, has
been widely studied, especially in file systems or web contents
servers, to reduce data load latency. Especially in scientific data
visualization, pre-fetching can reduce the IO waiting time.

In order to increase the accuracy, we apply a data mining
technique to extract hidden information. More specifically, we
apply a data mining technique for discovering the hidden contexts
in data access patterns and make prediction based on the inferred
context to boost the accuracy. In particular, we performed
Probabilistic Latent Semantic Analysis (PLSA), a mixture model
based algorithm popular in the text mining area, to mine hidden
contexts from the collected user access patterns and, then, we run
a predictor within the discovered context. We further improve
PLSA by applying the Deterministic Annealing (DA) method to
overcome the local optimum problem.

In this paper we demonstrate how we can apply PLSA and
DA optimization to mine hidden contexts from users data access
patterns and improve predictive pre-fetcher performance.

Index Terms—prefetch; hidden context mining;

I. INTRODUCTION

Over the past decade the computing industry in general,

and the HPC community in particular, has seen an explosive

growth in computing power, driven primarily by the industry’s

need to keep up with Moore’s law. This has resulted in the

Top500 moving from almost 5 TFlops in the year 2000, to

more than 16 PFlops in 2012, an astounding increase of

3 orders of magnitude [1, 2]! This substantial growth in

computing power in FLops has far outpaced growth in other

aspects of computing, particularly in the area of IO-related

technologies. Today, IO has become a significant source of

performance bottleneck for scientific applications.

In this era of data explosion, deploying a predictive data pre-

fetcher has been considered as a viable solution to load data in

before real requests happen, i.e., if one can predict incoming

data access patterns, the data can be pre-fetched or pre-

loaded to reduce data loading latency. This idea is not brand-

new and has been explored for years in the area of serving

shared resources. During the development and deployment of

our IO middleware, Adaptive IO System (ADIOS) [3], we

(a) Combustion simulation by S3D

(b) Climate simuation output from GEOS-5

Fig. 1: Examples of visualization of S3D (a) and GEOS-5 (b) with
multiple variables through VisIt.

have observed the potential for pre-fetching in many real-

world large-scale scientific applications, such as combustion

simulation (S3D) [4], climate modeling (GEOS-5) [5], Gyroki-

netic Toroidal Code (GTC) [6], plasma fusion simulation code

(XGC) [7], amongst others, as well as for parallel visualization

softwares for scientific data, such VisIt (examples are shown

in Fig. 1). ADIOS is designed to improve IO performance

by orchestrating various types of IO requests transparently,

targeting large-scale and data-intensive scientific applications.

ADIOS has been designed as an extensible middleware, and

we have taken advantage of this characterstic to add a prove-

nance module, called ADIOS-P, by which file-related activities

will be stored, indexed, and queried later (Fig. 2).

In a large-scale scientific data visualization, scientists often

want to compare multiple variables embedded in a single

IO Service

Predictor
Engine

Context-based Training Set

Provenance
Service

Provenance
DB

Application

ADIOS

Context Mining
Engine

File System

Fig. 2: Overview of the ADIOS Provenance system, ADIOS-P

file (like HDF5 or NetCDF) or spanned from multiple files,

by rendering them together in an interactive way (i.e., the

sequences of loading variables are somehow spontaneous).

However, most visualization operations are data-intensive,

meaning IO operations consume the majority of the time [8].

Users will waste most of their time waiting for the completion

of IO requests. In this scenario accurately coordinated data

pre-fetching may help to significantly reduce the IO time by

loading data into the memory of the visualization software

while users are sitting idle or manipulating graphic objects,

operations without substantial IO requirements.

Our goal is to utilize collected history of file or variable

access activities for developing a predictor that will discover

patterns of file accesses and be able to forecast the upcoming

file access requests. With this predictor, we will be able to

proactively pre-fetch the data that are likely to be requested

and thus expect to reduce IO latency in scientific applications.

As mentioned, extensive research on developing a predictor

have been performed in the file system areas and various types

of algorithms have been proposed to mine underlying corre-

lation between accessed files; frequent set mining, network

models, Markov chain model. However, not many researches

have discussed the importance of preparing training set. In

this paper we focus how we can improve predictor accuracy

by preparing a training set with an informed way.

Our problem is shown in Fig. 3. In many data file access

patterns (in scientific applications) or variable access patterns

(in visualization software) we have observed, a user accesses

multiple files (or variables) with different purposes within a

session. For example, one can open a sequence of files for data

analysis and visualization and other files for writing reports.

Some of them can be opened for both purposes. We call those

purposes contexts. In general, contexts are hidden as they are

not explicitly exposed in the access logs or traces from which

we build a predictor. The intuition is that if we discover a

users’ intentions or contexts, we can build a better predictor,

i.e., if we train a predictor in a more informed manner by

using context-aware training, we can improve its accuracy.

This concept is inspired from the text mining algorithms based

on the topic model in which the purpose is to discover hidden

topics (or contexts) and model documents as a mixture of

multiple topics. In our case, we model file (or variable) access

A

Context 1 Context 2

B C D E

Fig. 3: An example of a mixture of contexts. A session consists of
two contexts which share item C together. C is called polysemous or
multi-contextual.

patterns as a mixture of contexts.

For mining hidden contexts, we used the Probabilistic Latent

Semantic Analysis (PLSA) algorithm [9, 10], derived from

a mixture model [11]. In the text mining area, PLSA has

been popularly used for building a probabilistic model for

languages and documents posing the problems of synonymy

(different words sharing a same concept) and polysemy (a

same word having different meanings), from which we also

suffer in analyzing file access patterns, i.e., there are multiple

files used in a same context or the same file used in different

multiple contexts. We observed simply applying the PLSA

algorithm itself can improve prediction accuracy (More details

will be discussed in Section V). However, we take a further

step toward squeezing the prediction quality by improving the

PLSA algorithm. PLSA is natively suffered from the local

optimum problem because its optimization routine is based on

the Expectation-Maximization (EM) algorithm [12]. We find a

more optimized solution by using the Deterministic Annealing

(DA) method to improve prediction quality and accuracy.

Our contribution in this paper is summarized as follows:

• Propose a hidden context mining algorithm to train pre-

dictive predictors built around the ADIOS provenance

system, called ADIOS-P.

• Demonstrate experimental results showing improvements

in prefetching accuracy and data read performance by

using two trace data sets; DFSTrace file access traces [13]

and variable access logs collected from VisIt through the

ADIOS provenance system, ADIOS-P.

• Propose a pre-fetcher performance model from which we

can estimate an improved IO throughput.

