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12.1  Introduction
Cloud and cloud technologies are two broad categories of technologies related to 
the general notion of Cloud Computing. By “cloud,” we refer to a collection of 
infrastructure services, such as Infrastructure as a service (IaaS) and Platform as a 
service (PaaS), provided by various organizations where virtualization plays a key 
role. By “cloud technologies,” we refer to various cloud runtimes, such as Hadoop 
(ASF, core, 2009a), Dryad (Isard et al. 2007), and other MapReduce (Dean and 
Ghemawat 2008) frameworks, and also the storage and communication frame-
works, such as Hadoop Distributed File System (HDFS) and Amazon S3 (Amazon 
2009).

The introduction of commercial cloud infrastructure services, such as Amazon 
EC2, GoGrid (ServePath 2009), and ElasticHosts (ElasticHosts 2009), has allowed 
users to provision compute clusters fairly easily and quickly, by paying a mon-
etary value for the duration of their usages of the resources. The provisioning of 
resources happens in minutes, as opposed to hours and days required in the case 
of traditional queue-based job-scheduling systems. In addition, the use of such 
virtualized resources allows the user to completely customize the virtual machine 
(VM) images and use them with ROOT/administrative privileges, another feature 
that is hard to achieve with traditional infrastructures. The availability of open-
source cloud infrastructure softwares, such as Nimbus (Keahey et al. 2005) and 
Eucalyptus (Nurmi et al. 2009), and open-source virtualization software stacks, 

12.4.4	ALU Sequencing Studies...............................................................287
12.4.4.1	ALU Clustering...............................................................287
12.4.4.2	Smith–Waterman Dissimilarities.....................................287
12.4.4.3	The O(N2) Factor of 2 and Structure of Processing 

Algorithm........................................................................288
12.4.4.4	Dryad Implementation....................................................288
12.4.4.5	MPI Implementation.......................................................289

12.5	 Evaluations................................................................................................290
12.5.1	 Introduction..................................................................................290
12.5.2	CAP3 and Particle Physics Case Studies........................................290
12.5.3	Kmeans and Matrix Multiplication Case Studies...........................293
12.5.4	ALU Sequence Analysis Case Study...............................................294

12.5.4.1	Performance of Smith–Waterman–Gotoh Algorithm......294
12.5.4.2	Threaded Implementation................................................294

12.6	 Performance of MPI on Clouds.................................................................295
12.6.1	Benchmarks and Results................................................................296

12.7	 Conclusions and Future Work...................................................................305
Acknowledgments............................................................................................. 306
References..........................................................................................................307

K10175_C012.indd   276 3/2/2010   6:50:00 PM



High-Performance Parallel Computing  ◾  277

such as Xen Hypervisor (Barham et al. 2003), allows organizations to build private 
clouds to improve the resource utilization of the available computation facilities. 
The possibility of dynamically provisioning additional resources by leasing from 
commercial cloud infrastructures makes the use of private clouds more promising.

Among the many applications that benefit from cloud and cloud technologies, 
the data/compute-intensive applications are the most important. The deluge of data 
and the highly compute-intensive applications found in many domains, such as 
particle physics, biology, chemistry, finance, and information retrieval, mandate 
the use of large computing infrastructures and parallel processing to achieve con-
siderable performance gains in analyzing data. The addition of cloud technologies 
creates new trends in performing parallel computing. An employee in a publishing 
company who needs to convert a document collection, terabytes in size, to a differ-
ent format can do so by implementing a MapReduce computation using Hadoop, 
and running it on leased resources from Amazon EC2 in just a few hours. A scien-
tist who needs to process a collection of gene sequences using the CAP3 (Huang 
and Madan 1999) software can use virtualized resources leased from the univer-
sity’s private cloud infrastructure and Hadoop. In these use cases, the amount of 
coding that the publishing agent and the scientist need to perform is minimal (as 
each user simply needs to implement a map function), and the MapReduce infra-
structure handles many aspects of the parallelism.

Although the above examples are successful use cases for applying cloud and 
cloud technologies for parallel applications, through our research, we have found 
that there are limitations in using current cloud technologies for parallel applica-
tions that require complex communication patterns or require faster communica-
tion mechanisms. For example, Hadoop and Dryad implementations of Kmeans 
clustering applications, which perform an iteratively refining clustering operation, 
show higher overheads compared to implementations of MPI or CGL-MapReduce 
(Ekanayake et al. 2008)—a streaming-based MapReduce runtime developed by 
us. These observations raise questions: What applications are best handled by 
cloud technologies? What overheads do they introduce? Are there any alternative 
approaches? Can we use traditional parallel runtimes such as MPI in cloud? If 
so, what overheads does it have? These are some of the questions we try to answer 
through our research.

In Section 12.1, we give a brief introduction of the cloud technologies, and in 
Section 12.2, we discuss with examples the basic functionality supported by these 
cloud runtimes. Section 12.3 discusses how these technologies map into program-
ming models. We describe the applications used to evaluate and test technologies 
in Section 12.4. The performance results are discussed in Section 12.5. In Section 
12.6, we present details of an analysis we have performed to understand the per-
formance implications of virtualized resources for parallel MPI applications. Note 
that we use MPI running on non-VMs in Section 12.5 for comparison with cloud 
technologies. We present our conclusions in Section 12.7.
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12.2  Cloud Technologies
Cloud technologies such as MapReduce and Dryad have created new trends in 
parallel programming. The support for handling large data sets, the concept of 
moving computation to data, and the better quality of services provided by the 
cloud technologies make them a favorable choice to solve large-scale data/compute-
intensive problems.

The granularity of the parallel tasks in these programming models lies in 
between the fine-grained parallel tasks that are used in message-passing infrastruc-
tures such as PVM (Dongarra et al. 1993) and MPI (Forum n.d.), and coarse-
grained jobs in workflow frameworks such as Kepler (Ludscher et al. 2006) and 
Taverna (Hull et al. 2006), in which the individual tasks could themselves be par-
allel applications written in MPI. Unlike the various communication constructs 
available in MPI, which can be used to create a wide variety of communication 
topologies for parallel programs, in MapReduce, the “map→reduce” is the only 
communication construct available. However, our experience shows that most com-
posable applications can easily be implemented using the MapReduce programming 
model. Dryad supports parallel applications that resemble Directed Acyclic Graphs 
(DAGs), in which the vertices represent computation units, and the edges represent 
communication channels between different computation units.

In traditional approaches, once parallel applications are developed, they are 
executed on compute clusters, supercomputers, or grid infrastructures (Foster 
2001), where the focus on allocating resources is heavily biased by the availabil-
ity of computational power. The application and the data both need to be moved 
to the available computational resource in order for them to be executed. These 
infrastructures are highly efficient in performing compute-intensive parallel appli-
cations. However, when the volume of data accessed by an application increases, 
the overall efficiency decreases due to the inevitable data movement. Cloud tech-
nologies such as Google MapReduce, Google File System (GFS) (Ghemawat et 
al. 2003), Hadoop and HDFS, Microsoft Dryad, and CGL-MapReduce adopt a 
more data-centered approach to parallel runtimes. In these frameworks, the data 
is staged in data/compute nodes of clusters or large-scale data centers, such as in 
the case of Google. The computations move to the data in order to perform the 
data processing. Distributed file systems, such as GFS and HDFS, allow Google 
MapReduce and Hadoop to access data via distributed storage systems built on 
heterogeneous compute nodes, while Dryad and CGL-MapReduce support read-
ing data from local disks. The simplicity in the programming model enables better 
support for quality of services such as fault tolerance and monitoring.

