
Cloud Technologies for Bioinformatics Applications
Xiaohong Qiu1, Jaliya Ekanayake 1,2, Scott Beason1, Thilina Gunarathne1,2, Geoffrey Fox1,2

1Pervasive Technology Institute, 2School of Informatics and Computing,
Indiana University

Bloomington IN, U.S.A.
{ xqiu, jekanaya, smbeason, tgunarat, gcf@indiana.edu}

Roger Barga3, Dennis Gannon3
3Microsoft Research

Microsoft Corporation
Redmond WA, U.S.A

{Barga, Dennis.Gannon@microsoft.com}

ABSTRACT
Executing large number of independent tasks or tasks that perform
minimal inter-task communication in parallel is a common
requirement in many domains. In this paper, we present our
experience in applying two new Microsoft technologies Dryad
and Azure to three bioinformatics applications. We also compare
with traditional MPI and Apache Hadoop MapReduce
implementation in one example. The applications are an EST
(Expressed Sequence Tag) sequence assembly program, PhyloD
statistical package to identify HLA-associated viral evolution, and
a pairwise Alu gene alignment application. We give detailed
performance discussion on a 768 core Windows HPC Server
cluster and an Azure cloud. All the applications start with a
“doubly data parallel step” involving independent data chosen
from two similar (EST, Alu) or two different databases (PhyloD).
There are different structures for final stages in each application.

Categories and Subject Descriptors
C.4 PERFORMANCE OF SYSTEMS; D.1.3 Concurrent
Programming; E.5 FILES; J.3 LIFE AND MEDICAL SCIENCES

General Terms
Algorithms, Performance.

Keywords
Cloud, bioinformatics, Multicore, Dryad, Hadoop, MPI

1. INTRODUCTION
There is increasing interest in approaches to data analysis in
scientific computing as essentially every field is seeing an
exponential increase in the size of the data deluge. The data sizes
imply that parallelism is essential to process the information in a
timely fashion. This is generating justified interest in new
runtimes and programming models that unlike traditional parallel
models such as MPI, directly address the data-specific issues.

Experience has shown that at least the initial (and often most time
consuming) parts of data analysis are naturally data parallel and
the processing can be made independent with perhaps some
collective (reduction) operation. This structure has motivated the
important MapReduce paradigm and many follow-on extensions.
Here we examine four technologies (Dryad [1], Azure [2] Hadoop
[8] and MPI) on three different bioinformatics application
(PhyloD [3], EST [4, 5] and Alu clustering [6, 7]). Dryad is an
implementation of extended MapReduce from Microsoft and
Azure is Microsoft’s cloud technology. All our computations were
performed on Windows Servers with the Dryad and MPI work
using a 768 core cluster Tempest consisting of 32 nodes each of
24-cores. Each node has 48GB of memory and four Intel six core
Xenon E7450 2.4 Ghz chips. All the applications are (as is often
so in Biology) “doubly data parallel” (or “all pairs” [24]) as the
basic computational unit is replicated over all pairs of data items
from the same (EST, Alu) or different sources (PhyloD). In the
EST example, each parallel task executes the CAP3 program on
an input data file independently of others and there is no
“reduction” or “aggregation” necessary at the end of the
computation, where as in the Alu case, a global aggregation is
necessary at the end of the independent computations to produce
the resulting dissimilarity matrix that is fed into traditional high
performance MPI. PhyloD has a similar initial stage which is
followed by an aggregation step. In this paper we evaluate the
different technologies showing they give similar performance in
spite of the different programming models.

In section 2, we describe the three applications EST, PhyloD and
Alu sequencing while the technologies are discussed in section 3
(without details of the well known Hadoop system). Section 4
presents some performance results. Conclusions are given in
section 6 after a discussion of related work in section 5.

2. APPLICATIONS
2.1 EST and its software CAP3
An EST (Expressed Sequence Tag) corresponds to messenger
RNAs (mRNAs) transcribed from the genes residing on
chromosomes. Each individual EST sequence represents a
fragment of mRNA, and the EST assembly aims to re-construct
full-length mRNA sequences for each expressed gene. Because
ESTs correspond to the gene regions of a genome, EST
sequencing has become a standard practice for gene discovery,

especially for the genomes of many organisms that may be too
complex for whole-genome sequencing. EST is addressed by the
software CAP3 which is a DNA sequence assembly program
developed by Huang and Madan [4]. that performs several major
assembly steps: these steps include computation of overlaps,
construction of contigs, construction of multiple sequence
alignments, and generation of consensus sequences to a given set
of gene sequences. The program reads a collection of gene
sequences from an input file (FASTA file format) and writes its
output to several output files, as well as the standard output.
We have implemented a parallel version of CAP3 using Hadoop
[8], CGL-MapReduce [12], and Dryad but we only report on a
new Dryad study here.

2.2 PhyloD

Figure 1. Pictorial representation of PhyloD output.
PhyloD is a statistical package to identify HLA-associated viral
evolution from the given sample data. It is available today as a
web application [13] and as downloadable source code [11].
Running PhyloD jobs is a compute intensive process. PhyloD-
Cloud is an effort to leverage Windows Azure as a computing
platform and create a scalable web-based application to process
PhyloD jobs. Users should be able to submit reasonably large jobs
using this web application with minimal manual involvement.

The package is used to derive associations between HLA alleles
and HIV codons and between codons themselves. The uniqueness
of PhyloD comes from the fact that it takes into consideration the
phylogenic evolution of the codons for producing its results. The
package takes as input the phylogenic tree information of the
codons, the information about presence or absence of HLA alleles
and the information about presence or absence of HIV codons. It
fits its inputs to a generative model and computes a ‘p-value’, a
measure of the association between HLA alleles and the HIV
codons. For a set of such computed p-values, the package may
also compute a ‘q-value’ per p-value which is an indicative
measure of the significance of the result. Figure 1 presents the
output of one such run. Arcs indicate association between codons,
colors indicate q-values of the most significant association
between the two attributes.

