
275

Chapter 12

High-Performance
Parallel Computing
with Cloud and Cloud
Technologies

Jaliya Ekanayake, Xiaohong Qiu, Thilina Gunarathne,
Scott Beason, and Geoffrey Fox

Contents
12.1	 Introduction..276
12.2	 Cloud Technologies...278

12.2.1	Hadoop..278
12.2.2	Dryad and DryadLINQ..279
12.2.3	CGL-MapReduce..279
12.2.4	MPI.. 280

12.3	 Programming Models...281
12.4	 Data Analyses Applications.. 284

12.4.1	CAP3—Sequence Assembly Program.. 284
12.4.2	High-Energy Physics..285
12.4.3	 Iterative MapReduce—Kmeans Clustering and Matrix

Multiplication..285

K10175_C012.indd 275 3/2/2010 6:50:00 PM

276  ◾  Cloud Computing and Software Services: Theory and Practice

12.1  Introduction
Cloud and cloud technologies are two broad categories of technologies related to
the general notion of Cloud Computing. By “cloud,” we refer to a collection of
infrastructure services, such as Infrastructure as a service (IaaS) and Platform as a
service (PaaS), provided by various organizations where virtualization plays a key
role. By “cloud technologies,” we refer to various cloud runtimes, such as Hadoop
(ASF, core, 2009a), Dryad (Isard et al. 2007), and other MapReduce (Dean and
Ghemawat 2008) frameworks, and also the storage and communication frame-
works, such as Hadoop Distributed File System (HDFS) and Amazon S3 (Amazon
2009).

The introduction of commercial cloud infrastructure services, such as Amazon
EC2, GoGrid (ServePath 2009), and ElasticHosts (ElasticHosts 2009), has allowed
users to provision compute clusters fairly easily and quickly, by paying a mon-
etary value for the duration of their usages of the resources. The provisioning of
resources happens in minutes, as opposed to hours and days required in the case
of traditional queue-based job-scheduling systems. In addition, the use of such
virtualized resources allows the user to completely customize the virtual machine
(VM) images and use them with ROOT/administrative privileges, another feature
that is hard to achieve with traditional infrastructures. The availability of open-
source cloud infrastructure softwares, such as Nimbus (Keahey et al. 2005) and
Eucalyptus (Nurmi et al. 2009), and open-source virtualization software stacks,

12.4.4	ALU Sequencing Studies...287
12.4.4.1	ALU Clustering...287
12.4.4.2	Smith–Waterman Dissimilarities.....................................287
12.4.4.3	The O(N2) Factor of 2 and Structure of Processing

Algorithm..288
12.4.4.4	Dryad Implementation..288
12.4.4.5	MPI Implementation...289

12.5	 Evaluations..290
12.5.1	 Introduction..290
12.5.2	CAP3 and Particle Physics Case Studies..290
12.5.3	Kmeans and Matrix Multiplication Case Studies...........................293
12.5.4	ALU Sequence Analysis Case Study...294

12.5.4.1	Performance of Smith–Waterman–Gotoh Algorithm......294
12.5.4.2	Threaded Implementation..294

12.6	 Performance of MPI on Clouds...295
12.6.1	Benchmarks and Results..296

12.7	 Conclusions and Future Work...305
Acknowledgments... 306
References..307

K10175_C012.indd 276 3/2/2010 6:50:00 PM

High-Performance Parallel Computing  ◾  277

such as Xen Hypervisor (Barham et al. 2003), allows organizations to build private
clouds to improve the resource utilization of the available computation facilities.
The possibility of dynamically provisioning additional resources by leasing from
commercial cloud infrastructures makes the use of private clouds more promising.

Among the many applications that benefit from cloud and cloud technologies,
the data/compute-intensive applications are the most important. The deluge of data
and the highly compute-intensive applications found in many domains, such as
particle physics, biology, chemistry, finance, and information retrieval, mandate
the use of large computing infrastructures and parallel processing to achieve con-
siderable performance gains in analyzing data. The addition of cloud technologies
creates new trends in performing parallel computing. An employee in a publishing
company who needs to convert a document collection, terabytes in size, to a differ-
ent format can do so by implementing a MapReduce computation using Hadoop,
and running it on leased resources from Amazon EC2 in just a few hours. A scien-
tist who needs to process a collection of gene sequences using the CAP3 (Huang
and Madan 1999) software can use virtualized resources leased from the univer-
sity’s private cloud infrastructure and Hadoop. In these use cases, the amount of
coding that the publishing agent and the scientist need to perform is minimal (as
each user simply needs to implement a map function), and the MapReduce infra-
structure handles many aspects of the parallelism.

Although the above examples are successful use cases for applying cloud and
cloud technologies for parallel applications, through our research, we have found
that there are limitations in using current cloud technologies for parallel applica-
tions that require complex communication patterns or require faster communica-
tion mechanisms. For example, Hadoop and Dryad implementations of Kmeans
clustering applications, which perform an iteratively refining clustering operation,
show higher overheads compared to implementations of MPI or CGL-MapReduce
(Ekanayake et al. 2008)—a streaming-based MapReduce runtime developed by
us. These observations raise questions: What applications are best handled by
cloud technologies? What overheads do they introduce? Are there any alternative
approaches? Can we use traditional parallel runtimes such as MPI in cloud? If
so, what overheads does it have? These are some of the questions we try to answer
through our research.

In Section 12.1, we give a brief introduction of the cloud technologies, and in
Section 12.2, we discuss with examples the basic functionality supported by these
cloud runtimes. Section 12.3 discusses how these technologies map into program-
ming models. We describe the applications used to evaluate and test technologies
in Section 12.4. The performance results are discussed in Section 12.5. In Section
12.6, we present details of an analysis we have performed to understand the per-
formance implications of virtualized resources for parallel MPI applications. Note
that we use MPI running on non-VMs in Section 12.5 for comparison with cloud
technologies. We present our conclusions in Section 12.7.

AQ2

AQ1

K10175_C012.indd 277 3/2/2010 6:50:00 PM

278  ◾  Cloud Computing and Software Services: Theory and Practice

12.2  Cloud Technologies
Cloud technologies such as MapReduce and Dryad have created new trends in
parallel programming. The support for handling large data sets, the concept of
moving computation to data, and the better quality of services provided by the
cloud technologies make them a favorable choice to solve large-scale data/compute-
intensive problems.

The granularity of the parallel tasks in these programming models lies in
between the fine-grained parallel tasks that are used in message-passing infrastruc-
tures such as PVM (Dongarra et al. 1993) and MPI (Forum n.d.), and coarse-
grained jobs in workflow frameworks such as Kepler (Ludscher et al. 2006) and
Taverna (Hull et al. 2006), in which the individual tasks could themselves be par-
allel applications written in MPI. Unlike the various communication constructs
available in MPI, which can be used to create a wide variety of communication
topologies for parallel programs, in MapReduce, the “map→reduce” is the only
communication construct available. However, our experience shows that most com-
posable applications can easily be implemented using the MapReduce programming
model. Dryad supports parallel applications that resemble Directed Acyclic Graphs
(DAGs), in which the vertices represent computation units, and the edges represent
communication channels between different computation units.