12.2.1  Hadoop
Apache Hadoop has a similar architecture to Google’s MapReduce runtime, where 
it accesses data via HDFS, which maps all the local disks of the compute nodes to 
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a single file system hierarchy, allowing the data to be dispersed across all the data/
computing nodes. HDFS also replicates the data on multiple nodes so that failures 
of any nodes containing a portion of the data will not affect the computations 
that use that data. Hadoop schedules the MapReduce computation tasks depend-
ing on the data locality, improving the overall I/O (input/output) bandwidth. The 
outputs of the map tasks are first stored in local disks until later, when the reduce 
tasks access them (pull) via HTTP connections. Although this approach simplifies 
the fault-handling mechanism in Hadoop, it adds a significant communication 
overhead to the intermediate data transfers, especially for applications that produce 
small intermediate results frequently.

12.2.2  Dryad and DryadLINQ
Dryad is a distributed execution engine for coarse-grained data parallel applica-
tions. It combines the MapReduce programming style with dataflow graphs to 
solve the computation tasks. Dryad considers computation tasks as DAGs, where 
the vertices represent computation tasks and the edges act as communication chan-
nels over which the data flows from one vertex to another. The data is stored in 
(or partitioned to) local disks via the Windows shared directories and metadata 
files, and Dryad schedules the execution of vertices depending on the data local-
ity. (Note: The academic release of Dryad only exposes the DryadLINQ (Yu et al. 
2008) API for programmers. Therefore, all our implementations are written using 
DryadLINQ, although it uses Dryad as the underlying runtime.) Dryad also stores 
the output of vertices in local disks, and the other vertices that depend on these 
results access them via the shared directories. This enables Dryad to re-execute 
failed vertices, a step that improves fault tolerance in the programming model.

12.2.3  CGL-MapReduce
CGL-MapReduce is a lightweight MapReduce runtime that incorporates several 
improvements to the MapReduce programming model, such as (1) faster interme-
diate data transfer via a pub/sub broker network, (2) support for long-running map/
reduce tasks, and (3) efficient support for iterative MapReduce computations. The 
architecture of CGL-MapReduce is shown in Figure 12.1 (left).

The use of streaming enables CGL-MapReduce to send the intermediate 
results directly from its producers to its consumers, and eliminates the overhead of 
the file-based communication mechanisms adopted by both Hadoop and Dryad. 
The support for long-running map/reduce tasks enables configuring and reusing 
map/reduce tasks in the case of iterative MapReduce computations, and eliminates 
the need for reconfiguring or reloading static data in each iteration. This feature 
comes with the distinction of “static data” and “dynamic data” that we support 
in CGL-MapReduce. We refer to any data set that is static throughout the com-
putation as “static data,” and the data that is changing over the computation as 
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“dynamic data.” Although this distinction is irrelevant to the MapReduce com-
putations that have only one map phase followed by a reduce phase, it is extremely 
important for iterative MapReduce computations, in which the map tasks need 
to access a static (fixed) data again and again. Figure 12.1 (right) highlights the 
synchronization and communication characteristics of Hadoop, Dryad, CGL-
MapReduce, and MPI.

Additionally, CGL-MapReduce supports the distribution of smaller variable 
data sets to all the map tasks directly, a functionality similar to MPI_Bcast() that 
is often found to be useful in many data analysis applications. Hadoop provides 
a similar feature via its distributed cache, in which a file or data is copied to all 
the compute nodes. Dryad provides a similar feature by allowing applications to 
add resources (files) that will be accessible to all the vertices. With the above fea-
tures in place, CGL-MapReduce can be used to implement iterative MapReduce 
computations efficiently. In CGL-MapReduce, data partitioning and distribution 
is left to the users to handle, and it reads data from shared file systems or local 
disks. Although the use of streaming makes CGL-MapReduce highly efficient, 
implementing fault tolerance with this approach is not as straightforward as it is in 
Hadoop or Dryad. We plan to implement fault tolerance in CGL-MapReduce by 
re-execution of failed map tasks and redundant execution of reduce tasks.

12.2.4  MPI
MPI, the de facto standard for parallel programming, is a language-independent 
communications protocol that uses a message-passing paradigm to share the data 
and state among a set of cooperative processes running on a distributed memory 
system. MPI specification (Forum, MPI) defines a set of routines to support various 
parallel programming models, such as point-to-point communication, collective 
communication, derived data types, and parallel I/O operations.
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Most MPI runtimes are deployed in computation clusters where a set of com-
pute nodes are connected via a high-speed network connection yielding very low 
communication latencies (typically in microseconds). MPI processes typically have 
a direct mapping to the available processors in a compute cluster or to the processor 
cores in the case of multi-core systems. We use MPI as the baseline performance 
measure for the various algorithms that are used to evaluate the different paral-
lel programming runtimes. Table 12.1 summarizes the different characteristics of 
Hadoop, Dryad, CGL-MapReduce, and MPI.

12.3  Programming Models
When analyzing applications written in the MapReduce programming model, we 
can identify three basic execution units, namely, (1) map-only, (2) map-reduce, and 
(3) iterative map-reduce. Complex applications can be built by combining these 
three basic execution units under the MapReduce programming model. Table 12.2 
shows the data/computation flow of these three basic execution units, along with 
examples.

In the MapReduce programming model, the tasks that are being executed at 
a given phase have similar executables and similar input and output operations. 
With zero reduce tasks, the MapReduce model reduces to a map-only model, which 
can be applied to many “embarrassingly parallel” applications. Software systems 
such as batch queues, Condor (Condor 2009), Falkon (Raicu et al. 2007), and 
SWARM (Pallickara and Pierce 2008) all provide similar functionality by schedul-
ing large numbers of individual maps/jobs. Applications that can utilize a “reduc-
tion” or an “aggregation” operation can use both phases of the MapReduce model, 
and, depending on the “associativity” and “transitivity” nature of the reduction 
operation, multiple reduction phases can be applied to enhance the parallelism. For 
example, in a histogramming operation, the partial histograms can be combined in 
any order and in any number of steps to produce a final histogram.

The “side effect–free” nature of the MapReduce programming model does not 
promote iterative MapReduce computations. Each of the map and reduce tasks are 
considered as atomic execution units with no state shared in between executions. 
In parallel runtimes, such as those of the MPI, the parallel execution units live 
throughout the entire life of the program; hence, the state of a parallel execution 
unit can be shared across invocations. We propose an intermediate approach to 
develop MapReduce computations. In our approach, the map/reduce tasks are still 
considered free from side effects, but the runtime allows configuring and reusing 
the map/reduce tasks. Once configured, the runtime caches the map/reduce tasks. 
This way, both map and reduce tasks can keep the static data in memory, and can 
be called iteratively without loading the static data repeatedly.

