
Performance of Windows Multicore Systems on Threading and MPI

Judy Qiu1,2, Seung-Hee Bae1,2
1Pervasive Technology Institute, 2School of Informatics and Computing

Indiana University, Bloomington IN, 47408 USA
E-mail: xqiu, sebae @indiana.edu

Abstract

We present performance results on a Windows cluster with up to 768 cores using MPI and two

variants of threading – CCR and TPL. CCR (Concurrency and Coordination Runtime) presents a
message based interface while TPL (Task Parallel Library) allows for loops to be automatically
parallelized. MPI is used between the cluster nodes (up to 32) and either threading or MPI for
parallelism on the 24 cores of each node. We look at performance of two significant bioinformatics
applications; gene clustering and dimension reduction. We find that the two threading runtimes offer
similar performance with MPI outperforming both at low levels of parallelism but threading much
better when the grain size (problem size per process/thread) is small. We develop simple models for
the performance of the clustering code.

1. Introduction

Multicore technology is still rapidly changing at both the hardware and software levels and so it is
challenging to understand how to achieve good performance especially with clusters when one needs
to consider both distributed and shared memory issues. In this paper we look at both MPI and
threading approaches to parallelism for two significant production datamining codes running on a 768
core Windows cluster. Efficient use of this code requires that one use a hybrid programming
paradigm mixing threading and MPI. Here we quantify this and compare the threading model CCR
(Concurrency and Coordination Runtime) that we have used for the last 3 years with Microsoft’s
more recent TPL Task Parallel Library.

 Section 2 briefly presents both the clustering and dimension reduction applications used in this
paper while section 3 summarizes the three approaches to parallelism – CCR, TPL and MPI – used
here. Section 4 looks at the performance of the clustering application with the different software
models and as a function of dataset size. We identify the major sources of parallel overhead of which
the most important is the usual synchronization and communication overhead. We compare the
measured performance with simple one and two factor models which describe most of the
performance data well. Both CCR and the newer TPL perform similarly. In section 5, we discuss
CCR v TPL on dimension reduction applications. Section VI has conclusions.

 In this paper we mainly use a cluster Tempest which has 32 nodes made up of four Intel Xeon
E7450 CPUs at 2.40GHz with 6 cores. Each node has 48 GB node memory and is connected by
20Gbps Infiniband. In section 5, we compare with a single AMD machine that is made up of four
AMD Opteron 8356 2.3 GHz chips with 6 cores. This machine has 32 GB memory. All machines run
Microsoft Window HPC Server 2008 (Service Pack 1) - 64 bit. Note all software was written in C#
and runs in .NET3.5 or .NET4.0 (beta 2) environments

2. Applications

Figure 1 Clustering by Deterministic Annealing for 35339 AluY Sequences

We take our applications from a study of clustering and visualization of gene sequences. We have
described in earlier publications, our approach to clustering using deterministic annealing[1-3]. This
was introduced by Rose[4, 5] with Hofmann and Buhmann[6] providing a key extension to the
“pairwise” case where the points to be clustered do not have known vector representations but rather
all that is known is the dissimilarities (distances) between each pair of points. We have substantially
improved the published algorithms and implemented efficiently using both MPI and threading. All
our current published work[1-3, 7-9] has used Microsoft’s CCR threading library[10].

Multidimensional scaling (MDS) [11, 12] aims to construct low dimensional mappings of the given
high-dimensional data on the basis of the pairwise proximity information, while the pairwise
Euclidean distance within the target dimension between two points is approximated to the
corresponding original proximity value. In other words, MDS is a non-linear optimization problem
with respect to the mapping in the target dimension and the given pairwise dissimilarity information.
The STRESS[13] value is a well-known objective function of MDS, which needs to be minimized.
STRESS is defined by:

 σ(X) = Σi<j≤N wij(dij(X) - δij)2 (1)
where wij is an arbitrary weight, dij(X) is the Euclidean distance between two mapped vectors of xi and
xj, and δij is the corresponding original dissimilarity value.

Among many MDS solution, we use SMACOF algorithm which is based on Expectation
Maximization (EM)-like iterative majorization method. For details of the SMACOF algorithm, please
refer to [14].