II. BACKGROUND

A. Predictive Prefetching

Developing predictive algorithms for the purpose of pre-

fetching has been extensively studied in the areas of using

shared resources, such as file systems, metadata services, web

services, etc. In our paper we focus on mining IO access

patterns from the logs of file or variable accesses.

Formally, we define file access pattens as follows (similar

analogy can be made for variable access patterns). Assume

we have a total L files {x1, · · · , xL} in the system. During

the i-th session si, a user accesses a sequence of Mi files,

(a1, a2, · · · , aMi
), where access aj corresponds to a file

among L files. Then, we denote the history, or the collection

of sessions, as H = {s1, ..., sN}. The purpose of prediction

is to forecast the next upcoming file access in a given session

based on the history H .

In a graphical model, file access patterns are summarized

as a directed graph in which each node represents a file and

an edge between two nodes, say, xi and xj , represents a

conditional probability P (xj |xi) meaning the probability of

file xj accessed after file xi. This model is also known as a

Markov chain describing file accesses activities as a finite state

transition. If we consider consecutive N transitions to compute

the probability of file xj access, we can build a N -th order

Markov chain in which the probability can be represented by

P (xj |xj−1, · · · , xj−N).
Nexus [14, 15], another prefetching algorithm based on a

graph model with weighted edges, has been proposed. Nexus

is a variant of a N -th order Markov chain with a decaying

effect in a way in which the conditional probability between

two nodes is decreasing as the path length is getting larger.

Please refer to the original papers [14, 15] for more details of

the algorithms.

B. Probabilistic Latent Semantic Analysis (PLSA)

PLSA [9, 10] is an algorithm seeking a generative process

of observed data, from which one can discover essential

probabilistic structures or latent aspects of data. Most notably,

PLSA is one of the most used algorithms applied in analyzing

and retrieval of text document [11, 16]. PLSA originally

stemmed from Latent Semantic Analysis (LSA) [17, 18], a

method to summarize data based on a linear combination of

L2-norm approximation and provides a principled approach to

build a statical model of data.

In a nutshell, PLSA is based on a latent mixture model,

in which data (or documents) is represented by a mixture of

finite number of latent components (or topics). In other words,

PLSA seeks a finite number of topics, say K topics, which

can represent optimally the group of documents.

In PLSA, we denote a collection of N text documents,

called a corpus, as X = {x1, . . . , xN} where xi (1 ≤ i ≤ N)
represents a document vector. In this corpus, we have a

vocabulary set containing D unique words (or terms) denoted

by {w1, . . . , wD} and each document xi is a D-dimensional

vector where its j-th element represents the number of occur-

rences (or frequency) of word wj . One may summarize the

corpus X in a rectangular N ×D matrix, called co-occurence

(or document-term) matrix X = [xij]ij for 1 ≤ i ≤ N and

1 ≤ j ≤ D, in a way in which an element xij denotes the

frequency of word wj occurred in a document xi. In this paper,

we use PLSA to analyze the trace data for files or variable

access logs, in which we can translate sessions as documents

and words as file names or variable names in PLSA.

Then, we define a topic as a generative function that will

create a document (i.e, a list of words and word frequencies)

with a multinomial distribution over words. More specifically,

if a document is generated from a certain topic, say k-th topic,

its conditional probability can be written by

P (xi | ζk = 1) = Multi(xi |θk) (1)

where ζk is called a latent class, a binary random vari-

able indicating association with the k-th latent class, and

Multi(xi |θk) represents a multinomial probability of xi over

word probability θk = (θk1, . . . , θkD) where θkj represents a

word probability P (wj | ζk = 1), defined by

Multi(xi |θk) =
Γ (|xi |+ 1)∏D
j=1 Γ(xij + 1)

D∏
j=1

(θkj)
xij (2)

with a gamma function, Γ(·).
Assuming we have total K topics in a given corpus, the

marginal document probability can be defined as a mixture of

topics written by

P (xi |Θ,Ψ) =

K∑
k=1

ψikMulti(xi |θk) (3)

where a word probability set is denoted by Θ = {θ1, . . . , θK}
and a mixture weight set is presented by Ψ = [ψik]ik for

each mixture weight ψik with the constraint 0 ≤ ψik ≤ 1
and

∑
k ψik = 1. Note that a mixture weight ψik is a

document level parameter, rather than a corpus level, in that

each document can have different mixture weights over the

finite number of topics. This is the key difference between

clustering algorithms, like K-Means, and the topic model.

Then, PLSA is a problem to seek an optimal set of param-

eters which maximizing the log-likelihood defined by

LPLSA(X,Θ,Ψ) =

N∑
i=1

log

{
K∑

k=1

ψikMulti(xi |θk)

}
. (4)

Finding such parameters in this mixture model, known

as model fitting or parameter estimation, is intractable. The

original PLSA algorithm maximizes the objective function (4)

by using the Expectation Maximization (EM) method.

In Section IV we will discuss how the Deterministic An-

nealing (DA) algorithm can be used to get better optimized

solution for the PLSA problem.

III. RELATED WORK

We discuss related previous research on predictive prefetch-

ing and deterministic annealing.

Predictive Prefetching: Predictive prefetching has been

widely studied in the areas of file system and web services

to reduce the file loading or web page access time. In the

file system ares, a series of Partitioned Context Modeling

(PCM) based schemes [19–21] have been studied for sequence

file prediction for IO prefetching. AMP [22] and TaP [23]

have been proposed for sequence prediction. Researches about

the prefetching in shared file storage [15, 24] have been

performed. Memory prefetching schemes [25, 26] have been

also researched to increase cache performance.

In the web service area, G. Pallis et al. proposed clustWeb, a

graph-based clustering algorithm for web pages, and clustPref,

a web prefetching scheme based on clustWeb algorithm, to

improve network performance by using a predictive approach

and reported a significant performance improvement [27]. We

take a similar clustering-based approach but we focus on

a mixture model based algorithm for file systems in which

mining hidden users contexts or intensions are important.

Deterministic Annealing (DA): The DA algorithm [28, 29]

has been applied to solve optimization problems in various

machine learning algorithms, such as clustering [28, 30, 31],

visualization [32, 33], protein alignment [34], and so on. A

good modern DA overview can be found in [35]. A general

DA solution for EM algorithm is proposed in [12].

Our focus in this paper is to solve a EM-based text mining

algorithm, PLSA, by using DA. T. Hofmann, the author of

the PLSA algorithm, has also proposed a DA-like algorithm,

called Tempered EM [9]. However, the Tempered EM is

different from the traditional DA algorithm in that the cooling

schedule is reversed and is only applied to solve overfitting

problem. Our proposed algorithm, Probabilistic Latent Se-

mantic Analysis with Deterministic Annealing (DA-PLSA), is

closer to the original DA approach presented by K. Rose and

G. Fox [28, 29].

IV. MINING HIDDEN MIXTURE CONTEXT WITH

DETERMINISTIC ANNEALING

To maximize the log-likelihood function shown in Eq. (4),

T. Hofmann has proposed an EM algorithm for model fitting

in PLSA [9, 10]. However, EM has a well-known problem,

called a local optimum problem, finding only local solutions.