Hadoop supports configuring the number of reduce tasks, which enables the 
user to create “map-only” applications by using zero reduce tasks. Hadoop can be 
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used to implement iterative MapReduce computations, but the framework does not 
provide additional support to implement them efficiently. The CGL-MapReduce 
supports all the above three execution units, and the user can develop applica-
tions with multiple stages of MapReduce by combining them in any order. Dryad 
execution graphs resembling the above three basic units can be generated using 
DryadLINQ operations. DryadLINQ adds the LINQ programming features 
to Dryad where the user can implement various data analysis applications using 
LINQ queries, which will be translated to Dryad execution graphs by the compiler. 
However, unlike in the MapReduce model, Dryad allows the concurrent vertices 
to have different behaviors and different I/O characteristics, thus enabling a more 
workflow-style programming model. Dryad also allows multiple communication 
channels in between different vertices of the dataflow graph. Programming lan-
guages such as Swazall (Pike et al. 2005), introduced by Google for its MapReduce 
runtime, enable high-level language support for expressing MapReduce computa-
tions, and the Pig (ASF, pig, 2009b) available as a subproject of Hadoop allows 
query operations on large data sets.

Apart from these programming models, there are other software frameworks 
that one can use to perform data/compute-intensive analyses. Disco (Nokia 2009) 
is an open-source MapReduce runtime developed using a functional programming 

Table 12.2  Three Basic Execution Units under the MapReduce 
Programming Model

Map-Only Map-Reduce Iterative Map-Reduce

Input

map()

Output

Input

map()

reduce()

Output

Input

map()

reduce()

Output

Cap3 analysis (we will 
discuss more about this 
later)

HEP data analysis (we 
will discuss more 
about this later)

Expectation 
maximization 
algorithms

Converting a collection 
of documents to 
different formats, 
processing a collection 
of medical images, and 
brute-force searches in 
cryptography; 
parametric sweeps

Histogramming 
operations, 
distributed search, 
and distributed 
sorting; information 
retrieval

Kmeans clustering, 
matrix multiplication
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language named Erlang (Ericsson 2009). The Disco architecture shares clear simi-
larities with both Google and Hadoop MapReduce architectures. Sphere (Gu and 
Grossman 2009) is a framework that can be used to execute user-defined functions 
in parallel on data stored in a storage framework named Sector. Sphere can also per-
form MapReduce-style programs, and the authors compare its performance with 
Hadoop for tera-sort applications. All-Pairs (Moretti et al. 2009) is an abstraction 
that can be used to solve the common problem of comparing all the elements in 
a data set with all the elements in another data set by applying a given function. 
This problem can be implemented using Hadoop and Dryad as well, and we dis-
cuss a similar problem in Section 12.4.4. We can also develop an efficient itera-
tive MapReduce implementation using CGL-MapReduce to solve this problem. 
The algorithm is similar to the matrix multiplication algorithm that we explain in 
Section 12.4.3.

MPI and threads are two other programming models that can be used to imple-
ment parallel applications. MPI can be used to develop parallel applications in 
distributed memory architectures, whereas threads can be used in shared memory 
architectures, especially in multi-core nodes. The low-level communication con-
structs available in MPI allow users to develop parallel applications with various 
communication topologies involving fine-grained parallel tasks. The use of low-
latency network connections between nodes enables applications to perform a large 
number of inter-task communications. In contrast, the next-generation parallel 
runtimes, such as MapReduce and Dryad, provide a small number of parallel con-
structs, such as “map-only,” “map-reduce,” “Select,” “Apply,” and “Join,” and do not 
require high-speed communication channels. These constraints require adopting 
parallel algorithms that perform coarse-grained parallel tasks and less communi-
cation. The use of threads is a natural approach in shared memory architectures, 
where communication between parallel tasks reduces to the simple sharing of point-
ers via the shared memory. However, the operating system’s support for user-level 
threads plays a major role in achieving better performances using multi-threaded 
applications. We will discuss the issues in using threads and MPI in more detail in 
Section 12.5.4.2.

12.4  Data Analyses Applications
12.4.1  CAP3—Sequence Assembly Program
CAP3 is a DNA sequence assembly program developed by Huang and Madan 
(1999) that performs several major assembly steps: These steps include computation 
of overlaps, construction of contigs, construction of multiple sequence alignments, 
and generation of consensus sequences to a given set of gene sequences. The pro-
gram reads a collection of gene sequences from an input file (FASTA file format) 
and writes its output to several output files, as well as the standard output:
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	 Input.fsa CAP3 Stdout Other output files→ → + 	

The program structure of this application fits directly with the “map-only” basic 
execution unit, as shown in Table 12.2. We implemented a parallel version of CAP3 
using Hadoop, CGL-MapReduce, and DryadLINQ. Each map task in Hadoop 
and in CGL-MapReduce calls the CAP3 executable as a separate process for a 
given input data file (the input “Value” for the map task), whereas in DryadLINQ, a 
“homomorphic Apply” operation calls the CAP3 executable on each data file in its 
data partition as a separate process. All the implementations move the output files 
to a predefined shared directory. This application resembles a common paralleliza-
tion requirement, where an executable script, or a function in a special framework 
such as MATLAB• or R, needs to be executed on each input data item. The above 
approach can be used to implement all these types of applications using any of the 
above three runtimes.

12.4.2  High-Energy Physics
Next, we applied the MapReduce technique to parallelize a High-Energy Physics 
(HEP) data analysis application, and implemented it using Hadoop, CGL-
MapReduce, and Dryad. The HEP data analysis application processes large vol-
umes of data, and performs a histogramming operation on a collection of event 
files produced by HEP experiments. The details regarding the two MapReduce 
implementations and the challenges we faced in implementing them can be found 
in Ekanayake et al. (2008). In the DryadLINQ implementation, the input data files 
are first distributed among the nodes of the cluster manually. We developed a tool 
to perform the manual partitioning and distribution of the data. The names of the 
data files available in a given node were used as the data to the DryadLINQ pro-
gram. Using a homomorphic “Apply” operation, we executed a ROOT-interpreted 
script on groups of input files in all the nodes. The output histograms of this 
operation were written to a predefined shared directory. Next, we used another 
“Apply” phase to combine these partial histograms into a single histogram using 
DryadLINQ.

12.4.3 � Iterative MapReduce—Kmeans Clustering 
and Matrix Multiplication

Parallel applications that are implemented using message-passing runtimes can uti-
lize various communication constructs to build diverse communication topologies. 
For example, a matrix multiplication application that implements Fox’s Algorithm 
(Fox et al. 1987) and Cannon’s Algorithm (Johnsson et al. 1989) assumes parallel 
processes to be in a rectangular grid. Each parallel process in the grid commu-
nicates with its left and top neighbors, as shown in Figure 12.2 (left). The cur-
rent cloud runtimes, which are based on dataflow models such as MapReduce and 
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Dryad, do not support this behavior, in which the peer nodes communicate with 
each other. Therefore, implementing the above type of parallel applications using 
MapReduce or DryadLINQ requires adopting different algorithms.

