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12.1 Introduction
Cloud	and	cloud	technologies	are	two	broad	categories	of	technologies	related	to	
the	general	notion	of	Cloud	Computing.	By	 “cloud,”	we	 refer	 to	 a	 collection	of	
infrastructure	services,	such	as	Infrastructure	as	a	service	(IaaS)	and	Platform	as	a	
service	(PaaS),	provided	by	various	organizations	where	virtualization	plays	a	key	
role.	By	“cloud	technologies,”	we	refer	to	various	cloud	runtimes,	such	as	Hadoop	
(ASF,	core,	2009a),	Dryad	(Isard	et	al.	2007),	and	other	MapReduce	(Dean	and	
Ghemawat	 2008)	 frameworks,	 and	 also	 the	 storage	 and	 communication	 frame-
works,	such	as	Hadoop	Distributed	File	System	(HDFS)	and	Amazon	S3	(Amazon	
2009).

The	introduction	of	commercial	cloud	infrastructure	services,	such	as	Amazon	
EC2,	GoGrid	(ServePath	2009),	and	ElasticHosts	(ElasticHosts	2009),	has	allowed	
users	 to	 provision	 compute	 clusters	 fairly	 easily	 and	 quickly,	 by	 paying	 a	 mon-
etary	value	for	the	duration	of	their	usages	of	the	resources.	The	provisioning	of	
resources	happens	in	minutes,	as	opposed	to	hours	and	days	required	in	the	case	
of	 traditional	 queue-based	 job-scheduling	 systems.	 In	 addition,	 the	 use	 of	 such	
virtualized	resources	allows	the	user	to	completely	customize	the	virtual	machine	
(VM)	images	and	use	them	with	ROOT/administrative	privileges,	another	feature	
that	 is	hard	 to	achieve	with	 traditional	 infrastructures.	The	availability	of	open-
source	cloud	 infrastructure	softwares,	 such	as	Nimbus	(Keahey	et	al.	2005)	and	
Eucalyptus	 (Nurmi	et	al.	2009),	and	open-source	virtualization	 software	 stacks,	
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such	as	Xen	Hypervisor	(Barham	et	al.	2003),	allows	organizations	to	build	private	
clouds	to	improve	the	resource	utilization	of	the	available	computation	facilities.	
The	possibility	of	dynamically	provisioning	additional	 resources	by	 leasing	 from	
commercial	cloud	infrastructures	makes	the	use	of	private	clouds	more	promising.

Among	the	many	applications	that	benefit	from	cloud	and	cloud	technologies,	
the	data/compute-intensive	applications	are	the	most	important.	The	deluge	of	data	
and	 the	highly	 compute-intensive	 applications	 found	 in	many	domains,	 such	 as	
particle	physics,	 biology,	 chemistry,	finance,	 and	 information	 retrieval,	mandate	
the	use	of	large	computing	infrastructures	and	parallel	processing	to	achieve	con-
siderable	performance	gains	in	analyzing	data.	The	addition	of	cloud	technologies	
creates	new	trends	in	performing	parallel	computing.	An	employee	in	a	publishing	
company	who	needs	to	convert	a	document	collection,	terabytes	in	size,	to	a	differ-
ent	format	can	do	so	by	implementing	a	MapReduce	computation	using	Hadoop,	
and	running	it	on	leased	resources	from	Amazon	EC2	in	just	a	few	hours.	A	scien-
tist	who	needs	to	process	a	collection	of	gene	sequences	using	the	CAP3	(Huang	
and	Madan	1999)	software	can	use	virtualized	resources	leased	from	the	univer-
sity’s	private	cloud	infrastructure	and	Hadoop.	In	these	use	cases,	the	amount	of	
coding	that	the	publishing	agent	and	the	scientist	need	to	perform	is	minimal	(as	
each	user	simply	needs	to	implement	a	map	function),	and	the	MapReduce	infra-
structure	handles	many	aspects	of	the	parallelism.

Although	the	above	examples	are	successful	use	cases	for	applying	cloud	and	
cloud	technologies	for	parallel	applications,	through	our	research,	we	have	found	
that	there	are	limitations	in	using	current	cloud	technologies	for	parallel	applica-
tions	that	require	complex	communication	patterns	or	require	faster	communica-
tion	mechanisms.	For	example,	Hadoop	and	Dryad	implementations	of	Kmeans	
clustering	applications,	which	perform	an	iteratively	refining	clustering	operation,	
show	higher	overheads	compared	to	implementations	of	MPI	or	CGL-MapReduce	
(Ekanayake	 et	 al.	 2008)—a	 streaming-based	MapReduce	 runtime	developed	by	
us.	 These	 observations	 raise	 questions:	 What	 applications	 are	 best	 handled	 by	
cloud	technologies?	What	overheads	do	they	introduce?	Are	there	any	alternative	
approaches?	 Can	 we	 use	 traditional	 parallel	 runtimes	 such	 as	 MPI	 in	 cloud?	 If	
so,	what	overheads	does	it	have?	These	are	some	of	the	questions	we	try	to	answer	
through	our	research.

In	Section	12.1,	we	give	a	brief	introduction	of	the	cloud	technologies,	and	in	
Section	12.2,	we	discuss	with	examples	the	basic	functionality	supported	by	these	
cloud	runtimes.	Section	12.3	discusses	how	these	technologies	map	into	program-
ming	models.	We	describe	the	applications	used	to	evaluate	and	test	technologies	
in	Section	12.4.	The	performance	results	are	discussed	in	Section	12.5.	In	Section	
12.6,	we	present	details	of	an	analysis	we	have	performed	to	understand	the	per-
formance	implications	of	virtualized	resources	for	parallel	MPI	applications.	Note	
that	we	use	MPI	running	on	non-VMs	in	Section	12.5	for	comparison	with	cloud	
technologies.	We	present	our	conclusions	in	Section	12.7.
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12.2 Cloud Technologies
Cloud	 technologies	 such	 as	 MapReduce	 and	 Dryad	 have	 created	 new	 trends	 in	
parallel	 programming.	 The	 support	 for	 handling	 large	 data	 sets,	 the	 concept	 of	
moving	 computation	 to	data,	 and	 the	better	quality	of	 services	provided	by	 the	
cloud	technologies	make	them	a	favorable	choice	to	solve	large-scale	data/compute-
intensive	problems.

The	 granularity	 of	 the	 parallel	 tasks	 in	 these	 programming	 models	 lies	 in	
between	the	fine-grained	parallel	tasks	that	are	used	in	message-passing	infrastruc-
tures	 such	 as	 PVM	 (Dongarra	 et	 al.	 1993)	 and	 MPI	 (Forum	 n.d.),	 and	 coarse-
grained	jobs	 in	workflow	frameworks	such	as	Kepler	(Ludscher	et	al.	2006)	and	
Taverna	(Hull	et	al.	2006),	in	which	the	individual	tasks	could	themselves	be	par-
allel	 applications	written	 in	MPI.	Unlike	 the	various	 communication	constructs	
available	 in	MPI,	which	can	be	used	 to	create	a	wide	variety	of	communication	
topologies	 for	parallel	programs,	 in	MapReduce,	 the	 “map→reduce”	 is	 the	only	
communication	construct	available.	However,	our	experience	shows	that	most	com-
posable	applications	can	easily	be	implemented	using	the	MapReduce	programming	
model.	Dryad	supports	parallel	applications	that	resemble	Directed	Acyclic	Graphs	
(DAGs),	in	which	the	vertices	represent	computation	units,	and	the	edges	represent	
communication	channels	between	different	computation	units.

In	 traditional	 approaches,	 once	 parallel	 applications	 are	 developed,	 they	 are	
executed	 on	 compute	 clusters,	 supercomputers,	 or	 grid	 infrastructures	 (Foster	
2001),	where	 the	 focus	on	allocating	resources	 is	heavily	biased	by	 the	availabil-
ity	of	computational	power.	The	application	and	the	data	both	need	to	be	moved	
to	 the	available	 computational	 resource	 in	order	 for	 them	to	be	executed.	These	
infrastructures	are	highly	efficient	in	performing	compute-intensive	parallel	appli-
cations.	However,	when	the	volume	of	data	accessed	by	an	application	increases,	
the	overall	efficiency	decreases	due	to	the	inevitable	data	movement.	Cloud	tech-
nologies	 such	 as	 Google	 MapReduce,	 Google	 File	 System	 (GFS)	 (Ghemawat	 et	
al.	2003),	Hadoop	and	HDFS,	Microsoft	Dryad,	and	CGL-MapReduce	adopt	a	
more	data-centered	approach	to	parallel	runtimes.	In	these	frameworks,	the	data	
is	staged	in	data/compute	nodes	of	clusters	or	large-scale	data	centers,	such	as	in	
the	case	of	Google.	The	computations	move	to	the	data	 in	order	 to	perform	the	
data	processing.	Distributed	file	systems,	such	as	GFS	and	HDFS,	allow	Google	
MapReduce	 and	Hadoop	 to	 access	data	 via	distributed	 storage	 systems	built	 on	
heterogeneous	compute	nodes,	while	Dryad	and	CGL-MapReduce	support	read-
ing	data	from	local	disks.	The	simplicity	in	the	programming	model	enables	better	
support	for	quality	of	services	such	as	fault	tolerance	and	monitoring.

12.2.1 Hadoop
Apache	Hadoop	has	a	similar	architecture	to	Google’s	MapReduce	runtime,	where	
it	accesses	data	via	HDFS,	which	maps	all	the	local	disks	of	the	compute	nodes	to	
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a	single	file	system	hierarchy,	allowing	the	data	to	be	dispersed	across	all	the	data/
computing	nodes.	HDFS	also	replicates	the	data	on	multiple	nodes	so	that	failures	
of	 any	 nodes	 containing	 a	 portion	 of	 the	 data	 will	 not	 affect	 the	 computations	
that	use	that	data.	Hadoop	schedules	the	MapReduce	computation	tasks	depend-
ing	on	the	data	locality,	improving	the	overall	I/O	(input/output)	bandwidth.	The	
outputs	of	the	map	tasks	are	first	stored	in	local	disks	until	later,	when	the	reduce	
tasks	access	them	(pull)	via	HTTP	connections.	Although	this	approach	simplifies	
the	 fault-handling	 mechanism	 in	 Hadoop,	 it	 adds	 a	 significant	 communication	
overhead	to	the	intermediate	data	transfers,	especially	for	applications	that	produce	
small	intermediate	results	frequently.