To overcome such problem, we propose a new DA algorithm

for PLSA, named Probabilistic Latent Semantic Analysis with

Deterministic Annealing (DA-PLSA). We follow the same

approach in solving a clustering problem with DA presented

by K. Rose and G. Fox [28, 29].

The DA algorithm, based on the principle of maximum

entropy [36], developed by E. T. Jaynes, a rational approach

to choose the most unbiased and non-committal answer for a

given condition, was developed to avoid local optimum and

seek a global optimum solution in a deterministic way [28],

which contrasts to stochastic methods used in the simulated

annealing [37], by controlling the level of randomness or

smoothness. The DA algorithm, adapted from a physical

process known as annealing, finds an optimal solution in a

way gradually lowering a numeric temperature which controls

randomness or smoothness

In DA, we optimize a new objective function F , called

free energy, similar to the Helmholtz free energy in statistical

physics, defined by

F = 〈D〉 − T S (5)

where 〈D〉 represents an expected cost, T is a Lagrange

multiplier, also known as a numeric temperature, and S is

an entropy.

To solve the PLSA problem with DA, we define the follow-

ing objective function, free energy FPLSA, by

FPLSA = − 1

β

N∑
i=1

log

K∑
k=1

{ψkiMulti (xi |θk)}β (6)

where β represents inverse computational temperature, defined

by β = 1/T . Please note that the free energy function (6)

equals with the EM objective function (4) when temperature

TABLE I: List of trace data sets

Data Set Name Users Sessions Files/Variables

DFSTrace barber 9 6,410 6,833

dvorak 8 29,613 16,815

ives 12 7,724 5,776

mozart 10 11,026 13,687

VisIt+ADIOS-P VisIt 27 94

is 1.0, which implies that the DA algorithm treats the EM

solution as a special case.

With Eq. (6), we will gradually lower a temperature from

high to low (equivalently, β will be changed from near zero to

1). At each temperature, we have the following internal EM

steps to minimize FPLSA.

• E-step : compute ρki, known as the responsibility, by

ρki =
{ψkiMulti (xi |θk)}β∑K

k′=1 {ψk′iMulti (xi |θk′)}β
(7)

• M-step : maximize FPLSA by computing the following

parameters:

θk =

∑N
n=1 ρkixi∣∣∣∑N
n=1 ρkixi

∣∣∣ , ψik =
ρki∑K
k=1 ρki

(8)

which make the first derivative of FPLSA, ∂FPLSA/∂θk

and ∂FPLSA/∂ψik, be zero.

In summary, with DA-PLSA, we model the collection of

sessions H , defined in II-A; i) each session can be described as

a mixture of hidden K contexts with different mixing weights,

and ii) K generative processes can be inferred. In conjunction

with a predictor, we can exploit those properties to increase

the prediction performance; prediction will be made based on

the major context or multiple contexts to which each session

belongs.

V. EXPERIMENTAL RESULT

In this section, we demonstrate our experimental results

evaluating the impact of using hidden context mining algo-

rithms to improve the predictor performance. As our focus is

mining hidden contexts for training predictive pre-fetcher, we

chose two basic and popular predictors, N -th order Markov

chain (nMarkov hereafter) and Nexus.

For the trace data, we have used two datasets. First, a pub-

licly available file trace data, called DFSTrace [13], generated

from the Coda project [38]. Second, a dataset collected directly

from the visualization software, VisIt, integrated with the

ADIOS provenance module, ADIOS-P. The DFSTrace consists

of 4 different datasets collected from the different machines,

barber, ives, dvorak, and mozart, each of which has unique

file access characteristics [19]; barber has the highest rate of

system calls per second, dvorak has the highest percentage of

write activity, ives the largest number of users, and mozart a

typical desktop work-station.

To prepare the VisIt trace data, we integrated the VisIt

program with the ADIOS-P module and recorded variable ac-

cess activities while users’ performing visualization of outputs

2 4 8 12

−25

−20

−15

−25

−20

−15

−35
−30
−25
−20
−15

−40

−35

−30

−25

●●

●●

●●●●

●●

●●

●

●

●●

●

●●

●

barber
dvorak

ives
m

ozart

EM DA EM DA EM DA EM DA

Lo
g−

lik
lih

oo
d

Fig. 4: EM-optimized vs DA-optimized PLSA. DA optimization out-
performs EM-optimization by showing larger log-likelihood values
than EM.

from the real scientific applications, such as S3D [4], GEOS-

5 [5], etc. Examples of S3D and GEOS-5 outputs are shown

in Fig. 1. The trace data used in this paper is summaried

in Table I.

A. Deterministic Annealing performance

We compare the optimization performance of the original,

EM-optimized PLSA algorithm (EM-PLSA) with the one with

our proposed DA-optimized PLSA algorithm (DA-PLSA).

We performed the EM-PLSA and DA-PLSA algorithms by

using the DFSTrace data sets while using different context

numbers, K = 2, 4, 8, and 12, and measured the maximum

log-likelihood values as outputs. Models with larger log-

likelihood values are preferred. We repeated the process with

10 randomly initialized conditions.

The results are summarized in Fig. 4 by using box plots

(also known as a box-and-whisker diagram) in which observed

data are represented by a box for the upper quartile (Q3) and

lower quartile (Q1), whiskers for the smallest and the largest

values, a middle line in the box for the median, and

As a result (Fig. 4), the DA optimization outperformed the

EM method by generating larger log-likelihood values than

EM in all the cases we tested, except barber with K = 2.

On average, the log-likelihood values generated by DA-PLSA

were bigger by 2.028 than ones from EM-PLSA.

Please note also that the variance of log-likelihood values

generated from DA-PLSA is smaller than the one from EM-

PLSA; the average standard deviations of log-likelihood are

0.029 and 0.510 for DA-PLSA and EM-PLSA respectively.

This illustrates the robustness of our DA method; DA-PLSA

is less sensitive to random initial conditions than EM-PLSA.

In short, this experiment demonstrates that our DA-PLSA

algorithm finds better model parameters than EM-PLSA with

smaller deviations.

B. Impacts on prediction quality

In this experiment, we measure how context mining algo-

rithms can improve prediction quality. We used the following

4 context mining algorithms:

• K-Means – algorithm to find K clusters based on Eu-

clidean distance measures. Strictly speaking, K-Means is

not considered as a topic or context mining algorithm in

general. We used as a simple initial approach.