At a high level, a run of PhyloD does the following: (i) compute a
cross product of input files to produce all allele-codon pairs, (ii)
For each allele-codon pair, compute p value, and (iii) using the p
values from the previous step, compute the q value for each allele-
codon pair. The computation of p value for an allele-codon pair

can be done independently of other p value computations and each
such computation can use the same input files. This gives PhyloD
its “data-parallel” characteristics namely, (i) ability to partition
input data into smaller logical parts and (ii) workers performing
same computation on data partitions without much inter-process
communication.

2.3 Alu Sequence Classification
The Alu clustering problem [7] is one of the most challenging
problems for sequencing clustering because Alus represent the
largest repeat families in human genome. There are about 1
million copies of Alu sequences in human genome, in which most
insertions can be found in other primates and only a small fraction
(~ 7000) are human-specific. This indicates that the classification
of Alu repeats can be deduced solely from the 1 million human
Alu elements. Notable, Alu clustering can be viewed as a classical
case study for the capacity of computational infrastructures
because it is not only of great intrinsic biological interests, but
also a problem of a scale that will remain as the upper limit of
many other clustering problem in bioinformatics for the next few
years, e.g. the automated protein family classification for a few
millions of proteins predicted from large metagenomics projects.
In our work here we examine Alu samples of 35339 and 50,000
sequences.

3. TECHNOLOGIES EXPLORED
3.1 Dryad
Dryad is a distributed execution engine for coarse grain data
parallel applications. It combines the MapReduce programming
style with dataflow graphs to solve the computation tasks. Dryad
considers computation tasks as directed acyclic graph (DAG)
where the vertices represent computation tasks and with the edges
acting as communication channels over which the data flow from
one vertex to another. The data is stored in (or partitioned to)
local disks via the Windows shared directories and meta-data files
and Dryad schedules the execution of vertices depending on the
data locality. (Note: The academic release of Dryad only exposes
the DryadLINQ API for programmers [9, 10]. Therefore, all our
implementations are written using DryadLINQ although it uses
Dryad as the underlying runtime). Dryad also stores the output of
vertices in local disks, and the other vertices which depend on
these results, access them via the shared directories. This enables
Dryad to re-execute failed vertices, a step which improves the
fault tolerance in the programming model.

3.2 Azure

Figure 2. Architecture of a typical Azure application
Windows Azure platform is an internet-scale cloud computing and
services platform hosted in Microsoft data centers. Unlike the
typical cloud environments where the users are offered with
virtualized hardware components such as load balancers, virtual
servers (E.g. Amazon EC2) and cloud storage services such as

Amazon S3 etc., Azure offers a collection of discrete scalable
components known as “roles” along with a set of storage and
communication components. The architecture of a typical Azure
application is shown in figure 2.
The web role and the worker role represent the processing
components of an Azure application. The web role is a web
application accessible via HTTP or HTTPs endpoints and is
hosted in an environment that supports subset of ASP.NET and
Windows Communication Foundation (WCF) technologies.
Worker role is the main processing entity in the Azure platform
which can be used to execute functions written in managed code,
scripts, or standalone executables on data products. Both web role
instances and worker role instances can access the storage
services.
Azure Queues are First in, First Out (not guaranteed) persistent
communication channels which can be used to develop complex
communication patterns among a set of corporation worker roles
and web roles. A set of tasks/jobs can be organized as a collection
of messages in an Azure queue and a set of workers can be
deployed to remove a message (a task/job) from the queue and
execute it. Azure provides three types of storage services Blob,
Queue, and Table. The blob represents a persistence storage
services comprising of collection of blocks. The user can store
data (or partitioned data) in blobs and access them from web and
worker role instances. Azure Tables provides structured storage
for maintaining service state. The Azure blobs and Queues have
close similarities to the Amazon Elastic Block storage and Simple
Queue Service.

3.3 Old Fashioned Parallel Computing
One can implement many of the functionalities of Dryad or
Hadoop using classic parallel computing including threading and
MPI. MPI in particular supports “Reduce” in MapReduce
parlance through its collective operations. The “Map” operation in
MPI, is just the concurrent execution of MPI processes in between
communication and synchronization operations. There are some
important differences such as MPI being oriented towards
memory to memory operations whereas Hadoop and Dryad are
file oriented. This difference makes these new technologies far
more robust and flexible. On the other the file orientation implies
that there is much greater overhead in the new technologies. This
is a not a problem for initial stages of data analysis where file I/O
is separated by a long processing phase. However as discussed in
[6], this feature means that one cannot execute efficiently on
MapReduce, traditional MPI programs that iteratively switch
between “map” and “communication” activities. We have shown
that an extension CGL-MapReduce can support both classic MPI
and MapReduce operations and we will comment further in
section 4.3 on this. CGL-MapReduce has a larger overhead than
good MPI implementations but this overhead does decrease to
zero as one runs larger and larger problems.
Simple thread-based parallelism can also support “almost
pleasingly parallel” applications but we showed that under
Windows, threading was significantly slower than MPI for Alu
sequencing. This we traced down to excessive context switching
in the threaded case. Thus in this paper we only look at MPI
running 24 processes per node on the Tempest cluster. Note that
when we look at more traditional MPI applications with
substantial communication between processes, one will reach
different conclusions as use of hybrid threaded on node-MPI
between node strategies, does reduce overhead [6].

