
Keynote Speech
Collaborative Web Services and Peer-to-Peer Grids

Geoffrey Fox1,2,4, Hasan Bulut2, Kangseok Kim2, Sung-Hoon Ko1, Sangmi Lee5, Sangyoon Oh2, Shrideep Pallickara1,
Xiaohong Qiu1,3, Ahmet Uyar1,3, Minjun Wang1,3, Wenjun Wu1

1Community Grid Computing Laboratory, Indiana University
501 N Morton Suite 224, Bloomington IN 47404

2Computer Science Department, Indiana University
3EECS Department, Syracuse University

4School of Informatics and Physics Department, Indiana University
5Computer Science Department Florida State University

gcf@indiana.edu , hbulut@cs.indiana.edu , kakim@cs.indiana.edu
shko@grids.ucs.indiana.edu , slee@grids.ucs.indiana.edu , ohsangy@cs.indiana.edu ,

spallick@indiana.edu , xiqiu@syr.edu , auyar@syr.edu , mwang03@syr.edu , wewu@indiana.edu

Abstract
We define Peer-to-Peer Grids built around integration of
technologies from the peer-to-peer and grid fields. Grids
provide robust largely asynchronous shared resources for
virtual organizations. We show how one can extend this to
synchronous collaboration with a common peer-to-peer
Grid architecture. Two building blocks are a common
dynamic messaging environment and systematic use of Web
Services including one to support session specification and
control. We present our prototype audio-video
conferencing Web Service and messaging environment
NaradaBrokering. We describe a core collaboration Web
Service defined with an XML protocol XGSP subsuming
the capabilities of H323, SIP and JXTA.

1 Peer-to-Peer Grids
There are no crisp definitions of Grids [1,2] and

Peer-to-Peer (P2P) Networks [3] that allow us to
unambiguously discuss their differences and similarities and
what it means to integrate them. However these two
concepts conjure up stereotype images that can be
compared. Taking “extreme” cases, Grids are exemplified
by the infrastructure used to allow seamless access to
supercomputers and their datasets. P2P technology is
exemplified by Napster and Gnutella, which can enable ad
hoc communities of low-end clients to advertise and access
the files on the communal computers. Each of these
examples offers services but they differ in their
functionality and style of implementation. The P2P example
could involve services to set-up and join peer groups,
browse and access files on a peer, or possibly to advertise
one’s interest in a particular file. The “classic” grid could
support job submittal and status services and access to
sophisticated data management systems. Grids typically
have structured robust security services while P2P networks
can exhibit more intuitive trust mechanisms reminiscent of
the “real world”. Again Grids typically offer robust services
that scale well in pre-existing hierarchically arranged
organizations; P2P networks are often used when a best
effort service is needed in a dynamic poorly structured

community. If one needs a particular “hot digital
recording”, it is not necessary to locate all sources of this; a
P2P network needs to search enough plausible resources
that success is statistically guaranteed. On the other hand, a
3D simulation of the universe might need to be carefully
scheduled and submitted in a guaranteed fashion to one of
the handful of available supercomputers that can support it.

In this article, we use the concept of a Peer-to-Peer
Grid shown in figure 1 with a set of services that include
those of Grids and P2P networks and support naturally
environments that have features of both limiting cases. We
will use the emerging Web Services model being used in
both Internet and Grid communities and described in
[4,5,6]. Here we capture the essence [7] of Web Services as
using a distributed object model with all interfaces defined
as “ports” interacting with XML specified messages.

2 Collaboration in P2P Grids
Both Grids and P2P networks are associated with
collaborative environments. P2P networks started with ad-
hoc communities such as those sharing MP3 files; Grids

Fig. 1 Peer-to-Peer Grid of Resources linked by messages

Database
Database

Service Facing
Web Service Interfaces

Messages

User Facing
Web Service Interfaces

support virtual enterprises or organizations – these are
unstructured and structured societies respectively. At a high
level collaboration involves sharing and in our context this
is sharing of Web Services, objects or resources. These last
three concepts are in principle essentially the same thing
although today sharing “legacy applications” like Microsoft
Word is not so easily considered as sharing Web services.
Nevertheless we can expect that Web Service interfaces to
“everything” will eventually be available and will take this
point of view below where Word, a Web Page, a computer
visualization or the audio-video (at say 30 frames per
second) from some video-conferencing system will all be
viewed as objects or resources with a known Web service
interface.