The current paper uses samples of Alu repeats[15, 16] coming from the Human and Chimpanzee
genomes. Typical result of this analysis is shown in fig. 1 with several identified clusters in the AluY
family[1]. The visualization of this data in fig. 1 is an example of the value of dimension reduction.
One can clearly see the clusters and one is not solely reliant on statistical measures to quantify them.

Both MDS and clustering algorithms are compute intensive as they are of O(N2) for N sequences
and so we are motivated to seek both improved algorithms[2] and understand the performance of the
current code[7-9]. We note the algorithm structure of MDS and deterministic annealing clustering are

rather different. Clustering is similar to classic O(N2) particle dynamics problems in structure while
SMACOF MDS is built around iterative application of non square matrix multiplication.

We note that our conference paper[17] also compares CCR and TPL on a simple matrix
multiplication kernel which we do not cover here.

3. Software Models

3.1. CCR (Concurrency and Coordination Runtime)
CCR[10, 18] is a CLR-based common language runtime that supports asynchronous messages for

threads. We have discussed its syntax and capabilities in previous papers [3, 7-9]. It offers high
performance ports with queues to support messaging between threads and much of its sophistication
is not needed in this application. We have used CCR to implement classic MPI like communication
patterns including pipeline, shift, rendezvous shift, and rendezvous exchange and it has given good
performance [19]. It has been a very reliable tool used in our group for several years. As shown in
Figs. 2 and 3, there is a non trivial amount of overhead in implementing a simple parallel loop that is
needed 22 times in our clustering application. This does produce relatively ugly code and in fact the
MPI version of this is much simpler as it just requires barrier and reduction calls.

MPI and CCR both require the user break up the loops explicitly to express the “data parallelism”.
The shared memory naturally supported by the threaded model improves both the readability and
performance of those parts of the algorithm requiring communication in MPI. These are largely to
support linear algebra – especially determination of leading eigenvalue/vector of a cluster correlation
matrix.

Fig. 2: Typical Structure of CCR code used in Clustering Fig. 3: Typical Structure of CCR code for Clustering

3.2. TPL (Task Parallel Library)

TPL[20] supports a loop parallelism model familiar from OpenMP[21]. Note TPL is a component
of the Parallel FX library, the next generation of concurrency support for the Microsoft .NET
Framework which supports additional forms of parallelism not needed in our application.

 TPL contains sophisticated algorithms for dynamic work distribution and automatically adapts to
the workload and particular machine so that the code should run efficiently on any machine whatever
its core count. Note TPL involves language changes (unlike CCR which is a runtime library) and so
implies that code only runs on Windows.

ParallelOptions parallelOptions = new ParallelOptions();

parallelOptions.MaxDegreeOfParallelism = threadCount;

Parallel.For(0, dataBlockCount, parallelOptions,
(dataBlockIndex) =>
{
 // do work
});

CountdownLatch latch = CountdownLatch(threadCount);
Port<int> port = new Port<int>();

Arbiter.Activate(queue, Arbiter.Receive(true, port, delegate(int
dataBlockIndex)
{
 DataBlock dataBlock = _dataBlocks[MPIRank][dataBlockIndex];
 // do work
 latch.Signal()
}));

for (int dataBlockIndex = 0; dataBlockIndex < dataBlockCount;
dataBlockIndex++)
{
 port.Post(dataBlockIndex);
}

latch.Wait();

 In Fig. 3 we give the pseudocode for a typical use of TPL in our application. It is clearly simpler
than the CCR syntax in fig. 2 but does not help us maintain an OS independent source as it extends
language in an idiosyncratic fashion. We note that complete clustering code had 22 separate “Parallel
For” invocations while MDS had 7 separate "Parallel.For" subroutines in the parallel implementation;
4 of the MDS "Parallel.For" are called in the iterative part of SMACOF algorithm.

3.3. MPI (Message Passing Interface)

Our codes are implemented to use MPI to support the concurrency across nodes and in addition the
threading models described above. The inter-node MPI implementation trivially can support
parallelism within the node and that is used in the later studies. In sense, MPI is the “simplest” intra-
node paradigm as it re-uses code that must be present anyway. If one only needs intra-node
parallelism, then MPI would be more complex to code than the shared memory threading models
CCR and TPL.