4. PERFORMANCE ANALYSIS
4.1 EST and CAP3

Figure 3. Efficiency vs. number of CPU cores of DryadLINQ
implementation of the CAP3 application

We implemented a DryadLINQ application that performs CAP3
sequence assembly program in parallel. As discussed in section
2.1 CAP3 is a standalone executable that processes a single file
containing DNA sequences. To implement a parallel application
for CAP3 using DryadLINQ we adopt the following approach: (i)
the input files are partitioned among the nodes of the cluster so
that each node of the cluster stores roughly the same number of
input files; (ii) a “data-partition” (A text file for this application)
is created in each node containing the names of the input files
available in that node; (iii) a DryadLINQ “partitioned-file” (a
meta-data file understood by DryadLINQ) is created to point to
the individual data-partitions located in the nodes of the cluster.
Then we used the “Select” operation available in DryadLINQ to
apply a function (developed by us) on each of these input
sequence files. The function calls the CAP3 executable passing
the input file name and other necessary program parameters as
command line arguments. The function also captures the standard
output of the CAP3 program and saves it to a file. Then it moves
all the output files generated by CAP3 to a predefined location.
This application resembles a common parallelization requirement,
where an executable, a script, or a function in a special framework
such as Matlab or R, needs to be applied on a collection of data
items. We can develop DryadLINQ applications similar to the
above for all these use cases.
We measured the efficiency of the DryadLINQ implementation of
the CAP3 application using a data set of 2304 input files by
varying the number of nodes used for processing. The result of
this benchmark is shown in figure 3. The collection of input files
we used for the above benchmark contained different number of
gene sequences in each, and hence it did not represent a uniform
workload across the concurrent vertices of the DryadLINQ
application, because the time the CAP3 takes to process an input
file varies depending on the number of sequences available in the
input file. The above characteristics of the data produces lower
efficiencies at higher number of CPU cores as more CPU cores
become idle towards the end of the computation waiting for
vertices that takes longer time to complete. An architecture that
supports scheduling of independent tasks/jobs among set of
workers/processes depending on the priorities of the tasks/jobs
would perform an optimal scheduling of such a workload by
scheduling tasks/jobs that takes longest to complete first.
However, DryadLINQ and other MapReduce architectures do not
support this behavior, and in these architectures the scheduling of

maps/reducers (in MapReduce) or vertices (in Dryad) is handled
based on the availability of data and the computation power and
not by the priorities. To verify the above observation we measured
the utilization of vertices during two runs of the CAP3 program.
In our first run we used 768 input files so that Dryad schedules
768 vertices on 768 CPU cores, while in the second Dryad
schedules 1536 vertices on 768 CPU cores. The result of this
benchmark is shown in figure 4.

Figure 4. Number of active tasks/CPU cores along the running
times of two runs of CAP3.

The first graph in figure 4 corresponding to 768 files indicates that
although DryadLINQ starts all the 768 vertices at the same time
they finish at different times with long running tasks taking
roughly 40% of the overall time. The second graph (1536 files)
shows that the above effect has caused lower utilization of
vertices when Dryad schedules 1536 vertices to 768 CPU cores.
This is due to the way Dryad schedule tasks to compute nodes and
we have discussed this behavior extensively in [10]. We would
not expect the same behavior (for graph 2) in other MapReduce
implementations such as Hadoop, however, still the non-
uniformity of the processing time of parallel tasks and the simple
scheduling adopted by the MapReduce runtimes may not produce
optimal scheduling of tasks.

4.2 PhyloD
The parallel solution of PhyloD can be visualized as consisting of
the following three different phases as shown in Figure 2 (left).

Initial – During this phase, the input files are collected from the
user and copied to a shared storage available to all workers. Then
a sufficient number of workers are instantiated, each with the
information of the data partition it has to work on. To reduce the
parallel overhead, a worker can process multiple allele-codon
pairs. ComputePartial – Each worker processes its allotted
partition and produces intermediate results. These results are
again copied to a shared storage.

Summarize – During this phase, each of the intermediate results
produced during the ComputePartial phase are aggregated and the
final output is produced.

We developed an Azure application for the PhyloD application by
utilizing Azure Web Role, Worker Role, Blob Container, Work
Item Queue and Tracking tables described in sec. 3.2 generally
and their use in PhyloD is shown in Figure 2 (Right). The web
role is a simple ASP.NET application that allows clients to upload
input files and provide other job parameters. A blob container is
created per job which hosts the shared data between web and

worker roles. The uploaded input files are copied to this container
and an Initial work item is enqueued in the shared queue by the
web role. Worker roles continuously poll the work item queue for
new messages. A message encapsulates one of {Initial,
ComputePartial, Summarize} work items. The evaluation of these
work items is delegated to their respective processors. The
processors return a Boolean result for the evaluation. The calling
worker then removes the message from the queue or leaves it
there based on the results of the evaluation.

While processing an Initial work item, a worker role first tries to
locate the entry for this task in the JobSteps table. If the job step is
not found then it means that the web role enqueued the work item
and then encountered some error before creating the job step entry
in the table storage. No further action is taken in this case and the
job is marked ‘Aborted’. If the job step entry is found and its
status is ‘Completed’ we just remove this message from the
queue. A ‘Completed’ status indicates that a worker has already
processed this work item successfully but could not delete the
message from the queue due to, for example, network errors or
message timeout. After these checks are satisfied, the worker
updates the status of parent job to ‘In Progress’. It then enqueues
multiple ComputePartial work items in the queue and also creates
corresponding job steps in the JobSteps table. Each
ComputePartial work item has the partition information. The
worker then enqueues a Summarize work item and creates its
corresponding job step. Finally, it updates the status of Initial job
step to ‘Completed’ and removes the Initial work item from the
queue. ComputePartial work items are processed by multiple
worker roles simultaneously. Each worker processes its allotted
partition of the input data and copies the intermediate results to
the blob container. PhyloD engine works exclusively on files. So,
a pre-processing task of copying the original input files to worker
role’s local storage is required for each ComputePartial work
item. The worker follows similar checks for the status as in the
Initial processing. Finally, the Summarize work item is processed.
Intermediate results are aggregated to produce the final output
which is again copied back to the blob container. The results can
be downloaded via the web role. During the complete process,
status information is updated in azure tables for tracking purposes.