In traditional approaches, once parallel applications are developed, they are
executed on compute clusters, supercomputers, or grid infrastructures (Foster
2001), where the focus on allocating resources is heavily biased by the availabil-
ity of computational power. The application and the data both need to be moved
to the available computational resource in order for them to be executed. These
infrastructures are highly efficient in performing compute-intensive parallel appli-
cations. However, when the volume of data accessed by an application increases,
the overall efficiency decreases due to the inevitable data movement. Cloud tech-
nologies such as Google MapReduce, Google File System (GFS) (Ghemawat et
al. 2003), Hadoop and HDFS, Microsoft Dryad, and CGL-MapReduce adopt a
more data-centered approach to parallel runtimes. In these frameworks, the data
is staged in data/compute nodes of clusters or large-scale data centers, such as in
the case of Google. The computations move to the data in order to perform the
data processing. Distributed file systems, such as GFS and HDFS, allow Google
MapReduce and Hadoop to access data via distributed storage systems built on
heterogeneous compute nodes, while Dryad and CGL-MapReduce support read-
ing data from local disks. The simplicity in the programming model enables better
support for quality of services such as fault tolerance and monitoring.

12.2.1  Hadoop
Apache Hadoop has a similar architecture to Google’s MapReduce runtime, where
it accesses data via HDFS, which maps all the local disks of the compute nodes to

AQ3

K10175_C012.indd 278 3/2/2010 6:50:00 PM

High-Performance Parallel Computing  ◾  279

a single file system hierarchy, allowing the data to be dispersed across all the data/
computing nodes. HDFS also replicates the data on multiple nodes so that failures
of any nodes containing a portion of the data will not affect the computations
that use that data. Hadoop schedules the MapReduce computation tasks depend-
ing on the data locality, improving the overall I/O (input/output) bandwidth. The
outputs of the map tasks are first stored in local disks until later, when the reduce
tasks access them (pull) via HTTP connections. Although this approach simplifies
the fault-handling mechanism in Hadoop, it adds a significant communication
overhead to the intermediate data transfers, especially for applications that produce
small intermediate results frequently.

12.2.2  Dryad and DryadLINQ
Dryad is a distributed execution engine for coarse-grained data parallel applica-
tions. It combines the MapReduce programming style with dataflow graphs to
solve the computation tasks. Dryad considers computation tasks as DAGs, where
the vertices represent computation tasks and the edges act as communication chan-
nels over which the data flows from one vertex to another. The data is stored in
(or partitioned to) local disks via the Windows shared directories and metadata
files, and Dryad schedules the execution of vertices depending on the data local-
ity. (Note: The academic release of Dryad only exposes the DryadLINQ (Yu et al.
2008) API for programmers. Therefore, all our implementations are written using
DryadLINQ, although it uses Dryad as the underlying runtime.) Dryad also stores
the output of vertices in local disks, and the other vertices that depend on these
results access them via the shared directories. This enables Dryad to re-execute
failed vertices, a step that improves fault tolerance in the programming model.

12.2.3  CGL-MapReduce
CGL-MapReduce is a lightweight MapReduce runtime that incorporates several
improvements to the MapReduce programming model, such as (1) faster interme-
diate data transfer via a pub/sub broker network, (2) support for long-running map/
reduce tasks, and (3) efficient support for iterative MapReduce computations. The
architecture of CGL-MapReduce is shown in Figure 12.1 (left).

The use of streaming enables CGL-MapReduce to send the intermediate
results directly from its producers to its consumers, and eliminates the overhead of
the file-based communication mechanisms adopted by both Hadoop and Dryad.
The support for long-running map/reduce tasks enables configuring and reusing
map/reduce tasks in the case of iterative MapReduce computations, and eliminates
the need for reconfiguring or reloading static data in each iteration. This feature
comes with the distinction of “static data” and “dynamic data” that we support
in CGL-MapReduce. We refer to any data set that is static throughout the com-
putation as “static data,” and the data that is changing over the computation as

AQ4

K10175_C012.indd 279 3/2/2010 6:50:01 PM

280  ◾  Cloud Computing and Software Services: Theory and Practice

“dynamic data.” Although this distinction is irrelevant to the MapReduce com-
putations that have only one map phase followed by a reduce phase, it is extremely
important for iterative MapReduce computations, in which the map tasks need
to access a static (fixed) data again and again. Figure 12.1 (right) highlights the
synchronization and communication characteristics of Hadoop, Dryad, CGL-
MapReduce, and MPI.

Additionally, CGL-MapReduce supports the distribution of smaller variable
data sets to all the map tasks directly, a functionality similar to MPI_Bcast() that
is often found to be useful in many data analysis applications. Hadoop provides
a similar feature via its distributed cache, in which a file or data is copied to all
the compute nodes. Dryad provides a similar feature by allowing applications to
add resources (files) that will be accessible to all the vertices. With the above fea-
tures in place, CGL-MapReduce can be used to implement iterative MapReduce
computations efficiently. In CGL-MapReduce, data partitioning and distribution
is left to the users to handle, and it reads data from shared file systems or local
disks. Although the use of streaming makes CGL-MapReduce highly efficient,
implementing fault tolerance with this approach is not as straightforward as it is in
Hadoop or Dryad. We plan to implement fault tolerance in CGL-MapReduce by
re-execution of failed map tasks and redundant execution of reduce tasks.

12.2.4  MPI
MPI, the de facto standard for parallel programming, is a language-independent
communications protocol that uses a message-passing paradigm to share the data
and state among a set of cooperative processes running on a distributed memory
system. MPI specification (Forum, MPI) defines a set of routines to support various
parallel programming models, such as point-to-point communication, collective
communication, derived data types, and parallel I/O operations.

Communication

Data read/write

File systemData split

R R

M

R

M

M

R R

M

Worker nodes

Content dissemination network

M MR
driver

User
program

Disk HTTP

Disk HTTP

Disk HTTP

Disk HTTP

Yahoo Hadoop
uses short running

processes
communicating

via disk and
tracking processes

Microsoft Dryad
uses short-running

processes
communicating

via pipes, disk, or
shared memory
between cores

CGL-MapReduce
is long-running,
processing with
asynchronous

distributed
Rendezvous

synchronization

MPI is long-
running processes
with Rendezvous

for message
exchange/

synchronization

Pipes

Pipes

Pipes

Pipes Pub-sub bus

Pub-sub bus

Pub-sub bus

Pub-sub bus MPI

MPI

MPI

MPI

Map worker

Reduce worker

Figure 12.1  (Left) Components of CGL-MapReduce. (Right) Different synchro-
nization and intercommunication mechanisms used by parallel runtimes.