 We have discussed elsewhere how extensions of MapReduce (Twister[22-24]) can be used to
replace MPI but that is not the focus here. Twister has a more flexible communication model than
MPI and that will lead to poorer performance.

4. Performance of Clustering Code on Tempest Cluster

4.1. Threading vs MPI with CCR and TPL Runtime

In Fig. 4, we show typical execution time measurements with combinations of inter-node
parallelism implemented using MPI and intra-node parallelism using either threading (CCR or TPL)
or MPI. Four labels are used in the legend to distinguish runtime modes where TPL and CCR
represent the type of shared memory parallel runtime implementation, and MPI and Threaded suffixes
differentiate whether intra-node parallelism is contributed by concurrent threads or parallel processes.
For example, CCR-MPI or TPL-MPI means that the parallelism p is achieved by MPI processes only
within a node and TPL-Threaded or CCR-Threaded means that shared memory parallelism is used
instead. In the case of p=32 and n=16, TPL-MPI has 1 TPL thread and 2 MPI processes.

Comparable performance at low levels of parallelism is observed but that threading is much faster on
the extreme case on left – 24 way internal parallelism on 32 nodes. We will explore this effect in
more detail below. Also note here that TPL is a little faster than CCR even in case of internal MPI
when there is only one thread per process. We convert execution time into an efficiency  or an
overhead f where

 = S(p)/p or (prefT(pref))/(pT(p)) (2)

f = 1/ -1 = pT(p)/ (prefT(pref)) – 1 (3)

where T(p) is execution time on p processors and S(p) is speedup. Normally the reference process

count is pref = 1 but we will sometimes use a larger value where execution with p=1 is inconvenient.
Efficiency is usually between 0 and 1 but the overhead is unbounded and so when large is not as easy
to plot. However f is linear in execution time of parallel code whereas efficiency is inversely
proportional to T(p). Typically deviations from “perfect speedup” correspond to extra terms added
into T(p) and often these overheads from load imbalance or communication are just additive
quantities to T(p). Thus such overheads are easier to study in the overhead f than efficiency .
Deviations from zero of f directly measure (scaled) overhead. We exploit this in section 4 where we

Fig. 4. Execution Time of Clustering Code for
selected parallelism p and node counts n. Shown are
CCR and TPL internal threading as well as intra-
node MPI implemented in these two frameworks

Fig. 5. Parallel Overhead for 35399 AluY sequence
clustering for cases of pure threading in the node

Fig. 6. Parallel Overhead f as a function of pattern tXmXn for a sample of 30,000 Metagenomics sequences. [1]
(Selected on small parallel counts p  64)

show a simple and expected model for f describes our measurements in “linear” region where
overheads are small (and f <~ 1).

Note that we label parallelism as tXmXn where

p = t m n (4)
Here each node has t threads or m MPI internal processes and the run involves n nodes. In most of
data in this section either t or m is one i.e. we use pure MPI or pure threading in a node although we
have performed a rather complete set of tests with both m and t not equal to 1 reported in [3].

4.2. Threading Internal to Node

In Fig. 5, we show a set of runs with pure threading in each node with different choices for thread
count t and node count n. The overhead clearly increases as expected as one increases parallelism
reaching (for TPL) 0.72 for a 768 core run. This corresponds to an efficiency of 58%. However the
figure also shows a surprising increase at low parallelism values n < 8. This is a reproducible effect
over several applications and corresponds to poor Windows performance where processes have large
memory. The effect is shown in more detail in a sample from an earlier paper with Fig. 6 showing the
overhead for many cases of low parallelism counts such as patterns 2x1x1, 4x1x1, 8x1x1, 16x1x1 and
24x1x1. This figure shows that here MPI internal (or external) to the node outperforms threading at
low parallelism as it reduces per process memory size. The phenomenon is illustrated in patterns
1x2x1, 2x2x1, 4x2x1, 8x2x1, and 1x24x1.

