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ABSTRACT
Executing large number of independent tasks or tasks that perform 
minimal inter-task communication in parallel is a common 
requirement in many domains. In this paper, we present our 
experience in applying two new Microsoft technologies Dryad 
and Azure to three bioinformatics applications. We also compare 
with traditional MPI and Apache Hadoop MapReduce 
implementation in one example. The applications are an EST 
(Expressed Sequence Tag) sequence assembly program, PhyloD 
statistical package to identify HLA-associated viral evolution, and 
a pairwise Alu gene alignment application. We give detailed 
performance discussion on a 768 core Windows HPC Server 
cluster and an Azure cloud. All the applications start with a 
“doubly data parallel step” involving independent data chosen 
from two similar (EST, Alu) or two different databases (PhyloD). 
There are different structures for final stages in each application. 

Categories and Subject Descriptors 
C.4 PERFORMANCE OF SYSTEMS; D.1.3 Concurrent
Programming; E.5 FILES; J.3 LIFE AND MEDICAL SCIENCES

General Terms
Algorithms, Performance. 
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1. INTRODUCTION
There is increasing interest in approaches to data analysis in 
scientific computing as essentially every field is seeing an 
exponential increase in the size of the data deluge. The data sizes 
imply that parallelism is essential to process the information in a 
timely fashion. This is generating justified interest in new 
runtimes and programming models that unlike traditional parallel 
models such as MPI, directly address the data-specific issues. 

Experience has shown that at least the initial (and often most time 
consuming) parts of data analysis are naturally data parallel and 
the processing can be made independent with perhaps some 
collective (reduction) operation. This structure has motivated the 
important MapReduce paradigm and many follow-on extensions. 
Here we examine four technologies (Dryad [1], Azure [2] Hadoop 
[8] and MPI) on three different bioinformatics application
(PhyloD [3], EST [4, 5] and Alu clustering [6, 7]). Dryad is an
implementation of extended MapReduce from Microsoft and
Azure is Microsoft’s cloud technology. All our computations were
performed on Windows Servers with the Dryad and MPI work
using a 768 core cluster Tempest consisting of 32 nodes each of
24-cores. Each node has 48GB of memory and four Intel six core
Xenon E7450 2.4 Ghz chips. All the applications are (as is often
so in Biology) “doubly data parallel” (or “all pairs” [24]) as the
basic computational unit is replicated over all pairs of data items
from the same (EST, Alu) or different sources (PhyloD). In the
EST example, each parallel task executes the CAP3 program on
an input data file independently of others and there is no
“reduction” or “aggregation” necessary at the end of the
computation, where as in the Alu case, a global aggregation is
necessary at the end of the independent computations to produce
the resulting dissimilarity matrix that is fed into traditional high
performance MPI. PhyloD has a similar initial stage which is
followed by an aggregation step. In this paper we evaluate the
different technologies showing they give similar performance in
spite of the different programming models.

In section 2, we describe the three applications EST, PhyloD and 
Alu sequencing while the technologies are discussed in section 3 
(without details of the well known Hadoop system). Section 4 
presents some performance results. Conclusions are given in 
section 6 after a discussion of related work in section 5.   

2. APPLICATIONS
2.1 EST and its software CAP3
An EST (Expressed Sequence Tag) corresponds to messenger 
RNAs (mRNAs) transcribed from the genes residing on 
chromosomes. Each individual EST sequence represents a 
fragment of mRNA, and the EST assembly aims to re-construct 
full-length mRNA sequences for each expressed gene. Because 
ESTs correspond to the gene regions of a genome, EST 
sequencing has become a standard practice for gene discovery, 



especially for the genomes of many organisms that may be too 
complex for whole-genome sequencing. EST is addressed by the 
software CAP3 which is a DNA sequence assembly program 
developed by Huang and Madan [4]. that performs several major 
assembly steps: these steps include computation of overlaps, 
construction of contigs, construction of multiple sequence 
alignments, and generation of consensus sequences to a given set 
of gene sequences. The program reads a collection of gene 
sequences from an input file (FASTA file format) and writes its 
output to several output files, as well as the standard output. 
We have implemented a parallel version of CAP3 using Hadoop 
[8], CGL-MapReduce [12], and Dryad but we only report on a 
new Dryad study here. 

2.2 PhyloD 

Figure 1. Pictorial representation of PhyloD output. 
PhyloD is a statistical package to identify HLA-associated viral 
evolution from the given sample data. It is available today as a 
web application [13] and as downloadable source code [11]. 
Running PhyloD jobs is a compute intensive process. PhyloD-
Cloud is an effort to leverage Windows Azure as a computing 
platform and create a scalable web-based application to process 
PhyloD jobs. Users should be able to submit reasonably large jobs 
using this web application with minimal manual involvement.  