There are many styles and approaches to
collaboration. In asynchronous collaboration, different
members of a community access the same resource; the
Web has revolutionized asynchronous collaboration with in
its simplest form, one member posting or updating a web
page, and others accessing it. Asynchronous collaboration
has no special time constraint and typically each community
member can access the resource in their own fashion;
objects are often shared in a coarse grain fashion with a
shared URL pointing to a large amount of information.
Asynchronous collaboration is quite fault-tolerant as each
user can manage their access to the resource and
independently accommodate difficulties such as poor
network connectivity; further well-established caching
techniques can usually be used to improve access
performance as the resource is not expected to change
rapidly. Synchronous collaboration is at a high level no
different from the asynchronous case except that the sharing
of information is done in real-time. The “real-time”
constraint implies delays of around 10-1000 msec. per
participant or rather “jitter in transit delays” of a “few”
msecs. Note these timing can be compared to the second or
so it takes a browser to load a new page; the several seconds
it takes a lecturer to gather thoughts at the start of a new
topic (new PowerPoint slide); and the 30 msec. frame size
natural in audio/video transmission. These numbers are
much longer than the parallel computing MPI message
latency measured in microsecond(s) and even the 0.5-3
msec. typical latency of a middle-tier broker. We exploit
this observation in section 5 to build powerful messaging
subsystems at the cost of such middleware broker overhead.
Nevertheless synchronous collaboration is much harder than
the asynchronous case for several reasons. [8,9] The current
Internet has no reliable quality of service and so it hard to
accommodate problems coming from unreliable networks
and clients. If your workstation crashes during a an
asynchronous access, one just needs to reboot and restart
one’s viewing at the point of interruption; unfortunately in
the synchronous case, after recovering from an error, one
cannot resume where one lost contact because the rest of the
collaborators have moved on. Further synchronizing objects

among the community must often be done at a fine grain
size. For asynchronous education, the teacher can share a
complete lecture whereas in a synchronous session we
might wish to share a given page in a lecturer with a
particular scrolling distance and particular highlighting. In
summary synchronous and asynchronous collaboration both
involve object sharing but the former is fault sensitive, has
modest real-time constraints and requires fine grain object
state synchronization. The application of collaboration in
research and education is discussed in refs. [10] and [11]
respectively.

The sharing mechanism can be roughly the same
for both synchronous and asynchronous case. One needs to
establish communities (peer groups) by either direct
(members join a session) or indirect (members express
interest in topics and are given opportunity to satisfy this
interest). The indirect mechanism is most powerful and is
familiar in P2P systems with JXTA [12] using XML
expressed advertisements to link together those interested in
a particular topic. Audio-video conferencing systems
typically have a direct method with perhaps email used to
alert potential attendees of an upcoming session.
Commercial web-conferencing systems like WebEx [13]
and Placeware [14] use this approach. In asynchronous
collaboration, one typically “just” has notification
mechanisms for object availability and update. However
such sharing environments do not usually support the
“microscopic” events as say one user edits a file; rather
“major events” (check-in and check-out) are communicated
between participants. Nevertheless synchronous and
asynchronous collaboration can be supported by variants of
the same publish-subscribe messaging technology of the
type described in section 5.

Collaboration involves multiple capabilities which
we now discuss in a Web Services or Grid framework.
1. Mechanism to set up members (people, devices) of a

"collaborative sessions" and their properties
2. Generic shared tools such as text chat, white boards, and

audio-video conferencing
3. Shared applications such as Web Pages, PowerPoint,

and scientific visualization
In section 3, we describe the first item as a

"Collaboration as a Web service" which is currently set
using standards like H323 SIP or JXTA. The last two
categories in the list above can be viewed as "just shared
objects" where objects could be Web Services but typically
are not at the moment. In section 4, we suppose that we can
port all objects to Web Services and describe how one can
build a general approach for making such Web services
collaborative. This gives us "Collaborative Web Services"
with one example -- audio-video conferencing -- given in
section 3.

3 Collaboration as a Web Service
Here we also discuss audio-video (A/V) conferencing as a
Web Service because the two best known session
specification standards SIP and H323 are associated with
this application. We have [15,16] defined an XML
specification XGSP defining session information for both
general collaborations and the A/V subsystem. This
describes registration, session parameters, session
membership, negotiation (of for instance common codecs)
and linkage of clients to media servers.

Figure 2 shows our prototype with multiple clients – the
Access Grid from Argonne [17], a typical H323 client
(such as a commercial Polycom system [18]) and one using
a native XGSP framework, interoperating. There is the
specialized A/V application media server and the general
session server with a web interface. We describe the
messaging environment NaradaBrokering in section 5.