We measured the running time of the PhyloD prototype by
varying the number of worker roles used on Azure cloud, and
calculated the efficiency in each worker assignment. As in CAP3
application describe in section 2.1, we also noticed in PhyloD
lower efficiencies with higher number of workers, as shown in
figure 6. In PhyloD the efficiency reduces to around 40% when
we use 100 workers implying that more workers are idling waiting
for few long running workers to finish. To verify the above
observation we also measured the number of active worker role
instances during the execution of the PhyloD application. Figure 7
shows that the less than 20 workers spend 30% of the time in
processing long running PhyloD tasks which results lower
efficiencies. Fixing this inefficiency in Azure is fairly straight
forward as the tasks/jobs are dispatched via a queue which is
accessed by the worker role instances to obtain a task/job for
processing. Unlike in Dryad and other MapReduce runtimes
which require runtime level support to handle priorities in
maps/reduces/ and vertices, in Azure the user can enqueue tasks
based on their expected running times, so that tasks that takes
longest will be processed at the beginning.

We are currently developing a DryadLINQ application for the
PhyloD data analysis where the set of tasks are directly assigned
to a collection of vertices where each of them process some
number of tasks and give intermediate results. Unlike in Azure

implementation, in Dryad case, the intermediate results can
directly be transferred to a vertex for aggregation to produce the
final output.

Figure 6. Efficiency vs. number of worker roles in PhyloD
prototype run on Azure March CTP

Figure 7. Number of active Azure workers during a run of
PhyloD application.

4.3 Alu Sequence Classification
4.3.1 Complete Problem with MPI and MapReduce
This application uses two highly parallel traditional MPI
applications MDS (Multi-Dimensional Scaling) and Pairwise
(PW) Clustering algorithms described in Fox, Bae et al. [6]. The
latter identifies sequence families as relatively isolated as seen for
example in figure 8. MDS allows visualization by mapping the
high dimension sequence data to three dimensions for
visualization.

 Figure 8. Alu: Display of Alu families from MDS calculation
from 35339 sequences using SW-G distances. The younger

families AluYa, AluYb show tight clusters
MDS has a very formulation as it finds the best set of 3D vectors
x(i) such that a weighted least squares sum of the difference
between the sequence dissimilarity D(i,j) and the Euclidean
distance |x(i) - x(j)| is minimized. This has a computational
complexity of O(N2) to find 3N unknowns for N sequences. It can
be heuristically solved in several ways including Expectation

Figure 5. (Left) Three phases of the parallel solution (Right) The mapping of the parallel solution to a Azure application.

Maximization and use of traditional excellent χ2 minimization
methods. The latter are used here.
The PWClustering algorithm is an efficient MPI parallelization of
a robust EM (Expectation Maximization) method using annealing
(deterministic not Monte Carlo) originally developed by Ken
Rose, Fox [14, 15] and others [16]. This improves over clustering
methods like Kmeans which are sensitive to false minima. The
original clustering work was based in a vector space (like
Kmeans) where a cluster is defined by a vector as its center.
However in a major advance 10 years ago [16], it was shown how
one could use a vector free approach and operate with just the
distances D(i,j). This method is clearly most natural for problems
like Alu sequences where currently global sequence alignment
(over all N sequences) is problematic but D(i,j) can be precisely
calculated. PWClustering also has a time complexity of O(N2) and
in practice we find all three steps (Calculate D(i,j), MDS and
PWClustering) take comparable times (a few hours for 50,000
sequences) although searching for a lot of clusters and refining the
MDS can increase their execution time significantly. We have
presented performance results for MDS and PWClustering
elsewhere [6, 17] and for large datasets the efficiencies are high
(showing sometimes super linear speed up). For a node
architecture reason, the initial distance calculation phase reported
below has efficiencies of around 40-50% as the Smith Waterman
computations are memory bandwidth limited. The more complex
MDS and PWClustering algorithms show more computation per
data access and high efficiency.

4.3.2 Structure of all pair distance processing
The Alu sequencing problem shows a well known factor of 2
issue present in many O(N2) parallel algorithms such as those in
direct simulations of astrophysical stems. We initially calculate in
parallel the Distance D(i,j) between points (sequences) i and j.
This is done in parallel over all processor nodes selecting criteria i
< j (or j > i for upper triangular case) to avoid calculating both
D(i,j) and the identical D(j,i). This can require substantial file
transfer as it is unlikely that nodes requiring D(i,j) in a later step
will find that it was calculated on nodes where it is needed.
The MDS and PWClustering algorithms described in section
4.3.1, require a particular parallel decomposition where each of N
processes (MPI processes, threads) has 1/N of sequences and for
this subset {i} of sequences stores in memory D({i},j) for all
sequences j and the subset {i} of sequences for which this node is
responsible. This implies that we need D(i,j) and D(j,i) (which are
equal) stored in different processors/disks. This is a well known
collective operation in MPI called either gather or scatter but we
did not use this in current work. Rather we designed our initial
calculation of D(i,j) so that efficiently we only calculated the
independent set but the data was stored so that the later MPI jobs
could efficiently access the data needed. We chose the simplest
approach where the initial phase produced a single file holding the
full set of D(i,j) stored by rows – all j for each successive value of
i. We commented in introduction that the initial phase is “doubly
data parallel” over i and j whereas the MPI algorithms have the
straightforward data parallelism over just a single sequence index
i; there is further the typical iterative communication-compute
phases in both MDS and PWClustering that implies one needs
extensions of MapReduce (such as CGL-MapReduce) if you wish
to execute the whole problem in a single programming paradigm.
In both MDS and PWClustering, the only MPI primitives needed
are MPI Broadcast, AllReduce, and Barrier so it will be quite
elegantly implemented in CGL-MapReduce.