The package is used to derive associations between HLA alleles 
and HIV codons and between codons themselves. The uniqueness 
of PhyloD comes from the fact that it takes into consideration the 
phylogenic evolution of the codons for producing its results. The 
package takes as input the phylogenic tree information of the 
codons, the information about presence or absence of HLA alleles 
and the information about presence or absence of HIV codons. It 
fits its inputs to a generative model and computes a ‘p-value’, a 
measure of the association between HLA alleles and the HIV 
codons. For a set of such computed p-values, the package may 
also compute a ‘q-value’ per p-value which is an indicative 
measure of the significance of the result. Figure 1 presents the 
output of one such run. Arcs indicate association between codons, 
colors indicate q-values of the most significant association 
between the two attributes. 

At a high level, a run of PhyloD does the following: (i) compute a 
cross product of input files to produce all allele-codon pairs, (ii) 
For each allele-codon pair, compute p value, and (iii) using the p 
values from the previous step, compute the q value for each allele-
codon pair. The computation of p value for an allele-codon pair 

can be done independently of other p value computations and each 
such computation can use the same input files. This gives PhyloD 
its “data-parallel” characteristics namely, (i) ability to partition 
input data into smaller logical parts and (ii) workers performing 
same computation on data partitions without much inter-process 
communication. 

2.3 Alu Sequence Classification 
The Alu clustering problem [7] is one of the most challenging 
problems for sequencing clustering because Alus represent the 
largest repeat families in human genome. There are about 1 
million copies of Alu sequences in human genome, in which most 
insertions can be found in other primates and only a small fraction 
(~ 7000) are human-specific. This indicates that the classification 
of Alu repeats can be deduced solely from the 1 million human 
Alu elements. Notable, Alu clustering can be viewed as a classical 
case study for the capacity of computational infrastructures 
because it is not only of great intrinsic biological interests, but 
also a problem of a scale that will remain as the upper limit of 
many other clustering problem in bioinformatics for the next few 
years, e.g. the automated protein family classification for a few 
millions of proteins predicted from large metagenomics projects. 
In our work here we examine Alu samples of 35339 and 50,000 
sequences. 

3. TECHNOLOGIES EXPLORED
3.1 Dryad
Dryad is a distributed execution engine for coarse grain data 
parallel applications. It combines the MapReduce programming 
style with dataflow graphs to solve the computation tasks. Dryad 
considers computation tasks as directed acyclic graph (DAG) 
where the vertices represent computation tasks and with the edges 
acting as communication channels over which the data flow from 
one vertex to another.  The data is stored in (or partitioned to) 
local disks via the Windows shared directories and meta-data files 
and Dryad schedules the execution of vertices depending on the 
data locality.  (Note: The academic release of Dryad only exposes 
the DryadLINQ API for programmers [9, 10]. Therefore, all our 
implementations are written using DryadLINQ although it uses 
Dryad as the underlying runtime).  Dryad also stores the output of 
vertices in local disks, and the other vertices which depend on 
these results, access them via the shared directories. This enables 
Dryad to re-execute failed vertices, a step which improves the 
fault tolerance in the programming model. 

3.2 Azure 

Figure 2. Architecture of a typical Azure application 
Windows Azure platform is an internet-scale cloud computing and 
services platform hosted in Microsoft data centers. Unlike the 
typical cloud environments where the users are offered with 
virtualized hardware components such as load balancers, virtual 
servers (E.g. Amazon EC2) and cloud storage services such as 



Amazon S3 etc., Azure offers a collection of discrete scalable 
components known as “roles” along with a set of storage and 
communication components.  The architecture of a typical Azure 
application is shown in figure 2. 
The web role and the worker role represent the processing 
components of an Azure application. The web role is a web 
application accessible via HTTP or HTTPs endpoints and is 
hosted in an environment that supports subset of ASP.NET and 
Windows Communication Foundation (WCF) technologies. 
Worker role is the main processing entity in the Azure platform 
which can be used to execute functions written in managed code, 
scripts, or standalone executables on data products. Both web role 
instances and worker role instances can access the storage 
services. 
Azure Queues are First in, First Out (not guaranteed) persistent 
communication channels which can be used to develop complex 
communication patterns among a set of corporation worker roles 
and web roles. A set of tasks/jobs can be organized as a collection 
of messages in an Azure queue and a set of workers can be 
deployed to remove a message (a task/job) from the queue and 
execute it. Azure provides three types of storage services Blob, 
Queue, and Table. The blob represents a persistence storage 
services comprising of collection of blocks. The user can store 
data (or partitioned data) in blobs and access them from web and 
worker role instances. Azure Tables provides structured storage 
for maintaining service state. The Azure blobs and Queues have 
close similarities to the Amazon Elastic Block storage and Simple 
Queue Service. 