Often the most important overhead in parallel computing is the time spent synchronizing or
communicating in the parallel code. In the parallel clustering code with p parallel units and N points
total, one stores N/p points in each parallel unit. Then for an O(N2) problem at each iteration, one
communicates approximately N/p points between nodes and does a total of (N/p) times (N/p)
computations involving the communicated points and those stored in each node. Letting n = N/p be
the grain size, the overhead takes the form

 f  n tcomm/[(n*n) tcalc] (5)
 or f  1/n or f  p at fixed data set size N

The overall constant in (5) can be derived in terms of core hardware performance for calculation

and communication. However in practice the exact value of f is hard to make quantitative Here we
adopt a phenomenological view and take the functional dependence on p or n from (5) but fit the
constant. In fact we take a general one or two-factor model

 f = a1 x1 or f = a1 x1 + a2 x2 (6)

where we take various choices for x1 and x2 and perform a simple one or two parameter least squares
fit to find a1 and a2. We show the results of this analysis in Fig. 7 for the choices x1 = p and x2 = node
count Nnode as the factors. This is performed separately for the CCR and TPL cases. Note the model
describes the data quite well except for the case of low parallelism Nnode < 8 where we had already
suggested that the overhead was coming from a totally different effect (large process memory) than
the usual communication and synchronization overheads that equs. (5) and (6) are designed to model.
We note that a one factor model that only keeps the dependence on total parallelism gives similar
quality fits to that with two factors – this is to be expected if one analyzes the natural forms of

P
a
ra
lle
l
O
ve
rh
e
a
d

Parallel Patterns (Threads/Processes/Nodes)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

2
x1
x4

2
x1
x8

2
x1
x1
6

4
x1
x4

8
x1
x4

8
x1
x2

4
x1
x8

4
x1
x1
6

2
x1
x2
4

8
x1
x8

2
x1
x3
2

1
6
x1
x4

4
x1
x2
4

4
x1
x3
2

8
x1
x1
6

1
6
x1
x8

8
x1
x2
4

2
4
x1
x4

8
x1
x3
2

1
6
x1
x1
6

2
4
x1
x8

1
6
x1
x2
4

1
6
x1
x3
2

2
4
x1
x1
6

2
4
x1
x2
4

2
4
x1
x3
2

Difference in Overhead for Threading

Clustering of ALU

P
a
ra
ll
e
l
O
v
e
rh
e
a
d

Parallel Patterns (Threads/Processes/Nodes)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

1
x2
x4

1
x2
x8

1
x2
x1
6

1
x4
x4

1
x8
x4

1
x8
x2

1
x4
x8

1
x4
x1
6

1
x2
x2
4

1
x8
x8

1
x2
x3
2

1
x1
6
x4

1
x4
x2
4

1
x4
x3
2

1
x8
x1
6

1
x1
6
x8

1
x8
x2
4

1
x2
4
x4

1
x8
x3
2

1
x1
6
x1
6

1
x2
4
x8

1
x1
6
x2
4

1
x1
6
x3
2

1
x2
4
x1
6

1
x2
4
x2
4

1
x2
4
x3
2

Difference in Overhead for MPI

Clustering of ALU

Fig. 7. The data of Fig. 5 compared with a simple
model described in text for MPI and threading. For
each pattern, we show in order the model CCR
prediction, the measured CCR, the model TPL
prediction and finally the measured TPL

Fig. 10. Parallel Overhead for 35399 AluY sequence
clustering for cases of pure MPI internal to the node.
For each pattern, we show in order the measured
TPL, the measured CCR, the single factor model
CCR prediction and finally the two factor model
CCR prediction.

Fig. 8. Parallel Overhead f as a function of pattern
tXmXn for three samples of respectively 12,500
25.000 and 50,000 AluY sequences in the case m=1 of
threading internal to node. We show for each
pattern, the CCR measurement followed by the two
factor and single factor model.

Fig. 11. Parallel Overhead f as a function of pattern
tXmXn for three samples of respectively 12,500
25.000 and 50,000 AluY sequences in the case t=1 of
MPI internal to node. We show for each pattern, the
CCR measurement followed by the single factor and
two factor model.