4.3.3 Smith Waterman Dissimilarities
We identified samples of the human and Chimpanzee Alu gene
sequences using Repeatmasker [18] with Repbase Update [19].
We have been gradually increasing the size of our projects with
the current largest samples having 35339 and 50000 sequences
and these require a modest cluster such as Tempest (768 cores) for
processing in a reasonable time (a few hours as shown in section
4.3.6). Note from the discussion in section 4.3.2, we are aiming at
supporting problems with a million sequences -- quite practical
today on TeraGrid and equivalent facilities given basic analysis
steps scale like O(N2). We used open source version NAligner
[20] of the Smith Waterman – Gotoh algorithm SW-G [21, 22]
modified to ensure low start up effects by each thread/processing
large numbers (above a few hundred) at a time. Memory
bandwidth needed was reduced by storing data items in as few
bytes as possible. In the following two sections, we just discuss
the initial phase of calculating distances D(i,j) for each pair of
sequences so we can efficiently use either MapReduce and MPI.

4.3.4 Dryad Implementation
We developed a DryadLINQ application to perform the
calculation of pairwise SW-G distances for a given set of genes by
adopting a coarse grain task decomposition approach which
requires minimum inter-process communicational requirements to
ameliorate the higher communication and synchronization costs of
the parallel runtime. To clarify our algorithm, let’s consider an
example where N gene sequences produces a pairwise distance
matrix of size NxN. We decompose the computation task by
considering the resultant matrix and groups the overall
computation into a block matrix of size DxD where D is a
multiple (>2) of the available computation nodes. Due to the
symmetry of the distances D(i,j) and D(j,i) we only calculate the
distances in the blocks of the upper triangle of the block matrix as
shown in figure 9 (left). Diagonal blocks are specially handled
and calculated as full sub blocks. As number of diagonal blocks D
and total number D(D+1)/2, there is no significant compute
overhead added. The blocks in the upper triangle are partitioned
(assigned) to the available compute nodes and an “Apply”
operation is used to execute a function to calculate (N/D)x(N/D)
distances in each block, where d is defined as N/D. After
computing the distances in each block, the function calculates the
transpose matrix of the result matrix which corresponds to a block
in the lower triangle, and writes both these matrices into two
output files in the local file system. The names of these files and
their block numbers are communicated back to the main program.
The main program sort the files based on their block number s and
perform another “Apply” operation to combine the files
corresponding to a row of blocks in a single large row block as
shown in the figure 9 (right).

4.3.5 MPI Implementation of Distance Calculation
The MPI version of SW-G calculates pairwise distances using a
set of either single or multi-threaded processes. For N gene
sequences, we need to compute half of the values (in the lower
triangular matrix), which is a total of M = N x (N-1) /2 distances.
At a high level, computation tasks are evenly divided among P
processes and execute in parallel. Namely, computation workload
per process is M/P. At a low level, each computation task can be
further divided into subgroups and run in T concurrent threads.
Our implementation is designed for flexible use of shared memory
multicore system and distributed memory clusters (tight to
medium tight coupled communication technologies such threading

and MPI). We provide options for any combinations of thread vs.
process vs. node but in earlier papers [6, 17], we have shown as
discussed in section 3.3 that threading is much slower than MPI
for this class of problem. We explored two different algorithms

termed “Space Filling” and “Block Scattered” below. In each
case, we must calculate the independent distances and then build
the full matrix exploiting symmetry of D(i,j).

Figure 9. Task decomposition (left) and the DryadLINQ vertex hierarchy (right) of the DryadLINQ implementation

of SW-G pairwise distance calculation application.

Figure 10. Space Filling MPI Algorithm: Task decomposition (left) and SW-G implementation calculation (right).

The “Space Filling” MPI algorithm is shown in figure 10, where
the data decomposition strategy runs a "space filling curve
through lower triangular matrix" to produce equal numbers of
pairs for each parallel unit such as process or thread. It is
necessary to map indexes in each pairs group back to
corresponding matrix coordinates (i, j) for constructing full matrix
later on. We implemented a special function "PairEnumertator" as
the convertor. We tried to limit runtime memory usage for
performance optimization. This is done by writing a triple of i, j,
and distance value of pairwise alignment to a stream writer and
the system flashes accumulated results to a local file periodically.
As the final stage, individual files are merged to form a full
distance matrix. Next we describe the “Block Scattered” MPI
algorithm shown in figure 11. Points are divided into blocks such
that each processor is responsible for all blocks in a simple
decomposition illustrated in the figure 11 (Left). This also
illustrates the initial computation, where to respect symmetry, we
calculate half the D(α,β) using the following criterion:

If β >= α, we only calculate D(α,β) if α+β is even while in the
lower triangle, β < α, we only calculate D(α,β) if α+β is odd.

This approach can be applied to points or blocks. In our
implementation, we applied to blocks of points -- of size
(N/P)x(N/P) where we use P MPI processes. Note we get better
load balancing than the “Space Filling” algorithm as each
processor samples all values of β. This computation step must be
followed by a communication step illustrated in Figure 11 (Right)
which gives full strips in each process. The latter can be
straightforwardly written out as properly ordered file(s).

Alu data # sequences Cap3 data

Original
Replicated (subset

of original 50k)
Medium size

Files kb

50k 35k 10k, 20k,30k,40k,50k Set A Set B
Standard
Deviation 26.91 30.99 26.49 129.06 189.29

Min 150 150 151 213 213
Max 479 462 467 869 869

Average 296.09 294.89 296.31 438.59 455.59
Data points 50000 35399 10000 2304 1152

Table 1: Mean and Standard Deviation of Alu & CAP3 data

0

..

..

(0,d-1)
(0,d-1)

Upper triangle

0

1

2

D-1

0 1 2 D-1

NxN matrix broken down to DxD blocks

Blocks in lower triangle
are not calculated directly

0
(0,2d-1)
(0,d-1)

0
D-1

((D-1)d,Dd-1)
(0,d-1)

D
(0,d-1)
(d,2d-1)

D+1
(d,2d-1)
(d,2d-1)

((D-1)d,Dd-1)
((D-1)d,Dd-1)

DD-1

0 1 DD-1

V V V

..
..

V V V

..