3.3 Old Fashioned Parallel Computing 
One can implement many of the functionalities of Dryad or 
Hadoop using classic parallel computing including threading and 
MPI. MPI in particular supports “Reduce” in MapReduce 
parlance through its collective operations. The “Map” operation in 
MPI, is just the concurrent execution of MPI processes in between 
communication and synchronization operations. There are some 
important differences such as MPI being oriented towards 
memory to memory operations whereas Hadoop and Dryad are 
file oriented. This difference makes these new technologies far 
more robust and flexible. On the other the file orientation implies 
that there is much greater overhead in the new technologies. This 
is a not a problem for initial stages of data analysis where file I/O 
is separated by a long processing phase. However as discussed in 
[6], this feature means that one cannot execute efficiently on 
MapReduce, traditional MPI programs that iteratively switch 
between “map” and “communication” activities. We have shown 
that an extension CGL-MapReduce can support both classic MPI 
and MapReduce operations and we will comment further in 
section 4.3 on this. CGL-MapReduce has a larger overhead than 
good MPI implementations but this overhead does decrease to 
zero as one runs larger and larger problems.  
Simple thread-based parallelism can also support “almost 
pleasingly parallel” applications but we showed that under 
Windows, threading was significantly slower than MPI for Alu 
sequencing. This we traced down to excessive context switching 
in the threaded case. Thus in this paper we only look at MPI 
running 24 processes per node on the Tempest cluster. Note that 
when we look at more traditional MPI applications with 
substantial communication between processes, one will reach 
different conclusions as use of hybrid threaded on node-MPI 
between node strategies, does reduce overhead [6]. 

4. PERFORMANCE ANALYSIS
4.1 EST and CAP3

Figure 3. Efficiency vs. number of CPU cores of DryadLINQ 
implementation of the CAP3 application  

We implemented a DryadLINQ application that performs CAP3 
sequence assembly program in parallel. As discussed in section 
2.1 CAP3 is a standalone executable that processes a single file 
containing DNA sequences. To implement a parallel application 
for CAP3 using DryadLINQ we adopt the following approach: (i) 
the input files are partitioned among the nodes of the cluster so 
that each node of the cluster stores roughly the same number of 
input files; (ii) a “data-partition” (A text file for this application) 
is created in each node containing the names of the input files 
available in that node; (iii) a DryadLINQ “partitioned-file” (a 
meta-data file understood by DryadLINQ) is created to point to 
the individual data-partitions located in the nodes of the cluster.  
Then we used the “Select” operation available in DryadLINQ to 
apply a function (developed by us) on each of these input 
sequence files. The function calls the CAP3 executable passing 
the input file name and other necessary program parameters as 
command line arguments. The function also captures the standard 
output of the CAP3 program and saves it to a file. Then it moves 
all the output files generated by CAP3 to a predefined location. 
This application resembles a common parallelization requirement, 
where an executable, a script, or a function in a special framework 
such as Matlab or R, needs to be applied on a collection of data 
items. We can develop DryadLINQ applications similar to the 
above for all these use cases. 
We measured the efficiency of the DryadLINQ implementation of 
the CAP3 application using a data set of 2304 input files by 
varying the number of nodes used for processing. The result of 
this benchmark is shown in figure 3. The collection of input files 
we used for the above benchmark contained different number of 
gene sequences in each, and hence it did not represent a uniform 
workload across the concurrent vertices of the DryadLINQ 
application, because the time the CAP3 takes to process an input 
file varies depending on the number of sequences available in the 
input file. The above characteristics of the data produces lower 
efficiencies at higher number of CPU cores as more CPU cores 
become idle towards the end of the computation waiting for 
vertices that takes longer time to complete. An architecture that 
supports scheduling of independent tasks/jobs among set of 
workers/processes depending on the priorities of the tasks/jobs 
would perform an optimal scheduling of such a workload by 
scheduling tasks/jobs that takes longest to complete first. 
However, DryadLINQ and other MapReduce architectures do not 
support this behavior, and in these architectures the scheduling of 



maps/reducers (in MapReduce) or vertices (in Dryad) is handled 
based on the availability of data and the computation power and 
not by the priorities. To verify the above observation we measured 
the utilization of vertices during two runs of the CAP3 program. 
In our first run we used 768 input files so that Dryad schedules 
768 vertices on 768 CPU cores, while in the second Dryad 
schedules 1536 vertices on 768 CPU cores. The result of this 
benchmark is shown in figure 4. 

