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Abstract—We present performance results on a Windows 
cluster with up to 768 cores using MPI and two variants of 
threading – CCR and TPL. CCR (Concurrency and 
Coordination Runtime) presents a message based interface 
while TPL (Task Parallel Library) allows for loops to be 
automatically parallelized. MPI is used between the cluster 
nodes (up to 32) and either threading or MPI for parallelism 
on the 24 cores of each node. We use a simple matrix 
multiplication kernel as well as a significant bioinformatics 
gene clustering application. We find that the two threading 
models offer similar performance with MPI outperforming 
both at low levels of parallelism but threading much better 
when the grain size (problem size per process) is small. We find 
better performance on Intel compared to AMD on comparable 
24 core systems. We develop simple models for the 
performance of the clustering code. 

Multicore, Performance, Threading, MPI, and Windows 

I.  INTRODUCTION

Multicore technology is still rapidly changing at both the 
hardware and software levels and so it is challenging to 
understand how to achieve good performance especially with 
clusters when one needs to consider both distributed and 
shared memory issues. In this paper we look at both MPI and 
threading approaches to parallelism for a significant 
production datamining code running on a 768 core Windows 
cluster. Efficient use of this code requires that one use a 
hybrid programming paradigm mixing threading and MPI. 
Here we quantify this and compare the threading model CCR 
(Concurrency and Coordination Runtime) used for the last 3 
years with Microsoft’s new TPL Task Parallel Library. 

Section II briefly presents the clustering application used 
in this paper while section III summarizes the three 
approaches parallelism – CCR, TPL and MPI – used here. 
Section IV is the heart of paper and looks at the performance 
of the clustering application with the different software 
models and as a function of dataset size. We identify the 
major sources of parallel overhead of which the most 
important is the usual synchronization and communication 
overhead. We compare the measured performance with 
simple one and two factor models which describe most of the 
performance data well. Both CCR and the newer TPL 
perform similarly. In section V, we extend study to a matrix 
multiplication kernel running on single node Intel and AMD 
24 core systems where CCR outperforms TPL. Section VI 
has conclusions.  

In this paper we mainly use a cluster Tempest which has 
32 nodes made up of four Intel Xeon E7450 CPUs at 
2.40GHz with 6 cores. Each node has 48 GB node memory 
and is connected by 20Gbps Infiniband. In section 5, we 
compare with a single AMD machine that is made up of four 
AMD Opteron 8356 2.3 GHz chips with 6 cores. This 
machine has 16 GB memory. All machines run Microsoft 
Window HPC Server 2008 (Service Pack 1) - 64 bit. Note all 
software was written in C# and runs in .NET3.5 or .NET4.0 
(beta 2) environments. 

II. APPLICATIONS

Figure 1.  Clustering by Deterministic Annealing for 35339 AluY 
Sequences 

We have described in earlier publications [1, 2, 4], our 
approach to clustering using deterministic annealing. This 
was introduced by Rose [5, 6] with Hofmann and Buhmann 
[7] providing a key extension to the “pairwise” case where
the points to be clustered do not have known vector
representations but rather all that is known is the
dissimilarities (distances) between each pair of points. We
have substantially improved the published algorithms and
implemented efficiently using both MPI and threading. All
our current published work has used Microsoft’s CCR
threading library [8, 9].

The current paper uses two samples of Alu repeats [10-
12] coming from the Human and Chimpanzee genomes.
Typical result of this analysis is shown in Fig. 1 with several
identified clusters in the AluY family [2]. The algorithm is

814



compute intensive as it is of O(N2) for N sequences and so 
we are motivated to seek both improved algorithms [1] and 
understand the performance of the current code [13-15]. 

III. SOFTWARE MODELS

A. CCR (Concurrency and Coordination Runtime)
CCR [8, 9] has been a very reliable tool used in our

group for several years and giving good performance. We 
have discussed its syntax and capabilities in previous papers 
[4, 13-15]. It offers high performance ports with queues to 
support messaging between threads and much of its 
sophistication is not needed in this application. As shown in 
Fig. 2, there is a non trivial amount of overhead in 
implementing a simple parallel loop that is needed 22 times 
in our application. This does produce relatively ugly code 
and in fact the MPI version of this is much simpler as it at 
most requires barrier calls.  

MPI and CCR both require the user break up the loops 
explicitly to express the “data parallelism”. The shared 
memory naturally supported by the threaded model improves 
both the readability and performance of those parts of the 
algorithm requiring communication in MPI. These are 
largely to support linear algebra – especially determination 
of leading eigenvalue/vector of a cluster correlation matrix. 