• PLSA – The original, EM-optimized algorithm.

• DA-PLSA – Our proposed, DA-optimized algorithm.

• DA-PLSA2 – The DA-PLSA algorithm with 2 modes

(explained below).

For PLSA family algorithms, we limited the mode, the

maximum number of membership that each session can be

associated with, be 1, except DA-PLSA2 which was set to

have 2 modes; in PLSA and DA-PLSA, each session will be

associated with one latent context group, while in DA-PLSA2

two latent groups will be selected for each session.
Then, we measured the impacts of using the 4 different

context mining algorithms on the prediction performances of

two sequence predictors, Nexus and nMarkov, by using two

trace datasets; the DFSTrace datasets (barber, ives, dvorak,

and mozart) and the VisIt trace set. More specifically, first,

we measured the prediction accuracy of Nexus and nMarkov

without using any context information. This measurement

was used as base values. Then, we performed the prediction

again by using the context information mined from K-Means,

PLSA, DA-PLSA, and DA-PLSA2 and measured the predic-

tion accuracies. Then, we calculated the percentage differences

compared with the base values. Positive percentage difference

values indicate the performance (or prediction accuracy) im-

provements.
The experimental results with the DFSTrace sets are shown

in Fig. 5 by using a box plot (We omit the results of mozart
due to the space limitation. However, the results were similar

with others). As a result, DA-optimized PLSA algorithms

(DA-PLSA and DA-PLSA2) outperformed the original, EM-

optimized algorithm (PLSA) and K-Means. Especially, DA-

PLSA with 2 mode membership (DA-PLSA2) showed the

best performances in all the cases by generating the largest

accuracy improvements. Most notably, DA-PLSA2 in dvorak
showed about 90% prediction accuracy increase with Nexus

at K=8 and 12.
However, for small K values (K=2 or 4), the performance

improvement was not impressive (although DA-PLSA2 still

worked better than any others in most cases). This is expected

as mining of small number of hidden contexts is not much

different from clustering and there is not much model-specific

information we can exploit to improve prediction quality.
Fig. 6 shows another experimental results with the VisIt

trace data, containing the variable access history. However,

due to the limited time of collecting trace data, the data set

contains only the small number of sessions. By using the same

method to compute base values (prediction accuracy without

using context mining results), we measured the percentage

improvements of prediction algorithm by using the context

mining results. In Fig. 6, we can see also DA-PLSA2 out-

performed than any other algorithms, K-Means, PLSA, and

DA-PLSA. However, unlike in the previous experiment, we

2 4 8 12

0

10

20

30

40

−30

−20

−10

0

10

20

−20

0

20

40

60

80

●●

●

●

●

●●
●●

●

●●●●●●

●

●●●●●●●●●●●●

●

●●●

●

●●●
●
●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●
●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●●●

●●

●●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●●●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●●

●
●

●

●●

●
●

●

●

●

●

●●

●

●

●

●●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●
●

●
●

●●

●
●

●

●
●

●

●

●

●●●●●●●
●●●●
●●●●●
●
●●
●●●●●
●
●
●
●
●●●●
●
●●
●●●●
●
●
●●●
●●
●
●
●●●
●
●
●
●●
●●●●●
●●
●
●●
●
●●
●●
●●
●●
●
●
●
●
●●
●
●●●
●
●
●
●●
●●●●●●●●
●
●●
●●●●
●●●
●
●
●
●
●●
●●●
●
●●
●●
●
●●●
●
●
●
●●
●●●●●●
●
●
●
●
●
●
●
●●
●●●●
●
●
●
●●
●
●
●●
●
●
●
●
●

●●●●●
●
●●●

●

●●●●
●●●● ●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●●

●●

●

●●

●

●

●

●●

●

●●

●
●

●●

●

●●

●

●

●

●

●
●

●

●

●
●●

●●

●●

●

●

●●
●●●

●

●●

●

●

●
●

●●

●

●

●●

●

●●

●

●

●●

●

●

●

●●

●

●●●

●

●

●

●●●

●
●

●

●

●●

●●

●

●

●●●

●

●●

●

●

●

●●●

●●

●●●●

●

●

●

●●●

●

●
●
●

●●

●

●
●●

●●

●

●

●

●
●●

●

●
●
●

●

●●

●●

●●

●

●

●

●●

●
●●

●●

●

●●
●

●

●●●

●

●
●●●

●

●

●

●

●

●●●

●

●●

●

●●

●

●●

●

●●●

●
●

●●

●

●●

●

●●●

●

●●●

●●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●●●●●
●●●●●
●
●
●●●●●●
●●
●●
●●●
●
●●●●●●●
●●
●●●●●
●●●●●●●●
●●●●●●
●●●●●●
●●●

●

●●●●
●●●●●●●●●●●
●
●●●●●●●●●●●●●●●
●
●●●●●●●

●

●●●●●●●●●●●●●
●
●●●●●●●●●
●●●●
●
●●●●●●●
●●●●

●

●●●●●●●●
●
●
●●●●●●
●
●
●

●●●●●●●●●●●●●
●●
●●
●●●●●●

●

●
●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●●
●

●

●

●

●

●

●●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●
●

●●

●

●

●

●●

●

●●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●●
●●
●

●

●●

●

●

●●●●
●
●●●
●●●●
●
●
●

●

●
●●●

●

●●

●●●●●●●●●●●●●

●

●●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●●

●

●

●

●

●●

●

●

●●●

●

●●

●

●

●●

●●

●

●●

●●

●●

●

●●

●

●

●

●

●●

●
●

●

●

●●

●
●

●●●

●

●

●

●

●
●

●●●

●

●●●

●

●●●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●●●

●

●
●

●

●

●●●

●

●

●
●●

●●●●
●

●

●

●

●

●●●●●
●

●

●
●●

●

●

●●●
●

●

●
●
●

●

●
●●
●
●

●

●
●
●

●
●●

●

●●●

●

●●
●
●●

●

●●●●

●

●
●

●

●

●●●

●●●
●●●

●
●

●

●●

●
●
●
●

●

●

●●
●●
●

●

●

●●

●●

●●

●

●●
●●

●●

●●●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●●

●

●

●

●●

●

●

●
●●

●●●

●

●

●

●
●●

●●●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●●

●●

●
●●

●

●●

●

●●●●●

●●
●

●●●●

●●

●●

●

●●●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●●

●●●●

●●

●

●

●
●●

●

●●

●

●●●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●●
●
●

●●●

●

●

●

●

●●

●

●●

●

●

●

●
●●

●

●●
●

●

●●

●

●
●

●

●

●
●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●
●

●

●

●

●●

●
●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●
●
●
●●●
●

●

●
●●

●

●

●
●

●

●

●●
●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●
●
●
●●●
●

●

●
●●

●

●

●
●

●

●

●●
●●

●

●

●

●

●

●●

●
●
●

●

●

●
●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●●●
●

●

●

●
●

●

●

●●

●●
●

●

●

●

●
●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●
●●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●●
●