We have implemented matrix multiplication applications using Hadoop and 
CGL-MapReduce by adopting a row/column decomposition approach to split the 
matrices. To clarify our algorithm, let us consider an example where two input 
matrices, A and B, produce matrix C, as the result of the multiplication process. 
We split the matrix B into a set of column blocks and the matrix A into a set of row 
blocks. In each iteration, all the map tasks process two inputs: (1) a column block of 
matrix B and (2) a row block of matrix A. Collectively, they produce a row block of 
the resultant matrix C. The column block associated with a particular map task is 
fixed throughout the computation, while the row blocks are changed in each itera-
tion. However, in Hadoop’s programming model (a typical MapReduce model), 
there is no way to specify this behavior. Hence, it loads both the column block and 
the row block in each iteration of the computation. CGL-MapReduce supports the 
notion of long-running map/reduce tasks, where these tasks are allowed to retain 
static data in the memory across invocations, yielding better performance for “itera-
tive MapReduce” computations. The communication pattern of this application is 
shown in Figure 12.2 (middle).

Kmeans clustering (Macqueen 1967) is another application that performs 
iteratively refining computation. We also implemented Kmeans clustering applica-
tions using Hadoop, CGL-MapReduce, and DryadLINQ. In the two MapReduce 
implementations, each map task calculates the distances between all the data ele-
ments in its data partition and all the cluster centers produced during the previous 
run. It then assigns data points to these cluster centers, based on their Euclidian 
distances. The communication topology of this algorithm is shown in Figure 12.2 
(right). Each map task produces partial cluster centers as the output; these are then 
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Figure 12.2  (Left) Communication topology of Cannon’s Algorithm imple-
mented using MPI. (Middle) Communication topology of matrix multiplication 
application based on MapReduce. (Right) Communication topology of Kmeans 
clustering implemented as a MapReduce application.
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combined at a reduce task to produce the current cluster centers. These current 
cluster centers are used in the next iteration, to find the next set of cluster centers. 
This process continues until the overall distance between the current cluster centers 
and the previous cluster centers reduces below a predefined threshold. The Hadoop 
implementation uses a new MapReduce computation for each iteration of the pro-
gram, while CGL-MapReduce’s long-running map/reduce tasks allow it to reuse 
map/reduce tasks. The DryadLINQ implementation uses various DryadLINQ 
operations, such as “Apply,” “GroupBy,” “Sum,” “Max,” and “Join,” to perform the 
computation, and it also utilizes DryadLINQ’s “loop unrolling” support to per-
form multiple iterations as a single-large query.

12.4.4  ALU Sequencing Studies

12.4.4.1  ALU Clustering

The ALU clustering problem (Batzer and Deininger 2002) is one of the most chal-
lenging problems for sequence clustering, because ALUs represent the largest repeat 
families in human genome. There are about 1 million copies of ALU sequences in 
human genome, in which most insertions can be found in other primates and only 
a small fraction (∼7000) are human specific. This indicates that the classification 
of ALU repeats can be deduced solely from the 1 million human ALU elements. 
Notably, ALU clustering can be viewed as a classical case study for the capacity of 
computational infrastructures, because it is not only of great intrinsic biological 
interest, but also a problem of a scale that will remain as the upper limit of many 
other clustering problems in bioinformatics for the next few years, for example, 
the automated protein family classification for a few millions of proteins predicted 
from large metagenomics projects.

12.4.4.2  Smith–Waterman Dissimilarities

We identified samples of the human and chimpanzee ALU gene sequences using 
Repeatmasker (Smith et al. 2004) with Repbase Update (Jurka 2000). We have 
been gradually increasing the size of our projects with the current largest samples 
having 35,339 and 50,000 sequences, and these require a modest cluster, such as 
Tempest (768 cores), for processing in a reasonable time (a few hours, as shown in 
Section 12.5). Note from the discussion in Section 12.4.4.1 that we are aiming at 
supporting problems with a million sequences—quite practical today on TeraGrid, 
and equivalent facilities given basic analysis steps scale like O(N 2).

We used an open-source version NAligner (Smith–Waterman software) of the 
Smith–Waterman–Gotoh (SW-G) algorithm (Smith and Waterman 1981, Gotoh 
1982) modified to ensure low start-up effects by each thread processing large num-
bers (above a few hundreds) at a time. The memory bandwidth needed was reduced 
by storing data items in as few bytes as possible.
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12.4.4.3 � The O(N2) Factor of 2 and Structure 
of Processing Algorithm

The ALU sequencing problem shows a well-known factor-of-2 issue present in 
many O(N  2) parallel algorithms, such as those in direct simulations of astrophysi-
cal stems. We initially calculate in parallel the distance, D(i,j), between points 
(sequences) i and j. This is done in parallel over all processor nodes selecting criteria 
i < j (or j > i for the upper triangular case) to avoid calculating both D(i,j) and the 
identical D( j,i). This can require substantial file transfer, as it is unlikely that nodes 
requiring D(i,j) in a later step will find that it was calculated on nodes where it is 
needed.

For example, the MDS and PW (PairWise) clustering algorithms, described in 
Fox et al. (2008), require a parallel decomposition where each of N processes (MPI 
processes, threads) has 1/N of sequences, and for this subset {i} of sequences stores 
in memory D({i},j) for all sequences j and the subset {i} of sequences for which this 
node is responsible. This implies that we need D(i,j) and D( j,i) (which are equal) 
stored in different processors/disks. This is a well-known collective operation in 
MPI called either gather or scatter.

12.4.4.4  Dryad Implementation

We developed a DryadLINQ application to perform the calculation of pair-
wise SW-G distances for a given set of genes by adopting a coarse-grained task 
decomposition approach that requires minimum inter-process communication 
to ameliorate the higher communication and synchronization costs of the paral-
lel runtime. To clarify our algorithm, let us consider an example where N gene 
sequences produce a pairwise distance matrix of size N × N. We decompose the 
computation task by considering that the resultant matrix groups the overall 
computation into a block matrix of size D × D, where D is a multiple (>2) of 
the available computation nodes. Due to the symmetry of the distances D(i,j) 
and D( j,i), we only calculate the distances in the blocks of the upper triangle 
of the block matrix, as shown in Figure 12.3 (left). The blocks in the upper tri-
angle are partitioned (assigned) to the available compute nodes, and an “Apply” 
operation is used to execute a function to calculate (N/D) × (N/D) distances in 
each block. After computing the distances in each block, the function calculates 
the transpose matrix of the resultant matrix, which corresponds to a block in 
the lower triangle, and writes both these matrices into two output files in the 
local file system. The names of these files and their block numbers are commu-
nicated back to the main program. The main program sorts the files based on 
their block numbers and performs another “Apply” operation to combine the 
files corresponding to a row of blocks in a single-large row block, as shown in 
Figure 12.3 (right).
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12.4.4.5  MPI Implementation

The MPI version of SW-G calculates pairwise distances using a set of either single- 
or multi-threaded processes. For N gene sequences, we need to compute half of 
the values (in the lower triangular matrix), which is a total of M = N × (N  − 1)/2 
distances. At a high level, computation tasks are evenly divided among P processes 
and execute in parallel, namely, the computation workload per process is M/P. 
At a low level, each computation task can be further divided into subgroups and 
run in T concurrent threads. Our implementation is designed for flexible use of a 
shared memory multi-core system and distributed memory clusters (tight-coupled 
to medium-tight-coupled communication technologies, such threading and MPI). 
We provide options for any combinations of thread versus process versus node, as 
shown in Figure 12.4. The real computation workload per parallel unit is decided 
by M/(T × P × # nodes).