DryadLINQ
vertices

File I/O

DryadLINQ
vertices

Each D consecutive blocks are merged to form a set of row blocks
each with NxD elementsprocess has workload of NxD elements

Blocks in upper triangle

0 1 1T 1 2T DD-1

V

2

File I/OFile I/O

M = 0 1
Nx(N-1)/2

P0 P1 PP
..
..T0

M/P M/P M/P

T0 T0 T0 T0T0

I/O I/O I/O

..Merge files

File I/O

MPI

Threading

Each process has workload of M/P elements

Indexing

0

21

N(N-1)/2.. ..

(1,0)

(2,0) (2,1)

(N-1,N-2)

Lower triangle

0

1

2

N-1

0 1 2 N-1

Space filling curve

Blocks in upper triangle
are not calculated directly

4.3.6 Alu SW-G Distance Calculation Performance
We present a summary of results for both Dryad and MPI
computations of the Alu distance matrix in figures 12 and 13. We
used several data sets and there is inhomogeneity in sequence size
throughout these sets quantified in table 1. Two of 35,339 and

50,000 sequences were comprised of distinct sequences while we
also prepared datasets allowing us to test scaling as a function of
dataset size by taking 10,000 sequences and replicating them 2-5
times to produce 10K, 20K, 30K, 40K, 50K “homogeneous” or
replicated datasets.

Figure 11. Block Scattered MPI Algorithm: Decomposition (Left) and Scattered Communication (Right) to

construct full matrix.

Figure 12. Performance of Dryad implementation of SW-G

(note that the Y-axis has a logarithmic scale)

Figure 13. Comparison of Dryad and MPI on SW-G

alignment on replicated and original raw data samples

In figure 12, we present Dryad results for the replicated dataset
showing the dominant compute time compared to the small
partition and merge phases. Further for the Block Scattered MPI
approach, the final “scatter” communication takes a negligible
time. Figure 13 compares the performance of Dryad and the two
MPI approaches on the homogeneous (10K – 50K) and
heterogeneous (35K, 50K) datasets. We present the results as the
time in milliseconds per distance pair per core. This is measured
total time of figure 12 multiplied by number of cores and
divided by square of dataset size i.e. it is time a single core
would take to calculate a single distance. Then “perfect scaling
in dataset size or number of nodes” should imply a constant
value for this quantity. We find that for Dryad and MPI, the
replicated dataset time is roughly constant as a function of
sequence number and the original 35339 and 50,000 sequence
samples are just a little slower than the replicated case. Note
from table 1, that there is little variation in measure of
inhomogeneity between replicated and raw data. A surprising
feature of our results is that the Space Filling MPI algorithm is
faster than the Block Scattered approach. Dryad lies in between
the two MPI implementations and is about 20% slower on the
replicated and heterogeneous dataset compared to Space-Filling
MPI. We are currently investigating this but given the complex
final data structure, we see that it is impressive that the still
preliminary Dryad implementation does very well.
In figure 14, we show that Dryad scales well with number of
nodes in that time per distance pair per core is roughly constant
on the 10K replicated SW-G data and consistent with Dryad
replicated data points in figure 13. In table 1, we showed that
SW-G is more homogeneous than CAP3 in that standard
deviation/mean is lower. However we also got reasonable
scaling in figure 3 for CAP3 which corresponds to data set A of
table 1 while preliminary results for the more heterogeneous
“Set B”, also shows good scaling from 192 to 576 cores. The
dependence on data homogeneity is very important and needs
better study and perhaps dynamic scheduling or more

D blocks

0

1

D-1

2

β

α
D blocks

0 D-1

Upper Triangle
Calculate if
α + β even

Lower Triangle
Calculate if
α + β odd

Process

P0

P1

P2

PP-1

Block Scattered

D blocks

0

1

D-1

2

β

αD blocks

0 D-1 Process

P0

P1

P2

PP-1

Send
to P2

Send
to PD-1

Send
to PD-1

Send
to PD-1

Send
to P0

Send
to P1

Send
to P1

1 2

Not
Calculate

Not
Calculate

Not
Calculate

Scatter Communication

1

10

100

1000

10000

100000

0 10000 20000 30000 40000 50000 60000

Ti
m

e
 (s

e
co

n
d

s)

Sequences

Dyrad Implementation of SW-G alignment
(homogenous data)

Partition Time

Computation Time

Merge Time

Total Time

0

1

2

3

4

5

6

7

0 10000 20000 30000 40000 50000 60000

Ti
m

e
pe

r d
is

ta
nc

e
ca

lc
ul

at
io

n
 p

er
 c

or
e

 (m
ili

se
co

nd
s)

Sequeneces

Performance of Dryad vs. MPI of SW-Gotoh Alignment

Dryad (replicated data)

Block scattered MPI
(replicated data)
Dryad (raw data)

Space filling curve MPI
(raw data)
Space filling curve MPI
(replicated data)

sophisticated scattering of data between processes to achieve
statistical load balance.
We study the effect of inhomogeneous gene sequence lengths
for SW-G pairwise distance calculation applications. These
results also present comparisons of Hadoop and Dryad on
identical hardware rebooted with Linux and Windows
respectively. The data sets used were randomly generated with a
given mean sequence length (400) with varying standard
deviations following a normal distribution of the sequence
lengths.

Figure 14. Performance of Dryad for SW-G Alignment on
10K data sample as a function of number of cores

 Figure 15. Performance of Dryad vs. Hadoop for SW-G for
inhomogeneous data as a function of standard deviation with

mean sequence length of 400
Each data set contained a set of 10000 sequences and a 100
million pairwise distance calculations to perform. Sequences of
varying lengths are randomly distributed across the data set. The
Dryad-adjusted results depict the raw Dryad results adjusted for
the performance difference of the NAligner (C#) and JAligner
(Java) base Smith-Waterman alignment programs. As we notice
from the figure 15, both the Dryad implementation as well as the
Hadoop implementation performed satisfactorily, without
showing significant performance degradations for high standard
deviation. In fact the Hadoop implementation showed minor
improvements in the execution times. The acceptable
performance can be attributed to the fact that the sequences with
varying lengths are randomly distributed across the data set,
giving a natural load balancing to the sequence blocks. The
Hadoop implementations’ slight performance improvement can
be attributed to the global pipeline scheduling of map tasks that
Hadoop performs. In Hadoop, the administrator can specify the
map task capacity of a particular worker node and then Hadoop
global scheduler schedules the map tasks directly on to those
placeholders when individual tasks finish in a much finer

granularity than in Dryad. This allows the Hadoop
implementation to perform natural global level load balancing.