Figure 4. Number of active tasks/CPU cores along the running 
times of two runs of CAP3. 

The first graph in figure 4 corresponding to 768 files indicates that 
although DryadLINQ starts all the 768 vertices at the same time 
they finish at different times with long running tasks taking 
roughly 40% of the overall time. The second graph (1536 files) 
shows that the above effect has caused lower utilization of 
vertices when Dryad schedules 1536 vertices to 768 CPU cores. 
This is due to the way Dryad schedule tasks to compute nodes and 
we have discussed this behavior extensively in [10]. We would 
not expect the same behavior (for graph 2) in other MapReduce 
implementations such as Hadoop, however, still the non-
uniformity of the processing time of parallel tasks and the simple 
scheduling adopted by the MapReduce runtimes may not produce 
optimal scheduling of tasks. 

4.2 PhyloD 
The parallel solution of PhyloD can be visualized as consisting of 
the following three different phases as shown in Figure 2 (left). 

Initial – During this phase, the input files are collected from the 
user and copied to a shared storage available to all workers. Then 
a sufficient number of workers are instantiated, each with the 
information of the data partition it has to work on. To reduce the 
parallel overhead, a worker can process multiple allele-codon 
pairs. ComputePartial – Each worker processes its allotted 
partition and produces intermediate results. These results are 
again copied to a shared storage. 

Summarize – During this phase, each of the intermediate results 
produced during the ComputePartial phase are aggregated and the 
final output is produced. 

We developed an Azure application for the PhyloD application by 
utilizing Azure Web Role, Worker Role, Blob Container, Work 
Item Queue and Tracking tables described in sec. 3.2 generally 
and their use in PhyloD is shown in Figure 2 (Right).  The web 
role is a simple ASP.NET application that allows clients to upload 
input files and provide other job parameters. A blob container is 
created per job which hosts the shared data between web and 

worker roles. The uploaded input files are copied to this container 
and an Initial work item is enqueued in the shared queue by the 
web role. Worker roles continuously poll the work item queue for 
new messages. A message encapsulates one of {Initial, 
ComputePartial, Summarize} work items. The evaluation of these 
work items is delegated to their respective processors. The 
processors return a Boolean result for the evaluation. The calling 
worker then removes the message from the queue or leaves it 
there based on the results of the evaluation. 

While processing an Initial work item, a worker role first tries to 
locate the entry for this task in the JobSteps table. If the job step is 
not found then it means that the web role enqueued the work item 
and then encountered some error before creating the job step entry 
in the table storage. No further action is taken in this case and the 
job is marked ‘Aborted’. If the job step entry is found and its 
status is ‘Completed’ we just remove this message from the 
queue. A ‘Completed’ status indicates that a worker has already 
processed this work item successfully but could not delete the 
message from the queue due to, for example, network errors or 
message timeout. After these checks are satisfied, the worker 
updates the status of parent job to ‘In Progress’. It then enqueues 
multiple ComputePartial work items in the queue and also creates 
corresponding job steps in the JobSteps table. Each 
ComputePartial work item has the partition information. The 
worker then enqueues a Summarize work item and creates its 
corresponding job step. Finally, it updates the status of Initial job 
step to ‘Completed’ and removes the Initial work item from the 
queue. ComputePartial work items are processed by multiple 
worker roles simultaneously. Each worker processes its allotted 
partition of the input data and copies the intermediate results to 
the blob container. PhyloD engine works exclusively on files. So, 
a pre-processing task of copying the original input files to worker 
role’s local storage is required for each ComputePartial work 
item. The worker follows similar checks for the status as in the 
Initial processing. Finally, the Summarize work item is processed. 
Intermediate results are aggregated to produce the final output 
which is again copied back to the blob container. The results can 
be downloaded via the web role. During the complete process, 
status information is updated in azure tables for tracking purposes. 

We measured the running time of the PhyloD prototype by 
varying the number of worker roles used on Azure cloud, and 
calculated the efficiency in each worker assignment. As in CAP3 
application describe in section 2.1, we also noticed in PhyloD 
lower efficiencies with higher number of workers, as shown in 
figure 6. In PhyloD the efficiency reduces to around 40% when 
we use 100 workers implying that more workers are idling waiting 
for few long running workers to finish.  To verify the above 
observation we also measured the number of active worker role 
instances during the execution of the PhyloD application. Figure 7 
shows that the less than 20 workers spend 30% of the time in 
processing long running PhyloD tasks which results lower 
efficiencies. Fixing this inefficiency in Azure is fairly straight 
forward as the tasks/jobs are dispatched via a queue which is 
accessed by the worker role instances to obtain a task/job for 
processing. Unlike in Dryad and other MapReduce runtimes 
which require runtime level support to handle priorities in 
maps/reduces/ and vertices, in Azure the user can enqueue tasks 
based on their expected running times, so that tasks that takes 
longest will be processed at the beginning.  