K10175_C012.indd 280 3/2/2010 6:50:01 PM

High-Performance Parallel Computing  ◾  281

Most MPI runtimes are deployed in computation clusters where a set of com-
pute nodes are connected via a high-speed network connection yielding very low
communication latencies (typically in microseconds). MPI processes typically have
a direct mapping to the available processors in a compute cluster or to the processor
cores in the case of multi-core systems. We use MPI as the baseline performance
measure for the various algorithms that are used to evaluate the different paral-
lel programming runtimes. Table 12.1 summarizes the different characteristics of
Hadoop, Dryad, CGL-MapReduce, and MPI.

12.3  Programming Models
When analyzing applications written in the MapReduce programming model, we
can identify three basic execution units, namely, (1) map-only, (2) map-reduce, and
(3) iterative map-reduce. Complex applications can be built by combining these
three basic execution units under the MapReduce programming model. Table 12.2
shows the data/computation flow of these three basic execution units, along with
examples.

In the MapReduce programming model, the tasks that are being executed at
a given phase have similar executables and similar input and output operations.
With zero reduce tasks, the MapReduce model reduces to a map-only model, which
can be applied to many “embarrassingly parallel” applications. Software systems
such as batch queues, Condor (Condor 2009), Falkon (Raicu et al. 2007), and
SWARM (Pallickara and Pierce 2008) all provide similar functionality by schedul-
ing large numbers of individual maps/jobs. Applications that can utilize a “reduc-
tion” or an “aggregation” operation can use both phases of the MapReduce model,
and, depending on the “associativity” and “transitivity” nature of the reduction
operation, multiple reduction phases can be applied to enhance the parallelism. For
example, in a histogramming operation, the partial histograms can be combined in
any order and in any number of steps to produce a final histogram.

The “side effect–free” nature of the MapReduce programming model does not
promote iterative MapReduce computations. Each of the map and reduce tasks are
considered as atomic execution units with no state shared in between executions.
In parallel runtimes, such as those of the MPI, the parallel execution units live
throughout the entire life of the program; hence, the state of a parallel execution
unit can be shared across invocations. We propose an intermediate approach to
develop MapReduce computations. In our approach, the map/reduce tasks are still
considered free from side effects, but the runtime allows configuring and reusing
the map/reduce tasks. Once configured, the runtime caches the map/reduce tasks.
This way, both map and reduce tasks can keep the static data in memory, and can
be called iteratively without loading the static data repeatedly.

Hadoop supports configuring the number of reduce tasks, which enables the
user to create “map-only” applications by using zero reduce tasks. Hadoop can be

K10175_C012.indd 281 3/2/2010 6:50:01 PM

282  ◾  Cloud Computing and Software Services: Theory and Practice
Ta

bl
e

12
.1

 
C

om
pa

ri
so

n
of

 F
ea

tu
re

s
Su

pp
or

te
d

by
 D

if
fe

re
nt

 P
ar

al
le

l P
ro

gr
am

m
in

g
R

un
ti

m
es

Fe
at

u
re

H
ad

o
o

p
D

ry
ad

C
G

L-
M

ap
Re

d
u

ce
M

PI

Pr
o

gr
am

m
in

g
m

o
d

el
M

ap
R

ed
u

ce
D

A
G

-b
as

ed
 e

xe
cu

ti
o

n

fl
o

w
s

M
ap

R
ed

u
ce

 w
it

h
 a

 C
om

bi
ne

p

h
as

e
V

ar
ie

ty
 o

f t
o

p
o

lo
gi

es

co
n

st
ru

ct
ed

 u
si

n
g

th
e

ri
ch

 s
et

 o
f p

ar
al

le
l

co
n

st
ru

ct
s

D
at

a
h

an
d

lin
g

H
D

FS
Sh

ar
ed

 d
ir

ec
to

ri
es

/lo
ca

l
d

is
ks

Sh
ar

ed
 fi

le
 s

ys
te

m
/lo

ca
l

d
is

ks
Sh

ar
ed

 fi
le

 s
ys

te
m

s

In
te

rm
ed

ia
te

d

at
a

co
m

m
u

n
ic

at
io

n

H
D

FS
/p

o
in

t t
o

 p
o

in
t v

ia

H
TT

P
Fi

le
s/

TC
P

p
ip

es
/ s

h
ar

ed

m
em

o
ry

 F
IF

O
C

o
n

te
n

t d
is

tr
ib

u
ti

o
n

n

et
w

o
rk

 (N
ar

ad
aB

ro
ke

ri
n

g
(P

al
lic

ka
ra

 a
n

d
 F

o
x

20
03

))

Lo
w

-l
at

en
cy

co

m
m

u
n

ic
at

io
n

ch

an
n

el
s

Sc
h

ed
u

lin
g

D
at

a
lo

ca
lit

y/
ra

ck
 a

w
ar

e
D

at
a

lo
ca

lit
y/

 n
et

w
o

rk

to
p

o
lo

gy
–b

as
ed

 r
u

n
ti

m
e

gr
ap

h
 o

p
ti

m
iz

at
io

n
s

D
at

a
lo

ca
lit

y
A

va
ila

b
le

 p
ro

ce
ss

in
g

ca
p

ab
ili

ti
es

Fa
ilu

re
 h

an
d

lin
g

Pe
rs

is
te

n
ce

 v
ia

 H
D

FS
,

re
-e

xe
cu

ti
o

n
 o

f m
ap

 a
n

d

re
d

u
ce

 ta
sk

s

R
e-

ex
ec

u
ti

o
n

 o
f v

er
ti

ce
s

C
u

rr
en

tl
y

n
o

t i
m

p
le

m
en

te
d

(r

e-
ex

ec
u

ti
n

g
m

ap
 ta

sk
s,

re

d
u

n
d

an
t r

ed
u

ce
 ta

sk
s)

Pr
o

gr
am

-l
ev

el
 c

h
ec

k-
p

o
in

ti
n

g
O

M
PI

(G

ab
ri

el
 e

t a
l.