12.2.2 Dryad and DryadLINQ
Dryad	 is	 a	distributed	execution	engine	 for	 coarse-grained	data	parallel	 applica-
tions.	 It	 combines	 the	 MapReduce	 programming	 style	 with	 dataflow	 graphs	 to	
solve	the	computation	tasks.	Dryad	considers	computation	tasks	as	DAGs,	where	
the	vertices	represent	computation	tasks	and	the	edges	act	as	communication	chan-
nels	over	which	the	data	flows	from	one	vertex	 to	another.	The	data	 is	 stored	 in	
(or	partitioned	 to)	 local	disks	 via	 the	Windows	 shared	directories	 and	metadata	
files,	and	Dryad	schedules	the	execution	of	vertices	depending	on	the	data	local-
ity.	(Note:	The	academic	release	of	Dryad	only	exposes	the	DryadLINQ	(Yu	et	al.	
2008)	API	for	programmers.	Therefore,	all	our	implementations	are	written	using	
DryadLINQ,	although	it	uses	Dryad	as	the	underlying	runtime.)	Dryad	also	stores	
the	output	of	vertices	in	local	disks,	and	the	other	vertices	that	depend	on	these	
results	 access	 them	 via	 the	 shared	 directories.	 This	 enables	 Dryad	 to	 re-execute	
failed	vertices,	a	step	that	improves	fault	tolerance	in	the	programming	model.

12.2.3 CGL-MapReduce
CGL-MapReduce	 is	a	 lightweight	MapReduce	runtime	that	 incorporates	several	
improvements	to	the	MapReduce	programming	model,	such	as	(1)	faster	interme-
diate	data	transfer	via	a	pub/sub	broker	network,	(2)	support	for	long-running	map/
reduce	tasks,	and	(3)	efficient	support	for	iterative	MapReduce	computations.	The	
architecture	of	CGL-MapReduce	is	shown	in	Figure	12.1	(left).

The	 use	 of	 streaming	 enables	 CGL-MapReduce	 to	 send	 the	 intermediate	
results	directly	from	its	producers	to	its	consumers,	and	eliminates	the	overhead	of	
the	file-based	communication	mechanisms	adopted	by	both	Hadoop	and	Dryad.	
The	support	 for	 long-running	map/reduce	 tasks	enables	configuring	and	reusing	
map/reduce	tasks	in	the	case	of	iterative	MapReduce	computations,	and	eliminates	
the	need	for	reconfiguring	or	reloading	static	data	in	each	iteration.	This	feature	
comes	with	the	distinction	of	“static	data”	and	“dynamic	data”	that	we	support	
in	CGL-MapReduce.	We	refer	to	any	data	set	that	is	static	throughout	the	com-
putation	as	“static	data,”	and	the	data	that	is	changing	over	the	computation	as	
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“dynamic	data.”	Although	this	distinction	is	irrelevant	to	the	MapReduce	com-
putations	that	have	only	one	map	phase	followed	by	a	reduce	phase,	it	is	extremely	
important	for	 iterative	MapReduce	computations,	 in	which	the	map	tasks	need	
to	access	a	static	(fixed)	data	again	and	again.	Figure	12.1	(right)	highlights	the	
synchronization	 and	 communication	 characteristics	 of	 Hadoop,	 Dryad,	 CGL-
MapReduce,	and	MPI.

Additionally,	 CGL-MapReduce	 supports	 the	 distribution	 of	 smaller	 variable	
data	sets	to	all	the	map	tasks	directly,	a	functionality	similar	to	MPI_Bcast()	that	
is	often	found	to	be	useful	 in	many	data	analysis	applications.	Hadoop	provides	
a	similar	 feature	via	 its	distributed	cache,	 in	which	a	file	or	data	 is	copied	to	all	
the	compute	nodes.	Dryad	provides	a	similar	feature	by	allowing	applications	to	
add	resources	(files)	that	will	be	accessible	to	all	the	vertices.	With	the	above	fea-
tures	in	place,	CGL-MapReduce	can	be	used	to	implement	iterative	MapReduce	
computations	efficiently.	In	CGL-MapReduce,	data	partitioning	and	distribution	
is	 left	 to	 the	users	 to	handle,	and	 it	 reads	data	 from	shared	file	 systems	or	 local	
disks.	 Although	 the	 use	 of	 streaming	 makes	 CGL-MapReduce	 highly	 efficient,	
implementing	fault	tolerance	with	this	approach	is	not	as	straightforward	as	it	is	in	
Hadoop	or	Dryad.	We	plan	to	implement	fault	tolerance	in	CGL-MapReduce	by	
re-execution	of	failed	map	tasks	and	redundant	execution	of	reduce	tasks.

12.2.4 MPI
MPI,	the	de	facto	standard	for	parallel	programming,	is	a	language-independent	
communications	protocol	that	uses	a	message-passing	paradigm	to	share	the	data	
and	state	among	a	set	of	cooperative	processes	running	on	a	distributed	memory	
system.	MPI	specification	(Forum,	MPI)	defines	a	set	of	routines	to	support	various	
parallel	 programming	 models,	 such	 as	 point-to-point	 communication,	 collective	
communication,	derived	data	types,	and	parallel	I/O	operations.
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nization and intercommunication mechanisms used by parallel runtimes.
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Most	MPI	runtimes	are	deployed	in	computation	clusters	where	a	set	of	com-
pute	nodes	are	connected	via	a	high-speed	network	connection	yielding	very	low	
communication	latencies	(typically	in	microseconds).	MPI	processes	typically	have	
a	direct	mapping	to	the	available	processors	in	a	compute	cluster	or	to	the	processor	
cores	in	the	case	of	multi-core	systems.	We	use	MPI	as	the	baseline	performance	
measure	 for	 the	various	algorithms	 that	are	used	 to	evaluate	 the	different	paral-
lel	programming	runtimes.	Table	12.1	summarizes	the	different	characteristics	of	
Hadoop,	Dryad,	CGL-MapReduce,	and	MPI.

12.3 Programming Models
When	analyzing	applications	written	in	the	MapReduce	programming	model,	we	
can	identify	three	basic	execution	units,	namely,	(1)	map-only,	(2)	map-reduce,	and	
(3)	 iterative	map-reduce.	Complex	applications	can	be	built	by	combining	 these	
three	basic	execution	units	under	the	MapReduce	programming	model.	Table	12.2	
shows	the	data/computation	flow	of	these	three	basic	execution	units,	along	with	
examples.

In	the	MapReduce	programming	model,	the	tasks	that	are	being	executed	at	
a	 given	phase	have	 similar	 executables	 and	 similar	 input	 and	output	operations.	
With	zero	reduce	tasks,	the	MapReduce	model	reduces	to	a	map-only	model,	which	
can	be	applied	to	many	“embarrassingly	parallel”	applications.	Software	 systems	
such	 as	 batch	 queues,	 Condor	 (Condor	 2009),	 Falkon	 (Raicu	 et	 al.	 2007),	 and	
SWARM	(Pallickara	and	Pierce	2008)	all	provide	similar	functionality	by	schedul-
ing	large	numbers	of	individual	maps/jobs.	Applications	that	can	utilize	a	“reduc-
tion”	or	an	“aggregation”	operation	can	use	both	phases	of	the	MapReduce	model,	
and,	depending	on	 the	 “associativity”	 and	 “transitivity”	nature	 of	 the	 reduction	
operation,	multiple	reduction	phases	can	be	applied	to	enhance	the	parallelism.	For	
example,	in	a	histogramming	operation,	the	partial	histograms	can	be	combined	in	
any	order	and	in	any	number	of	steps	to	produce	a	final	histogram.

The	“side	effect–free”	nature	of	the	MapReduce	programming	model	does	not	
promote	iterative	MapReduce	computations.	Each	of	the	map	and	reduce	tasks	are	
considered	as	atomic	execution	units	with	no	state	shared	in	between	executions.	
In	parallel	 runtimes,	 such	 as	 those	of	 the	MPI,	 the	parallel	 execution	units	 live	
throughout	the	entire	life	of	the	program;	hence,	the	state	of	a	parallel	execution	
unit	 can	be	 shared	 across	 invocations.	We	propose	 an	 intermediate	 approach	 to	
develop	MapReduce	computations.	In	our	approach,	the	map/reduce	tasks	are	still	
considered	free	from	side	effects,	but	the	runtime	allows	configuring	and	reusing	
the	map/reduce	tasks.	Once	configured,	the	runtime	caches	the	map/reduce	tasks.	
This	way,	both	map	and	reduce	tasks	can	keep	the	static	data	in	memory,	and	can	
be	called	iteratively	without	loading	the	static	data	repeatedly.