Fig. 9. Parallel Overhead difference CCR minus TPL
for threading internal to node with Clustering by
Deterministic Annealing for 35339 AluY Sequences

Fig. 12. Parallel Overhead difference CCR minus
TPL for MPI internal to node with Clustering by
Deterministic Annealing for 35339 AluY Sequences

overhead. We illustrate this in fig. 8 which compares one and two factor fits for another AluY sample
chosen as it was homogeneous and could therefore be used to test data set size dependence of the
performance. The one factor fit just uses x1 = p while the two factor fit uses x1 = p and x2 = Nnode. The
two fits are indistinguishable and also simultaneously describe three dataset sizes with 12.5K, 25K
and 50K points. Precisely we used a factor x1 that was 1/ n = Parallelism p/(Data set size) that is
precisely the inverse of grain size. We note that TPL is usually faster than CCR although the
difference is often small as seen in Fig. 9.

4.3. MPI Internal to Node

We now look at the analogous runs to the previous section but with pure MPI and not pure threading
in each node. We still get results for both CCR and TPL as our code bases are implemented in the
threading frameworks and can get some overheads even though the thread count is one in all cases.
Fig. 10 plots the basic overhead measurements plus two models that we only apply to CCR case. One
model has a single factor x1 as the parallelism p and the second model has x1 as p and x2 as p2. Again
the models are approximately correct but now for all patterns as we have internal MPI parallelism, we
do not have the large process memory effect at low parallelism values.

The simple linear fits are less good than for threading case. This is particularly clear in Fig. 11
which analyzes the dataset size dependence for MPI intra-node parallelism for the three AluY
samples. Now the fits are significantly poorer than in Fig. 8. This is not surprising as the large size of
the overhead makes it hard to justify a linear (or even quadratic) model. In Fig. 12, we show the small
overhead increases for CCR compared to TPL in the case when MPI is used internal to a node.

5. Parallelization of Multidimensional Scaling (MDS)

5.1. Parallel Implementation of MDS

In order to analyze performance of two different shared memory parallel libraries CCR[10, 18] and
TPL[20], we implement a well-known MDS application, called SMACOF[14] corresponding to
weight function of 1 for all i, j in Eq. (1). We have parallelized this using MPI and threading but here
only discuss the CCR and TPL – discussed in section 3 – parallelism of MDS on 24 core multicore
systems with a standard shared memory model.

SMACOF[14] algorithm consists of iteration of the following three components: (1) non-square
matrix multiplication, (2) calculating the objective function known as STRESS value, and (3)
updating necessary matrices. the computational complexity of those three components is O(N2). For
parallelization of the non-square matrix multiplication, block decomposition is used for load
balancing and efficient cache memory utilization. Fig. 13. illustrates block decomposition for the
matrix multiplication.

For the load balancing, the N x D output matrix C is decomposed by b x D sub-blocks where N is
the number of points, and b is the specified block size, and D is the target dimension. Then, each
block Ci is assigned to one of the threads. Then each threads calculates the assigned sub-blocks Ci
based on the block decomposition of Fig. 13. The following block matrix multiplication equation
represents how compute Ci exactly:

 Ci = Σj Mij * Xj (7)
The reason we use block matrix multiplication as in Eq. (7) instead of Ci = Mi * X is to achieve

better cache hit ratio, and we use b = 64 based on our previous experience in [25].

 Fig. 13. Block decomposition for the non-square matrix multiplication.

Fig. 14. row-block assigning algorithm for load balancing of updating matrices and calculating STRESS.

inputs: pNum, length, myRank;
outputs: startOffset, endOffset, nRows;

 int nRows;

 if (length % pNum == 0)
 {
 nRows = length / pNum;
 startOffset = nRows * myRank;
 endOffset = startOffset + nRows;
 }
 else
 {
 if (myRank < pNum - (length % pNum))
 {
 nRows = length / pNum;
 startOffset = nRows * myRank;
 endOffset = startOffset + nRows;
 }
 else
 {
 nRows = length / pNum + 1;
 startOffset = nRows * myRank - pNum + (length % pNum);
 endOffset = startOffset + nRows;
 }
 }

In addition to parallelizing the non-square matrix multiplication, we need to parallelize the
updating of matrices and calculation of the STRESS value for each iteration, since the time
complexity of them is also O(N2). Although we consider cache performance for the matrix
multiplication part, cache effect is not a big issue for updating matrices and calculating STRESS since
each element is accessed only once for those subroutines. Therefore, simple row-block assigning
algorithm is used for the purpose of load balancing as in Fig. 14. pNum is the number of threads,
length is equal to N, myRank is the ID of the current thread, and nRows is the number of rows
assigned to the current threads. The difference of the number of assigned rows is at most one through
the algorithm shown in Fig. 14.