20
04

),
FT

 M
PI

M
o

n
it

o
ri

n
g

M
o

n
it

o
ri

n
g

su
p

p
o

rt
 o

f
H

D
FS

, m
o

n
it

o
ri

n
g

M
ap

R
ed

u
ce

 c
o

m
p

u
ta

ti
o

n
s

M
o

n
it

o
ri

n
g

su
p

p
o

rt
 fo

r
ex

ec
u

ti
o

n
 g

ra
p

h
s

Pr
o

gr
am

m
in

g
in

te
rf

ac
e

to

m
o

n
it

o
r

th
e

p
ro

gr
es

s
o

f
jo

b
s

M
in

im
al

 s
u

p
p

o
rt

 fo
r

ta
sk

-l
ev

el
 m

o
n

it
o

ri
n

g

La
n

gu
ag

e
su

p
p

o
rt

Im
p

le
m

en
te

d
 u

si
n

g
Ja

va
;

o
th

er
 la

n
gu

ag
es

 a
re

su

p
p

o
rt

ed
 v

ia
 H

ad
o

o
p

st

re
am

in
g

Pr
o

gr
am

m
ab

le
 v

ia
 C

#,

D
ry

ad
LI

N
Q

 p
ro

vi
d

es

LI
N

Q
 p

ro
gr

am
m

in
g

A
PI

fo

r
D

ry
ad

Im
p

le
m

en
te

d
 u

si
n

g
Ja

va
;

o
th

er
 la

n
gu

ag
es

 a
re

su

p
p

o
rt

ed
 v

ia
 Ja

va

w
ra

p
p

er
s

C
, C

+
+

, F
o

rt
ra

n
, J

av
a,

C

#

K10175_C012.indd 282 3/2/2010 6:50:01 PM

High-Performance Parallel Computing  ◾  283

used to implement iterative MapReduce computations, but the framework does not
provide additional support to implement them efficiently. The CGL-MapReduce
supports all the above three execution units, and the user can develop applica-
tions with multiple stages of MapReduce by combining them in any order. Dryad
execution graphs resembling the above three basic units can be generated using
DryadLINQ operations. DryadLINQ adds the LINQ programming features
to Dryad where the user can implement various data analysis applications using
LINQ queries, which will be translated to Dryad execution graphs by the compiler.
However, unlike in the MapReduce model, Dryad allows the concurrent vertices
to have different behaviors and different I/O characteristics, thus enabling a more
workflow-style programming model. Dryad also allows multiple communication
channels in between different vertices of the dataflow graph. Programming lan-
guages such as Swazall (Pike et al. 2005), introduced by Google for its MapReduce
runtime, enable high-level language support for expressing MapReduce computa-
tions, and the Pig (ASF, pig, 2009b) available as a subproject of Hadoop allows
query operations on large data sets.

Apart from these programming models, there are other software frameworks
that one can use to perform data/compute-intensive analyses. Disco (Nokia 2009)
is an open-source MapReduce runtime developed using a functional programming

Table 12.2  Three Basic Execution Units under the MapReduce
Programming Model

Map-Only Map-Reduce Iterative Map-Reduce

Input

map()

Output

Input

map()

reduce()

Output

Input

map()

reduce()

Output

Cap3 analysis (we will
discuss more about this
later)

HEP data analysis (we
will discuss more
about this later)

Expectation
maximization
algorithms

Converting a collection
of documents to
different formats,
processing a collection
of medical images, and
brute-force searches in
cryptography;
parametric sweeps

Histogramming
operations,
distributed search,
and distributed
sorting; information
retrieval

Kmeans clustering,
matrix multiplication

K10175_C012.indd 283 3/2/2010 6:50:02 PM

284  ◾  Cloud Computing and Software Services: Theory and Practice

language named Erlang (Ericsson 2009). The Disco architecture shares clear simi-
larities with both Google and Hadoop MapReduce architectures. Sphere (Gu and
Grossman 2009) is a framework that can be used to execute user-defined functions
in parallel on data stored in a storage framework named Sector. Sphere can also per-
form MapReduce-style programs, and the authors compare its performance with
Hadoop for tera-sort applications. All-Pairs (Moretti et al. 2009) is an abstraction
that can be used to solve the common problem of comparing all the elements in
a data set with all the elements in another data set by applying a given function.
This problem can be implemented using Hadoop and Dryad as well, and we dis-
cuss a similar problem in Section 12.4.4. We can also develop an efficient itera-
tive MapReduce implementation using CGL-MapReduce to solve this problem.
The algorithm is similar to the matrix multiplication algorithm that we explain in
Section 12.4.3.

MPI and threads are two other programming models that can be used to imple-
ment parallel applications. MPI can be used to develop parallel applications in
distributed memory architectures, whereas threads can be used in shared memory
architectures, especially in multi-core nodes. The low-level communication con-
structs available in MPI allow users to develop parallel applications with various
communication topologies involving fine-grained parallel tasks. The use of low-
latency network connections between nodes enables applications to perform a large
number of inter-task communications. In contrast, the next-generation parallel
runtimes, such as MapReduce and Dryad, provide a small number of parallel con-
structs, such as “map-only,” “map-reduce,” “Select,” “Apply,” and “Join,” and do not
require high-speed communication channels. These constraints require adopting
parallel algorithms that perform coarse-grained parallel tasks and less communi-
cation. The use of threads is a natural approach in shared memory architectures,
where communication between parallel tasks reduces to the simple sharing of point-
ers via the shared memory. However, the operating system’s support for user-level
threads plays a major role in achieving better performances using multi-threaded
applications. We will discuss the issues in using threads and MPI in more detail in
Section 12.5.4.2.

12.4  Data Analyses Applications
12.4.1  CAP3—Sequence Assembly Program
CAP3 is a DNA sequence assembly program developed by Huang and Madan
(1999) that performs several major assembly steps: These steps include computation
of overlaps, construction of contigs, construction of multiple sequence alignments,
and generation of consensus sequences to a given set of gene sequences. The pro-
gram reads a collection of gene sequences from an input file (FASTA file format)
and writes its output to several output files, as well as the standard output:

K10175_C012.indd 284 3/2/2010 6:50:02 PM

High-Performance Parallel Computing  ◾  285

	 Input.fsa CAP3 Stdout Other output files→ → + 	

The program structure of this application fits directly with the “map-only” basic
execution unit, as shown in Table 12.2. We implemented a parallel version of CAP3
using Hadoop, CGL-MapReduce, and DryadLINQ. Each map task in Hadoop
and in CGL-MapReduce calls the CAP3 executable as a separate process for a
given input data file (the input “Value” for the map task), whereas in DryadLINQ, a
“homomorphic Apply” operation calls the CAP3 executable on each data file in its
data partition as a separate process. All the implementations move the output files
to a predefined shared directory. This application resembles a common paralleliza-
tion requirement, where an executable script, or a function in a special framework
such as MATLAB• or R, needs to be executed on each input data item. The above
approach can be used to implement all these types of applications using any of the
above three runtimes.

12.4.2  High-Energy Physics
Next, we applied the MapReduce technique to parallelize a High-Energy Physics
(HEP) data analysis application, and implemented it using Hadoop, CGL-
MapReduce, and Dryad. The HEP data analysis application processes large vol-
umes of data, and performs a histogramming operation on a collection of event
files produced by HEP experiments. The details regarding the two MapReduce
implementations and the challenges we faced in implementing them can be found
in Ekanayake et al. (2008). In the DryadLINQ implementation, the input data files
are first distributed among the nodes of the cluster manually. We developed a tool
to perform the manual partitioning and distribution of the data. The names of the
data files available in a given node were used as the data to the DryadLINQ pro-
gram. Using a homomorphic “Apply” operation, we executed a ROOT-interpreted
script on groups of input files in all the nodes. The output histograms of this
operation were written to a predefined shared directory. Next, we used another
“Apply” phase to combine these partial histograms into a single histogram using
DryadLINQ.