5. RELATED WORK
There have been several papers discussing data analysis using a
variety of cloud and more traditional cluster/Grid technologies
with the Chicago paper [23] influential in posing the broad
importance of this type of problem. The Notre Dame all pairs
system [24] clearly identified the “doubly data parallel”
structure seen in all of our applications. We discuss in the Alu
case the linking of an initial doubly data parallel to more
traditional “singly data parallel” MPI applications. BLAST is a
well known doubly data parallel problem and has been discussed
in several papers [25, 26]. The Swarm project [5] successfully
uses traditional distributed clustering scheduling to address the
EST and CAP3 problem. Note approaches like Condor have
significant startup time dominating performance. For basic
operations [27], we find Hadoop and Dryad get similar
performance on bioinformatics, particle physics and the well
known kernels. Wilde [28] has emphasized the value of scripting
to control these (task parallel) problems and here DryadLINQ
offers some capabilities that we exploited. We note that most
previous work has used Linux based systems and technologies.
Our work shows that Windows HPC server based systems can
also be very effective.

6. CONCLUSIONS
We have studied three data analysis problems with four different
technologies. The applications each start with a “doubly data-
parallel” (all pairs) phase that can be implemented in
MapReduce, MPI or using cloud resources on demand. The
flexibility of clouds and MapReduce suggest they will become
the preferred approaches. We showed how one can support an
application (Alu) requiring a detailed output structure to allow
follow-on iterative MPI computations. The applications differed
in the heterogeneity of the initial data sets but in each case good
performance is observed with the new cloud technologies
competitive with MPI performance. The simple structure of the
data/compute flow and the minimum inter-task communicational
requirements of these “pleasingly parallel” applications enabled
them to be implemented using a wide variety of technologies.
The support for handling large data sets, the concept of moving
computation to data, and the better quality of services provided
by the cloud technologies, simplify the implementation of some
problems over traditional systems. We find that different
programming constructs available in cloud technologies such as
independent “maps” in MapReduce, “homomorphic Apply” in
Dryad, and the “worker roles” in Azure are all suitable for
implementing applications of the type we examine. In the Alu
case, we show that Dryad and Hadoop can be programmed to
prepare data for use in later parallel MPI/threaded applications
used for further analysis. Our Dryad and Azure work was all
performed on Windows machines and achieved very large speed
ups (limited by memory bandwidth on 24 core nodes). Similar
conclusions would be seen on Linux machines as long as they
can support the DryadLINQ and Azure functionalities used. The
current results suggest several follow up measurements
including the overhead of clouds on our Hadoop and Dryad
implementations as well as further comparisons of them.

7. ACKNOWLEDGMENTS
We thank our collaborators from Biology whose help was
essential. In particular Alu work is with Haixu Tang and Mina

0

1

2

3

4

5

6

7

288 336 384 432 480 528 576 624 672 720

Ti
m

e
pe

r d
is

ta
nc

e
ca

lc
ul

at
io

n
pe

r c
or

e
(m

ill
is

ec
on

ds
)

Cores

DryadLINQ Scaling Test on SW-G Alignment

0

500

1000

1500

2000

2500

0 50 100 150 200 250 300 350

Standard Deviation

Dryad-swg Total time

Hadoop-swg

Dryad-swg Total time (adjusted for
NAligner performance)

Time

Rho from Bioinformatics at Indiana University and the EST
work is with Qunfeng Dong from Center for Genomics and
Bioinformatics at Indiana University. We also thank Microsoft
Research for providing data used in PhyloD and Azure
applications.

8. REFERENCES
[1] M. Isard, M. Budiu, Y. Yu, A. Birrell, D. Fetterly, “Dryad:

Distributed data-parallel programs from sequential building
blocks,” European Conference on Computer Systems,
March 2007.

[2] Microsoft Windows Azure,
http://www.microsoft.com/azure/windowsazure.mspx

[3] C. Kadie, PhyloD. Microsoft Computational Biology Tools.
http://mscompbio.codeplex.com/Wiki/View.aspx?title=Phy
loD

[4] X. Huang, A. Madan, “CAP3: A DNA Sequence Assembly
Program,” Genome Research, vol. 9, no. 9, pp. 868-877,
1999.

[5] S. L. Pallickara, M. Pierce, Q. Dong, and C. Kong,
“Enabling Large Scale Scientific Computations for
Expressed Sequence Tag Sequencing over Grid and Cloud
Computing Clusters”, PPAM 2009 EIGHTH
INTERNATIONAL CONFERENCE ON PARALLEL
PROCESSING AND APPLIED MATHEMATICS
Wroclaw, Poland, September 13-16, 2009

[6] G. Fox, S.H. Bae, J. Ekanayake, X. Qiu, H. Yuan Parallel
Data Mining from Multicore to Cloudy Grids Proceedings
of HPC 2008 High Performance Computing and Grids
workshop Cetraro Italy July 3 2008
http://grids.ucs.indiana.edu/ptliupages/publications/Cetraro
WriteupJan09_v12.pdf

[7] M.A. Batzer, P.L. Deininger, 2002. "Alu Repeats And
Human Genomic Diversity." Nature Reviews Genetics 3,
no. 5: 370-379. 2002

[8] Apache Hadoop, http://hadoop.apache.org/core/
[9] Y.Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P.

Gunda, J. Currey, “DryadLINQ: A System for General-
Purpose Distributed Data-Parallel Computing Using a
High-Level Language,” Symposium on Operating System
Design and Implementation (OSDI), CA, December 8-10,
2008.