●

●
●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●
●●●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●
●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●
●
●
●●

●

●

●

●

●●●

●
●

●●

●

●

●
●
●

●

●

●●

●

●

●

●
●

●

●

●

●●

●●

●

●●

●

●

●●

●

●
●●
●
●

●
●●●
●

●

●
●
●

●

●

●●●

●●

●
●
●●●●
●
●●●

●

●
●●
●

●

●

●

●

●●

●
●

●

●

●

●
●●●●●●

●

●

●

●
●
●

●●
●
●
●●

●

●

●
●●
●
●
●

●

●

●

●●

●

●●

●

●
●●●●●●●●

●●

●

●●●●●●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●
●
●

●

●●●

●●
●
●

●

●

●

●
●●●

●
●

●

●
●
●
●●●
●●
●

●●
●

●
●

●
●

●

●

●
●●

●
●●●
●●●●

●

●

●

●
●●●●●●●

●

●●●●
●
●
●
●●

●

●

●

●

●
●

●
●●

●

●

●

●

●
●●

●

●
●

●

●
●
●
●
●
●
●

●

●

●

●●
●●

●

●
●

●

●

●●●

●
●

●
●

●

●

●
●
●
●

●

●

●
●●

●

●

●

●

●

●

●●●●

●
●

●

●

●

●

●
●
●

●

●●●

●

●

●
●

●

●
●

●

●

●

●

●
●●

●
●●

●

●

●●●
●
●

●

●

●

●

●●

●
●

●

●
●

●

●

●●
●

●
●

●
●

●

●

●
●

●
●

●

●

●●●

●

●

●

●

●

●

●
●●
●

●
●

●

●

●
●

●
●
●

●

●
●
●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●
●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●●●
●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●●

●

●

●
●

●

●

●

●●

●●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●●
●●

●

●

●
●
●

●

●
●

●
●●

●

●

●●

●

●
●

●
●
●
●●

●

●
●
●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●
●●

●
●
●

●
●
●

●
●●
●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●●

●

●
●

●●
●
●
●
●●

●●

●●
●

●

●
●
●

●

●

●

●

●

●

●●

●

●●
●

●

●
●
●

●

●

●●●●

●

●

●●

●●

●

●

●●●●●●
●●●●
●
●●
●●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●
●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●●
●

●
●
●
●

●

●

●

●

●

●

●●

●

●

●●●
●

●
●●

●●

●●
●
●

●

●●
●
●

●●

●

●

●●

●

●

●

●

●
●
●●●
●
●
●

●

●●●●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●
●●
●
●

●
●

●

●

●

●

●

●

●●

●

●

●●●
●

●
●●

●●

●●
●
●

●

●

●●

●

●

●●

●

●

●

●
●●
●
●
●
●
●
●

●

●
●●●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●
●●
●
●

●●

●

●

●

●

●

●

●●

●

●

●●●
●

●
●●
●●

●●
●
●

●

●

●

●●

●

●

●●

●

●

●

●
●●
●
●
●

●

●
●

●

●
●●●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

barber
ives

dvorak

K−Means

PLSA
DA−PLSA

DA−PLSA2

K−Means

PLSA
DA−PLSA

DA−PLSA2

K−Means

PLSA
DA−PLSA

DA−PLSA2

K−Means

PLSA
DA−PLSA

DA−PLSA2

A
cc

ur
ac

y
Im

pr
ov

em
en

t (
%

)
Nexus

(a) Nexus

2 4 8 12

−20

−15

−10

−5

0

5

−20

−10

0

−30

−20

−10

0

●●
●
●●●●●
●
●
●●●●●●●
●
●●●●
●
●●●
●
●●●●●●●●●●
●
●●●
●●●●●
●

●

●

●●●

●

●●●●
●

●

●●●●●
●

●
●●●
●

●
●
●

●

●●●

●

●●●●●●
●●●●●●●
●
●●●
●
●
●
●●
●
●●●●●●●

●

●●●

●

●●

●●

●●●●

●
●●●●
●
●●●●●
●●●●●●●●

●
●●●●
●●●●●●●
●
●●
●●●●●

●

●●●●●
●●●●●
●
●●
●
●

●

●

●

●●
●
●●
●

●

●●●●
●

●●

●●●
●

●

●●
●●
●
●●
●
●
●●●
●●
●
●
●●●
●●●●●
●●
●
●●●●●●●
●
●
●●●
●●●●

●

●
●●●●●●
●
●●
●●●

●

●

●

●
●
●
●●

●

●
●

●

●●
●●●●
●
●
●●

●

●●●●
●●

●

●●●●●●●

●●●●
●
●●●●●●

●

●●
●●●
●

●

●

●

●

●

●

●●
●
●
●
●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●●●●●
●●
●●●●●

●

●

●

●

●

●

●
●
●
●

●

●

●●●

●●
●●
●

●
●

●

●

●
●
●

●
●●

●

●●●
●
●●

●●

●

●

●
●

●

●●
●
●

●

●

●

●●●●●●●●●●
●
●●

●

●
●

●

●

●

●●
●●
●

●

●●●

●

●
●●
●
●
●
●

●

●●●●

●

●●●●●●●●●●●●●●

●

●●●●●

●

●●

●

●
●
●●
●
●●●

●

●
●●●●●●

●

●●
●
●
●●

●

●

●
●
●
●
●
●

●●

●●
●
●

●

●
●●
●
●
●●●

●

●
●
●●●●

●

●

●

●●●●●●●●
●
●●

●

●
●●●●
●
●●

●

●●

●

●

●

●●●
●●
●●●●
●●●
●
●●●●●●
●●●
●●●
●

●●●●●●●
●●●
●●●●●
●
●
●●●●
●
●●
●●●●
●
●
●
●●●●●
●
●●
●

●
●●●●
●●
●●●
●●●●●
●●●●●●
●●
●●●●
●
●●●●●●
●
●
●●●●●
●
●
●●
●●

●

●
●●

●

●●●●
●●●●
●
●
●●●●●

●●
●

●

●●●●
●●●●●●●●●●
●●●●●●
●
●

●

●●●
●
●●
●
●●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●
●
●●●

●
●
●

●

●

●

●

●

●●

●●●
●

●

●

●
●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●
●

●

●●
●●

●

●

●

●●

●

●●

●

●●
●
●●

●

●

●●●●●●●●●●●●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●●
●

●

●

●

●

●●
●

●

●

●

●●●

●

●

●

●

●●●●●●●●●●●
●

●

●●●
●●●●

●

●●●
●●●●●●
●●●●

●

●●●●●●●

●

●

●

●●

●

●●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●●

●●
●

●

●

●●
●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●
●
●
●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●
●