5.2. Parallel Performance of MDS

In this paper, we compare the performance of the two different parallel runtimes for Microsoft

.NET frameworks, CCR [10, 18] and TPL [20] by applying them to MDS application SMACOF [14]
algorithm with the parallel approach given in Section 5.1. We explore the performances on two
different 24-core systems. One node is made up of four Intel Xeon E7450 CPUs at 2.40GHz with 6
cores and 48 GB of main memory, and the other node is an AMD machine that is made up of four
AMD Opteron 8356 2.3 GHz chips with 6 cores and 32 GB of main memory.

For the experiment, we run the SMACOF implemented with CCR and TPL (labeled as CCR-MDS
and TPL-MDS, correspondingly) with three different scientific data sets that we have studied. Two
of them are ALU sequence data with 3000 and 4499 points[3] (sequences), and the other is 10,000
health records[1] related to 8 clinical features, such as Body Mass Index (BMI) and blood pressures
etc., as well as 97 environmental factors which is geographically related to the dataset, like greenness
of neighborhood and the number of nearby fast food restaurants, and so on. Since MDS applications
work based on pairwise dissimilarity information, we constructed pairwise dissimilarity matrices for
ALU3000, ALU4499, and Patient10000 data set through different methods. For instance, in
ALU3000 data case, a pairwise dissimilarity matrix was constructed by Manhattan distance (a.k.a.
hamming distance) of each pair of sequences which contain about 950 DNA characters. For the
Patient10000 data, we employed the Euclidean distance of normalized vector representation of 8
clinical features and 97 environmental factors to build the pairwise dissimilarity matrix.

Fig. 15. Execution Time of CCR vs. TPL for
Multi-Dimensional Scaling using 3000 Alu
sequences on 24 core Intel vs. AMD machines

Fig. 16. Parallel Efficiency comparing CCR and
TPL for Multi-Dimensional Scaling using 3000 Alu
sequences on 24 core Intel and AMD machines

Fig. 17. Execution Time of CCR vs. TPL for
Multi-Dimensional Scaling using 4499 Alu
sequences on 24 core Intel vs. AMD machines

Fig. 18. Parallel Efficiency comparing CCR and
TPL for Multi-Dimensional Scaling using 4499 Alu
sequences on 24 core Intel and AMD machines

Fig. 19. Execution Time of CCR vs. TPL for
Multi-Dimensional Scaling using 10,000 point
patient data on 24 core Intel vs. AMD machines

Fig. 20. Parallel Efficiency comparing CCR and
TPL for Multi-Dimensional Scaling using 10,000 pt
patient data on 24 core Intel and AMD machines

Fig. 15 and Fig. 17 describe the execution time of CCR-MDS and TPL-MDS on two test-beds,
Intel Xeon 24-core node (hereafter cn01) and AMD Opteron 24-core node (hereafter cn02) for
ALU3000 and ALU4499 datasets with respect to the number of threads, and Fig. 16 and Fig. 18 show
the efficiency of execution time in Fig.15 and Fig.17, correspondingly. In Fig.16, CCR-MDS shows
high efficiency in most cases except 24-thread cases, and it is expected. In Fig. 18, however, TPL-
MDS shows somewhat more overhead with 8-/16-thread cases with both ALU3000 and ALU4499
datasets, although it shows almost comparable efficiency to CCR-MDS with 24-thread cases.
Execution time and its efficiency of CCR-MDS and TPL-MDS with 10,000 point patient data are
illustrated by Fig. 19 and Fig. 20, respectively. Again, CCR-MDS shows almost linear running time
and high efficiency in Fig. 20. In contrast, efficiency of TPL-MDS drops to around 70% with 16-/24-
thread cases on both Intel and AMD machines. Another interesting feature is that both CCR-MDS
and TPL-MDS achieve better performance on the Intel Xeon CPU node than the AMD Opteron CPU
node.