12.4.3 � Iterative MapReduce—Kmeans Clustering
and Matrix Multiplication

Parallel applications that are implemented using message-passing runtimes can uti-
lize various communication constructs to build diverse communication topologies.
For example, a matrix multiplication application that implements Fox’s Algorithm
(Fox et al. 1987) and Cannon’s Algorithm (Johnsson et al. 1989) assumes parallel
processes to be in a rectangular grid. Each parallel process in the grid commu-
nicates with its left and top neighbors, as shown in Figure 12.2 (left). The cur-
rent cloud runtimes, which are based on dataflow models such as MapReduce and

AQ5

K10175_C012.indd 285 3/2/2010 6:50:02 PM

286  ◾  Cloud Computing and Software Services: Theory and Practice

Dryad, do not support this behavior, in which the peer nodes communicate with
each other. Therefore, implementing the above type of parallel applications using
MapReduce or DryadLINQ requires adopting different algorithms.

We have implemented matrix multiplication applications using Hadoop and
CGL-MapReduce by adopting a row/column decomposition approach to split the
matrices. To clarify our algorithm, let us consider an example where two input
matrices, A and B, produce matrix C, as the result of the multiplication process.
We split the matrix B into a set of column blocks and the matrix A into a set of row
blocks. In each iteration, all the map tasks process two inputs: (1) a column block of
matrix B and (2) a row block of matrix A. Collectively, they produce a row block of
the resultant matrix C. The column block associated with a particular map task is
fixed throughout the computation, while the row blocks are changed in each itera-
tion. However, in Hadoop’s programming model (a typical MapReduce model),
there is no way to specify this behavior. Hence, it loads both the column block and
the row block in each iteration of the computation. CGL-MapReduce supports the
notion of long-running map/reduce tasks, where these tasks are allowed to retain
static data in the memory across invocations, yielding better performance for “itera-
tive MapReduce” computations. The communication pattern of this application is
shown in Figure 12.2 (middle).

Kmeans clustering (Macqueen 1967) is another application that performs
iteratively refining computation. We also implemented Kmeans clustering applica-
tions using Hadoop, CGL-MapReduce, and DryadLINQ. In the two MapReduce
implementations, each map task calculates the distances between all the data ele-
ments in its data partition and all the cluster centers produced during the previous
run. It then assigns data points to these cluster centers, based on their Euclidian
distances. The communication topology of this algorithm is shown in Figure 12.2
(right). Each map task produces partial cluster centers as the output; these are then

AQ6

User program

reduce()

map() map()

Cij

Ci
User program

reduce()

map() map()

Ai

B

PijAi

j
Bj

Data split—2D data points

Compute the
distance to each
data point from

each cluster center,
and assign points to
the cluster centers

Compute the new
cluster centers

Compute the error and decide
whether to continue iteration

Figure 12.2  (Left) Communication topology of Cannon’s Algorithm imple-
mented using MPI. (Middle) Communication topology of matrix multiplication
application based on MapReduce. (Right) Communication topology of Kmeans
clustering implemented as a MapReduce application.

K10175_C012.indd 286 3/2/2010 6:50:03 PM

High-Performance Parallel Computing  ◾  287

combined at a reduce task to produce the current cluster centers. These current
cluster centers are used in the next iteration, to find the next set of cluster centers.
This process continues until the overall distance between the current cluster centers
and the previous cluster centers reduces below a predefined threshold. The Hadoop
implementation uses a new MapReduce computation for each iteration of the pro-
gram, while CGL-MapReduce’s long-running map/reduce tasks allow it to reuse
map/reduce tasks. The DryadLINQ implementation uses various DryadLINQ
operations, such as “Apply,” “GroupBy,” “Sum,” “Max,” and “Join,” to perform the
computation, and it also utilizes DryadLINQ’s “loop unrolling” support to per-
form multiple iterations as a single-large query.

12.4.4  ALU Sequencing Studies

12.4.4.1  ALU Clustering

The ALU clustering problem (Batzer and Deininger 2002) is one of the most chal-
lenging problems for sequence clustering, because ALUs represent the largest repeat
families in human genome. There are about 1 million copies of ALU sequences in
human genome, in which most insertions can be found in other primates and only
a small fraction (∼7000) are human specific. This indicates that the classification
of ALU repeats can be deduced solely from the 1 million human ALU elements.
Notably, ALU clustering can be viewed as a classical case study for the capacity of
computational infrastructures, because it is not only of great intrinsic biological
interest, but also a problem of a scale that will remain as the upper limit of many
other clustering problems in bioinformatics for the next few years, for example,
the automated protein family classification for a few millions of proteins predicted
from large metagenomics projects.

12.4.4.2  Smith–Waterman Dissimilarities

We identified samples of the human and chimpanzee ALU gene sequences using
Repeatmasker (Smith et al. 2004) with Repbase Update (Jurka 2000). We have
been gradually increasing the size of our projects with the current largest samples
having 35,339 and 50,000 sequences, and these require a modest cluster, such as
Tempest (768 cores), for processing in a reasonable time (a few hours, as shown in
Section 12.5). Note from the discussion in Section 12.4.4.1 that we are aiming at
supporting problems with a million sequences—quite practical today on TeraGrid,
and equivalent facilities given basic analysis steps scale like O(N 2).

We used an open-source version NAligner (Smith–Waterman software) of the
Smith–Waterman–Gotoh (SW-G) algorithm (Smith and Waterman 1981, Gotoh
1982) modified to ensure low start-up effects by each thread processing large num-
bers (above a few hundreds) at a time. The memory bandwidth needed was reduced
by storing data items in as few bytes as possible.

AQ7

AQ8

AQ9

AQ10

K10175_C012.indd 287 3/2/2010 6:50:03 PM

288  ◾  Cloud Computing and Software Services: Theory and Practice

12.4.4.3 � The O(N2) Factor of 2 and Structure
of Processing Algorithm

The ALU sequencing problem shows a well-known factor-of-2 issue present in
many O(N  2) parallel algorithms, such as those in direct simulations of astrophysi-
cal stems. We initially calculate in parallel the distance, D(i,j), between points
(sequences) i and j. This is done in parallel over all processor nodes selecting criteria
i < j (or j > i for the upper triangular case) to avoid calculating both D(i,j) and the
identical D(j,i). This can require substantial file transfer, as it is unlikely that nodes
requiring D(i,j) in a later step will find that it was calculated on nodes where it is
needed.