Hadoop	supports	configuring	 the	number	of	reduce	 tasks,	which	enables	 the	
user	to	create	“map-only”	applications	by	using	zero	reduce	tasks.	Hadoop	can	be	

K10175_C012.indd   281 3/2/2010   6:50:01 PM



282  ◾  Cloud Computing and Software Services: Theory and Practice
Ta

bl
e 

12
.1

 
C

om
pa

ri
so

n 
of

 F
ea

tu
re

s 
Su

pp
or

te
d 

by
 D

if
fe

re
nt

 P
ar

al
le

l P
ro

gr
am

m
in

g 
R

un
ti

m
es

Fe
at

u
re

H
ad

o
o

p
D

ry
ad

C
G

L-
M

ap
Re

d
u

ce
M

PI

Pr
o

gr
am

m
in

g 
m

o
d

el
M

ap
R

ed
u

ce
D

A
G

-b
as

ed
 e

xe
cu

ti
o

n
 

fl
o

w
s

M
ap

R
ed

u
ce

 w
it

h
 a

 C
om

bi
ne

 
p

h
as

e
V

ar
ie

ty
 o

f t
o

p
o

lo
gi

es
 

co
n

st
ru

ct
ed

 u
si

n
g 

th
e 

ri
ch

 s
et

 o
f p

ar
al

le
l 

co
n

st
ru

ct
s

D
at

a 
h

an
d

lin
g

H
D

FS
Sh

ar
ed

 d
ir

ec
to

ri
es

/lo
ca

l 
d

is
ks

Sh
ar

ed
 fi

le
 s

ys
te

m
/lo

ca
l 

d
is

ks
Sh

ar
ed

 fi
le

 s
ys

te
m

s

In
te

rm
ed

ia
te

 
d

at
a 

co
m

m
u

n
ic

at
io

n

H
D

FS
/p

o
in

t t
o

 p
o

in
t v

ia
 

H
TT

P
Fi

le
s/

TC
P 

p
ip

es
/ s

h
ar

ed
 

m
em

o
ry

 F
IF

O
C

o
n

te
n

t d
is

tr
ib

u
ti

o
n

 
n

et
w

o
rk

 (N
ar

ad
aB

ro
ke

ri
n

g 
(P

al
lic

ka
ra

 a
n

d
 F

o
x 

20
03

))

Lo
w

-l
at

en
cy

 
co

m
m

u
n

ic
at

io
n

 
ch

an
n

el
s

Sc
h

ed
u

lin
g

D
at

a 
lo

ca
lit

y/
ra

ck
 a

w
ar

e
D

at
a 

lo
ca

lit
y/

 n
et

w
o

rk
 

to
p

o
lo

gy
–b

as
ed

 r
u

n
ti

m
e 

gr
ap

h
 o

p
ti

m
iz

at
io

n
s

D
at

a 
lo

ca
lit

y
A

va
ila

b
le

 p
ro

ce
ss

in
g 

ca
p

ab
ili

ti
es

Fa
ilu

re
 h

an
d

lin
g

Pe
rs

is
te

n
ce

 v
ia

 H
D

FS
, 

re
-e

xe
cu

ti
o

n
 o

f m
ap

 a
n

d
 

re
d

u
ce

 ta
sk

s

R
e-

ex
ec

u
ti

o
n

 o
f v

er
ti

ce
s

C
u

rr
en

tl
y 

n
o

t i
m

p
le

m
en

te
d

 
(r

e-
ex

ec
u

ti
n

g 
m

ap
 ta

sk
s,

 
re

d
u

n
d

an
t r

ed
u

ce
 ta

sk
s)

Pr
o

gr
am

-l
ev

el
 c

h
ec

k-
p

o
in

ti
n

g 
O

M
PI

 
(G

ab
ri

el
 e

t a
l. 

20
04

), 
FT

 M
PI

M
o

n
it

o
ri

n
g

M
o

n
it

o
ri

n
g 

su
p

p
o

rt
 o

f 
H

D
FS

, m
o

n
it

o
ri

n
g 

M
ap

R
ed

u
ce

 c
o

m
p

u
ta

ti
o

n
s

M
o

n
it

o
ri

n
g 

su
p

p
o

rt
 fo

r 
ex

ec
u

ti
o

n
 g

ra
p

h
s

Pr
o

gr
am

m
in

g 
in

te
rf

ac
e 

to
 

m
o

n
it

o
r 

th
e 

p
ro

gr
es

s 
o

f 
jo

b
s

M
in

im
al

 s
u

p
p

o
rt

 fo
r 

ta
sk

-l
ev

el
 m

o
n

it
o

ri
n

g

La
n

gu
ag

e 
su

p
p

o
rt

Im
p

le
m

en
te

d
 u

si
n

g 
Ja

va
; 

o
th

er
 la

n
gu

ag
es

 a
re

 
su

p
p

o
rt

ed
 v

ia
 H

ad
o

o
p

 
st

re
am

in
g

Pr
o

gr
am

m
ab

le
 v

ia
 C

#,
 

D
ry

ad
LI

N
Q

 p
ro

vi
d

es
 

LI
N

Q
 p

ro
gr

am
m

in
g 

A
PI

 
fo

r 
D

ry
ad

Im
p

le
m

en
te

d
 u

si
n

g 
Ja

va
; 

o
th

er
 la

n
gu

ag
es

 a
re

 
su

p
p

o
rt

ed
 v

ia
 Ja

va
 

w
ra

p
p

er
s

C
, C

+
+

, F
o

rt
ra

n
, J

av
a,

 
C

#

K10175_C012.indd   282 3/2/2010   6:50:01 PM



High-Performance Parallel Computing  ◾  283

used	to	implement	iterative	MapReduce	computations,	but	the	framework	does	not	
provide	additional	support	 to	 implement	them	efficiently.	The	CGL-MapReduce	
supports	 all	 the	 above	 three	 execution	 units,	 and	 the	 user	 can	 develop	 applica-
tions	with	multiple	stages	of	MapReduce	by	combining	them	in	any	order.	Dryad	
execution	graphs	 resembling	 the	 above	 three	basic	units	 can	be	 generated	using	
DryadLINQ	 operations.	 DryadLINQ	 adds	 the	 LINQ	 programming	 features	
to	Dryad	where	 the	user	can	 implement	various	data	analysis	applications	using	
LINQ	queries,	which	will	be	translated	to	Dryad	execution	graphs	by	the	compiler.	
However,	unlike	in	the	MapReduce	model,	Dryad	allows	the	concurrent	vertices	
to	have	different	behaviors	and	different	I/O	characteristics,	thus	enabling	a	more	
workflow-style	programming	model.	Dryad	also	allows	multiple	communication	
channels	 in	between	different	vertices	of	 the	dataflow	graph.	Programming	 lan-
guages	such	as	Swazall	(Pike	et	al.	2005),	introduced	by	Google	for	its	MapReduce	
runtime,	enable	high-level	language	support	for	expressing	MapReduce	computa-
tions,	 and	 the	Pig	 (ASF,	pig,	2009b)	available	 as	 a	 subproject	of	Hadoop	allows	
query	operations	on	large	data	sets.

Apart	from	these	programming	models,	 there	are	other	software	frameworks	
that	one	can	use	to	perform	data/compute-intensive	analyses.	Disco	(Nokia	2009)	
is	an	open-source	MapReduce	runtime	developed	using	a	functional	programming	

Table 12.2 Three Basic Execution Units under the MapReduce 
Programming Model

Map-Only Map-Reduce Iterative Map-Reduce

Input

map()

Output

Input

map()

reduce()

Output

Input

map()

reduce()

Output

Cap3 analysis (we will 
discuss more about this 
later)

HEP data analysis (we 
will discuss more 
about this later)

Expectation 
maximization 
algorithms

Converting a collection 
of documents to 
different formats, 
processing a collection 
of medical images, and 
brute-force searches in 
cryptography; 
parametric sweeps

Histogramming 
operations, 
distributed search, 
and distributed 
sorting; information 
retrieval

Kmeans clustering, 
matrix multiplication
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language	named	Erlang	(Ericsson	2009).	The	Disco	architecture	shares	clear	simi-
larities	with	both	Google	and	Hadoop	MapReduce	architectures.	Sphere	(Gu	and	
Grossman	2009)	is	a	framework	that	can	be	used	to	execute	user-defined	functions	
in	parallel	on	data	stored	in	a	storage	framework	named	Sector.	Sphere	can	also	per-
form	MapReduce-style	programs,	and	the	authors	compare	its	performance	with	
Hadoop	for	tera-sort	applications.	All-Pairs	(Moretti	et	al.	2009)	is	an	abstraction	
that	can	be	used	to	solve	the	common	problem	of	comparing	all	the	elements	in	
a	data	set	with	all	the	elements	in	another	data	set	by	applying	a	given	function.	
This	problem	can	be	implemented	using	Hadoop	and	Dryad	as	well,	and	we	dis-
cuss	a	 similar	problem	in	Section	12.4.4.	We	can	also	develop	an	efficient	 itera-
tive	 MapReduce	 implementation	 using	 CGL-MapReduce	 to	 solve	 this	 problem.	
The	algorithm	is	similar	to	the	matrix	multiplication	algorithm	that	we	explain	in	
Section	12.4.3.

MPI	and	threads	are	two	other	programming	models	that	can	be	used	to	imple-
ment	 parallel	 applications.	 MPI	 can	 be	 used	 to	 develop	 parallel	 applications	 in	
distributed	memory	architectures,	whereas	threads	can	be	used	in	shared	memory	
architectures,	 especially	 in	 multi-core	 nodes.	 The	 low-level	 communication	 con-
structs	available	 in	MPI	allow	users	 to	develop	parallel	applications	with	various	
communication	 topologies	 involving	 fine-grained	 parallel	 tasks.	 The	 use	 of	 low-
latency	network	connections	between	nodes	enables	applications	to	perform	a	large	
number	 of	 inter-task	 communications.	 In	 contrast,	 the	 next-generation	 parallel	
runtimes,	such	as	MapReduce	and	Dryad,	provide	a	small	number	of	parallel	con-
structs,	such	as	“map-only,”	“map-reduce,”	“Select,”	“Apply,”	and	“Join,”	and	do	not	
require	 high-speed	 communication	 channels.	 These	 constraints	 require	 adopting	
parallel	algorithms	that	perform	coarse-grained	parallel	 tasks	and	less	communi-
cation.	The	use	of	threads	is	a	natural	approach	in	shared	memory	architectures,	
where	communication	between	parallel	tasks	reduces	to	the	simple	sharing	of	point-
ers	via	the	shared	memory.	However,	the	operating	system’s	support	for	user-level	
threads	plays	a	major	role	in	achieving	better	performances	using	multi-threaded	
applications.	We	will	discuss	the	issues	in	using	threads	and	MPI	in	more	detail	in	
Section	12.5.4.2.