[10] J. Ekanayake, A. S. Balkir, T. Gunarathne, G. Fox, C.
Poulain, N. Araujo, R. Barga. "DryadLINQ for Scientific
Analyses", Technical report, Submitted to eScience 2009

[11] Source Code. Microsoft Computational Biology Tools.
http://mscompbio.codeplex.com/SourceControl/ListDownl
oadableCommits.aspx

[12] J. Ekanayake, S. Pallickara, “MapReduce for Data
Intensive Scientific Analysis,” Fourth IEEE International
Conference on eScience, 2008, pp.277-284.

[13] T. Bhattacharya, M. Daniels, D. Heckerman, B. Foley, N.
Frahm, C. Kadie, J. Carlson, K. Yusim, B. McMahon, B.
Gaschen, S. Mallal, J. I. Mullins, D. C. Nickle, J. Herbeck,
C. Rousseau, G. H. Lear. PhyloD . Microsoft
Computational Biology Web Tools.
http://atom.research.microsoft.com/bio/phylod.aspx

[14] K. Rose, “Deterministic Annealing for Clustering,
Compression, Classification, Regression, and
RelatedOptimization Problems”, Proceedings of the IEEE,
vol. 80, pp. 2210-2239, November 1998.

[15] Kenneth Rose, Eitan Gurewitz, and Geoffrey C. Fox
“Statistical mechanics and phase transitions in clustering”
Phys. Rev. Lett. 65, 945 - 948 (1990)

[16] T Hofmann, JM Buhmann “Pairwise data clustering by
deterministic annealing”, IEEE Transactions on Pattern
Analysis and Machine Intelligence 19, pp1-13 1997

[17] Geoffrey Fox, Xiaohong Qiu, Scott Beason, Jong Youl
Choi, Mina Rho, Haixu Tang, Neil Devadasan, Gilbert Liu
“Biomedical Case Studies in Data Intensive Computing”
Keynote talk at The 1st International Conference on Cloud
Computing (CloudCom 2009) at Beijing Jiaotong
University, China December 1-4, 2009

[18] A. F. A. Smit, R. Hubley, P. Green, 2004. Repeatmasker.
http://www.repeatmasker.org

[19] J. Jurka, 2000. Repbase Update: a database and an
electronic journal of repetitive elements. Trends Genet.
9:418-420 (2000).

[20] Source Code. Smith Waterman Software.
http://jaligner.sourceforge.net/naligner/.

[21] O. Gotoh, An improved algorithm for matching biological
sequences. Journal of Molecular Biology 162:705-708
1982.

[22] T.F. Smith, M.S.Waterman,. Identification of common
molecular subsequences. Journal of Molecular Biology
147:195-197, 1981

[23] I. Raicu, I.T. Foster, Y. Zhao, Many-Task Computing for
Grids and Supercomputers,: Workshop on Many-Task
Computing on Grids and Supercomputers MTAGS 2008.
17 Nov. 2008 IEEE pages 1-11

[24] C. Moretti, H. Bui, K. Hollingsworth, B. Rich, P. Flynn, D.
Thain, "All-Pairs: An Abstraction for Data Intensive
Computing on Campus Grids," IEEE Transactions on
Parallel and Distributed Systems, 13 Mar. 2009, DOI
10.1109/TPDS.2009.49

[25] M. C. Schatz “CloudBurst: highly sensitive read mapping
with MapReduce”, Bioinformatics 2009 25(11):1363-1369;
doi:10.1093/bioinformatics/btp236

[26] K. Keahey, R. Figueiredo, J. Fortes, T. Freeman, M.
Tsugawa, “Science clouds: Early experiences in Cloud
computing for scientific applications”. In Cloud Computing
and Applications 2008 (CCA08), 2008.

[27] J. Ekanayake, X. Qiu, T. Gunarathne, S. Beason, G. Fox
“High Performance Parallel Computing with Clouds and
Cloud Technologies”, Technical Report August 25 2009
http://grids.ucs.indiana.edu/ptliupages/publications/CGLCl
oudReview.pdf

[28] M. Wilde, I. Raicu, A. Espinosa, Z. Zhang1, B. Clifford,
M. Hategan, S. Kenny, K. Iskra, P. Beckman, I. Foster,
“Extreme-scale scripting: Opportunities for large task
parallel applications on petascale computers”, SCIDAC
2009, Journal of Physics: Conference Series 180 (2009).
DOI: 10.1088/1742-6596/180/1/012046

http://hadoop.apache.org/core/�
http://mscompbio.codeplex.com/SourceControl/ListDownloadableCommits.aspx�
http://mscompbio.codeplex.com/SourceControl/ListDownloadableCommits.aspx�
http://atom.research.microsoft.com/bio/phylod.aspx�
http://grids.ucs.indiana.edu/ptliupages/publications/CGLCloudReview.pdf�
http://grids.ucs.indiana.edu/ptliupages/publications/CGLCloudReview.pdf�

	1. INTRODUCTION
	2. APPLICATIONS
	2.1 EST and its software CAP3
	2.2 PhyloD
	2.3 Alu Sequence Classification

	3. TECHNOLOGIES EXPLORED
	3.1 Dryad
	3.2 Azure
	3.3 Old Fashioned Parallel Computing

	4. PERFORMANCE ANALYSIS
	4.1 EST and CAP3
	4.2 PhyloD
	4.3 Alu Sequence Classification
	4.3.1 Complete Problem with MPI and MapReduce
	4.3.2 Structure of all pair distance processing
	4.3.3 Smith Waterman Dissimilarities
	4.3.4 Dryad Implementation
	4.3.5 MPI Implementation of Distance Calculation
	4.3.6 Alu SW-G Distance Calculation Performance

	5. RELATED WORK
	6. CONCLUSIONS
	7. ACKNOWLEDGMENTS
	8. REFERENCES