●
●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●
●
●
●
●
●
●

●
●
●●

●

●

●

●
●●
●
●

●

●
●

●

●●

●
●

●

●
●
●
●●
●
●●●●
●●
●

●

●●

●

●

●●
●

●

●
●●●

●

●

●●●●

●

●●
●●

●

●
●●

●

●

●●●
●
●
●●
●●●

●●
●

●●●

●●
●●●

●

●
●

●

●

●

●●●●

●

●●
●
●

●

●

●
●●

●
●●●
●
●

●
●

●

●●

●

●
●

●
●
●●●

●

●●
●
●
●
●
●

●

●

●●
●●
●
●●●
●
●
●
●●

●

●

●

●
●
●

●
●

●

●

●

●●

●
●

●

●

●

●
●
●
●
●
●
●●

●

●

●

●

●●●●●

●

●

●

●

●
●●
●●●
●
●●

●

●

●
●

●

●
●

●

●
●●

●

●

●●

●
●

●
●
●
●
●

●

●
●
●
●
●

●

●

●

●
●
●

●●

●●●●

●

●

●

●
●

●

●●

●

●●

●
●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●●

●

●●

●

●

●
●

●

●●

●
●
●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●●

●●●

●●●

●

●

●

●●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●
●●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●
●

●
●
●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●
●

●

●
●

●●●●●●●●●●

●●
●

●

●●
●

●
●●

●

●●

●●●

●●
●●

●
●●

●

●

●

●
●

●●●
●

●

●
●
●

●
●

●

●

●

●

●●

●

●
●●●

●
●

●

●

●
●

●

●

●

●

●

●

●
●
●●●
●

●●

●●

●

●

●●

●

●

●

●

●

●

●
●
●●
●●●

●

●
●●●
●

●

●

●●

●
●

●
●
●
●
●

●

●

●
●

●

●

●●

●●
●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●
●●●
●●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●●
●

●●●●●
●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●
●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●●

●
●

●

●

●●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●
●●

●

●

●●
●
●

●

●●

●●

●●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●●●●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●
●●●

●

●●
●

●
●
●
●
●

●

●

●
●●

●●●
●
●●●

●
●
●
●●

●

●

●●

●

●
●
●
●

●
●
●
●●●

●

●

●

●

●
●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●
●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●
●

●

●
●
●●
●
●

●●

●
●●
●
●
●

●

●
●
●●

●●

●

●

●●
●●●
●
●
●

●

●

●

●
●●

●

●
●
●
●●

●
●
●●
●
●
●●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●●●
●
●

●

●

●

●
●
●
●●
●
●

●●

●
●
●●●
●

●

●
●●
●

●

●●
●●
●
●●

●

●

●

●

●●●
●

●
●●
●
●
●
●
●

●

●

●

●

●

●
●●
●●
●●

●●

●●

●

●
●●●●

●

●

●

●
●

●

●

●

barber
ives

dvorak

K−Means

PLSA
DA−PLSA

DA−PLSA2

K−Means

PLSA
DA−PLSA

DA−PLSA2

K−Means

PLSA
DA−PLSA

DA−PLSA2

K−Means

PLSA
DA−PLSA

DA−PLSA2

A
cc

ur
ac

y
Im

pr
ov

em
en

t (
%

)

nMarkov

(b) N -th order Markov

Fig. 5: Impacts of context mining algorithms on the prediction performance of Nexus (a) and nMarkov (b) for DFSTrace data, depicted as
box plots. For each box plot, observed data are summarized as a box, whiskers, and circles; top of box for the upper quartile (Q3), bottom
of box for the lower quartile (Q1), whiskers for the smallest and the largest values, a middle line in the box for the median, and circles for
outliers. DA-optimized PLSA algorithms (DA-PLSA and DA-PLSA2) outperform the original, EM-optimized PLSA algorithm. Especially
DA-PLSA with 2 mode membership (DA-PLSA2) shows the best performances overall.

observed the poor performance of DA-PLSA. We think this is

due to the small number of trace events.

C. IO pre-fetch performance

We demonstrate how prefetching can affect IO performance.

Instead of measuring IO performance directly in a system

with prefetching deployed, we performed a simulation-based

experiment by building a performance model.

We consider a 1:N parallel execution model in which

there are 1 staging process (Ps) mainly for IO handling

and prefetching and N computing processes (Pn) which will

communicate with the staging process Ps for IOs (See Fig. 7).

For simplicity, we ignore communication overheads between

processes in this model. We also assume an iterative map-

reduce style execution [39]; a full execution can be divided

into small sub steps and a computing task in each step begins

with an IO input received from the staging process Ps and ends

in a synchronized fashion so that the next IO reading follows

after the end of the computing. The staging process Ps handles

IO sequentially, while N computing processes, P1, · · · , PN ,

can run concurrently.

We denote T (rit) as an elapsed time for reading t-step data

for process Pi and T (ct, P) as a parallel computing time,

or longest computing time among N processes. Then, we

r1t +1 r3t +1r2t +1

P3

P2

P1

Ps

c2t

c3t

c1t

c2t +1

c3t +1

c1t +1

r1t +2 r3t +2r2t +2r3t +1

Prefetch Overhead

T (ct , P)

(a) Compute intensive – T (ct, P) > PT (rt)

r1t +1 r3t +1r2t +1

P3

P2

P1

Ps

c2t

c3t

c1t

c2t +1

c3t +1

c1t +1

r1t +2 r3t +2r2t +2r3t +1

T (ct , P)

(b) IO intensive – PT (rt) > T (ct, P)

Fig. 7: 1:N ADIOS staging service model where 1 staging process
(Ps) handles IO requests from P compute processes (Pn). Here we
depicts N=3 case. With pre-fecting in Ps, we can overlap computing
time and IO time.