12.4 Data Analyses Applications
12.4.1 CAP3—Sequence Assembly Program
CAP3	 is	 a	 DNA	 sequence	 assembly	 program	 developed	 by	 Huang	 and	 Madan	
(1999)	that	performs	several	major	assembly	steps:	These	steps	include	computation	
of	overlaps,	construction	of	contigs,	construction	of	multiple	sequence	alignments,	
and	generation	of	consensus	sequences	to	a	given	set	of	gene	sequences.	The	pro-
gram	reads	a	collection	of	gene	sequences	from	an	input	file	(FASTA	file	format)	
and	writes	its	output	to	several	output	files,	as	well	as	the	standard	output:
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	 Input.fsa CAP3 Stdout Other output files→ → + 	

The	program	structure	of	this	application	fits	directly	with	the	“map-only”	basic	
execution	unit,	as	shown	in	Table	12.2.	We	implemented	a	parallel	version	of	CAP3	
using	Hadoop,	CGL-MapReduce,	 and	DryadLINQ.	Each	map	 task	 in	Hadoop	
and	 in	 CGL-MapReduce	 calls	 the	 CAP3	 executable	 as	 a	 separate	 process	 for	 a	
given	input	data	file	(the	input	“Value”	for	the	map	task),	whereas	in	DryadLINQ,	a	
“homomorphic	Apply”	operation	calls	the	CAP3	executable	on	each	data	file	in	its	
data	partition	as	a	separate	process.	All	the	implementations	move	the	output	files	
to	a	predefined	shared	directory.	This	application	resembles	a	common	paralleliza-
tion	requirement,	where	an	executable	script,	or	a	function	in	a	special	framework	
such	as	MATLAB•	or	R,	needs	to	be	executed	on	each	input	data	item.	The	above	
approach	can	be	used	to	implement	all	these	types	of	applications	using	any	of	the	
above	three	runtimes.

12.4.2 High-Energy Physics
Next,	we	applied	the	MapReduce	technique	to	parallelize	a	High-Energy	Physics	
(HEP)	 data	 analysis	 application,	 and	 implemented	 it	 using	 Hadoop,	 CGL-
MapReduce,	 and	Dryad.	The	HEP	data	analysis	 application	processes	 large	vol-
umes	of	data,	and	performs	a	histogramming	operation	on	a	collection	of	event	
files	 produced	 by	 HEP	 experiments.	 The	 details	 regarding	 the	 two	 MapReduce	
implementations	and	the	challenges	we	faced	in	implementing	them	can	be	found	
in	Ekanayake	et	al.	(2008).	In	the	DryadLINQ	implementation,	the	input	data	files	
are	first	distributed	among	the	nodes	of	the	cluster	manually.	We	developed	a	tool	
to	perform	the	manual	partitioning	and	distribution	of	the	data.	The	names	of	the	
data	files	available	in	a	given	node	were	used	as	the	data	to	the	DryadLINQ	pro-
gram.	Using	a	homomorphic	“Apply”	operation,	we	executed	a	ROOT-interpreted	
script	 on	 groups	 of	 input	 files	 in	 all	 the	 nodes.	 The	 output	 histograms	 of	 this	
operation	 were	 written	 to	 a	 predefined	 shared	 directory.	 Next,	 we	 used	 another	
“Apply”	phase	to	combine	these	partial	histograms	into	a	single	histogram	using	
DryadLINQ.

12.4.3  Iterative MapReduce—Kmeans Clustering 
and Matrix Multiplication

Parallel	applications	that	are	implemented	using	message-passing	runtimes	can	uti-
lize	various	communication	constructs	to	build	diverse	communication	topologies.	
For	example,	a	matrix	multiplication	application	that	implements	Fox’s	Algorithm	
(Fox	et	al.	1987)	and	Cannon’s	Algorithm	(Johnsson	et	al.	1989)	assumes	parallel	
processes	 to	be	 in	 a	 rectangular	 grid.	Each	parallel	 process	 in	 the	 grid	 commu-
nicates	with	 its	 left	 and	 top	neighbors,	 as	 shown	 in	Figure	12.2	 (left).	The	 cur-
rent	cloud	runtimes,	which	are	based	on	dataflow	models	such	as	MapReduce	and	

AQ5
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Dryad,	do	not	support	this	behavior,	in	which	the	peer	nodes	communicate	with	
each	other.	Therefore,	implementing	the	above	type	of	parallel	applications	using	
MapReduce	or	DryadLINQ	requires	adopting	different	algorithms.

We	have	 implemented	matrix	multiplication	 applications	using	Hadoop	 and	
CGL-MapReduce	by	adopting	a	row/column	decomposition	approach	to	split	the	
matrices.	To	 clarify	 our	 algorithm,	 let	 us	 consider	 an	 example	where	 two	 input	
matrices,	A	and	B,	produce	matrix	C,	as	the	result	of	the	multiplication	process.	
We	split	the	matrix	B	into	a	set	of	column	blocks	and	the	matrix	A	into	a	set	of	row	
blocks.	In	each	iteration,	all	the	map	tasks	process	two	inputs:	(1)	a	column	block	of	
matrix	B	and	(2)	a	row	block	of	matrix	A.	Collectively,	they	produce	a	row	block	of	
the	resultant	matrix	C.	The	column	block	associated	with	a	particular	map	task	is	
fixed	throughout	the	computation,	while	the	row	blocks	are	changed	in	each	itera-
tion.	However,	 in	Hadoop’s	programming	model	 (a	 typical	MapReduce	model),	
there	is	no	way	to	specify	this	behavior.	Hence,	it	loads	both	the	column	block	and	
the	row	block	in	each	iteration	of	the	computation.	CGL-MapReduce	supports	the	
notion	of	 long-running	map/reduce	 tasks,	where	these	tasks	are	allowed	to	retain	
static	data	in	the	memory	across	invocations,	yielding	better	performance	for	“itera-
tive	MapReduce”	computations.	The	communication	pattern	of	this	application	is	
shown	in	Figure	12.2	(middle).

Kmeans	 clustering	 (Macqueen	 1967)	 is	 another	 application	 that	 performs	
iteratively	refining	computation.	We	also	implemented	Kmeans	clustering	applica-
tions	using	Hadoop,	CGL-MapReduce,	and	DryadLINQ.	In	the	two	MapReduce	
implementations,	each	map	task	calculates	the	distances	between	all	the	data	ele-
ments	in	its	data	partition	and	all	the	cluster	centers	produced	during	the	previous	
run.	It	then	assigns	data	points	to	these	cluster	centers,	based	on	their	Euclidian	
distances.	The	communication	topology	of	this	algorithm	is	shown	in	Figure	12.2	
(right).	Each	map	task	produces	partial	cluster	centers	as	the	output;	these	are	then	
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Figure 12.2 (Left) Communication topology of Cannon’s Algorithm imple-
mented using MPI. (Middle) Communication topology of matrix multiplication 
application based on MapReduce. (Right) Communication topology of Kmeans 
clustering implemented as a MapReduce application.
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combined	 at	 a	 reduce	 task	 to	 produce	 the	 current	 cluster	 centers.	 These	 current	
cluster	centers	are	used	in	the	next	iteration,	to	find	the	next	set	of	cluster	centers.	
This	process	continues	until	the	overall	distance	between	the	current	cluster	centers	
and	the	previous	cluster	centers	reduces	below	a	predefined	threshold.	The	Hadoop	
implementation	uses	a	new	MapReduce	computation	for	each	iteration	of	the	pro-
gram,	while	CGL-MapReduce’s	 long-running	map/reduce	 tasks	 allow	 it	 to	 reuse	
map/reduce	 tasks.	 The	 DryadLINQ	 implementation	 uses	 various	 DryadLINQ	
operations,	such	as	“Apply,”	“GroupBy,”	“Sum,”	“Max,”	and	“Join,”	to	perform	the	
computation,	and	 it	also	utilizes	DryadLINQ’s	“loop	unrolling”	 support	 to	per-
form	multiple	iterations	as	a	single-large	query.

12.4.4 ALU Sequencing Studies

12.4.4.1 ALU Clustering

The	ALU	clustering	problem	(Batzer	and	Deininger	2002)	is	one	of	the	most	chal-
lenging	problems	for	sequence	clustering,	because	ALUs	represent	the	largest	repeat	
families	in	human	genome.	There	are	about	1	million	copies	of	ALU	sequences	in	
human	genome,	in	which	most	insertions	can	be	found	in	other	primates	and	only	
a	small	fraction	(∼7000)	are	human	specific.	This	indicates	that	the	classification	
of	ALU	repeats	can	be	deduced	solely	from	the	1	million	human	ALU	elements.	
Notably,	ALU	clustering	can	be	viewed	as	a	classical	case	study	for	the	capacity	of	
computational	 infrastructures,	because	 it	 is	not	only	of	great	 intrinsic	biological	
interest,	but	also	a	problem	of	a	scale	that	will	remain	as	the	upper	limit	of	many	
other	 clustering	problems	 in	bioinformatics	 for	 the	next	 few	years,	 for	 example,	
the	automated	protein	family	classification	for	a	few	millions	of	proteins	predicted	
from	large	metagenomics	projects.

12.4.4.2 Smith–Waterman Dissimilarities

We	identified	samples	of	the	human	and	chimpanzee	ALU	gene	sequences	using	
Repeatmasker	 (Smith	et	 al.	2004)	with	Repbase	Update	 (Jurka	2000).	We	have	
been	gradually	increasing	the	size	of	our	projects	with	the	current	largest	samples	
having	35,339	and	50,000	sequences,	and	these	require	a	modest	cluster,	such	as	
Tempest	(768	cores),	for	processing	in	a	reasonable	time	(a	few	hours,	as	shown	in	
Section	12.5).	Note	from	the	discussion	in	Section	12.4.4.1	that	we	are	aiming	at	
supporting	problems	with	a	million	sequences—quite	practical	today	on	TeraGrid,	
and	equivalent	facilities	given	basic	analysis	steps	scale	like	O(N 2).

We	used	an	open-source	version	NAligner	(Smith–Waterman	software)	of	the	
Smith–Waterman–Gotoh	(SW-G)	algorithm	(Smith	and	Waterman	1981,	Gotoh	
1982)	modified	to	ensure	low	start-up	effects	by	each	thread	processing	large	num-
bers	(above	a	few	hundreds)	at	a	time.	The	memory	bandwidth	needed	was	reduced	
by	storing	data	items	in	as	few	bytes	as	possible.
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12.4.4.3  The O(N2) Factor of 2 and Structure 
of Processing Algorithm

The	 ALU	 sequencing	 problem	 shows	 a	 well-known	 factor-of-2	 issue	 present	 in	
many	O(N  2)	parallel	algorithms,	such	as	those	in	direct	simulations	of	astrophysi-
cal	 stems.	 We	 initially	 calculate	 in	 parallel	 the	 distance,	 D(i,j),	 between	 points	
(sequences)	i	and	j.	This	is	done	in	parallel	over	all	processor	nodes	selecting	criteria	
i < j	(or	j > i	for	the	upper	triangular	case)	to	avoid	calculating	both	D(i,j)	and	the	
identical	D( j,i).	This	can	require	substantial	file	transfer,	as	it	is	unlikely	that	nodes	
requiring	D(i,j)	in	a	later	step	will	find	that	it	was	calculated	on	nodes	where	it	is	
needed.