As illustrated in Figure 12.4, the data decomposition strategy runs a “space-
filling curve through the lower triangular matrix” to produce equal numbers of 
pairs for each parallel unit such as process or thread. It is necessary to map indexes 
in each pairs group back to corresponding matrix coordinates (i,j) for constructing 
a full matrix later on. We implemented a special function, “PairEnumerator,” as 
the convertor. We tried to limit runtime memory usage for performance optimiza-
tion. This is done by writing a triple of i,j and also writing the distance value of 
pairwise alignment to a stream writer, and the system flushes accumulated results 
to a local file periodically. As the final stage, individual files are merged to form a 
full distance matrix.
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of the DryadLINQ implementation of SW-G pairwise distance calculation 
application.
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12.5  Evaluations
12.5.1  Introduction
For our evaluations, we used three compute clusters (details are given in Table 12.3) 
with two 32-node clusters having almost identical hardware configurations and one 
latest 32-node cluster of 24-core machines with Infiniband connections. DryadLINQ 
and the MPI application that performs SW-G computation were run on the 
Windows cluster (Ref B, Ref C), while Hadoop, CGL-MapReduce, and other MPI 
applications were run on the Linux cluster (Ref A). We measured the performance 
of these applications, and present the results in terms of parallel overhead defined for 
parallelism P by

	 f P
P T P T

T
( )

( ) ( )
( )

=
× − 1

1
	 (12.1)

where
P denotes parallelism (e.g., processes, threads, and map tasks) used
T denotes time as a function of the number of parallel processes used

T(1) is replaced in practice by T(S), where S is the smallest number of processes that 
can run the job. We used Hadoop release 0.20, the academic release of DryadLINQ, 
Microsoft MPI, and OpenMPI (OMPI) version 1.3.2 for our evaluations.

12.5.2  CAP3 and Particle Physics Case Studies
The results of our performance measurements for CAP3 and particle physics are 
shown in Figures 12.5 through 12.8.
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pairwise distance calculation application.
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Figure 12.5  Performance of the CAP3 application—average time (in s) against 
the number of gene reads processed.

Table 12.3  Different Computation Clusters Used for the Analyses

Feature
Linux Cluster 

(Ref A)
Windows Cluster 

(Ref B)
Windows Cluster 

(Ref C)

# Node 32 32 32

CPU Intel(R) Xeon(R) 
CPU L5420 
2.50 GHz

Intel(R) Xeon(R) 
CPU L5420 
2.50 GHz

Intel(R) Xeon(R) 
CPU E7450 
2.40 GHz

# CPU/# cores 2/8 2/8 4/24

Total cores 256 256 768

Memory 32 GB 16 GB 48 GB

Disk 1 disk of Western 
Digital Caviar RE 
160 GB SATA 7200

2 disks of 1000 GB 
(1 TB) Ultrastar 
A7K1000 7200

2 HP 146 GB 10K 2.5 
SAS HP SP HDD

Network Gigabit Ethernet Gigabit Ethernet 20 Gbps Infiniband

Operating 
system

Red Hat Enterprise 
Linux Server 
release 5.3—64 bit

Windows Server 
Enterprise—64 
bit

Windows Server 
2008 HPC Edition 
(Service Pack 1)
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From these results, it is clearly evident that the cloud runtimes perform 
competitively well for both “map-only-style” and “map-reduce-style” appli-
cations. In the HEP data analysis, both CGL-MapReduce and DryadLINQ 
access input data from local disks, where the data is partitioned and distrib-
uted beforehand. Currently, HDFS can be accessed using Java or C++ clients 
only, and the ROOT-interpretable scripts (ROOT—data analysis framework 
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developed at CERN) are not capable of accessing data from HDFS. Therefore, 
we placed the input data in the IU (Indiana University) Data Capacitor—a 
high-performance parallel file system based on the Lustre file system, which 
allows each map task in Hadoop to directly access data from this file system. 
The performance results show that this dynamic data movement in the Hadoop 
implementation incurred considerable overhead to the computation, while the 
ability of reading input data from local disks gave significant performance 
improvement to both DryadLINQ and CGL-MapReduce, as compared to the 
Hadoop implementation.

12.5.3  Kmeans and Matrix Multiplication Case Studies
For an iterative class of applications, cloud runtimes show considerably high over-
heads, compared to the MPI and CGL-MapReduce versions of the same applica-
tions; the results shown in Figures 12.7 and 12.8 imply that, for these types of 
applications, we still need to use high-performance parallel runtimes or alternative 
approaches. (Note: The negative overheads observed in the matrix multiplication 
application are due to the better utilization of a cache by the parallel application 
than the single-process version.) CGL-MapReduce shows a close performance 
closer to the MPI for large data sets in the case of Kmeans clustering and matrix 
multiplication applications, an outcome that highlights the benefits of supporting 
iterative computations and the faster data communication mechanism present in 
CGL-MapReduce.
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12.5.4  ALU Sequence Analysis Case Study

12.5.4.1  Performance of Smith–Waterman–Gotoh Algorithm

We performed the Dryad and MPI implementations of ALU SW-G distance calcu-
lations on two large data sets and obtained the following results.

There is a short partitioning phase for DryadLINQ, and then both approaches 
calculate the distances and write these out to intermediate files, as discussed in 
Section 12.4. We note that the merge time is currently much longer for MPI than 
DryadLINQ, while the initial steps are significantly faster for MPI. However, the 
total times in Table 12.4 indicate that both MPI and DryadLINQ implementa-
tions perform well for this application, with MPI a few percent faster with current 
implementations. As expected, the times scale proportionally to the square of the 
number of distances. On 744 cores, the average time of 0.0067 ms/pair that corre-
sponds to roughly 5 ms/pair calculated per core is used. The coarse-grained Dryad 
application performs competitively with the tightly synchronized MPI application. 
It proves once more the applicability of the cloud technologies for the composable 
applications.