In summary, we implemented SMACOF algorithm in parallel with CCR and TPL parallel runtime
and find that CCR is comparable to and better than TPL for MDS implementation with single node
thread only parallelism. CCR is particularly better than TPL on the larger thread counts of 16 or 24
cores. Also, both parallel runtimes perform better on Intel CPU node than on AMD CPU node.

6. Conclusions

We have examined parallel programming tools supporting Microsoft Windows environment for
both distributed and shared memory. We show that the new TPL Task Parallel Library produces
simpler code than the older CCR runtime. Good performance on the cluster of 24 core nodes requires
use of a hybrid programming paradigm using MPI between nodes and threading internal to the node.
We are able to describe both MPI and threading overheads with a simple single factor model with a
linear dependence on the inverse grain size (number of data points in each thread). This breaks down
when the overhead gets very large and also at small levels of parallelism when Windows performs
poorly with large memory processes. TPL is slightly faster than CCR on the clustering example but
the opposite is true for MDS.

Acknowledgements

We would like to thank Microsoft for their collaboration and support. Tony Hey, George
Chrysanthakopoulos and Henrik Frystyk Nielsen played key roles in providing technical support. We
appreciate our collaborators from IU School of Informatics and Computing. Haixu Tang and Mina
Rho gave us important feedback on Alu and Metagenomics data and we would like to thank co-
authors on our conference paper[17] for their earlier work on which we build.

References

1. Geoffrey Fox, Xiaohong Qiu, Scott Beason, Jong Youl Choi, Mina Rho, Haixu Tang, Neil

Devadasan, and Gilbert Liu, "Biomedical Case Studies in Data Intensive Computing," in
Proceedings of The 1st International Conference on Cloud Computing (CloudCom 2009),
Martin Jaatun, Gansen Zhao, and Chunming Rong, Editors. December 1-4, 2009, Springer
Verlag LNCS "Cloud Computing": Vol. 5931. Beijing Jiaotong University, China.

2. Judy Qiu, Jaliya Ekanayake, Thilina Gunarathne, Jong Youl Choi, Seung-Hee Bae, Yang
Ruan, Saliya Ekanayake, Stephen Wu, Scott Beason, Geoffrey Fox, Mina Rho, and Haixu
Tang, "Data Intensive Computing for Bioinformatics," in Data Intensive Distributed
Computing. 2010, IGI Publishers.

3. Geoffrey Fox, Seung-Hee Bae, Jaliya Ekanayake, Xiaohong Qiu, and H. Yuan, "Parallel Data
Mining from Multicore to Cloudy Grids," book chapter of High Speed and Large Scale
Scientific Computing. 2009: IOS Press, Amsterdam. ISBN:978-1-60750-073-5

4. Kenneth Rose, Eitan Gurewitz, and Geoffrey C Fox, "Statistical mechanics and phase
transitions in clustering," Phys. Rev. Lett., Aug, 1990. 65: p. 945--948.

5. Ken Rose, "Deterministic Annealing for Clustering, Compression, Classification, Regression,
and Related Optimization Problems," Proceedings of the IEEE, 1998. 86: p. 2210--2239.

6. Hofmann T. and Buhmann J. M., "Pairwise data clustering by deterministic annealing," IEEE
Transactions on Pattern Analysis and Machine Intelligence, 1997. 19: p. 1--14.

7. Xiaohong Qiu , Geoffrey C. Fox, Huapeng Yuan, Seung-Hee Bae, George
Chrysanthakopoulos, and Henrik Frystyk Nielsen, "Parallel Data Mining on Multicore
Clusters," in Proceedings of 7th International Conference on Grid and Cooperative
Computing GCC2008. October 24-26, 2008. Shenzhen China.

8. Xiaohong Qiu, Geoffrey C. Fox, Huapeng Yuan, Seung-Hee Bae, George
Chrysanthakopoulos, and Henrik Frystyk Nielsen, "Parallel Clustering and Dimensional
Scaling on Multicore Systems," in Invited talk at the 2008 High Performance Computing &
Simulation Conference (HPCS 2008) In Conjunction With The 22nd EUROPEAN
CONFERENCE ON MODELLING AND SIMULATION (ECMS 2008). June 3 - 6, 2008.
Nicosia, Cyprus.