We are currently developing a DryadLINQ application for the 
PhyloD data analysis where the set of tasks are directly assigned 
to a collection of vertices where each of them process some 
number of tasks and give intermediate results. Unlike in Azure 

implementation, in Dryad case, the intermediate results can 
directly be transferred to a vertex for aggregation to produce the 
final output. 

Figure 6. Efficiency vs. number of worker roles in PhyloD 
prototype run on Azure March CTP 

Figure 7. Number of active Azure workers during a run of 
PhyloD application. 

4.3 Alu Sequence Classification  
4.3.1 Complete Problem with MPI and MapReduce 
This application uses two highly parallel traditional MPI 
applications MDS (Multi-Dimensional Scaling) and Pairwise 
(PW) Clustering algorithms described in Fox, Bae et al. [6]. The 
latter identifies sequence families as relatively isolated as seen for 
example in figure 8. MDS allows visualization by mapping the 
high dimension sequence data to three dimensions for 
visualization. 

  Figure 8. Alu: Display of Alu families from MDS calculation 
from 35339 sequences using SW-G distances. The younger 

families AluYa, AluYb show tight clusters 
MDS has a very formulation as it finds the best set of 3D vectors 
x(i) such that a weighted least squares sum of the difference 
between the sequence dissimilarity D(i,j) and the Euclidean 
distance |x(i) - x(j)| is minimized. This has a computational 
complexity of O(N2) to find 3N unknowns for N sequences. It can 
be heuristically solved in several ways including Expectation 

Figure 5. (Left) Three phases of the parallel solution (Right) The mapping of the parallel solution to a Azure application. 



Maximization and use of traditional excellent χ2 minimization 
methods. The latter are used here. 
The PWClustering algorithm is an efficient MPI parallelization of 
a robust EM (Expectation Maximization) method using annealing 
(deterministic not Monte Carlo) originally developed by Ken 
Rose, Fox [14, 15] and others [16]. This improves over clustering 
methods like Kmeans which are sensitive to false minima. The 
original clustering work was based in a vector space (like 
Kmeans) where a cluster is defined by a vector as its center. 
However in a major advance 10 years ago [16], it was shown how 
one could use a vector free approach and operate with just the 
distances D(i,j). This method is clearly most natural for problems 
like Alu sequences where currently global sequence alignment 
(over all N sequences) is problematic but D(i,j) can be precisely 
calculated. PWClustering also has a time complexity of O(N2) and 
in practice we find all three steps (Calculate D(i,j), MDS and 
PWClustering) take comparable times (a few hours for 50,000 
sequences) although searching for a lot of clusters and refining the 
MDS can increase their execution time significantly. We have 
presented performance results for MDS and PWClustering 
elsewhere [6, 17] and for large datasets the efficiencies are high 
(showing sometimes super linear speed up). For a node 
architecture reason, the initial distance calculation phase reported 
below has efficiencies of around 40-50% as the Smith Waterman 
computations are memory bandwidth limited. The more complex 
MDS and PWClustering algorithms show more computation per 
data access and high efficiency. 

4.3.2 Structure of all pair distance processing 
The Alu sequencing problem shows a well known factor of 2 
issue present in many O(N2) parallel algorithms such as those in 
direct simulations of astrophysical stems. We initially calculate in 
parallel the Distance D(i,j) between points (sequences) i and j. 
This is done in parallel over all processor nodes selecting criteria i 
< j (or j > i for upper triangular case) to avoid calculating both 
D(i,j) and the identical D(j,i). This can require substantial file 
transfer as it is unlikely that nodes requiring D(i,j) in a later step 
will find that it was calculated on nodes where it is needed.    
The MDS and PWClustering algorithms described in section 
4.3.1, require a particular parallel decomposition where each of N 
processes (MPI processes, threads) has 1/N of sequences and for 
this subset {i} of sequences stores in memory D({i},j) for all 
sequences  j and the subset {i} of sequences for which this node is 
responsible. This implies that we need D(i,j) and D(j,i) (which are 
equal) stored in different processors/disks. This is a well known 
collective operation in MPI called either gather or scatter but we 
did not use this in current work. Rather we designed our initial 
calculation of D(i,j) so that efficiently we only calculated the 
independent set but the data was stored so that the later MPI jobs 
could efficiently access the data needed. We chose the simplest 
approach where the initial phase produced a single file holding the 
full set of D(i,j) stored by rows – all j for each successive value of 
i. We commented in introduction that the initial phase is “doubly
data parallel” over i and j whereas the MPI algorithms have the
straightforward data parallelism over just a single sequence index
i; there is further the typical iterative communication-compute
phases in both MDS and PWClustering that implies one needs
extensions of MapReduce (such as CGL-MapReduce) if you wish
to execute the whole problem in a single programming paradigm.
In both MDS and PWClustering, the only MPI primitives needed
are MPI Broadcast, AllReduce, and Barrier so it will be quite
elegantly implemented in CGL-MapReduce.