4 8 12 16

−100

−50

0

50

100

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●●●

●●

●

●

●

●●●

●

●●

● ●

●

●

●

●

visit

K−Means

PLSA
DA−PLSA

DA−PLSA2

K−Means

PLSA
DA−PLSA

DA−PLSA2

K−Means

PLSA
DA−PLSA

DA−PLSA2

K−Means

PLSA
DA−PLSA

DA−PLSA2

A
cc

ur
ac

y
Im

pr
ov

em
en

t (
%

)
Nexus

4 8 12 16

−100

−50

0

50

100

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●●

visit

K−Means

PLSA
DA−PLSA

DA−PLSA2

K−Means

PLSA
DA−PLSA

DA−PLSA2

K−Means

PLSA
DA−PLSA

DA−PLSA2

K−Means

PLSA
DA−PLSA

DA−PLSA2

A
cc

ur
ac

y
Im

pr
ov

em
en

t (
%

)

nMarkov

Fig. 6: Impacts of context mining algorithms on the prediction performance of the Nexus algorithm, nMarkov, for the VisIt dataset. The
DA-PLSA algorithm with 2 mode membership (DA-PLSA2) shows the best performances.

can define the base time TBase, total execution time without

prefetching, can be defined as a sum of sequential reading and

parallel computing time, such that,

TBase = P
∑
n

T (rt) +
∑
n

T (ct, P) (9)

Hereafter, for brevity, we ignore superscripts indicating the

process indices and assume an uniform reading and computing

time through steps.

Now we consider two types of workload: A) compute

intensive case when T (ct, P) ≥ PT (rt) (Fig. 7a), and B)

IO intensive case, otherwise (Fig. 7b).

Compute intensive case (Case A): Ps has enough time

for pre-fetching N data sets for the t + 1 step while N
Pn’s running concurrently in t-th step. After Pns’ finishing

computing, incorrectly pre-fetched data need to be re-fetched,

which occurs overheads. Let denote α be the average accuracy

of pre-fetching in Ps. Compared with TBase, we can save

αN
∑

t T (rt) time due to the pre-fetching. The expected

execution time with pre-fetching, TPrefetch−A, is defined by

TPrefetch−A = TBase − αN
∑
t

T (rt) (10)

IO intensive case (Case B): Ps has no enough time for

pre-fetching N data sets during the computing time T (ct, P).
Re-fetching for incorrect prefetched data can be occurred

immediately after T (ct, P). Compared with the base time

TBase, we can save on average αT (ct, P) with the pre-fetching

accuracy α. We can define the expected execution time by

TPrefetch−B = TBase − α
∑
t

T (ct, P) (11)

We denote γ be the ratio of workload; either γ =
T (ct, P)/NT (rt) (Case A) or γ = NT (rt)/T (ct, P) (Case

B), so that γ ≥ 1. Then, we can define speedup Sprefetch,

time improvement ratio due to the prefetching, by

Sprefetch =
TBase

TPrefetch
=

1 + γ/N

1 + γ/N − α
(12)

for both cases.

With Eq. (12), we can estimate the maximum speedup

we can achieve with different pre-fetching accuracy levels.

1.0

1.2

1.4

1.6

1.8

2.0

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0
Prefetch Accuracy

S
pe

ed
up

Workload
Ratio

● 1:1

2:1

4:1

8:1

16:1

Fig. 8: Estimated speedup improvement by using DA-PLSA with
respect to the different level of prefetch accuracy.

In Fig. 8, a simulation result is summarized with various

workload ratios (γ = 1, 2, . . . , 16) and prefetching accuracies

(α = 0.0, . . . , 1.0). What Fig. 8 implies is as follows:

• Ideally, we can achieve maximum 2 times speedup when

the prefetch accuracy is 1.0 with an uniform compute-IO

workload (i.e., γ = 1.0), since we can overlap IO and

computing time without any overhead.

• If the workload get skewed (γ > 1.0), the speedup will

be degraded, which is expected.

• High prefetching accuracy contributes more to large

speedup, while low prefetching accuracy does less to

speedups; Even small increase of prefetching accuracy

is important in a balanced workload execution to achieve

large speedup.

VI. CONCLUSION

Today, I/O has become a significant source of performance

bottleneck for scientific applications. Deploying a predictive

data pre-fetcher has been considered as a viable solution

to load data in before real requests happen. Especially in

scientific data visualization, pre-fetching can be used to reduce

the IO waiting time.

To support predictive pre-fetching to reduce IO latency, in

this paper we have presented two main solutions. We have

developed and demonstrated a provenance system built on

ADIOS, named ADIOS-P, that can collect file and variable

access patterns for data mining.

We have also proposed a data mining technique for discov-

ering the hidden contexts in data access patterns to improve

the prediction performance. More specifically, we applied

Probabilistic Latent Semantic Analysis (PLSA), a mixture

model based algorithm popular in the text mining area, to

mine hidden contexts from the collected user access patterns

and, then, we run a predictor within the discovered context.

We further improved the PLSA algorithm by applying the

Deterministic Annealing (DA) method to overcome the local

optimum problem from which the original PLSA algorithm

suffered.
We also demonstrated performance results of our DA-

optimized PLSA, named DA-PLSA, compared with the orig-

inal EM-optimized PLSA and presented experimental results

showing improvements in prefetching accuracy by using two

data sets; DFSTrace file access traces and variable access

logs collected from the visualization software, VisIt, through

ADIOS-P.

REFERENCES

[1] Top500.org. (2012, July) Top500 list - november 2000 (1-100).
[Online]. Available: http://www.top500.org/list/2000/11/

[2] ——. (2012, July) Top500 list - june 2012 (1-100). [Online]. Available:
http://www.top500.org/list/2012/06/100

[3] J. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin, “Flexible
IO and integration for scientific codes through the adaptable IO system
(ADIOS),” in Proceedings of the 6th international workshop on Chal-
lenges of large applications in distributed environments. ACM, 2008,
pp. 15–24.

[4] J. H. Chen et al., “Terascale direct numerical simulations of turbulent
combustion using S3D,” Comp. Sci. & Disc., vol. 2, no. 1, p. 015001
(31pp), 2009.

[5] M. Rienecker, M. Suarez, R. Todling, J. Bacmeister, L. Takacs, H. Liu,
W. Gu, M. Sienkiewicz, R. Koster, R. Gelaro et al., “The geos-5 data
assimilation system: Documentation of versions 5.0. 1, 5.1. 0, and 5.2.
0,” NASA Tech. Memo, vol. 104606, 2007.

[6] S. Klasky, S. Ethier, Z. Lin, K. Martins, D. McCune, and R. Samtaney,
“Grid -based parallel data streaming implemented for the gyrokinetic
toroidal code,” in SC ’03: Proceedings of the 2003 ACM/IEEE confer-
ence on Supercomputing, 2003, p. 24.

[7] C. S. Chang, S. Klasky et al., “Toward a first-principles integrated
simulation of Tokamak edge plasmas - art. no. 012042,” Scidac 2008:
Scientific Discovery through Advanced Computing, vol. 125, pp. 12 042–
12 042, 2008.

[8] H. Childs, D. Pugmire, S. Ahern, B. Whitlock, M. Howison, G. Weber,
E. Bethel et al., “Extreme scaling of production visualization software
on diverse architectures,” Computer Graphics and Applications, IEEE,
vol. 30, no. 3, pp. 22–31, 2010.