For	example,	the	MDS	and	PW	(PairWise)	clustering	algorithms,	described	in	
Fox	et	al.	(2008),	require	a	parallel	decomposition	where	each	of	N	processes	(MPI	
processes,	threads)	has	1/N	of	sequences,	and	for	this	subset	{i}	of	sequences	stores	
in	memory	D({i},j)	for	all	sequences	j	and	the	subset	{i}	of	sequences	for	which	this	
node	is	responsible.	This	implies	that	we	need	D(i,j)	and	D( j,i)	(which	are	equal)	
stored	 in	different	 processors/disks.	 This	 is	 a	well-known	 collective	 operation	 in	
MPI	called	either	gather	or	scatter.

12.4.4.4 Dryad Implementation

We	 developed	 a	 DryadLINQ	 application	 to	 perform	 the	 calculation	 of	 pair-
wise	SW-G	distances	for	a	given	set	of	genes	by	adopting	a	coarse-grained	task	
decomposition	approach	that	requires	minimum	inter-process	communication	
to	ameliorate	the	higher	communication	and	synchronization	costs	of	the	paral-
lel	runtime.	To	clarify	our	algorithm,	let	us	consider	an	example	where	N	gene	
sequences	produce	a	pairwise	distance	matrix	of	size	N × N.	We	decompose	the	
computation	 task	by	 considering	 that	 the	 resultant	matrix	 groups	 the	overall	
computation	 into	a	block	matrix	of	 size	D × D,	where	D	 is	 a	multiple	 (>2)	of	
the	available	computation	nodes.	Due	to	the	symmetry	of	the	distances	D(i,j)	
and	D( j,i),	we	only	calculate	the	distances	in	the	blocks	of	the	upper	triangle	
of	the	block	matrix,	as	shown	in	Figure	12.3	(left).	The	blocks	in	the	upper	tri-
angle	are	partitioned	(assigned)	to	the	available	compute	nodes,	and	an	“Apply”	
operation	is	used	to	execute	a	function	to	calculate	(N/D)	×	(N/D)	distances	in	
each	block.	After	computing	the	distances	in	each	block,	the	function	calculates	
the	transpose	matrix	of	the	resultant	matrix,	which	corresponds	to	a	block	in	
the	lower	triangle,	and	writes	both	these	matrices	into	two	output	files	in	the	
local	file	system.	The	names	of	these	files	and	their	block	numbers	are	commu-
nicated	back	to	the	main	program.	The	main	program	sorts	the	files	based	on	
their	block	numbers	and	performs	another	“Apply”	operation	 to	combine	 the	
files	corresponding	to	a	row	of	blocks	in	a	single-large	row	block,	as	shown	in	
Figure	12.3	(right).
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12.4.4.5 MPI Implementation

The	MPI	version	of	SW-G	calculates	pairwise	distances	using	a	set	of	either	single-	
or	multi-threaded	processes.	For	N	gene	sequences,	we	need	to	compute	half	of	
the	values	(in	the	lower	triangular	matrix),	which	is	a	total	of	M = N	×	(N  −	1)/2	
distances.	At	a	high	level,	computation	tasks	are	evenly	divided	among	P	processes	
and	 execute	 in	parallel,	namely,	 the	 computation	workload	per	process	 is	M/P.	
At	a	low	level,	each	computation	task	can	be	further	divided	into	subgroups	and	
run	in	T	concurrent	threads.	Our	implementation	is	designed	for	flexible	use	of	a	
shared	memory	multi-core	system	and	distributed	memory	clusters	(tight-coupled	
to	medium-tight-coupled	communication	technologies,	such	threading	and	MPI).	
We	provide	options	for	any	combinations	of	thread	versus	process	versus	node,	as	
shown	in	Figure	12.4.	The	real	computation	workload	per	parallel	unit	is	decided	
by	M/(T × P	×	#	nodes).

As	 illustrated	 in	Figure	12.4,	 the	data	decomposition	strategy	runs	a	“space-
filling	 curve	 through	 the	 lower	 triangular	matrix”	 to	produce	 equal	numbers	of	
pairs	for	each	parallel	unit	such	as	process	or	thread.	It	is	necessary	to	map	indexes	
in	each	pairs	group	back	to	corresponding	matrix	coordinates	(i,j)	for	constructing	
a	 full	matrix	 later	on.	We	implemented	a	special	 function,	“PairEnumerator,”	as	
the	convertor.	We	tried	to	limit	runtime	memory	usage	for	performance	optimiza-
tion.	This	is	done	by	writing	a	triple	of	i,j	and	also	writing	the	distance	value	of	
pairwise	alignment	to	a	stream	writer,	and	the	system	flushes	accumulated	results	
to	a	local	file	periodically.	As	the	final	stage,	individual	files	are	merged	to	form	a	
full	distance	matrix.
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12.5 Evaluations
12.5.1 Introduction
For	our	evaluations,	we	used	three	compute	clusters	(details	are	given	in	Table	12.3)	
with	two	32-node	clusters	having	almost	identical	hardware	configurations	and	one	
latest	32-node	cluster	of	24-core	machines	with	Infiniband	connections.	DryadLINQ	
and	 the	 MPI	 application	 that	 performs	 SW-G	 computation	 were	 run	 on	 the	
Windows	cluster	(Ref	B,	Ref	C),	while	Hadoop,	CGL-MapReduce,	and	other	MPI	
applications	were	run	on	the	Linux	cluster	(Ref	A).	We	measured	the	performance	
of	these	applications,	and	present	the	results	in	terms	of	parallel	overhead	defined	for	
parallelism	P	by

	 f P
P T P T

T
( )

( ) ( )
( )

=
× − 1

1
	 (12.1)

where
P	denotes	parallelism	(e.g.,	processes,	threads,	and	map	tasks)	used
T	denotes	time	as	a	function	of	the	number	of	parallel	processes	used

T(1)	is	replaced	in	practice	by	T(S),	where	S	is	the	smallest	number	of	processes	that	
can	run	the	job.	We	used	Hadoop	release	0.20,	the	academic	release	of	DryadLINQ,	
Microsoft	MPI,	and	OpenMPI	(OMPI)	version	1.3.2	for	our	evaluations.

12.5.2 CAP3 and Particle Physics Case Studies
The	results	of	our	performance	measurements	for	CAP3	and	particle	physics	are	
shown	in	Figures	12.5	through	12.8.
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Figure 12.4 Task decomposition (left) and MPI (right) implementation of SW-G 
pairwise distance calculation application.
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Figure 12.5 Performance of the CAP3 application—average time (in s) against 
the number of gene reads processed.

Table 12.3 Different Computation Clusters Used for the Analyses

Feature
Linux Cluster 

(Ref A)
Windows Cluster 

(Ref B)
Windows Cluster 

(Ref C)

# Node 32 32 32

CPU Intel(R) Xeon(R) 
CPU L5420 
2.50 GHz

Intel(R) Xeon(R) 
CPU L5420 
2.50 GHz

Intel(R) Xeon(R) 
CPU E7450 
2.40 GHz

# CPU/# cores 2/8 2/8 4/24

Total cores 256 256 768

Memory 32 GB 16 GB 48 GB

Disk 1 disk of Western 
Digital Caviar RE 
160 GB SATA 7200

2 disks of 1000 GB 
(1 TB) Ultrastar 
A7K1000 7200

2 HP 146 GB 10K 2.5 
SAS HP SP HDD

Network Gigabit Ethernet Gigabit Ethernet 20 Gbps Infiniband

Operating 
system

Red Hat Enterprise 
Linux Server 
release 5.3—64 bit

Windows Server 
Enterprise—64 
bit

Windows Server 
2008 HPC Edition 
(Service Pack 1)
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From	 these	 results,	 it	 is	 clearly	 evident	 that	 the	 cloud	 runtimes	 perform	
competitively	 well	 for	 both	 “map-only-style”	 and	 “map-reduce-style”	 appli-
cations.	 In	 the	 HEP	 data	 analysis,	 both	 CGL-MapReduce	 and	 DryadLINQ	
access	 input	data	 from	 local	disks,	where	 the	data	 is	partitioned	 and	distrib-
uted	beforehand.	Currently,	HDFS	can	be	accessed	using	Java	or	C++	clients	
only,	 and	 the	 ROOT-interpretable	 scripts	 (ROOT—data	 analysis	 framework	
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Figure 12.7 Overhead induced by different parallel programming runtimes for 
the Kmeans clustering application—overhead against the number of 2D data 
points clustered. (Note: Both axes are in log scale.)
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developed	at	CERN)	are	not	capable	of	accessing	data	from	HDFS.	Therefore,	
we	 placed	 the	 input	 data	 in	 the	 IU	 (Indiana	 University)	 Data	 Capacitor—a	
high-performance	 parallel	 file	 system	 based	 on	 the	 Lustre	 file	 system,	 which	
allows	each	map	 task	 in	Hadoop	to	directly	access	data	from	this	file	system.	
The	performance	results	show	that	this	dynamic	data	movement	in	the	Hadoop	
implementation	incurred	considerable	overhead	to	the	computation,	while	the	
ability	 of	 reading	 input	 data	 from	 local	 disks	 gave	 significant	 performance	
improvement	to	both	DryadLINQ	and	CGL-MapReduce,	as	compared	to	the	
Hadoop	implementation.