12.5.4.2  Threaded Implementation

In Section 12.5.4.1, we looked at using MPI with one process per core and 
compared this with a threaded implementation, with each process having sev-
eral threads. Labeling the configuration as t × m × n for t threads per process, 
m MPI processes per node, and n nodes, we compare choices of t, m, and n in 
Figure 12.9.
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Table 12.4  Comparison of DryadLINQ and MPI Technologies on ALU 
Sequencing Application with SW-G Algorithm

Technology
Total 

Time (s)
Time per 
Pair (ms)

Partition 
Data (s)

Calculated 
and Output 
Distance(s)

Merge 
Files (s)

Dryad 50,000 
sequences

17200.413 0.0069 2.118 17104.979 93.316

35,339 
sequences

8510.475 0.0068 2.716 8429.429 78.33

MPI 50,000 
sequences

16588.741 0.0066 N/A 13997.681 2591.06

35,339 
sequences

8138.314 0.0065 N/A 6909.214 1229.10
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The striking result for this step is that MPI easily outperforms the equivalent 
threaded version of this embarrassingly parallel step. In Figure 12.9, all the peaks in 
the overhead correspond to patterns with large values of t. Note that the MPI intra-
node 1 × 24 × 32 pattern completes the full 624 billion alignments in 2.33 h—4.9 
times faster than the threaded implementation 24 × 1 × 32. This 768-core MPI run 
has a parallel overhead of 1.43 corresponding to a speedup of 316.

The SW-G alignment performance is probably dominated by memory band-
width issues, and we are pursuing several points that could affect this, though it 
is not at our highest priority as SW-G is not the dominant step. We have tried to 
identify the reason behind the comparative slowness of threading. Using Windows 
monitoring tools, we found that the threaded version has about a factor of 100 more 
context switches than in the one-thread-per-process MPI version. This could lead 
to a slowdown of the threaded approach and correspond to Windows handing of 
paging of threads with large memory footprints.

12.6  Performance of MPI on Clouds
After the previous observations, we analyzed the performance implications of cloud 
for parallel applications implemented using MPI. Specifically, we were trying to 
find the overhead of virtualized resources, and understand how applications with 
different communication-to-computation (C/C) ratios perform on cloud resources. 
We also evaluated different CPU-core assignment strategies for VMs, in order to 
understand the performance of VMs on multi-core nodes.
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Commercial cloud infrastructures do not allow users to access the bare-
hardware nodes, in which the VMs are deployed, a must-have requirement for our 
analysis. Therefore, we used a Eucalyptus-based cloud infrastructure deployed at 
our university for this analysis. With this cloud infrastructure, we have complete 
access to both VM instances and to the underlying bare-metal nodes, as well as the 
help of the administrators; as a result, we could deploy different VM configura-
tions, allocating different CPU cores to each VM. Therefore, we selected the above 
cloud infrastructure as our main test bed.

For our evaluations, we selected three MPI applications with different com-
munication and computation requirements, namely, (1) the matrix multiplication, 
(2) Kmeans clustering, and (3) the Concurrent Wave Equation Solver. Table 12.5 
highlights the key characteristics of the programs that we used as benchmarks.

12.6.1  Benchmarks and Results
The Eucalyptus (version 1.4) infrastructure we used is deployed on 16 nodes of an 
iDataplex cluster, each of which has 2 Quad Core Intel Xeon processors (for a total 
of 8 CPU cores) and 32 GB of memory. In the bare-metal version, each node runs a 
Red Hat Enterprise Linux Server release 5.2 (Tikanga) operating system. We used 
the OMPI version 1.3.2 with the gcc version 4.1.2. We then created a VM image 
from this hardware configuration, so that we would have a similar software envi-
ronment on the VMs once they were deployed. The virtualization is based on the 
Xen hypervisor (version 3.0.3). Both bare-metal and virtualized resources utilized 
gigabit Ethernet connections.

When VMs are deployed using Eucalyptus, it allows us to configure the 
number of CPU cores assigned to each VM image. For example, with 8 core 
systems, the CPU-core allocation per VM can range from 8 cores to 1 core per 
VM, resulting in several different CPU-core assignment strategies. In an Amazon 
EC2 infrastructure, the standard instance type has half a CPU per VM instance 
(Evangelinos and Hill 2008). In the current version of Eucalyptus, the minimum 
number of cores that we can assign for a particular VM instance is 1; hence, we 
selected five CPU-core assignment strategies (including the bare-metal test) listed 
in Table 12.6.

We ran all the MPI tests, on all five hardware/VM configurations, and mea-
sured the performance and calculated speedups and overheads. We calculated 
two types of overheads for each application using formula (1). The total overhead 
induced by virtualization and parallel processing is calculated using the bare-metal 
single-process time as T(1) in formula (1). The parallel overhead is calculated using 
the single-process time from a corresponding VM as T(1) in formula (1).

In all the MPI tests we performed, we used the following invariant to select the 
number of parallel processes (MPI processes) for a given application:

	 Number of MPI processes = Number of CPU cores used
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Table 12.5  Computation and Communication Complexities of Different 
MPI Applications Used

Application
Matrix 

Multiplication
Kmeans 

Clustering
Concurrent Wave 

Equation

Description Implements 
Cannon’s 
Algorithm

Assume a 
rectangular 
process grid 
(Figure 12.1, left)

Implements 
Kmeans 
Clustering 
algorithm

A fixed number of 
iterations are 
performed in 
each test

A vibrating string is 
decomposed (split) 
into points, and 
each MPI process 
is responsible for 
updating the 
amplitude of a 
number of points 
over time

Grain size (n) The number of 
points in a matrix 
block handled by 
each MPI process

The number of 
data points 
handled by a 
single MPI 
process

Number of points 
handled by each 
MPI process

Communication 
pattern

Each MPI process 
communicates 
with its 
neighbors both 
row-wise and 
column-wise

All MPI processes 
send partial 
clusters to one 
MPI process 
(rank 0); rank 0 
distributes the 
new cluster 
centers to all the 
nodes

In each iteration, 
each MPI process 
exchanges 
boundary points 
with its nearest 
neighbors

Computation 
per MPI 
process

[ (( )] )O n 3 O(n) O(n)

Communication 
per MPI 
process

[ (( )] )O n O n2 = ( ) O(1) O(1)

C/C O
n
1





O
n
1





O
n
1





Message size ( )n n2 = D—where D is the 
number of 
cluster centers

D << n

Each message 
contains a double 
value

Communication 
routines used

MPI_Sendrecv_
replace()

MPI_Reduce()

MPI_Bcast()

MPI_Sendrecv()
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For example, for the matrix multiplication application, we used only half the 
number of nodes (bare-metal or VMs) available to us, so that we had 64 MPI 
processes = 64 CPU cores. (This is mainly because the matrix multiplication appli-
cation expects the MPI processes to be in a square grid, in contrast to a rectangular 
grid). For Kmeans clustering, we used all the nodes, resulting in a total of 128 
MPI processes utilizing all 128 CPU cores. Some of the results of our analysis 
highlighting the different characteristics we observed are shown in Figures 12.10 
through 12.17.