[9] T. Hofmann, “Probabilistic latent semantic indexing,” in Proceedings of
the 22nd annual international ACM SIGIR conference on Research and
development in information retrieval. ACM, 1999, pp. 50–57.

[10] ——, “Unsupervised learning by probabilistic latent semantic analysis,”
Machine Learning, vol. 42, no. 1, pp. 177–196, 2001.

[11] J. Choi, “Unsupervised learning of finite mixture models with determin-
istic annealing for large-scale data analysis,” Ph.D. dissertation, Indiana
University, 2012.

[12] N. Ueda and R. Nakano, “Deterministic annealing em algorithm,” Neural
Networks, vol. 11, no. 2, pp. 271–282, 1998.

[13] L. Mummert and M. Satyanarayanan, “Long term distributed file refer-
ence tracing: Implementation and experience,” Software: Practice and
Experience, vol. 26, no. 6, pp. 705–736, 1996.

[14] P. Gu, Y. Zhu, H. Jiang, and J. Wang, “Nexus: a novel weighted-
graph-based prefetching algorithm for metadata servers in petabyte-scale
storage systems,” in Cluster Computing and the Grid, 2006., vol. 1.
IEEE, 2006, pp. 8–pp.

[15] P. Gu, J. Wang, Y. Zhu, H. Jiang, and P. Shang, “A novel weighted-
graph-based grouping algorithm for metadata prefetching,” Computers,
IEEE Transactions on, vol. 59, no. 1, pp. 1–15, 2010.

[16] D. Blei, A. Ng, and M. Jordan, “Latent dirichlet allocation,” The Journal
of Machine Learning Research, vol. 3, pp. 993–1022, 2003.

[17] G. Furnas, S. Deerwester, S. Dumais, T. Landauer, R. Harshman,
L. Streeter, and K. Lochbaum, “Information retrieval using a singular
value decomposition model of latent semantic structure,” in Proceedings
of the 11th annual international ACM SIGIR conference on Research and
development in information retrieval. ACM, 1988, pp. 465–480.

[18] S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and R. Harshman,
“Indexing by latent semantic analysis,” Journal of the American society
for information science, vol. 41, no. 6, pp. 391–407, 1990.

[19] T. Kroeger and D. Long, “The case for efficient file access pattern
modeling,” in Hot Topics in Operating Systems, 1999. Proceedings of
the Seventh Workshop on. IEEE, 1999, pp. 14–19.

[20] ——, “Design and implementation of a predictive file prefetching
algorithm,” in Proceedings of the 2001 USENIX Annual Technical
Conference, 2001, pp. 105–118.

[21] I. Choi and C. Park, “Enhancing prediction accuracy in pcm-based file
prefetch by constained pattern replacement algorithm,” Computational
Science—ICCS 2003, pp. 714–714, 2003.

[22] B. Gill and L. Bathen, “Amp: adaptive multi-stream prefetching in a
shared cache,” in Proceedings of the 5th USENIX conference on File
and Storage Technologies. USENIX Association, 2007, pp. 26–26.

[23] M. Li, E. Varki, S. Bhatia, and A. Merchant, “Tap: Table-based prefetch-
ing for storage caches,” in Proceedings of the 6th USENIX Conference
on File and Storage Technologies. USENIX Association, 2008, p. 6.

[24] X. Fang, O. Sheng, W. Gao, and B. Iyer, “A data-mining-based prefetch-
ing approach to caching for network storage systems,” INFORMS
Journal on computing, vol. 18, no. 2, pp. 267–282, 2006.

[25] D. Joseph and D. Grunwald, “Prefetching using markov predictors,”
ACM SIGARCH Computer Architecture News, vol. 25, no. 2, pp. 252–
263, 1997.

[26] K. Nesbit and J. Smith, “Data cache prefetching using a global history
buffer,” in High Performance Computer Architecture, 2004. HPCA-10.
Proceedings. 10th International Symposium on. Ieee, 2004, pp. 96–96.

[27] G. Pallis, A. Vakali, and J. Pokorny, “A clustering-based prefetching
scheme on a web cache environment,” Computers & Electrical Engi-
neering, vol. 34, no. 4, pp. 309–323, 2008.

[28] K. Rose, “Deterministic annealing for clustering, compression, classifi-
cation, regression, and related optimization problems,” Proceedings of
the IEEE, vol. 86, no. 11, pp. 2210–2239, 1998.

[29] K. Rose, E. Gurewitz, and G. Fox, “A deterministic annealing approach
to clustering,” Pattern Recognition Letters, vol. 11, no. 9, pp. 589–594,
1990.

[30] T. Hofmann and J. Buhmann, “Pairwise data clustering by determin-
istic annealing,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 19, no. 1, pp. 1–14, 1997.

[31] X. Yang, Q. Song, and Y. Wu, “A robust deterministic annealing
algorithm for data clustering,” Data & Knowledge Engineering, vol. 62,
no. 1, pp. 84–100, 2007.

[32] H. Klock and J. Buhmann, “Multidimensional scaling by deterministic
annealing,” Lecture Notes in Computer Science, vol. 1223, pp. 245–260,
1997.

[33] J. Choi, J. Qiu, M. Pierce, and G. Fox, “Generative topographic mapping
by deterministic annealing,” Procedia Computer Science, vol. 1, no. 1,
pp. 47–56, 2010.

[34] L. Chen, T. Zhou, and Y. Tang, “Protein structure alignment by deter-
ministic annealing,” Bioinformatics, vol. 21, no. 1, pp. 51–62, 2005.

[35] G. Fox, “Deterministic annealing and robust scalable data mining for
the data deluge,” in Proceedings of the 2nd international workshop on
Petascal data analytics: challenges and opportunities. ACM, 2011, pp.
39–40.

[36] E. Jaynes, “On the rationale of maximum-entropy methods,” Proceed-
ings of the IEEE, vol. 70, no. 9, pp. 939–952, 1982.

[37] S. Kirkpatric, C. Gelatt, and M. Vecchi, “Optimization by simulated
annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.

[38] M. Satyanarayanan, J. Kistler, P. Kumar, M. Okasaki, E. Siegel, and
D. Steere, “Coda: A highly available file system for a distributed
workstation environment,” Computers, IEEE Transactions on, vol. 39,
no. 4, pp. 447–459, 1990.

[39] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S. Bae, J. Qiu, and
G. Fox, “Twister: a runtime for iterative mapreduce,” in Proceedings
of the 19th ACM International Symposium on High Performance Dis-
tributed Computing. ACM, 2010, pp. 810–818.