12.5.3 Kmeans and Matrix Multiplication Case Studies
For	an	iterative	class	of	applications,	cloud	runtimes	show	considerably	high	over-
heads,	compared	to	the	MPI	and	CGL-MapReduce	versions	of	the	same	applica-
tions;	 the	 results	 shown	 in	Figures	12.7	 and	12.8	 imply	 that,	 for	 these	 types	of	
applications,	we	still	need	to	use	high-performance	parallel	runtimes	or	alternative	
approaches.	(Note:	The	negative	overheads	observed	in	the	matrix	multiplication	
application	are	due	to	the	better	utilization	of	a	cache	by	the	parallel	application	
than	 the	 single-process	 version.)	 CGL-MapReduce	 shows	 a	 close	 performance	
closer	to	the	MPI	for	large	data	sets	in	the	case	of	Kmeans	clustering	and	matrix	
multiplication	applications,	an	outcome	that	highlights	the	benefits	of	supporting	
iterative	computations	and	the	faster	data	communication	mechanism	present	in	
CGL-MapReduce.
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12.5.4 ALU Sequence Analysis Case Study

12.5.4.1 Performance of Smith–Waterman–Gotoh Algorithm

We	performed	the	Dryad	and	MPI	implementations	of	ALU	SW-G	distance	calcu-
lations	on	two	large	data	sets	and	obtained	the	following	results.

There	is	a	short	partitioning	phase	for	DryadLINQ,	and	then	both	approaches	
calculate	 the	distances	 and	write	 these	 out	 to	 intermediate	files,	 as	 discussed	 in	
Section	12.4.	We	note	that	the	merge	time	is	currently	much	longer	for	MPI	than	
DryadLINQ,	while	the	initial	steps	are	significantly	faster	for	MPI.	However,	the	
total	 times	 in	Table	12.4	 indicate	 that	both	MPI	and	DryadLINQ	implementa-
tions	perform	well	for	this	application,	with	MPI	a	few	percent	faster	with	current	
implementations.	As	expected,	the	times	scale	proportionally	to	the	square	of	the	
number	of	distances.	On	744	cores,	the	average	time	of	0.0067	ms/pair	that	corre-
sponds	to	roughly	5	ms/pair	calculated	per	core	is	used.	The	coarse-grained	Dryad	
application	performs	competitively	with	the	tightly	synchronized	MPI	application.	
It	proves	once	more	the	applicability	of	the	cloud	technologies	for	the	composable	
applications.

12.5.4.2 Threaded Implementation

In	 Section	 12.5.4.1,	 we	 looked	 at	 using	 MPI	 with	 one	 process	 per	 core	 and	
compared	this	with	a	threaded	implementation,	with	each	process	having	sev-
eral	 threads.	Labeling	 the	configuration	as	 t × m × n	 for	 t	 threads	per	process,	
m	MPI	processes	per	node,	and	n	nodes,	we	compare	choices	of	t,	m,	and	n	in	
Figure	12.9.

AQ15

Table 12.4 Comparison of DryadLINQ and MPI Technologies on ALU 
Sequencing Application with SW-G Algorithm

Technology
Total 

Time (s)
Time per 
Pair (ms)

Partition 
Data (s)

Calculated 
and Output 
Distance(s)

Merge 
Files (s)

Dryad 50,000 
sequences

17200.413 0.0069 2.118 17104.979 93.316

35,339 
sequences

8510.475 0.0068 2.716 8429.429 78.33

MPI 50,000 
sequences

16588.741 0.0066 N/A 13997.681 2591.06

35,339 
sequences

8138.314 0.0065 N/A 6909.214 1229.10
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The	striking	result	for	this	step	is	that	MPI	easily	outperforms	the	equivalent	
threaded	version	of	this	embarrassingly	parallel	step.	In	Figure	12.9,	all	the	peaks	in	
the	overhead	correspond	to	patterns	with	large	values	of	t.	Note	that	the	MPI	intra-
node	1	×	24	×	32	pattern	completes	the	full	624	billion	alignments	in	2.33	h—4.9	
times	faster	than	the	threaded	implementation	24	×	1	×	32.	This	768-core	MPI	run	
has	a	parallel	overhead	of	1.43	corresponding	to	a	speedup	of	316.

The	SW-G	alignment	performance	 is	probably	dominated	by	memory	band-
width	issues,	and	we	are	pursuing	several	points	that	could	affect	this,	though	it	
is	not	at	our	highest	priority	as	SW-G	is	not	the	dominant	step.	We	have	tried	to	
identify	the	reason	behind	the	comparative	slowness	of	threading.	Using	Windows	
monitoring	tools,	we	found	that	the	threaded	version	has	about	a	factor	of	100	more	
context	switches	than	in	the	one-thread-per-process	MPI	version.	This	could	lead	
to	a	slowdown	of	the	threaded	approach	and	correspond	to	Windows	handing	of	
paging	of	threads	with	large	memory	footprints.

12.6 Performance of MPI on Clouds
After	the	previous	observations,	we	analyzed	the	performance	implications	of	cloud	
for	parallel	 applications	 implemented	using	MPI.	Specifically,	we	were	 trying	 to	
find	the	overhead	of	virtualized	resources,	and	understand	how	applications	with	
different	communication-to-computation	(C/C)	ratios	perform	on	cloud	resources.	
We	also	evaluated	different	CPU-core	assignment	strategies	for	VMs,	in	order	to	
understand	the	performance	of	VMs	on	multi-core	nodes.
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Commercial	 cloud	 infrastructures	 do	 not	 allow	 users	 to	 access	 the	 bare-
hardware	nodes,	in	which	the	VMs	are	deployed,	a	must-have	requirement	for	our	
analysis.	Therefore,	we	used	a	Eucalyptus-based	cloud	infrastructure	deployed	at	
our	university	for	this	analysis.	With	this	cloud	infrastructure,	we	have	complete	
access	to	both	VM	instances	and	to	the	underlying	bare-metal	nodes,	as	well	as	the	
help	of	 the	administrators;	as	a	 result,	we	could	deploy	different	VM	configura-
tions,	allocating	different	CPU	cores	to	each	VM.	Therefore,	we	selected	the	above	
cloud	infrastructure	as	our	main	test	bed.

For	 our	 evaluations,	 we	 selected	 three	MPI	 applications	 with	different	 com-
munication	and	computation	requirements,	namely,	(1)	the	matrix	multiplication,	
(2)	Kmeans	clustering,	and	(3)	the	Concurrent	Wave	Equation	Solver.	Table	12.5	
highlights	the	key	characteristics	of	the	programs	that	we	used	as	benchmarks.

12.6.1 Benchmarks and Results
The	Eucalyptus	(version	1.4)	infrastructure	we	used	is	deployed	on	16	nodes	of	an	
iDataplex	cluster,	each	of	which	has	2	Quad	Core	Intel	Xeon	processors	(for	a	total	
of	8	CPU	cores)	and	32	GB	of	memory.	In	the	bare-metal	version,	each	node	runs	a	
Red	Hat	Enterprise	Linux	Server	release	5.2	(Tikanga)	operating	system.	We	used	
the	OMPI	version	1.3.2	with	the	gcc	version	4.1.2.	We	then	created	a	VM	image	
from	this	hardware	configuration,	so	that	we	would	have	a	similar	software	envi-
ronment	on	the	VMs	once	they	were	deployed.	The	virtualization	is	based	on	the	
Xen	hypervisor	(version	3.0.3).	Both	bare-metal	and	virtualized	resources	utilized	
gigabit	Ethernet	connections.

When	 VMs	 are	 deployed	 using	 Eucalyptus,	 it	 allows	 us	 to	 configure	 the	
number	 of	 CPU	 cores	 assigned	 to	 each	 VM	 image.	 For	 example,	 with	 8	 core	
systems,	the	CPU-core	allocation	per	VM	can	range	from	8	cores	to	1	core	per	
VM,	resulting	in	several	different	CPU-core	assignment	strategies.	In	an	Amazon	
EC2	infrastructure,	the	standard	instance	type	has	half	a	CPU	per	VM	instance	
(Evangelinos	and	Hill	2008).	In	the	current	version	of	Eucalyptus,	the	minimum	
number	of	cores	that	we	can	assign	for	a	particular	VM	instance	is	1;	hence,	we	
selected	five	CPU-core	assignment	strategies	(including	the	bare-metal	test)	listed	
in	Table	12.6.

We	ran	all	the	MPI	tests,	on	all	five	hardware/VM	configurations,	and	mea-
sured	 the	 performance	 and	 calculated	 speedups	 and	 overheads.	 We	 calculated	
two	types	of	overheads	for	each	application	using	formula	(1).	The	total	overhead	
induced	by	virtualization	and	parallel	processing	is	calculated	using	the	bare-metal	
single-process	time	as	T(1)	in	formula	(1).	The	parallel	overhead	is	calculated	using	
the	single-process	time	from	a	corresponding	VM	as	T(1)	in	formula	(1).

In	all	the	MPI	tests	we	performed,	we	used	the	following	invariant	to	select	the	
number	of	parallel	processes	(MPI	processes)	for	a	given	application:

	 Number of MPI processes = Number of CPU cores used
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Table 12.5 Computation and Communication Complexities of Different 
MPI Applications Used

Application
Matrix 

Multiplication
Kmeans 

Clustering
Concurrent Wave 

Equation

Description Implements 
Cannon’s 
Algorithm

Assume a 
rectangular 
process grid 
(Figure 12.1, left)

Implements 
Kmeans 
Clustering 
algorithm

A fixed number of 
iterations are 
performed in 
each test

A vibrating string is 
decomposed (split) 
into points, and 
each MPI process 
is responsible for 
updating the 
amplitude of a 
number of points 
over time

Grain size (n) The number of 
points in a matrix 
block handled by 
each MPI process

The number of 
data points 
handled by a 
single MPI 
process

Number of points 
handled by each 
MPI process

Communication 
pattern

Each MPI process 
communicates 
with its 
neighbors both 
row-wise and 
column-wise

All MPI processes 
send partial 
clusters to one 
MPI process 
(rank 0); rank 0 
distributes the 
new cluster 
centers to all the 
nodes

In each iteration, 
each MPI process 
exchanges 
boundary points 
with its nearest 
neighbors

Computation 
per MPI 
process

[ (( )] )O n 3 O(n) O(n)

Communication 
per MPI 
process

[ (( )] )O n O n2 = ( ) O(1) O(1)

C/C O
n
1





O
n
1





O
n
1





Message size ( )n n2 = D—where D is the 
number of 
cluster centers

D << n

Each message 
contains a double 
value

Communication 
routines used

MPI_Sendrecv_
replace()

MPI_Reduce()

MPI_Bcast()

MPI_Sendrecv()
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For	 example,	 for	 the	 matrix	 multiplication	 application,	 we	 used	 only	 half	 the	
number	 of	nodes	 (bare-metal	 or	VMs)	 available	 to	us,	 so	 that	we	had	64	MPI	
processes	=	64	CPU	cores.	(This	is	mainly	because	the	matrix	multiplication	appli-
cation	expects	the	MPI	processes	to	be	in	a	square	grid,	in	contrast	to	a	rectangular	
grid).	For	Kmeans	clustering,	we	used	all	 the	nodes,	 resulting	 in	a	 total	of	128	
MPI	processes	utilizing	 all	 128	CPU	cores.	 Some	of	 the	 results	 of	our	 analysis	
highlighting	the	different	characteristics	we	observed	are	shown	in	Figures	12.10	
through	12.17.