For example, the MDS and PW (PairWise) clustering algorithms, described in
Fox et al. (2008), require a parallel decomposition where each of N processes (MPI
processes, threads) has 1/N of sequences, and for this subset {i} of sequences stores
in memory D({i},j) for all sequences j and the subset {i} of sequences for which this
node is responsible. This implies that we need D(i,j) and D(j,i) (which are equal)
stored in different processors/disks. This is a well-known collective operation in
MPI called either gather or scatter.

12.4.4.4  Dryad Implementation

We developed a DryadLINQ application to perform the calculation of pair-
wise SW-G distances for a given set of genes by adopting a coarse-grained task
decomposition approach that requires minimum inter-process communication
to ameliorate the higher communication and synchronization costs of the paral-
lel runtime. To clarify our algorithm, let us consider an example where N gene
sequences produce a pairwise distance matrix of size N × N. We decompose the
computation task by considering that the resultant matrix groups the overall
computation into a block matrix of size D × D, where D is a multiple (>2) of
the available computation nodes. Due to the symmetry of the distances D(i,j)
and D(j,i), we only calculate the distances in the blocks of the upper triangle
of the block matrix, as shown in Figure 12.3 (left). The blocks in the upper tri-
angle are partitioned (assigned) to the available compute nodes, and an “Apply”
operation is used to execute a function to calculate (N/D) × (N/D) distances in
each block. After computing the distances in each block, the function calculates
the transpose matrix of the resultant matrix, which corresponds to a block in
the lower triangle, and writes both these matrices into two output files in the
local file system. The names of these files and their block numbers are commu-
nicated back to the main program. The main program sorts the files based on
their block numbers and performs another “Apply” operation to combine the
files corresponding to a row of blocks in a single-large row block, as shown in
Figure 12.3 (right).

AQ11

AQ12

K10175_C012.indd 288 3/2/2010 6:50:03 PM

High-Performance Parallel Computing  ◾  289

12.4.4.5  MPI Implementation

The MPI version of SW-G calculates pairwise distances using a set of either single-
or multi-threaded processes. For N gene sequences, we need to compute half of
the values (in the lower triangular matrix), which is a total of M = N × (N  − 1)/2
distances. At a high level, computation tasks are evenly divided among P processes
and execute in parallel, namely, the computation workload per process is M/P.
At a low level, each computation task can be further divided into subgroups and
run in T concurrent threads. Our implementation is designed for flexible use of a
shared memory multi-core system and distributed memory clusters (tight-coupled
to medium-tight-coupled communication technologies, such threading and MPI).
We provide options for any combinations of thread versus process versus node, as
shown in Figure 12.4. The real computation workload per parallel unit is decided
by M/(T × P × # nodes).

As illustrated in Figure 12.4, the data decomposition strategy runs a “space-
filling curve through the lower triangular matrix” to produce equal numbers of
pairs for each parallel unit such as process or thread. It is necessary to map indexes
in each pairs group back to corresponding matrix coordinates (i,j) for constructing
a full matrix later on. We implemented a special function, “PairEnumerator,” as
the convertor. We tried to limit runtime memory usage for performance optimiza-
tion. This is done by writing a triple of i,j and also writing the distance value of
pairwise alignment to a stream writer, and the system flushes accumulated results
to a local file periodically. As the final stage, individual files are merged to form a
full distance matrix.

AQ13

Upper triangle

Blocks in upper triangle

0

V

0

File I/O File I/O File I/O

DryadLINQ
vertices

DryadLINQ
vertices

Each D consecutive blocks are merged to form a
set of row blocks each with N×D elements

0T 1T DD–1 DD–1T1

V V

V V V

1 DD–1

0

0
0

(0,d–1)
(0,d–1)

1
(d,2d–1)
(0,d–1)

D
(0,d–1)

(d,2d–1)

D+1
(d,2d–1)
(d,2d–1)

D–1
((D–1)d,Dd–1)

(0,d–1)

DD–1
((D–1)d,Dd–1)
((D–1)d,Dd–1)

N×N matrix broken down into D×D blocks

1

1

D–1

D–1

Figure 12.3  Task decomposition (left) and DryadLINQ vertex hierarchy (right)
of the DryadLINQ implementation of SW-G pairwise distance calculation
application.

K10175_C012.indd 289 3/2/2010 6:50:03 PM

290  ◾  Cloud Computing and Software Services: Theory and Practice

12.5  Evaluations
12.5.1  Introduction
For our evaluations, we used three compute clusters (details are given in Table 12.3)
with two 32-node clusters having almost identical hardware configurations and one
latest 32-node cluster of 24-core machines with Infiniband connections. DryadLINQ
and the MPI application that performs SW-G computation were run on the
Windows cluster (Ref B, Ref C), while Hadoop, CGL-MapReduce, and other MPI
applications were run on the Linux cluster (Ref A). We measured the performance
of these applications, and present the results in terms of parallel overhead defined for
parallelism P by

	 f P
P T P T

T
()

() ()
()

=
× − 1

1
	 (12.1)

where
P denotes parallelism (e.g., processes, threads, and map tasks) used
T denotes time as a function of the number of parallel processes used

T(1) is replaced in practice by T(S), where S is the smallest number of processes that
can run the job. We used Hadoop release 0.20, the academic release of DryadLINQ,
Microsoft MPI, and OpenMPI (OMPI) version 1.3.2 for our evaluations.

12.5.2  CAP3 and Particle Physics Case Studies
The results of our performance measurements for CAP3 and particle physics are
shown in Figures 12.5 through 12.8.

0

0

1

2 1
(2,0)

2
(2,1)

N(N–1)/2
(N–1,N–2)

Space-filling curve Each process has workload of M/P elements

Merge files

I/O I/O I/O
File I/O

M/PM/P Indexing

Threading
T0 T1 T0 T1 T0 T1

PPP1P0

0 1
M =

N×(N–1)/2

MPI

M/P

0
(1,0)

N–1

Lower triangle
1 2 N–1

Figure 12.4  Task decomposition (left) and MPI (right) implementation of SW-G
pairwise distance calculation application.

K10175_C012.indd 290 3/2/2010 6:50:04 PM

High-Performance Parallel Computing  ◾  291

0

100

200

300

400

500

600

119,808 239,616 359,424 479,232 599,040

A
ve

ra
ge

 ti
m

e (
s)

Number of reads processed

Hadoop
CGL-MapReduce

DryadLINQ

Figure 12.5  Performance of the CAP3 application—average time (in s) against
the number of gene reads processed.