9. Xiaohong Qiu, Geoffrey C. Fox, Huapeng Yuan, Seung-Hee Bae, George
Chrysanthakopoulos, and Henrik Frystyk Nielsen, "Performance of Multicore Systems on
Parallel Data Clustering with Deterministic Annealing," in Proceedings of International
Conference on Computational Science (ICCS 2008), Kraków, POLAND. pages. 407-416.

10. Concurrent Affairs: Concurrency and Coordination Runtime. Jeffrey Richter, Mirosoft.
Available from: http://msdn.microsoft.com/en-us/magazine/cc163556.aspx.

11. Kruskal, J.B. and M. Wish, Multidimensional Scaling. 1978: Sage Publications Inc.
12. Borg, I. and P.J. Groenen, Modern Multidimensional Scaling: Theory and Applications. 2005:

Springer
13. Kruskal, J.B., "Multidimensional scaling by optimizing goodness of fit to a nonmetric

hypothesis," Psychometrika, 1964. 29: p. 1-27.
14. Jan de Leeuw, "Applications of convex analysis to multidimensional scaling," Recent

Developments in Statistics, 1977: p. 133-145.
15. Batzer MA and Deininger PL, "Alu repeats and human genomic diversity," Nature Reviews

Genetics, 2002. 3(5): p. 370-379.
16. Smit, A., R. Hubley, and P. Green. RepeatMasker Open-3.0. 1996-2010 [accessed 2010

November 26]; Available from: http://www.repeatmasker.org.
17. Judy Qiu, Scott Beason, Seung-Hee Bae, Saliya Ekanayake, and Geoffrey Fox, "Performance

of Windows Multicore Systems on Threading and MPI," in Proceedings of the 2010 10th
IEEE/ACM International Conference on Cluster, Cloud and Grid Computing. 2010, IEEE
Computer Society. pages. 814-819. DOI: 10.1109/ccgrid.2010.105.

18. Georgio Chrysanthakopoulos and Satnam Singh, "An Asynchronous Messaging Library for
C#," in Proceedings of Synchronization and Concurrency in Object-Oriented Languages
(SCOOL) workshop at OOPSLA. October, 2005. San Diego, CA.

19. Xiaohong Qiu, Geoffrey Fox, Huapeng Yuan, Seung-Hee Bae, George Chrysanthakopoulos,
Henrik Frystyk Nielsen, "High Performance Multi-Paradim Messaging Runtime Integrating
Grids and Multicore Systems", in proceedings of eScience 2007 Conference, Bangalore India
Dec. 10-13 2007.

20. Daan Leijen and Judd Hall. Parallel Performance: Optimize Managed Code For Multi-Core
Machinesl. 2007 October [accessed 2010 November 26]; Available from:
http://msdn.microsoft.com/en-us/magazine/cc163340.aspx.

21. OpenMP API specification for parallel programming. [accessed 2010 November 26];
Available from: http://openmp.org/wp/.

22. Bingjing Zhang, Yang Ruan, Tak-Lon Wu, Judy Qiu, Adam Hughes, and Geoffrey Fox,
"Applying Twister to Scientific Applications," in CloudCom 2010. Nov. 30-Dec. 3, 2010.
Indianapolis, Indiana.

23. J.Ekanayake, H.Li, B.Zhang, T.Gunarathne, S.Bae, J.Qiu, and G.Fox, "Twister: A Runtime
for iterative MapReduce," in Proceedings of the First International Workshop on MapReduce
and its Applications of ACM HPDC 2010 conference June 20-25, 2010. 2010, ACM. Chicago,
Illinois.

24. SALSA Group. Iterative MapReduce. 2010 [accessed 2010 November 7]; Twister Home
Page Available from: http://www.iterativemapreduce.org/.

25. Seung-Hee Bae, "Parallel Multidimensional Scaling Performance on Multicore Systems," in
Proceedings of the Advances in High-Performance E-Science Middleware and Applications
workshop (AHEMA) of Fourth IEEE International Conference on eScience. 2008.
Indianapolis: IEEE Computer Society. pages. pp. 695-702.