Figure. 2  Typical Structure of CCR code used in Clustering code 

B. TPL (Task Parallel Library) MPI (Message Passing
Interface)
TPL [16] supports a loop parallelism model familiar from

OpenMP [17]. Note TPL is a component of the Parallel FX 
library, the next generation of concurrency support for the 
Microsoft .NET Framework which supports additional forms 
of parallelism not needed in our application. TPL contains 
sophisticated algorithms for dynamic work distribution and 
automatically adapts to the workload and particular machine 
so that the code should run efficiently on any machine 
whatever its core count. Note TPL involves language 
changes (unlike CCR which is a runtime library) and so 
implies that code only runs on Windows.  

In Fig. 3, we give the pseudocode for a typical use of 
TPL in our application. It is clearly simpler than the CCR 

syntax in Fig. 2 but does not help us maintain an OS 
independent source as it extends language in an idiosyncratic 
fashion. We note that complete clustering code had 22 
separate “Parallel For” invocations.  

 Figure 3.  Typical Structure of TPL code used in Clustering code 

C. MPI (Message Passing Interface)
Our codes are implemented to use MPI to support the

concurrency across nodes and in addition the threading 
models described above. The inter-node MPI implementation 
trivially can support parallelism within the node and that is 
used in the later studies. In sense, MPI is the “simplest” 
intra-node paradigm as it re-uses code that must be present 
anyway. If one only needs intra-node parallelism, then MPI 
would be more complex to code than the shared memory 
threading models CCR and TPL. 

We have discussed elsewhere how extensions of 
MapReduce (i-Mapreduce) [1] [3] can be used to replace 
MPI but that is not the focus here. i-MapReduce has a more 
flexible communication model than MPI and that will lead to 
poorer performance. 

IV. PERFORMANCE OF CLUSTERING CODE ON TEMPEST
CLUSTER 

A. CCR (Concurrency and Coordination Runtime)
In Fig. 4, we show typical execution time measurements

with the parallelism between nodes implemented using MPI 
and that internal to node implemented with either threading 
or MPI. One sees approximate equality in performance at 
low parallelism but that threading is much faster on the 
extreme case on left – 24 way internal parallelism on 32 
nodes. We will explore this effect in more detail below. Also 
note here that TPL is a little faster than CCR even in case of 
internal MPI when there is only one thread per process. We 
convert execution time into an efficiency  or an overhead f 
where 

 = S(p)/p or (prefT(pref))/(pT(p))                                 (1) 

 f = 1/  -1 = pT(p)/ (prefT(pref)) –1     (2) 

where T(p) is execution time on p processors and S(p) is 
speedup. Normally the reference process count is pref = 1 but 
we will sometimes use a larger value. Efficiency is usually 
between 0 and 1 but the overhead is unbounded and so can 
confuse plots. However f is linear in overheads as it is linear 
in execution time and so it can be simpler to model as we 
see below. Note that we label parallelism as tXmXn where 

p = t m n                                       (3) 

ParallelOptions parallelOptions = new ParallelOptions(); 

parallelOptions.MaxDegreeOfParallelism = threadCount; 

Parallel.For(0, dataBlockCount,  parallelOptions, (dataBlockIndex) => 
{ 

  // do work 
}); 

CountdownLatch latch = CountdownLatch(threadCount); 
Port<int> port = new Port<int>(); 

Arbiter.Activate(queue, Arbiter.Receive(true, port, delegate(int 
dataBlockIndex) 
{      

  DataBlock dataBlock = _dataBlocks[MPIRank][dataBlockIndex]; 
  // do work 
  latch.Signal() 

})); 

for (int dataBlockIndex = 0; dataBlockIndex < dataBlockCount; 
dataBlockIndex++) 
{ 
    port.Post(dataBlockIndex); 
} 

latch.Wait(); 
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Here each node has t threads or m MPI internal processes 
and the run involves n nodes. In most of data in this section 
either t or m is one i.e. we use pure MPI or pure threading in 
a node. 