Table 12.3  Different Computation Clusters Used for the Analyses

Feature
Linux Cluster

(Ref A)
Windows Cluster

(Ref B)
Windows Cluster

(Ref C)

Node 32 32 32

CPU Intel(R) Xeon(R)
CPU L5420
2.50 GHz

Intel(R) Xeon(R)
CPU L5420
2.50 GHz

Intel(R) Xeon(R)
CPU E7450
2.40 GHz

CPU/# cores 2/8 2/8 4/24

Total cores 256 256 768

Memory 32 GB 16 GB 48 GB

Disk 1 disk of Western
Digital Caviar RE
160 GB SATA 7200

2 disks of 1000 GB
(1 TB) Ultrastar
A7K1000 7200

2 HP 146 GB 10K 2.5
SAS HP SP HDD

Network Gigabit Ethernet Gigabit Ethernet 20 Gbps Infiniband

Operating
system

Red Hat Enterprise
Linux Server
release 5.3—64 bit

Windows Server
Enterprise—64
bit

Windows Server
2008 HPC Edition
(Service Pack 1)

K10175_C012.indd 291 3/2/2010 6:50:05 PM

292  ◾  Cloud Computing and Software Services: Theory and Practice

From these results, it is clearly evident that the cloud runtimes perform
competitively well for both “map-only-style” and “map-reduce-style” appli-
cations. In the HEP data analysis, both CGL-MapReduce and DryadLINQ
access input data from local disks, where the data is partitioned and distrib-
uted beforehand. Currently, HDFS can be accessed using Java or C++ clients
only, and the ROOT-interpretable scripts (ROOT—data analysis framework

0

100

200

300

400

500

600

512000 5.12e+006 1.024e+007 2.048e+007

A
ve

ra
ge

 ti
m

e f
or

 1
6

ite
ra

tio
ns

 (s
)

Number of 2D data points

Hadoop
DryadLINQ

CGL-MapReduce
MPI

Figure 12.7  Overhead induced by different parallel programming runtimes for
the Kmeans clustering application—overhead against the number of 2D data
points clustered. (Note: Both axes are in log scale.)

0

500

1000

1500

2000

200 400 600 800 1000

A
ve

ra
ge

 ti
m

e (
s)

Amount of data (GB)

Hadoop
DryadLINQ

CGL-MapReduce

Figure 12.6  Performance of the HEP data analysis application—average time
(in s) against the amount of input data processed (in GB).

K10175_C012.indd 292 3/2/2010 6:50:05 PM

High-Performance Parallel Computing  ◾  293

developed at CERN) are not capable of accessing data from HDFS. Therefore,
we placed the input data in the IU (Indiana University) Data Capacitor—a
high-performance parallel file system based on the Lustre file system, which
allows each map task in Hadoop to directly access data from this file system.
The performance results show that this dynamic data movement in the Hadoop
implementation incurred considerable overhead to the computation, while the
ability of reading input data from local disks gave significant performance
improvement to both DryadLINQ and CGL-MapReduce, as compared to the
Hadoop implementation.

12.5.3  Kmeans and Matrix Multiplication Case Studies
For an iterative class of applications, cloud runtimes show considerably high over-
heads, compared to the MPI and CGL-MapReduce versions of the same applica-
tions; the results shown in Figures 12.7 and 12.8 imply that, for these types of
applications, we still need to use high-performance parallel runtimes or alternative
approaches. (Note: The negative overheads observed in the matrix multiplication
application are due to the better utilization of a cache by the parallel application
than the single-process version.) CGL-MapReduce shows a close performance
closer to the MPI for large data sets in the case of Kmeans clustering and matrix
multiplication applications, an outcome that highlights the benefits of supporting
iterative computations and the faster data communication mechanism present in
CGL-MapReduce.

AQ14

–1
0
1
2

5

10

1024 2048 3072 4096 5120 6144

O
ve

rh
ea

d
=

(P
×
T(
P)

–
T(

1)
)/
T(

1)

Dimension of a matrix

MPI
CGL-MapReduce

Hadoop

Figure 12.8  Overhead induced by different parallel programming runtimes for
the matrix multiplication application—overhead against the dimension of an
input matrix.

K10175_C012.indd 293 3/2/2010 6:50:06 PM

294  ◾  Cloud Computing and Software Services: Theory and Practice

12.5.4  ALU Sequence Analysis Case Study

12.5.4.1  Performance of Smith–Waterman–Gotoh Algorithm

We performed the Dryad and MPI implementations of ALU SW-G distance calcu-
lations on two large data sets and obtained the following results.

There is a short partitioning phase for DryadLINQ, and then both approaches
calculate the distances and write these out to intermediate files, as discussed in
Section 12.4. We note that the merge time is currently much longer for MPI than
DryadLINQ, while the initial steps are significantly faster for MPI. However, the
total times in Table 12.4 indicate that both MPI and DryadLINQ implementa-
tions perform well for this application, with MPI a few percent faster with current
implementations. As expected, the times scale proportionally to the square of the
number of distances. On 744 cores, the average time of 0.0067 ms/pair that corre-
sponds to roughly 5 ms/pair calculated per core is used. The coarse-grained Dryad
application performs competitively with the tightly synchronized MPI application.
It proves once more the applicability of the cloud technologies for the composable
applications.

12.5.4.2  Threaded Implementation

In Section 12.5.4.1, we looked at using MPI with one process per core and
compared this with a threaded implementation, with each process having sev-
eral threads. Labeling the configuration as t × m × n for t threads per process,
m MPI processes per node, and n nodes, we compare choices of t, m, and n in
Figure 12.9.

AQ15

Table 12.4  Comparison of DryadLINQ and MPI Technologies on ALU
Sequencing Application with SW-G Algorithm

Technology
Total

Time (s)
Time per
Pair (ms)

Partition
Data (s)

Calculated
and Output
Distance(s)

Merge
Files (s)

Dryad 50,000
sequences

17200.413 0.0069 2.118 17104.979 93.316

35,339
sequences

8510.475 0.0068 2.716 8429.429 78.33

MPI 50,000
sequences

16588.741 0.0066 N/A 13997.681 2591.06

35,339
sequences

8138.314 0.0065 N/A 6909.214 1229.10

K10175_C012.indd 294 3/2/2010 6:50:06 PM

High-Performance Parallel Computing  ◾  295

The striking result for this step is that MPI easily outperforms the equivalent
threaded version of this embarrassingly parallel step. In Figure 12.9, all the peaks in
the overhead correspond to patterns with large values of t. Note that the MPI intra-
node 1 × 24 × 32 pattern completes the full 624 billion alignments in 2.33 h—4.9
times faster than the threaded implementation 24 × 1 × 32. This 768-core MPI run
has a parallel overhead of 1.43 corresponding to a speedup of 316.

The SW-G alignment performance is probably dominated by memory band-
width issues, and we are pursuing several points that could affect this, though it
is not at our highest priority as SW-G is not the dominant step. We have tried to
identify the reason behind the comparative slowness of threading. Using Windows
monitoring tools, we found that the threaded version has about a factor of 100 more
context switches than in the one-thread-per-process MPI version. This could lead
to a slowdown of the threaded approach and correspond to Windows handing of
paging of threads with large memory footprints.