4 Collaborative Web Services

In order to describe a general approach [19] to
collaboration, we need to assume that every Web service
has one or more ports in each of categories shown in fig. 3.
We exploit the fact that the state and results of each Web
service is entirely defined by messages on these ports. The
first category are (resource-facing) ports which supply the
information needed to define the state of the Web service;

these may be augmented by user-facing input port(s) that
allow control information to be passed by the user. The final
category is formed by user-facing output ports that supply
information needed to construct the user interface.
Asynchronous collaboration can share the data (e.g. URL
for a Web page or body of an email message) needed to
define a Web service (display Web page or browse e-mail
in examples).

Let us now consider synchronous collaboration. If
one examines an object, then there is typically some
pipeline as seen in fig. 4 from the original object to the
eventual displayed user interface; we here assume that each
stage of the pipeline is a Web service with data flowing
from one to another. Rather than a simple pipeline, one can
have a complex dynamic graph linking services together but
this does not change this discussion. Note that such a
pipeline is natural to support not only needed
transformations but also modern portal architectures [20,
21] where one stage in the pipeline corresponds to the
aggregation shown in fig. 5.

One can get different types of sharing depending
on which “view” of the basic object one shares i.e. on where
one intercepts the pipeline and shares the flow of
information after this interception. We can identify three
particularly important cases illustrated in figures 6, 7 and 8;
these are shared display, shared input port and shared user-
facing output port. The shared input port case is usually
called “shared event” but in fact in a modern architecture
with all resources communicating by messages, all
collaboration modes can be implemented with a similar
event mechanism described in section 5. In each
collaboration mode we assume there is a single “master”
client which “controls” the Web service; one can in fact
have much more complex scenarios with simultaneous and
interchangeable control. However in all cases, there is

Fig. 2 Integration of multiple A/V subsystems using XGSP

H323
Client

XGSP
Client

Access Grid
ClientMedia Server

Collaboration
Web Server

 Session
Server

G
a
t
e
w
a
y

XGSP

NaradaBrokering
Messaging

Fig. 5 Web Service User Facing Ports and Aggregation
Portals

Application or
Content source

WSDL

Web Service

F
I

U

O

F
I

R

O

Portal
Aggregate

WS-User Facing
Fragments

Render

Other WS
User Facing
Ports

Other WS

Fig. 3 User and Resource Facing Ports of a Web Service

User Facing
Input (Control)
and Output Ports

Resource Facing
Ports defining
Web Service

Application or
Content source

WSDL

Web Service

F
I

U

O

F
I

R

O

Fig. 4 Typical Pipeline between Web services

Object
Or WS

Object’
Or WS’’

Object’’
Or WS”

Object
Or WS
Display

Object
Or WS
Viewer

instantaneously one “master” and one must transmit the
state as seen by this system to all other participants.

In shared display model of fig. 6, one shares the
bitmap (vector) display and the state is maintained between
the clients by transmitting (with suitable compression) the
changes in the display. As with video compression like
MPEG, one uses multiple event types with some defining
full display and others just giving updates. Obviously the
complete display requires substantial network bandwidth
but it is useful every now and then so that one can support
clients joining throughout session, has more fault tolerance
and can define full display update points (major events)
where asynchronous clients can join a recording.
Supporting heterogeneous clients requires that sophisticated
shared display environments automatically change size and
color resolution to suit each community member. Shared
display has one key advantage – it can immediately be
applied to all shared objects; it has two obvious
disadvantages – it is rather difficult to customize and
requires substantial network bandwidth.

In the shared input port (or input message) model
of fig. 7, one replicates the Web service to be shared with
one copy for each client. Then sharing is achieved by
intercepting the pipeline before the master web service and
directing copies of the messages on each input port of the
“master” Web service to the replicated copies. Only the
user-facing ports in this model are typically partially shared
with data from the master transmitted to each replicated
Web service but in a way that can be overridden on each
client. We can illustrate this with a more familiar
PowerPoint example. Here all the clients have a copy of the
PowerPoint application and the presentation to be shared.
On the master client, one uses some sort of COM wrapper
to detect PowerPoint change events such as slide and
animation changes. These “change” events are sent to all
participating clients. This model isn’t usually phrased as
“shared input ports” but that’s just because PowerPoint as
currently shipped is not set up as a Web service with a
messaging interface. One can build a similar shared Web
browser and for some browsers (such as that for SVG from
Apache) one can in fact directly implement the Web service
model. [22-24] There is a variant here as one can either trap
internal events (such as slide changes in PowerPoint or
textareas changes in a browser) or the external mouse and
keyboard events that generated them. We once developed a
sophisticated shared browser using the JavaScript event
model to trap user input to a browser. These events were
transmitted directly to participating clients to implement
such a shared input port model with the user interface
playing the role of input ports. We can hope that
developments [25] such as WSRP and WSIA (Web services
for Remote Portals and Interactive Applications) will define
user-facing message ports and the interactions of Web
services with input devices so that a coherent systematic
approach can be given for replicated Web services with
shared input ports.