For	 the	matrix	multiplication,	 the	graphs	 show	very	close	performance	char-
acteristics	 in	all	 the	different	hardware/VM	configurations.	As	we	expected,	 the	
bare-metal	 has	 the	 best	 performance	 and	 speedup	 values,	 compared	 to	 the	 VM	
configurations	(apart	from	the	region	close	to	the	matrix	size	of	4096	×	4096,	where	
the	VM	performed	better	than	the	bare-metal;	we	have	performed	multiple	tests	
at	this	point,	and	found	that	it	is	due	to	the	cache	performances	of	the	bare-metal	
node).	After	the	bare-metal,	the	next-best	performance	and	speedups	were	recorded	
in	the	case	of	1	VM	per	bare-metal	node	configuration,	in	which	the	performance	
difference	was	mainly	due	to	the	overhead	induced	by	the	virtualization.	However,	
as	we	increased	the	number	of	VMs	per	bare-metal	node,	the	overhead	increased	

Table 12.6 Different Hardware/VM Configurations Used for Our 
Performance Evaluations

Ref Description

Number of 
CPU Cores 

Accessible to 
the Virtual or 

Bare-Metal 
Node

Amount of 
Memory (GB) 
Accessible to 
the Virtual or 

Bare-Metal 
Node

Number of 
Virtual or 

Bare-Metal 
Nodes 

Deployed

BM Bare-metal 
node

8 32 16

1-VM-8-core 1 VM instance 
per bare-
metal node

8 30 (2 GB is 
reserved for 
dom0)

16

2-VM-4-core 2 VM instances 
per bare-
metal node

4 15 32

4-VM-2-core 4 VM instances 
per bare-
metal node

2 7.5 64

8-VM-1-core 8 VM instances 
per bare-
metal node

1 3.75 128
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as	well.	At	81	processes,	 the	8	VMs	per	node	 configuration	 shows	 about	 a	34%	
decrease	in	speedup	compared	to	the	bare-metal	results.

In	Kmeans	clustering,	the	effect	of	virtualized	resources	is	much	clearer	than	
in	the	case	of	matrix	multiplication.	All	VM	configurations	show	a	lower	perfor-
mance	compared	to	the	bare-metal	configuration.	In	this	application,	the	amount	
of	 data	 transferred	 between	 MPI	 processes	 is	 extremely	 low	 compared	 to	 the	
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Figure 12.10 Performance of the matrix multiplication application—average 
time (in s) against the size of a matrix (number of MPI processes = 64).
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amount	of	data	processed	by	each	MPI	process,	and	also	in	relation	to	the	amount	
of	computations	performed.	Figures	12.14	and	12.15	show	the	total	overhead	and	
the	parallel	overhead	for	Kmeans	clustering	under	different	VM	configurations.	
From	these	two	calculations,	we	found	that,	for	VM	configurations,	the	overheads	
are	extremely	large	for	data-set	sizes	of	less	than	10	million	points,	for	which	the	
bare-metal	overhead	remains	less	than	1	(for	all	cases).	For	larger	data	sets,	such	as	
those	of	40	million	points,	all	overheads	reached	less	than	0.5.	The	slower	speedup	
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of	the	VM	configurations	(shown	in	Figure	12.13)	is	due	to	the	use	of	a	smaller	
data	 set	 (∼800K	points)	 to	 calculate	 the	 speedups.	The	overheads	 are	 extremely	
large	for	this	region	of	the	data	sizes,	and	hence,	this	resulted	in	lower	speedups	
for	the	VMs.

The	concurrent	wave	 equation	 splits	 a	number	of	points	 into	 a	 set	of	paral-
lel	processes,	and	each	parallel	process	updates	its	portion	of	the	points	in	some	
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Figure 12.14 Total overhead of Kmeans clustering—overhead against 1/grain 
size, grain size = number of 2D data points per parallel task (number of MPI 
processes = 128).

0

0.1

0.2

0.3

0.4

0.5

0.6

3e-006 6e-006 8e-006 1.25e-005

O
ve

rh
ea

d 
= 

(P
×
T(
P)

–
T(

1)
)/T

(1
)

1/Grain size (log scale)

Bare-metal
1-VM

2-VMs
4-VMs
8-VMs

Figure 12.15 Parallel overhead of Kmeans clustering—parallel overhead against 
1/grain size (number of MPI processes = 128).
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number	of	 steps.	An	 increase	 in	 the	number	of	 points	 increases	 the	 amount	of	
computations	performed.	Since	we	fixed	the	number	of	steps	in	which	the	points	
were	updated,	we	obtained	a	constant	amount	of	communication	in	all	 the	test	
cases,	 resulting	 in	a	C/C	ratio	of	O(1/n).	 In	this	application	also,	 the	difference	
in	performance	between	the	VMs	and	the	bare-metal	version	was	clearer,	and	at	
the	highest	grain	size,	the	total	overhead	of	8	VMs	per	node	is	about	seven	times	
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Figure 12.16 Performance of the Concurrent Wave Equation Solver—average 
time (in s) against the number of points computed (number of MPI processes = 128).
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higher	than	the	overhead	of	the	bare-metal	configuration.	The	performance	differ-
ences	between	the	different	VM	configurations	became	smaller	with	the	increase	
in	grain	size.

From	 the	 above	 experimental	 results,	 we	 can	 see	 that	 the	 applications	 with	
lower	C/C	ratios	experienced	a	slower	performance	in	virtualized	resources.	When	
the	amount	of	data	transferred	between	MPI	processes	is	large,	as	in	the	case	of	the	
matrix	multiplication,	the	application	is	more	susceptible	to	the	bandwidth	than	
the	latency.	From	the	performance	results	of	the	matrix	multiplication,	we	can	see	
that	the	virtualization	has	not	affected	the	bandwidth	considerably.	However,	all	
the	other	results	show	that	the	virtualization	has	caused	considerable	latencies	for	
parallel	applications,	especially	with	smaller	data	transfer	requirements.	The	effect	
on	latency	increases	as	we	use	more	VMs	in	a	bare-metal	node.

According	to	the	Xen	para-virtualization	architecture	(Barham	et	al.	2003),	
domUs	 (VMs	 that	 run	on	 top	of	 a	Xen	para-virtualization)	are	not	capable	of	
performing	I/O	operations	by	themselves.	Instead,	they	communicate	with	dom0	
(privileged	OS)	via	 an	event	 channel	 (interrupts)	 and	 the	 shared	memory,	 and	
then	the	dom0	performs	the	I/O	operations	on	behalf	of	the	domUs.	Although	
the	data	is	not	copied	between	domUs	and	dom0,	dom0	needs	to	schedule	the	
I/O	operations	on	behalf	 of	domUs.	Figure	12.18	 (left)	 and	 (right)	 shows	 this	
behavior	in	the	1	VM	per	node	and	8	VMs	per	node	configurations,	respectively,	
that	we	used.

In	all	the	above	parallel	applications	we	tested,	the	timing	figures	measured	
correspond	to	the	time	for	computation	and	communication	inside	the	applica-
tions.	Therefore,	all	the	I/O	operations	performed	by	the	applications	are	network	
dependent.	From	Figure	12.19	(right),	it	is	clear	that	dom0	needs	to	handle	eight	
event	 channels	 when	 there	 are	 eight	 VM	 instances	 deployed	 on	 a	 single	 bare-
metal	node.	Although	the	eight	MPI	processes	run	on	a	single	bare-metal	node,	
since	they	are	in	different	virtualized	resources,	each	of	them	can	only	commu-
nicate	via	dom0.	This	explains	the	higher	overhead	in	our	results	for	8	VMs	per	
node	 configuration.	The	architecture	 reveals	 another	 important	 feature	 as	well,	
that	is,	in	the	case	of	the	1	VM	per	node	configuration,	when	multiple	processes	
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(MPI	or	others)	that	run	in	the	same	VM	communicate	with	each	other	via	the	
network,	 all	 the	 communications	 must	 be	 scheduled	 by	 dom0.	 This	 results	 in	
higher	latencies.	We	could	verify	this	by	running	the	above	tests	with	LAM	MPI	
(a	predecessor	of	OMPI,	which	does	not	have	improved	support	for	in-node	com-
munications	 for	 multi-core	 nodes).	 Our	 results	 indicate	 that,	 with	 LAM	 MPI,	
the	worst	performance	for	all	the	tests	occurred	when	1	VM	per	node	was	used.	
For	 example,	Figure	12.19	 shows	 the	performance	of	Kmeans	 clustering	under	
bare-metal,	1	VM	per	node,	and	8	VMs	per	node	configurations.	This	observation	
suggests	that,	when	using	VMs	with	multiple	CPUs	allocated	to	each	of	them	for	
parallel	processing,	it	is	better	to	utilize	parallel	runtimes,	which	have	better	sup-
port	for	in-node	communication.