For the matrix multiplication, the graphs show very close performance char-
acteristics in all the different hardware/VM configurations. As we expected, the 
bare-metal has the best performance and speedup values, compared to the VM 
configurations (apart from the region close to the matrix size of 4096 × 4096, where 
the VM performed better than the bare-metal; we have performed multiple tests 
at this point, and found that it is due to the cache performances of the bare-metal 
node). After the bare-metal, the next-best performance and speedups were recorded 
in the case of 1 VM per bare-metal node configuration, in which the performance 
difference was mainly due to the overhead induced by the virtualization. However, 
as we increased the number of VMs per bare-metal node, the overhead increased 

Table 12.6  Different Hardware/VM Configurations Used for Our 
Performance Evaluations

Ref Description

Number of 
CPU Cores 

Accessible to 
the Virtual or 

Bare-Metal 
Node

Amount of 
Memory (GB) 
Accessible to 
the Virtual or 

Bare-Metal 
Node

Number of 
Virtual or 

Bare-Metal 
Nodes 

Deployed

BM Bare-metal 
node

8 32 16

1-VM-8-core 1 VM instance 
per bare-
metal node

8 30 (2 GB is 
reserved for 
dom0)

16

2-VM-4-core 2 VM instances 
per bare-
metal node

4 15 32

4-VM-2-core 4 VM instances 
per bare-
metal node

2 7.5 64

8-VM-1-core 8 VM instances 
per bare-
metal node

1 3.75 128
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as well. At 81 processes, the 8 VMs per node configuration shows about a 34% 
decrease in speedup compared to the bare-metal results.

In Kmeans clustering, the effect of virtualized resources is much clearer than 
in the case of matrix multiplication. All VM configurations show a lower perfor-
mance compared to the bare-metal configuration. In this application, the amount 
of data transferred between MPI processes is extremely low compared to the 
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Figure 12.10  Performance of the matrix multiplication application—average 
time (in s) against the size of a matrix (number of MPI processes = 64).
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Figure 12.11  Speedup of the matrix multiplication application—speedup 
against the number of MPI processes = number of CPU cores used (fixed matrix 
size = 5184 × 5184).
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amount of data processed by each MPI process, and also in relation to the amount 
of computations performed. Figures 12.14 and 12.15 show the total overhead and 
the parallel overhead for Kmeans clustering under different VM configurations. 
From these two calculations, we found that, for VM configurations, the overheads 
are extremely large for data-set sizes of less than 10 million points, for which the 
bare-metal overhead remains less than 1 (for all cases). For larger data sets, such as 
those of 40 million points, all overheads reached less than 0.5. The slower speedup 
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Figure 12.12  Performance of Kmeans clustering—average time (in s) against the 
number of 2D data points clustered (number of MPI processes = 128).AQ17
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Figure 12.13  Speedup of Kmeans clustering—speedup against the number of 
MPI processes = number of CPU cores used (number of data points = 860,160).
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of the VM configurations (shown in Figure 12.13) is due to the use of a smaller 
data set (∼800K points) to calculate the speedups. The overheads are extremely 
large for this region of the data sizes, and hence, this resulted in lower speedups 
for the VMs.

The concurrent wave equation splits a number of points into a set of paral-
lel processes, and each parallel process updates its portion of the points in some 
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Figure 12.14  Total overhead of Kmeans clustering—overhead against 1/grain 
size, grain size = number of 2D data points per parallel task (number of MPI 
processes = 128).
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Figure 12.15  Parallel overhead of Kmeans clustering—parallel overhead against 
1/grain size (number of MPI processes = 128).
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number of steps. An increase in the number of points increases the amount of 
computations performed. Since we fixed the number of steps in which the points 
were updated, we obtained a constant amount of communication in all the test 
cases, resulting in a C/C ratio of O(1/n). In this application also, the difference 
in performance between the VMs and the bare-metal version was clearer, and at 
the highest grain size, the total overhead of 8 VMs per node is about seven times 
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Figure 12.16  Performance of the Concurrent Wave Equation Solver—average 
time (in s) against the number of points computed (number of MPI processes = 128).
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Figure 12.17  Total overhead of the Concurrent Wave Equation Solver—over-
head against 1/grain size, grain size = number of points assigned per parallel task 
(number of MPI processes = 128).
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higher than the overhead of the bare-metal configuration. The performance differ-
ences between the different VM configurations became smaller with the increase 
in grain size.

From the above experimental results, we can see that the applications with 
lower C/C ratios experienced a slower performance in virtualized resources. When 
the amount of data transferred between MPI processes is large, as in the case of the 
matrix multiplication, the application is more susceptible to the bandwidth than 
the latency. From the performance results of the matrix multiplication, we can see 
that the virtualization has not affected the bandwidth considerably. However, all 
the other results show that the virtualization has caused considerable latencies for 
parallel applications, especially with smaller data transfer requirements. The effect 
on latency increases as we use more VMs in a bare-metal node.

According to the Xen para-virtualization architecture (Barham et al. 2003), 
domUs (VMs that run on top of a Xen para-virtualization) are not capable of 
performing I/O operations by themselves. Instead, they communicate with dom0 
(privileged OS) via an event channel (interrupts) and the shared memory, and 
then the dom0 performs the I/O operations on behalf of the domUs. Although 
the data is not copied between domUs and dom0, dom0 needs to schedule the 
I/O operations on behalf of domUs. Figure 12.18 (left) and (right) shows this 
behavior in the 1 VM per node and 8 VMs per node configurations, respectively, 
that we used.

In all the above parallel applications we tested, the timing figures measured 
correspond to the time for computation and communication inside the applica-
tions. Therefore, all the I/O operations performed by the applications are network 
dependent. From Figure 12.19 (right), it is clear that dom0 needs to handle eight 
event channels when there are eight VM instances deployed on a single bare-
metal node. Although the eight MPI processes run on a single bare-metal node, 
since they are in different virtualized resources, each of them can only commu-
nicate via dom0. This explains the higher overhead in our results for 8 VMs per 
node configuration. The architecture reveals another important feature as well, 
that is, in the case of the 1 VM per node configuration, when multiple processes 
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Figure 12.18  (Left) Communication between dom0 and domU when 1 VM per 
node is deployed. (Right) Communication between dom0 and domUs when 8 VMs 
per node are deployed.
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(MPI or others) that run in the same VM communicate with each other via the 
network, all the communications must be scheduled by dom0. This results in 
higher latencies. We could verify this by running the above tests with LAM MPI 
(a predecessor of OMPI, which does not have improved support for in-node com-
munications for multi-core nodes). Our results indicate that, with LAM MPI, 
the worst performance for all the tests occurred when 1 VM per node was used. 
For example, Figure 12.19 shows the performance of Kmeans clustering under 
bare-metal, 1 VM per node, and 8 VMs per node configurations. This observation 
suggests that, when using VMs with multiple CPUs allocated to each of them for 
parallel processing, it is better to utilize parallel runtimes, which have better sup-
port for in-node communication.