B. Threading Internal to Node
In Fig. 5, we show a set of runs with pure threading in each 
node with different choices for thread count t and node 
count n. The overhead clearly increases as expected as one 
increases parallelism reaching (for TPL) 0.72 for a 768 core 
run. This corresponds to an efficiency of 58%. However the 
figure also shows a surprising increase at low parallelism 
values n < 8. This is a reproducible effect over several 
applications and corresponds to poor Windows performance 
where processes have large memory. The effect is shown in 
more detail in a sample from an earlier paper with Fig. 4 
showing the overhead for many cases of low parallelism 
counts. This figure shows that here MPI internal (or 
external) to the node outperforms threading as it reduces the 
process memory size.  We note that a one factor model that 
only keeps the dependence on total parallelism gives similar 
quality fits to that with two factors – this is to be expected if 
one analyzes the natural forms of overhead. We illustrate 
this in Fig. 8 which compares one and two factor fits for 
another AluY sample chosen as it was homogeneous and 
could therefore be used to test data set size dependence of 

the performance. The one factor fit just uses p while the two 
factor fit uses p and n. The two fits are indistinguishable and 
also simultaneously describe three dataset sizes with 12.5K, 
25K and 50K points. Precisely we used a factor that was 
Parallelism p/(Data set size) that is precisely the inverse of 
grain size. 

Typical overheads in parallel computing are proportional 
to a ratio of communication and computation times. These 
involve primitive times multiplied by the complexity of the 
calculation divided by the computation. Pairwise Clustering 
is an O(N2) algorithm (where N is number of points)  for 
which the complexity is just proportional to the inverse of 
the grain size (number of points in each thread or process). 
This leads to the expectation that the overhead f is linear in 
the parallelism measure p. Here we adopt a 
phenomenological two-factor model 

f = a1 x1 + a2 x2      (4) 

where we take various choices for x1 and x2 and perform a 
simple one or two parameter least squares fit to find a1 and 
a2. We show the results of this analysis in Fig. 5 for the 
choices p and node count n as the factors. This is performed 
separately for the CCR and TPL cases. Note the model 
describes the data quite well except for the case of low 
parallelism n < 8 where we had already suggested that the 
overhead was coming from a totally different effect (large  
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Figure 5.   Parallel Overhead for 35399 AluY sequence clustering for 
cases of pure threading in the node

Figure 6.   Parallel Overhead f as a function of pattern tXmXn for a sample of 30,000 Metagenomics sequences. [2] (Selected on small parallel counts p  64) 
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process memory) than the usual communication and 
synchronization overheads that (4) attempts to model.   

We note that a one factor model that only keeps the 
dependence on total parallelism gives similar quality fits to 
that with two factors – this is to be expected if one analyzes 
the natural forms of overhead. We illustrate this in Fig. 8 
which compares one and two factor fits for another AluY 
sample chosen as it was homogeneous and could therefore be 

used to test data set size dependence of the performance. The 
one factor fit just uses p while the two factor fit uses p and n. 
The two fits are indistinguishable and also simultaneously 
describe three dataset sizes with 12.5K, 25K and 50K points. 
Precisely we used a factor that was Parallelism p/(Data set 
size) that is the inverse of grain size. We note that TPL is 
usually faster than CCR although the difference is often 
small as seen in Fig. 9.
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Figure 9.  Parallel Overhead difference CCR minus TPL  for threading 
internal to node with Clustering by Deterministic Annealing for 35339 
AluY Sequences

Figure 11.  Parallel Overhead f as a function of pattern tXmXn for three 
samples of respectively 12,500 25.000 and 50,000 AluY sequences in 
the case t=1 of MPI internal to node. We show for each pattern, the 
CCR measurement followed by the single factor and two factor model.

Figure 12.  Parallel Overhead difference CCR minus TPL  for MPI 
internal to node with Clustering by Deterministic Annealing for 
35339 AluY Sequences

Figure 7.  The data of Fig. 5 compared with a simple model described in text 
for MPI and threading. For each pattern, we show in order the model CCR 
prediction, the measured CCR, the model TPL prediction and finally the 
measured TPL

Figure 8.   Parallel Overhead f as a function of pattern tXmXn for three 
samples of respectively 12,500 25.000 and 50,000 AluY sequences in 
the case m=1 of threading internal to node. We show for each pattern, 
the CCR measurement followed by the two factor and single factor 
model. 

Figure 10.  Parallel Overhead for 35399 AluY sequence clustering for 
cases of pure MPI internal to the node. For each pattern, we show in 
order the measured TPL, the measured CCR, the single factor model 
CCR prediction and finally the two factor model CCR prediction. 
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C. MPI Internal to Node
We now look at the analogous runs to the previous

section but with pure MPI and not pure threading in each 
node. We still get results for both CCR and TPL as our code 
bases are implemented in the threading frameworks and can 
get some overheads even though the thread count is one in 
all cases. Fig. 10 plots the basic overhead measurements plus 
two models that we only apply to CCR case. One model has 
a single factor x1 as the parallelism p and the second model 
has x1 as the parallelism p and the second model has x1 as p 
and x2 as p2. Again the models are approximately correct but 
now for all patterns as we have internal MPI parallelism, we 

do not have the large process memory effect at low 
parallelism values.  