4.3.3 Smith Waterman Dissimilarities 
We identified samples of the human and Chimpanzee Alu gene 
sequences using Repeatmasker [18] with Repbase Update [19]. 
We have been gradually increasing the size of our projects with 
the current largest samples having 35339 and 50000 sequences 
and these require a modest cluster such as Tempest (768 cores) for 
processing in a reasonable time (a few hours as shown in section 
4.3.6). Note from the discussion in section 4.3.2, we are aiming at 
supporting problems with a million sequences  -- quite practical 
today on TeraGrid and equivalent facilities given basic analysis 
steps scale like O(N2). We used open source version NAligner 
[20] of the Smith Waterman – Gotoh algorithm SW-G [21, 22]
modified to ensure low start up effects by each thread/processing
large numbers (above a few hundred) at a time. Memory
bandwidth needed was reduced by storing data items in as few
bytes as possible. In the following two sections, we just discuss
the initial phase of calculating distances D(i,j) for each pair of
sequences so we can efficiently use either MapReduce and MPI.

4.3.4 Dryad Implementation 
We developed a DryadLINQ application to perform the 
calculation of pairwise SW-G distances for a given set of genes by 
adopting a coarse grain task decomposition approach which 
requires minimum inter-process communicational requirements to 
ameliorate the higher communication and synchronization costs of 
the parallel runtime. To clarify our algorithm, let’s consider an 
example where N gene sequences produces a pairwise distance 
matrix of size NxN. We decompose the computation task by 
considering the resultant matrix and groups the overall 
computation into a block matrix of size DxD where D is a 
multiple (>2) of the available computation nodes. Due to the 
symmetry of the distances D(i,j) and D(j,i) we only calculate the 
distances in the blocks of the upper triangle of the block matrix as 
shown in figure 9 (left). Diagonal blocks are specially handled 
and calculated as full sub blocks. As number of diagonal blocks D 
and total number D(D+1)/2, there is no significant compute 
overhead added. The blocks in the upper triangle are partitioned 
(assigned) to the available compute nodes and an “Apply” 
operation is used to execute a function to calculate (N/D)x(N/D) 
distances in each block, where d is defined as N/D. After 
computing the distances in each block, the function calculates the 
transpose matrix of the result matrix which corresponds to a block 
in the lower triangle, and writes both these matrices into two 
output files in the local file system. The names of these files and 
their block numbers are communicated back to the main program. 
The main program sort the files based on their block number s and 
perform another “Apply” operation to combine the files 
corresponding to a row of blocks in a single large row block as 
shown in the figure 9 (right). 

4.3.5 MPI Implementation of Distance Calculation 
The MPI version of SW-G calculates pairwise distances using a 
set of either single or multi-threaded processes. For N gene 
sequences, we need to compute half of the values (in the lower 
triangular matrix), which is a total of M = N x (N-1) /2 distances. 
At a high level, computation tasks are evenly divided among P 
processes and execute in parallel. Namely, computation workload 
per process is M/P.  At a low level, each computation task can be 
further divided into subgroups and run in T concurrent threads. 
Our implementation is designed for flexible use of shared memory 
multicore system and distributed memory clusters (tight to 
medium tight coupled communication technologies such threading 



and MPI). We provide options for any combinations of thread vs. 
process vs. node but in earlier papers [6, 17], we have shown as 
discussed in section 3.3 that threading is much slower than MPI 
for this class of problem. We explored two different algorithms 

termed “Space Filling” and “Block Scattered” below. In each 
case, we must calculate the independent distances and then build 
the full matrix exploiting symmetry of D(i,j).

                    
Figure 9. Task decomposition (left) and the DryadLINQ vertex hierarchy (right) of the DryadLINQ implementation 

of SW-G pairwise distance calculation application. 

 
 

Figure 10. Space Filling MPI Algorithm: Task decomposition (left) and SW-G implementation calculation (right). 