Several others have also performed relevant research on the performance impli-
cations of virtualized resources. Youseff et al. (2006) present an evaluation of the 
performance impact of Xen on MPI. According to their evaluations, the Xen does 
not impose considerable overheads for HPC (high-performance computing) appli-
cations. However, our results indicate that the applications that are more sensitive 
to latencies (smaller messages, lower C/C ratios) also experience higher overheads 
under virtualized resources, and this overhead increases as more and more VMs 
are deployed per hardware node. From their evaluations, it is not clear how many 
VMs they deployed on the hardware nodes, or how many MPI processes were used 
in each VM. According to our results, these factors cause significant changes in 
possible results. Running 1 VM per hardware node produces a VM instance with 
a similar number of CPU cores, such as in a bare-metal node. However, our results 
indicate that, even in this approach, if the parallel processes inside the node com-
municate via the network, the virtualization may produce higher overheads under 
the current VM architectures.
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Figure 12.19  LAM versus OMPI under different VM configurations.
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Evangelinos and Hill (2008) discuss the details of their analysis of the perfor-
mance of HPC benchmarks on the EC2 cloud infrastructure. One of the key obser-
vations noted in their paper is that both the OMPI and the MPICH2-nemsis show 
extremely large latencies, while the LAM MPI, the GridMPI, and the MPICH2-
scok show smaller, smoother latencies. This observation is similar to what we 
observed with the LAM MPI in our tests, and the same explanation holds valid for 
their observation as well.

Walker (2008) presents benchmark results of the performance of HPC applica-
tions using “high-CPU extra-large” instances provided by EC2, and on a similar set 
of local hardware nodes. The local nodes are connected using Infiniband switches, 
whereas the Amazon EC2 network technology is unknown. The results indicate 
about a 40%–1000% performance degradation on the EC2 resources, compared 
to the local cluster. Since the differences in operating systems and the compiler ver-
sions between the VMs and bare-metal nodes may cause variations in results, for 
our analysis, we used a cloud infrastructure over which we have complete control. 
In addition, we used similar software environments in both VMs and bare-metal 
nodes. In our results, we noticed that applications that are more susceptible to 
latencies experience a higher performance degradation (around 40%) under virtu-
alized resources. Bandwidth does not seem to be a consideration in private cloud 
infrastructures.

Gavrilovska et al. (2007) discuss several improvements over the current virtu-
alization architectures to support HPC applications, such as HPC hypervisors and 
self-virtualized I/O devices. We notice the importance of such improvements and 
research. In our experimental results, we used hardware nodes with 8 cores, and 
deployed and tested up to 8 VMs per node in these systems. Our results show that 
the virtualization overhead increases with the number of VMs deployed on a hard-
ware node. These characteristics will have a larger impact on systems having more 
CPU cores per node. A node with 32 cores running 32 VM instances may produce 
very large overheads under the current VM architectures.

12.7  Conclusions and Future Work
We have described several different studies of clouds and cloud technologies on both 
real applications and standard benchmark. These address different aspects of paral-
lel computing using either traditional (MPI) or the new cloud-inspired approaches. 
We find that cloud technologies work well for most pleasingly parallel problems 
(“map-only” and “map-reduce” classes of applications). In addition, their support 
for handling large data sets, the concept of moving computation to data, and the 
better quality of services provided such as fault tolerance and monitoring, all serve 
to simplify the implementation details of such problems. Applications with com-
plex communication patterns observe higher overheads when implemented using 
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cloud technologies, and even with large data sets, these overheads limit the usage 
of cloud technologies for such applications. Enhanced MapReduce runtimes, such 
as CGL-MapReduce, allow iterative-style applications to utilize the MapReduce 
programming model, while incurring minimal overheads, as compared to other 
runtimes, such as Hadoop and Dryad.

Handling large data sets using cloud technologies on cloud resources is an area 
that needs more research. Most cloud technologies support the concept of mov-
ing computation to data where the parallel tasks access data stored in local disks. 
Currently, it is not clear to us whether this approach would work well with the VM 
instances that are leased only for the duration of use. A possible approach is to stage 
the original data in high-performance parallel file systems or Amazon S3–type 
storage services, and then move the data to the VMs each time they are leased to 
perform computations.

MPI applications that are sensitive to latencies experience moderate-to-higher 
overheads when performed on cloud resources, and these overheads increase as the 
number of VMs per bare-hardware node increases. For example, in Kmeans clus-
tering, 1 VM per node shows a minimum of an 8% total overhead, while 8 VMs per 
node show at least a 22% overhead. In the case of the Concurrent Wave Equation 
Solver, both these overheads are around 50%. Therefore, we expect the CPU-core 
assignment strategies, such as half a core per VM, to produce very high overheads 
for applications that are sensitive to latencies. Applications that are not suscep-
tible to latencies, such as those that perform large data transfers and/or higher C/C 
ratios, show minimal total overheads in both bare-metal and VM configurations. 
Therefore, we expect that the applications developed using cloud technologies will 
work fine with cloud resources, because the milliseconds-to-seconds latencies that 
they already have under the MapReduce model will not be affected by the addi-
tional overheads introduced by the virtualization. This is also an area we are cur-
rently investigating. We are also building applications (biological DNA sequencing) 
whose end-to-end implementation from data processing to filtering (data-mining) 
involves an integration of MapReduce and MPI (Fox et al. 2008).
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[AQ4]	 Please check whether “italics” for emphasis be changed to bold.
[AQ5]	 �Fox and Hey (1987) has been changed to Fox et al. (1987) to match with 

the reference list. Please check.
[AQ6]	 Please check if the edit of the sentence starting “In the two…” is correct.
[AQ7]	 Please expand “ALU,” if appropriate.
[AQ8]	 �En dashes have been inserted for the combinations “Smith Waterman” 

and “Smith Waterman Gotoh” in this chapter. Please check.
[AQ9]	 �Smith and Hubley (2004) has been changed to Smith et al. (2004) to 

match with the reference list. Please check.
[AQ10]	 �Smith et al. (1981) has been changed to Smith and Waterman (1981) to 

match with the reference list. Please check.
[AQ11]	 Please expand “MDS,” if appropriate.
[AQ12]	 �Please check if the edit of the sentence starting “We decompose…” is 

correct.
[AQ13]	 �“PairEnumertator” has been changed to “PairEnumerator” in the sentence 

starting “We implemented…” Please check.
[AQ14]	 �In the sentence starting “Therefore, we…,” please check whether the phrase 

at the end of the sentence “this file system” refers to the “high-performance 
parallel file system” or the “Lustre file system,” and modify the sentence 
accordingly for clarity.

[AQ15]	 �Please check if the edit of the sentence starting “On 744 cores…” is correct.
[AQ16]	 �Please check the last part of the sentence starting “This could lead…” for 

sense, and whether “Windows handing” should be changed to “Windows 
handling.”

[AQ17]	 �Please check the caption of Figure 12.12 against the respective artwork. 
Caption says “2D data points,” whereas artwork says “3D data points.”

[AQ18]	 Please expand “LAM,” if appropriate.
[AQ19]	 Please check if the expansion inserted for “HPC” is correct.
[AQ20]	 Please expand “ARTS,” if appropriate.
[AQ21]	 �Please check the inserted volume no. in Dongarra et al. (1993) for 

correctness.
[AQ22]	 �Please check the location of publisher in Johnsson et al. (1989) and Raicu 

et al. (2007) for correctness.
[AQ23]	 �Please check the inserted volume no. and page range in Macqueen (1967) 

for correctness.
[AQ24]	 Please provide page range for Moretti et al. (2009).
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