Fig. 8 Shared Output Port Model for a Collaborative Web
Service

WS
Display

WS
Viewer

WS
Display

WS
Viewer

Event
(Message)

Service

Master

WS
Display

WS
Viewer

Web Service Message
Interceptor

Application or
Content source

WSDL

Web Service

F
I

U

O

F
I

R

O

Shared Output Port Collaboration

Other
Participants

Collaboration as a WS
Set up Session with XGSP

Fig. 6 Shared Display Collaboration Mode

Shared Display
WS

Display

WS
Display

Event
(Message)

Service

Other
Participants

Object
Or WS
Display

Object
Or WS
Viewer

Object
Or WS

Object’
Or WS’’

Object’’
Or WS”

Master

Fig. 7 Shared Input Port Model for Collaborative Web
Services

WS
Display

WS
Viewer

WS
Display

WS
ViewerEvent

(Message)
Service

Master

WS
Display

WS
Viewer

Web
Servic

e

F

I

U

O

F

I

R

O

Shared Input Port (Replicated WS) Collaboration

Other
Participants

Web
Servic

e

F

I

U

O

F

I

R

O

Web
Servic

e

F

I

U

O

F

I

R

O

Collaboration as a WS
Set up Session with XGSP

The shared output port model of fig 8 only
involves a single Web service with user-facing ports giving
a messaging interface to the client. As in the next section
and fig. 5, a portal could manage these user-facing ports.
As (by definition) the user-facing ports of a Web service
define the user interface, this mechanism simply gives a
collaborative version of any Web service. One simple
example can be built around any content or multi-media
server with multi-cast output stream(s). This method
naturally gives, like shared display, an identical view for
each user but with the advantage of typically less network
bandwidth since the bitmap display usually is more
voluminous than the data transmitted to the client to define
the display. Elsewhere [19, 22, 23], we discuss user
interfaces and suggest that the user facing ports should not
directly define the interface but a menu allowing the client
to choose the interface style. In such a case, one can obtain
from the shared user-facing model, collaborative views that
are customized for each user. Of course the replicated Web
service model of fig. 7 offers even greater customizability
as each client has the freedom to accept or reject data
defining the shared Web service.

Here we have discussed how to make general
applications collaborative. Figs. 7 and 8 also use the
(XGSP-based) core collaboration web service introduced in
section 3 [15,16] with ports allowing sessions to be defined
and to interact with the event service. This collaboration
web service can support both asynchronous and all modes
of synchronous collaboration.

5 NaradaBrokering Message Service
We have designed and implemented a system
NaradaBrokering [26-28] supporting the messaging needed
in a Peer-to-Peer Grid with a dynamic collection of brokers
supporting a generalized publish-subscribe mechanism.

This system “intercepts” all messages and provides
capabilities that can be performed at the message level

independent of the the details of the services generating the
messages. The routing includes dynamic protocol choice
and tunneling through firewalls to provide optimized
transport subject to application-level quality of service
requirements. It supports TCP,UDP, multicast, SSL and
RTP. NaradaBrokering breaks a given message
transmission into links (each between NaradaBrokering
nodes) and attempts to use the most appropriate protocol on
each link using a built-in performance monitoring service.
As described elsewhere [5,6,19, 26-28] this can operate
either in a client-server mode like JMS (the Java Message
Service [29]) or in a completely distributed JXTA-like peer-
to-peer mode. By combining these two disparate models,
NaradaBrokering can allow optimized performance-
functionality trade-offs for different scenarios. Note as
mentioned earlier, that typical overheads for broker
processing are around one millisecond. This is acceptable
for real-time collaboration [16] and even audio-video
conferencing where each frame takes around 30
milliseconds. We have demonstrated that such a general
messaging system can be applied to real-time synchronous
collaboration using the commercial Anabas infrastructure
[30]. The Anabas system uses JMS to handle all
collaboration modes and we have successfully used
NaradaBrokering to replace JMS in this case.