The “Space Filling” MPI algorithm is shown in figure 10, where 
the data decomposition strategy runs a "space filling curve 
through lower triangular matrix" to produce equal numbers of 
pairs for each parallel unit such as process or thread. It is 
necessary to map indexes in each pairs group back to 
corresponding matrix coordinates (i, j) for constructing full matrix 
later on. We implemented a special function "PairEnumertator" as 
the convertor.  We tried to limit runtime memory usage for 
performance optimization. This is done by writing a triple of i, j, 
and distance value of pairwise alignment to a stream writer and 
the system flashes accumulated results to a local file periodically. 
As the final stage, individual files are merged to form a full 
distance matrix. Next we describe the “Block Scattered” MPI 
algorithm shown in figure 11. Points are divided into blocks such 
that each processor is responsible for all blocks in a simple 
decomposition illustrated in the figure 11 (Left). This also 
illustrates the initial computation, where to respect symmetry, we 
calculate half the D(α,β) using the following criterion: 

If β >= α, we only calculate D(α,β) if α+β is even while in the 
lower triangle, β < α, we only calculate D(α,β) if α+β is odd.  

This approach can be applied to points or blocks. In our 
implementation, we applied to blocks of points -- of size 
(N/P)x(N/P) where we use P MPI processes. Note we get better 
load balancing than the “Space Filling” algorithm as each 
processor samples all values of β. This computation step must be 
followed by a communication step illustrated in Figure 11 (Right) 
which gives full strips in each process. The latter can be 
straightforwardly written out as properly ordered file(s). 

 

Alu data # sequences  Cap3 data 

Original 
Replicated (subset  

of original 50k) 
Medium size  

Files kb 

50k 35k 10k, 20k,30k,40k,50k Set A Set B 
Standard 
Deviation 26.91 30.99 26.49 129.06 189.29 

Min 150 150 151 213 213 
Max 479 462 467 869 869 

Average 296.09 294.89 296.31 438.59 455.59 
Data points 50000 35399 10000 2304 1152 

Table 1: Mean and Standard Deviation of Alu & CAP3 data 
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4.3.6 Alu SW-G Distance Calculation Performance 
We present a summary of results for both Dryad and MPI 
computations of the Alu distance matrix in figures 12 and 13. We 
used several data sets and there is inhomogeneity in sequence size 
throughout these sets quantified in table 1. Two of 35,339 and 

50,000 sequences were comprised of distinct sequences while we 
also prepared datasets allowing us to test scaling as a function of 
dataset size by taking 10,000 sequences and replicating them 2-5 
times to produce 10K, 20K, 30K, 40K, 50K “homogeneous” or 
replicated datasets. 

  
Figure 11. Block Scattered MPI Algorithm:  Decomposition (Left) and Scattered Communication (Right) to 

construct full matrix. 
 

 
Figure 12. Performance of Dryad implementation of SW-G 

(note that the Y-axis has a logarithmic scale)  

 
Figure 13. Comparison of Dryad and MPI on SW-G 

alignment on replicated and original raw data samples 

In figure 12, we present Dryad results for the replicated dataset 
showing the dominant compute time compared to the small 
partition and merge phases. Further for the Block Scattered MPI 
approach, the final “scatter” communication takes a negligible 
time. Figure 13 compares the performance of Dryad and the two 
MPI approaches on the homogeneous (10K – 50K) and 
heterogeneous (35K, 50K) datasets. We present the results as the 
time in milliseconds per distance pair per core. This is measured 
total time of figure 12 multiplied by number of cores and 
divided by square of dataset size i.e. it is time a single core 
would take to calculate a single distance.  Then “perfect scaling 
in dataset size or number of nodes” should imply a constant 
value for this quantity. We find that for Dryad and MPI, the 
replicated dataset time is roughly constant as a function of 
sequence number and the original 35339 and 50,000 sequence 
samples are just a little slower than the replicated case. Note 
from table 1, that there is little variation in measure of 
inhomogeneity between replicated and raw data. A surprising 
feature of our results is that the Space Filling MPI algorithm is 
faster than the Block Scattered approach. Dryad lies in between 
the two MPI implementations and is about 20% slower on the 
replicated and heterogeneous dataset compared to Space-Filling 
MPI. We are currently investigating this but given the complex 
final data structure, we see that it is impressive that the still 
preliminary Dryad implementation does very well. 
In figure 14, we show that Dryad scales well with number of 
nodes in that time per distance pair per core is roughly constant 
on the 10K replicated SW-G data and consistent with Dryad 
replicated data points in figure 13. In table 1, we showed that 
SW-G is more homogeneous than CAP3 in that standard 
deviation/mean is lower. However we also got reasonable 
scaling in figure 3 for CAP3 which corresponds to data set A of 
table 1 while preliminary results for the more heterogeneous 
“Set B”, also shows good scaling from 192 to 576 cores. The 
dependence on data homogeneity is very important and needs 
better study and perhaps dynamic scheduling or more 
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sophisticated scattering of data between processes to achieve 
statistical load balance.  
We study the effect of inhomogeneous gene sequence lengths 
for SW-G pairwise distance calculation applications. These 
results also present comparisons of Hadoop and Dryad on 
identical hardware rebooted with Linux and Windows 
respectively. The data sets used were randomly generated with a 
given mean sequence length (400) with varying standard 
deviations following a normal distribution of the sequence 
lengths. 