The simple linear fits are less good than for threading 
case. This is particularly clear in Fig. 11 which analyzes the 
dataset size dependence for MPI intra-node parallelism for 
the 3 AluY samples. Now the fits are significantly poorer 
than in Fig. 8. This is not surprising as the large size of the 
overhead makes it hard to justify a linear (or even quadratic) 
model.  

In Fig. 12, we show the small overhead increases for 
CCR compared to TPL in the case when MPI is used internal 
to a node.
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Figure 13.   Execution time of TPL for matrix multiplication kernel on 
single node 24 core Intel and AMD machines for the cases of 4, 8, 16 and 
24 concurrent threads. 

Figure14.   Execution time of CCR for matrix multiplication kernel on 
single node 24 core Intel and AMD machines for the cases of 4, 8, 16 and 
24 concurrent threads. 

Figure 15.   Parallel efficiency (1) comparing CCR and TPL on an Intel 24 
core node with 4, 8, 16 and 24 concurrent threads. 

Figure 16.   Parallel efficiency (1) comparing CCR and TPL on an AMD 
24 core node with 4, 8, 16 and 24 concurrent threads 

Figure 17.   Parallel efficiency (1) comparing AMD and Intel 24 core 
nodes with 4, 8, 16 and 24 concurrent threads using TPL framework

Figure 18.   Parallel efficiency (1) comparing AMD and Intel 24 core 
nodes with 4, 8, 16 and 24 concurrent threads using CCR framework
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V. MATRIX MULTIPLICATION

A. Comparison of CCR and TPL
In section IV, we looked at a relatively complex “real”

application and here we examine the comparison between 
CCR and TPL on a simple kernel matrix multiplication. This 
has been extensively studied under MPI and so here we just 
compare the two threading environments CCR and TPL on a 
single 24 core node. We compare the Intel and AMD models 
detailed in section 1 and consider four cases – 4 8 16 or 24 
threads. The raw results in figures 13 and 14 show that the 
Intel machine slightly outperforms the AMD one.  

We now use (1) to calculate efficiencies and discuss them 
in Figs. 15 and 16 in a way that allows comparison of CCR 
and TPL with Fig. 15 comparing them on the Intel and Fig. 
16 the AMD node. Unlike section IV, we see that CCR 
typically outperforms TPL although the effect is often small. 
Further TPL outperforms CCR on the AMD machine for 
smaller thread counts. We also see smooth results except for 
the 24 core case where efficiencies show a strange shape that 
we need to investigate further. 

If we compare the code structure for the applications of 
sections IV and V, we see matrix multiplication is very 
structured and totally load balanced. Thus the dynamic 
tasking of TPL has no advantages over the static user 
generated decomposition used in CCR.  However the 
clustering algorithm has some inhomogeneity and may be 
benefiting from the dynamic TPL features. 

B. Comparison of Intel and AMD
Figs. 17 and 18 compare for TPL and CCR respectively

the efficiencies for Intel and AMD that were shown on 
separate graphs in figures 15 and 16. We see that the Intel 
efficiencies are strikingly better than those on AMD machine 
achieving efficiencies near 1 at lower matrix sizes (by 
approximately a factor of 4). 

VI. CONCLUSIONS

We have examined parallel programming tools 
supporting Microsoft Windows environment for both 
distributed and shared memory. We show that the new TPL 
Task Parallel Library produces simpler code and slightly 
better performance than the older CCR runtime. Good 
performance on the cluster of 24 core nodes requires use of a 
hybrid programming paradigm using MPI between nodes 
and threading internal to the node. We are able to describe 
both MPI and threading overheads with a simple single 
factor model with a linear dependence on the inverse grain 
size (number of data points in each thread). This breaks 
down when the overhead gets very large and also at small 
levels of parallelism when Windows performs poorly with 
large memory processes. In future work, we will extend our 
analysis to other applications including those that are 
memory bandwidth limited. In future work, we will extend 
our analysis to other applications including those that are 
memory bandwidth limited. 