Thus in collaboration, NaradaBrokering provides
the appropriate (software controlled multicast) linkage
between session participants and further copes with
firewalls and other transport link issues. In the case of slow
links such as dial-up links and handheld clients,
NaradaBrokering supports filtering of the messages to
change formats such as reducing resolution of an image or
choosing a more compact codec for audio-video messages.
We have built “all” protocol s into NaradaBrokering so that
can be used in all collaboration applications including those
needing UDP and TCP/IP

Acknowledgments
This publication made possible through partial support
provided by DoD High Performance Computing
Modernization Program (HPCMP) Programming
Environment & Training (PET) activities through
Mississippi State University under the terms of Agreement
No. # GS04T01BFC0060. The University of Illinois also
provided support through the PACI Partners program
funded by NSF. The opinions expressed herein are those of
the authors and do not necessarily reflect the views of the
sponsors.

References
1. The Grid Forum http://www.gridforum.org
2. Globus Grid Project http://www.globus.org

Fig. 9 Architecture of NaradaBrokering Message/Event
Serice

Web
Service 1

(Virtual)
Queue

Web
Service 2

WSDL
Ports

Abstract
Application

Interface

Message
or Event
Broker

WSDL
Ports
Abstract
Application
Interface

Message
System

Interface

Destination
 Source

 Matching
FilterRouting workflow

User
Profiles And

Customization

3. “Peer-To-Peer: Harnessing the Benefits of a Disruptive
Technology”, edited by Andy Oram, O’Reilly Press
March 2001.

4. Fran Berman, Geoffrey Fox and Tony Hey, ‘Grid
Computing: Making the Global Infrastructure a
Reality’, John Wiley & Sons Ltd, Chichester, 2003. See
http://www.grid2002.org

5. Hasan Bulut, Geoffrey Fox, Dennis Gannon, Kangseok
Kim, Sung-Hoon Ko, Sangmi Lee, Sangyoon Oh, Xi
Rao, Shrideep Pallickara, Quinlin Pei, Marlon Pierce,
Aleksander Slominski, Ahmet Uyar, Wenjun Wu,
Choonhan Youn “An Architecture for e-Science and its
Implications” presented at 2002 International
Symposium on Performance Evaluation of Computer
and Telecommunication Systems (SPECTS 2002) July
17 2002. http:
//grids.ucs.indiana.edu/ptliupages/publications/spectses
cience.pdf

6. Geoffrey Fox, Ozgur Balsoy, Shrideep Pallickara,
Ahmet Uyar, Dennis Gannon, and Aleksander
Slominski, "Community Grids" invited talk at The
2002 International Conference on Computational
Science, April 21 -- 24, 2002 Amsterdam, The
Netherlands. http:
//grids.ucs.indiana.edu/ptliupages/publications/iccs.pdf

7. Web Services Description Language(WSDL) version
1.1 http://www.w3.org/TR/wsdl

8. Collection of Resources on distance education by G.
Fox http:
//grids.ucs.indiana.edu/ptliupages/publications/disted/.

9. Fox, G., Scavo, T., Bernholdt, D., Markowski, R.,
McCracken, N., Podgorny, M., Mitra, D., and Malluhi,
Q., ``Synchronous Learning at a Distance: Experiences
with TANGO Interative''. Supercomputing 98
Conference, November 1998. http://www.old-
npac.org/projects/training/Papers/sc98/

10. Geoffrey Fox, Sung-Hoon Ko, Marlon Pierce, Ozgur
Balsoy, Jake Kim, Sangmi Lee, Kangseok Kim,
Sangyoon Oh, Xi Rao, Mustafa Varank, Hasan Bulut,
Gurhan Gunduz, Xiaohong Qiu, Shrideep Pallickara,
Ahmet Uyar, Choonhan Youn, Grid Services for
Earthquake Science; Concurrency and Computation:
Practice and Experience in ACES Special Issue, 14,
371-393, 2002. http:
//aspen.ucs.indiana.edu/gemmauisummer2001/resource
s/gemandit7.doc