Figure 14. Performance of Dryad for SW-G Alignment on 
10K data sample as a function of number of cores 

 Figure 15. Performance of Dryad vs. Hadoop for SW-G for 
inhomogeneous data as a function of standard deviation with 

mean sequence length of 400 
Each data set contained a set of 10000 sequences and a 100 
million pairwise distance calculations to perform. Sequences of 
varying lengths are randomly distributed across the data set. The 
Dryad-adjusted results depict the raw Dryad results adjusted for 
the performance difference of the NAligner (C#) and JAligner 
(Java) base Smith-Waterman alignment programs. As we notice 
from the figure 15, both the Dryad implementation as well as the 
Hadoop implementation performed satisfactorily, without 
showing significant performance degradations for high standard 
deviation. In fact the Hadoop implementation showed minor 
improvements in the execution times. The acceptable 
performance can be attributed to the fact that the sequences with 
varying lengths are randomly distributed across the data set, 
giving a natural load balancing to the sequence blocks. The 
Hadoop implementations’ slight performance improvement can 
be attributed to the global pipeline scheduling of map tasks that 
Hadoop performs. In Hadoop, the administrator can specify the 
map task capacity of a particular worker node and then Hadoop 
global scheduler schedules the map tasks directly on to those 
placeholders when individual tasks finish in a much finer 

granularity than in Dryad. This allows the Hadoop 
implementation to perform natural global level load balancing.  

5. RELATED WORK
There have been several papers discussing data analysis using a 
variety of cloud and more traditional cluster/Grid technologies 
with the Chicago paper [23] influential in posing the broad 
importance of this type of problem. The Notre Dame all pairs 
system [24] clearly identified the “doubly data parallel” 
structure seen in all of our applications. We discuss in the Alu 
case the linking of an initial doubly data parallel to more 
traditional “singly data parallel” MPI applications. BLAST is a 
well known doubly data parallel problem and has been discussed 
in several papers [25, 26]. The Swarm project [5] successfully 
uses traditional distributed clustering scheduling to address the 
EST and CAP3 problem. Note approaches like Condor have 
significant startup time dominating performance. For basic 
operations [27], we find Hadoop and Dryad get similar 
performance on bioinformatics, particle physics and the well 
known kernels. Wilde [28] has emphasized the value of scripting 
to control these (task parallel) problems and here DryadLINQ 
offers some capabilities that we exploited. We note that most 
previous work has used Linux based systems and technologies. 
Our work shows that Windows HPC server based systems can 
also be very effective. 

6. CONCLUSIONS
We have studied three data analysis problems with four different 
technologies. The applications each start with a “doubly data-
parallel” (all pairs) phase that can be implemented in 
MapReduce, MPI or using cloud resources on demand. The 
flexibility of clouds and MapReduce suggest they will become 
the preferred approaches. We showed how one can support an 
application (Alu) requiring a detailed output structure to allow 
follow-on iterative MPI computations. The applications differed 
in the heterogeneity of the initial data sets but in each case good 
performance is observed with the new cloud technologies 
competitive with MPI performance. The simple structure of the 
data/compute flow and the minimum inter-task communicational 
requirements of these “pleasingly parallel” applications enabled 
them to be implemented using a wide variety of technologies. 
The support for handling large data sets, the concept of moving 
computation to data, and the better quality of services provided 
by the cloud technologies, simplify the implementation of some 
problems over traditional systems. We find that different 
programming constructs available in cloud technologies such as 
independent “maps” in MapReduce, “homomorphic Apply” in 
Dryad, and the “worker roles” in Azure are all suitable for 
implementing applications of the type we examine. In the Alu 
case, we show that Dryad and Hadoop can be programmed to 
prepare data for use in later parallel MPI/threaded applications 
used for further analysis. Our Dryad and Azure work was all 
performed on Windows machines and achieved very large speed 
ups (limited by memory bandwidth on 24 core nodes). Similar 
conclusions would be seen on Linux machines as long as they 
can support the DryadLINQ and Azure functionalities used. The 
current results suggest several follow up measurements 
including the overhead of clouds on our Hadoop and Dryad 
implementations as well as further comparisons of them. 
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