ACKNOWLEDGMENT 

We would like to thank Microsoft for their collaboration 
and support. Tony Hey, George Chrysanthakopoulos and 
Henrik Frystyk Nielsen played key roles in providing 
technical support. We appreciate our collaborators from IU 
School of Informatics and Computing. Haixu Tang and Mina 
Rho gave us important feedback on Alu and Metagenomics 
data. 

REFERENCES 
[1] Judy Qiu, Jaliya Ekanayake, Thilina Gunarathne, Jong Youl Choi,

Seung-Hee Bae, Yang Ruan, Saliya Ekanayake, Stephen Wu, Scott
Beason, Geoffrey Fox, Mina Rho, Haixu Tang, “Data Intensive
Computing for Bioinformatics”, submitted as a book chapter for book
“Data Intensive Distributed Computing”, IGI Publishers, 2010. 

[2] Fox, G., Qiu, X., Beason, S., Choi, J. Y., Rho, M., Tang, H., et al.
(2009). "Biomedical Case Studies in Data Intensive Computing," in
Proceedings of The 1st International Conference on Cloud Computing 
(CloudCom 2009). Springer Verlag. 

[3] i-MapReduce Home Page.  http://www.iterativemapreduce.org. 
[4] G. Fox, S.H. Bae, J. Ekanayake, X. Qiu, H. Yuan Parallel Data

Mining from Multicore to Cloudy Grids Proceedings of HPC 2008
High Performance Computing and Grids workshop. Cetraro, Italy.
July 3 2008.

[5] K. Rose, “Deterministic Annealing for Clustering, Compression,
Classification, Regression, and Related Optimization Problems”,
Proceedings of the IEEE, vol. 80, pp. 2210-2239, November 1998. 

[6] Kenneth Rose, Eitan Gurewitz, and Geoffrey C. Fox “Statistical
mechanics and phase transitions in clustering” Phys. Rev. Lett. 65,
945 - 948 (1990)

[7] T Hofmann, JM Buhmann “Pairwise data clustering by deterministic
annealing”, IEEE Transactions on Pattern Analysis and Machine
Intelligence 19, pp1-13 1997 

[8] Microsoft Robotics Studio is a Windows-based environment that
includes end-to-end Robotics Development Platform, lightweight
service-oriented runtime, and a scalable and extensible platform. For
details, see http://msdn.microsoft.com/robotics/

[9] Georgio Chrysanthakopoulos and Satnam Singh “An Asynchronous
Messaging Library for C#”, Synchronization and Concurrency in
Object-Oriented Languages (SCOOL) at OOPSLA October 2005
Workshop, San Diego, CA. 

[10] M.A. Batzer,  P.L. Deininger,  2002. "Alu Repeats And Human
Genomic Diversity." Nature Reviews Genetics 3, no. 5: 370-379.
2002 

[11] A. F. A. Smit,  R. Hubley, P. Green, 2004. Repeatmasker.
http://www.repeatmasker.org

[12] J. Jurka, 2000. Repbase Update: a database and an electronic journal
of repetitive elements. Trends Genet. 9:418-420 (2000). 

[13] Xiaohong Qiu, Geoffrey C. Fox, Huapeng Yuan, Seung-Hee Bae,
George Chrysanthakopoulos, Henrik Frystyk Nielsen “Parallel
Clustering and Dimensional Scaling on Multicore Systems” Invited
talk at the 2008 High Performance Computing & Simulation
Conference (HPCS 2008) Nicosia, Cyprus June 3 - 6, 2008.

[14] Xiaohong Qiu, Geoffrey C. Fox, Huapeng Yuan, Seung-Hee Bae,
George Chrysanthakopoulos, Henrik Frystyk Nielsen “Performance
of Multicore Systems on Parallel Data Clustering with Deterministic
Annealing” ICCS 2008 Kraków, Poland; June 23-25, 2008. Springer
Lecture Notes in Computer Science Volume 5101, pages 407-416,
2008. DOI: http://dx.doi.org/10.1007/978-3-540-69384-0_46

[15] Xiaohong Qiu , Geoffrey C. Fox, Huapeng Yuan, Seung-Hee Bae,
George Chrysanthakopoulos, Henrik Frystyk Nielsen “Parallel Data
Mining on Multicore Clusters” 7th International Conference on Grid
and Cooperative Computing GCC2008 Shenzhen China October 24-
26 2008 . 

[16] Daan Leijen and Judd Hall, “Optimize Managed Code For Multi-Core
Machines” http://msdn.microsoft.com/en-us/magazine/cc163340.aspx 

[17] The OpenMP parallel programming API http://openmp.org/wp/ 

819