Several	others	have	also	performed	relevant	research	on	the	performance	impli-
cations	of	virtualized	resources.	Youseff	et	al.	(2006)	present	an	evaluation	of	the	
performance	impact	of	Xen	on	MPI.	According	to	their	evaluations,	the	Xen	does	
not	impose	considerable	overheads	for	HPC	(high-performance	computing)	appli-
cations.	However,	our	results	indicate	that	the	applications	that	are	more	sensitive	
to	latencies	(smaller	messages,	lower	C/C	ratios)	also	experience	higher	overheads	
under	virtualized	resources,	and	this	overhead	 increases	as	more	and	more	VMs	
are	deployed	per	hardware	node.	From	their	evaluations,	it	is	not	clear	how	many	
VMs	they	deployed	on	the	hardware	nodes,	or	how	many	MPI	processes	were	used	
in	each	VM.	According	to	our	results,	 these	 factors	cause	significant	changes	 in	
possible	results.	Running	1	VM	per	hardware	node	produces	a	VM	instance	with	
a	similar	number	of	CPU	cores,	such	as	in	a	bare-metal	node.	However,	our	results	
indicate	that,	even	in	this	approach,	if	the	parallel	processes	inside	the	node	com-
municate	via	the	network,	the	virtualization	may	produce	higher	overheads	under	
the	current	VM	architectures.
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Evangelinos	and	Hill	(2008)	discuss	the	details	of	their	analysis	of	the	perfor-
mance	of	HPC	benchmarks	on	the	EC2	cloud	infrastructure.	One	of	the	key	obser-
vations	noted	in	their	paper	is	that	both	the	OMPI	and	the	MPICH2-nemsis	show	
extremely	large	latencies,	while	the	LAM	MPI,	the	GridMPI,	and	the	MPICH2-
scok	 show	 smaller,	 smoother	 latencies.	 This	 observation	 is	 similar	 to	 what	 we	
observed	with	the	LAM	MPI	in	our	tests,	and	the	same	explanation	holds	valid	for	
their	observation	as	well.

Walker	(2008)	presents	benchmark	results	of	the	performance	of	HPC	applica-
tions	using	“high-CPU	extra-large”	instances	provided	by	EC2,	and	on	a	similar	set	
of	local	hardware	nodes.	The	local	nodes	are	connected	using	Infiniband	switches,	
whereas	 the	Amazon	EC2	network	technology	 is	unknown.	The	results	 indicate	
about	a	40%–1000%	performance	degradation	on	the	EC2	resources,	compared	
to	the	local	cluster.	Since	the	differences	in	operating	systems	and	the	compiler	ver-
sions	between	the	VMs	and	bare-metal	nodes	may	cause	variations	in	results,	for	
our	analysis,	we	used	a	cloud	infrastructure	over	which	we	have	complete	control.	
In	addition,	we	used	similar	software	environments	in	both	VMs	and	bare-metal	
nodes.	 In	 our	 results,	 we	 noticed	 that	 applications	 that	 are	 more	 susceptible	 to	
latencies	experience	a	higher	performance	degradation	(around	40%)	under	virtu-
alized	resources.	Bandwidth	does	not	seem	to	be	a	consideration	in	private	cloud	
infrastructures.

Gavrilovska	et	al.	(2007)	discuss	several	improvements	over	the	current	virtu-
alization	architectures	to	support	HPC	applications,	such	as	HPC	hypervisors	and	
self-virtualized	I/O	devices.	We	notice	the	importance	of	such	improvements	and	
research.	In	our	experimental	results,	we	used	hardware	nodes	with	8	cores,	and	
deployed	and	tested	up	to	8	VMs	per	node	in	these	systems.	Our	results	show	that	
the	virtualization	overhead	increases	with	the	number	of	VMs	deployed	on	a	hard-
ware	node.	These	characteristics	will	have	a	larger	impact	on	systems	having	more	
CPU	cores	per	node.	A	node	with	32	cores	running	32	VM	instances	may	produce	
very	large	overheads	under	the	current	VM	architectures.

12.7 Conclusions and Future Work
We	have	described	several	different	studies	of	clouds	and	cloud	technologies	on	both	
real	applications	and	standard	benchmark.	These	address	different	aspects	of	paral-
lel	computing	using	either	traditional	(MPI)	or	the	new	cloud-inspired	approaches.	
We	find	that	cloud	technologies	work	well	 for	most	pleasingly	parallel	problems	
(“map-only”	and	“map-reduce”	classes	of	applications).	In	addition,	their	support	
for	handling	large	data	sets,	the	concept	of	moving	computation	to	data,	and	the	
better	quality	of	services	provided	such	as	fault	tolerance	and	monitoring,	all	serve	
to	simplify	the	implementation	details	of	such	problems.	Applications	with	com-
plex	communication	patterns	observe	higher	overheads	when	implemented	using	
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cloud	technologies,	and	even	with	large	data	sets,	these	overheads	limit	the	usage	
of	cloud	technologies	for	such	applications.	Enhanced	MapReduce	runtimes,	such	
as	CGL-MapReduce,	 allow	 iterative-style	 applications	 to	utilize	 the	MapReduce	
programming	model,	while	 incurring	minimal	 overheads,	 as	 compared	 to	other	
runtimes,	such	as	Hadoop	and	Dryad.

Handling	large	data	sets	using	cloud	technologies	on	cloud	resources	is	an	area	
that	needs	more	 research.	Most	cloud	 technologies	 support	 the	concept	of	mov-
ing	computation	to	data	where	the	parallel	tasks	access	data	stored	in	local	disks.	
Currently,	it	is	not	clear	to	us	whether	this	approach	would	work	well	with	the	VM	
instances	that	are	leased	only	for	the	duration	of	use.	A	possible	approach	is	to	stage	
the	 original	 data	 in	 high-performance	 parallel	 file	 systems	 or	 Amazon	 S3–type	
storage	services,	and	then	move	the	data	to	the	VMs	each	time	they	are	leased	to	
perform	computations.

MPI	applications	that	are	sensitive	to	latencies	experience	moderate-to-higher	
overheads	when	performed	on	cloud	resources,	and	these	overheads	increase	as	the	
number	of	VMs	per	bare-hardware	node	increases.	For	example,	in	Kmeans	clus-
tering,	1	VM	per	node	shows	a	minimum	of	an	8%	total	overhead,	while	8	VMs	per	
node	show	at	least	a	22%	overhead.	In	the	case	of	the	Concurrent	Wave	Equation	
Solver,	both	these	overheads	are	around	50%.	Therefore,	we	expect	the	CPU-core	
assignment	strategies,	such	as	half	a	core	per	VM,	to	produce	very	high	overheads	
for	 applications	 that	 are	 sensitive	 to	 latencies.	 Applications	 that	 are	 not	 suscep-
tible	to	latencies,	such	as	those	that	perform	large	data	transfers	and/or	higher	C/C	
ratios,	show	minimal	total	overheads	in	both	bare-metal	and	VM	configurations.	
Therefore,	we	expect	that	the	applications	developed	using	cloud	technologies	will	
work	fine	with	cloud	resources,	because	the	milliseconds-to-seconds	latencies	that	
they	already	have	under	the	MapReduce	model	will	not	be	affected	by	the	addi-
tional	overheads	introduced	by	the	virtualization.	This	is	also	an	area	we	are	cur-
rently	investigating.	We	are	also	building	applications	(biological	DNA	sequencing)	
whose	end-to-end	implementation	from	data	processing	to	filtering	(data-mining)	
involves	an	integration	of	MapReduce	and	MPI	(Fox	et	al.	2008).
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AUTHOR	QUERIES
[AQ1]	 Please	check	if	the	fixed	running	head	is	ok.
[AQ2]	 Please	expand	“MPI,”	if	appropriate.
[AQ3]	 Please	expand	“PVM,”	if	appropriate.
[AQ4]	 Please	check	whether	“italics”	for	emphasis	be	changed	to	bold.
[AQ5]	 	Fox	and	Hey	(1987)	has	been	changed	to	Fox	et	al.	(1987)	to	match	with	

the	reference	list.	Please	check.
[AQ6]	 Please	check	if	the	edit	of	the	sentence	starting	“In	the	two…”	is	correct.
[AQ7]	 Please	expand	“ALU,”	if	appropriate.
[AQ8]	 	En	 dashes	 have	 been	 inserted	 for	 the	 combinations	 “Smith	 Waterman”	

and	“Smith	Waterman	Gotoh”	in	this	chapter.	Please	check.
[AQ9]	 	Smith	 and	 Hubley	 (2004)	 has	 been	 changed	 to	 Smith	 et	 al.	 (2004)	 to	

match	with	the	reference	list.	Please	check.
[AQ10]	 	Smith	et	al.	(1981)	has	been	changed	to	Smith	and	Waterman	(1981)	to	

match	with	the	reference	list.	Please	check.
[AQ11]	 Please	expand	“MDS,”	if	appropriate.
[AQ12]	 	Please	 check	 if	 the	 edit	 of	 the	 sentence	 starting	 “We	 decompose…”	 is	

correct.
[AQ13]	 	“PairEnumertator”	has	been	changed	to	“PairEnumerator”	in	the	sentence	

starting	“We	implemented…”	Please	check.
[AQ14]	 	In	the	sentence	starting	“Therefore,	we…,”	please	check	whether	the	phrase	

at	the	end	of	the	sentence	“this	file	system”	refers	to	the	“high-performance	
parallel	file	system”	or	the	“Lustre	file	system,”	and	modify	the	sentence	
accordingly	for	clarity.

[AQ15]	 	Please	check	if	the	edit	of	the	sentence	starting	“On	744	cores…”	is	correct.
[AQ16]	 	Please	check	the	last	part	of	the	sentence	starting	“This	could	lead…”	for	

sense,	and	whether	“Windows	handing”	should	be	changed	to	“Windows	
handling.”

[AQ17]	 	Please	check	the	caption	of	Figure	12.12	against	the	respective	artwork.	
Caption	says	“2D	data	points,”	whereas	artwork	says	“3D	data	points.”

[AQ18]	 Please	expand	“LAM,”	if	appropriate.
[AQ19]	 Please	check	if	the	expansion	inserted	for	“HPC”	is	correct.
[AQ20]	 Please	expand	“ARTS,”	if	appropriate.
[AQ21]	 	Please	 check	 the	 inserted	 volume	 no.	 in	 Dongarra	 et	 al.	 (1993)	 for	

correctness.
[AQ22]	 	Please	check	the	location	of	publisher	in	Johnsson	et	al.	(1989)	and	Raicu	

et	al.	(2007)	for	correctness.
[AQ23]	 	Please	check	the	inserted	volume	no.	and	page	range	in	Macqueen	(1967)	

for	correctness.
[AQ24]	 Please	provide	page	range	for	Moretti	et	al.	(2009).
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