11. Geoffrey Fox, “Education and the Enterprise with the
Grid”, chapter in ref. 4.

12. Sun Microsystems JXTA Peer to Peer technology. http:
//www.jxta.org.

13. WebEx Collaboration Environment. http:
//www.webex.com

14. Placeware Collaboration Environment. http:
//www.placeware.com

15. Geoffrey Fox, Wenjun Wu, Ahmet Uyar, Hasan Bulut
"A Web Services Framework for Collaboration and
Audio/Videoconferencing"; proceedings of 2002
International Conference on Internet Computing IC'02:
Las Vegas, USA, June 24-27, 2002. http:
//grids.ucs.indiana.edu/ptliupages/publications/avwebse
rviceapril02.pdf

16. Hasan Bulut, Geoffrey Fox, Shrideep Pallickara,Ahmet
Uyar and Wenjun Wu, Integration of NaradaBrokering
and Audio/Video Conferencing as a Web Service. http:
//grids.ucs.indiana.edu/ptliupages/publications/AVOver
NaradaBrokering.pdf

17. Access Grid Conferencing Environment from Argonne
National Laboratory, http://www.accessgrid.org

18. Polycom Conferencing Environment http:
//www.polycom.com

19. Geoffrey Fox, Dennis Gannon, Sung-Hoon Ko, Sangmi
Lee, Shrideep Pallickara, Marlon Pierce, Xiaohong
Qiu, Xi Rao, Ahmet Uyar, Minjun Wang, Wenjun Wu,
"Peer-to-Peer Grids", chapter in ref. 4.

20. Jetspeed Portal from Apache http:
//jakarta.apache.org/jetspeed/site/index.html

21. O. Balsoy, M. S. Aktas, G. Aydin, M. N. Aysan, C.
Ikibas, A. Kaplan, J. Kim, M. E. Pierce, A. E. Topcu,
B. Yildiz, and G. C. Fox., "The Online Knowledge
Center: Building a Component Based Portal."
Proceedings of the International Conference on
Information and Knowledge Engineering, 2002. http:
//grids.ucs.indiana.edu:
9000/slide/ptliu/research/gateway/Papers/OKCPaper.pd
f

22. Geoffrey Fox, Sung-Hoon Ko, Kangseok Kim,
Sangyoon Oh, Sangmi Lee, "Integration of Hand-Held
Devices into Collaborative Environments"; proceedings
of the 2002 International Conference on Internet
Computing (IC-02). June 24-27 Las Vegas. http:
//grids.ucs.indiana.edu/ptliupages/publications/pdagarn
etv1.pdf.

23. Sangmi Lee, Geoffrey Fox, Sunghoon Ko, Minjun
Wang, Xiaohong Qiu, "Ubiquitous Access for
Collaborative Information System using SVG",
Proceedings of SVGopen conference July 2002, Zurich,
Switzerland. http:
//grids.ucs.indiana.edu/ptliupages/projects/carousel/pap
ers/draft.pdf

24. Geoffrey Fox, Sangmi Lee, Sunghoon Ko, Kangseok
Kim, Sangyoon Oh, "CAROUSEL Web service:
Universal Accessible Web service Architecture for
Collaborative Application",November 2002, http:
//grids.ucs.indiana.edu/ptliupages/publications/Carousel
_PerCom03.doc.

25. OASIS Web Services for Remote Portals (WSRP) and
Web Services for Interactive Applications (WSIA) http:
//www.oasis-open.org/committees/

26. Geoffrey Fox and Shrideep Pallickara “The
NaradaBrokering Event Brokering System: Overview
and Extensions; proceedings of the 2002 International
Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA'02). http:
//grids.ucs.indiana.edu/ptliupages/projects/NaradaBrok
ering/papers/NaradaBrokeringBrokeringSystem.pdf

27. Geoffrey Fox and Shrideep Pallickara “JMS
Compliance in the NaradaBrokering Event Brokering
System” to appear in the proceedings of the 2002
International Conference on Internet Computing
(IC-02). http:

//grids.ucs.indiana.edu/ptliupages/projects/NaradaBrok
ering/papers/JMSSupportInNaradaBrokering.pdf

28. Geoffrey Fox, Shrideep Pallickara, and Xi Rao, "A
Scaleable Event Infrastructure for Peer to Peer Grids",
proceedings of 2002 Java Grande/ISCOPE Conference,
Seattle, November 2002, ACM Press, ISBN
1-58113-599-8, pages 66-75. http:
//grids.ucs.indiana.edu/ptliupages/publications/Scaleabl
eEventArchForP2P.doc

29. Sun Microsystems. Java Message Service .http:
//java.sun.com/products/jms

30. Anabas Collaboration Environment, http:
//www.anabas.com