12.6  Performance of MPI on Clouds
After the previous observations, we analyzed the performance implications of cloud
for parallel applications implemented using MPI. Specifically, we were trying to
find the overhead of virtualized resources, and understand how applications with
different communication-to-computation (C/C) ratios perform on cloud resources.
We also evaluated different CPU-core assignment strategies for VMs, in order to
understand the performance of VMs on multi-core nodes.

AQ16

0

2

4

6

8

10

12

1×1×1
1×2×1

2×1×1
1×4×1

2×2×1
4×1×1

1×8×1
2×4×1

4×2×1
8×1×1

1×16×1

2×8×1
4×4×1

8×2×1
16×1×1

1×24×1

24×1×1

1×24×8

24×1×8

1×24×16

24×1×16

1×24×32

24×1×32

Pa
ra

lle
l o

ve
rh

ea
d

Parallel patterns (threads × MPI processes × nodes)

Smith–Waterman–Gotoh alignment timings for 35,339 points
12,497,500 Alignments

Figure 12.9  Performance of ALU gene alignments for different parallel patterns.

K10175_C012.indd 295 3/2/2010 6:50:07 PM

296  ◾  Cloud Computing and Software Services: Theory and Practice

Commercial cloud infrastructures do not allow users to access the bare-
hardware nodes, in which the VMs are deployed, a must-have requirement for our
analysis. Therefore, we used a Eucalyptus-based cloud infrastructure deployed at
our university for this analysis. With this cloud infrastructure, we have complete
access to both VM instances and to the underlying bare-metal nodes, as well as the
help of the administrators; as a result, we could deploy different VM configura-
tions, allocating different CPU cores to each VM. Therefore, we selected the above
cloud infrastructure as our main test bed.

For our evaluations, we selected three MPI applications with different com-
munication and computation requirements, namely, (1) the matrix multiplication,
(2) Kmeans clustering, and (3) the Concurrent Wave Equation Solver. Table 12.5
highlights the key characteristics of the programs that we used as benchmarks.

12.6.1  Benchmarks and Results
The Eucalyptus (version 1.4) infrastructure we used is deployed on 16 nodes of an
iDataplex cluster, each of which has 2 Quad Core Intel Xeon processors (for a total
of 8 CPU cores) and 32 GB of memory. In the bare-metal version, each node runs a
Red Hat Enterprise Linux Server release 5.2 (Tikanga) operating system. We used
the OMPI version 1.3.2 with the gcc version 4.1.2. We then created a VM image
from this hardware configuration, so that we would have a similar software envi-
ronment on the VMs once they were deployed. The virtualization is based on the
Xen hypervisor (version 3.0.3). Both bare-metal and virtualized resources utilized
gigabit Ethernet connections.

When VMs are deployed using Eucalyptus, it allows us to configure the
number of CPU cores assigned to each VM image. For example, with 8 core
systems, the CPU-core allocation per VM can range from 8 cores to 1 core per
VM, resulting in several different CPU-core assignment strategies. In an Amazon
EC2 infrastructure, the standard instance type has half a CPU per VM instance
(Evangelinos and Hill 2008). In the current version of Eucalyptus, the minimum
number of cores that we can assign for a particular VM instance is 1; hence, we
selected five CPU-core assignment strategies (including the bare-metal test) listed
in Table 12.6.

We ran all the MPI tests, on all five hardware/VM configurations, and mea-
sured the performance and calculated speedups and overheads. We calculated
two types of overheads for each application using formula (1). The total overhead
induced by virtualization and parallel processing is calculated using the bare-metal
single-process time as T(1) in formula (1). The parallel overhead is calculated using
the single-process time from a corresponding VM as T(1) in formula (1).

In all the MPI tests we performed, we used the following invariant to select the
number of parallel processes (MPI processes) for a given application:

	 Number of MPI processes = Number of CPU cores used

K10175_C012.indd 296 3/2/2010 6:50:07 PM

High-Performance Parallel Computing  ◾  297

Table 12.5  Computation and Communication Complexities of Different
MPI Applications Used

Application
Matrix

Multiplication
Kmeans

Clustering
Concurrent Wave

Equation

Description Implements
Cannon’s
Algorithm

Assume a
rectangular
process grid
(Figure 12.1, left)

Implements
Kmeans
Clustering
algorithm

A fixed number of
iterations are
performed in
each test

A vibrating string is
decomposed (split)
into points, and
each MPI process
is responsible for
updating the
amplitude of a
number of points
over time

Grain size (n) The number of
points in a matrix
block handled by
each MPI process

The number of
data points
handled by a
single MPI
process

Number of points
handled by each
MPI process

Communication
pattern

Each MPI process
communicates
with its
neighbors both
row-wise and
column-wise

All MPI processes
send partial
clusters to one
MPI process
(rank 0); rank 0
distributes the
new cluster
centers to all the
nodes

In each iteration,
each MPI process
exchanges
boundary points
with its nearest
neighbors

Computation
per MPI
process

[(()])O n 3 O(n) O(n)

Communication
per MPI
process

[(()])O n O n2 = () O(1) O(1)

C/C O
n
1





O
n
1





O
n
1





Message size ()n n2 = D—where D is the
number of
cluster centers

D << n

Each message
contains a double
value

Communication
routines used

MPI_Sendrecv_
replace()

MPI_Reduce()

MPI_Bcast()

MPI_Sendrecv()

K10175_C012.indd 297 3/2/2010 6:50:09 PM

298  ◾  Cloud Computing and Software Services: Theory and Practice

For example, for the matrix multiplication application, we used only half the
number of nodes (bare-metal or VMs) available to us, so that we had 64 MPI
processes = 64 CPU cores. (This is mainly because the matrix multiplication appli-
cation expects the MPI processes to be in a square grid, in contrast to a rectangular
grid). For Kmeans clustering, we used all the nodes, resulting in a total of 128
MPI processes utilizing all 128 CPU cores. Some of the results of our analysis
highlighting the different characteristics we observed are shown in Figures 12.10
through 12.17.

For the matrix multiplication, the graphs show very close performance char-
acteristics in all the different hardware/VM configurations. As we expected, the
bare-metal has the best performance and speedup values, compared to the VM
configurations (apart from the region close to the matrix size of 4096 × 4096, where
the VM performed better than the bare-metal; we have performed multiple tests
at this point, and found that it is due to the cache performances of the bare-metal
node). After the bare-metal, the next-best performance and speedups were recorded
in the case of 1 VM per bare-metal node configuration, in which the performance
difference was mainly due to the overhead induced by the virtualization. However,
as we increased the number of VMs per bare-metal node, the overhead increased

Table 12.6  Different Hardware/VM Configurations Used for Our
Performance Evaluations

Ref Description

Number of
CPU Cores

Accessible to
the Virtual or

Bare-Metal
Node

Amount of
Memory (GB)
Accessible to
the Virtual or

Bare-Metal
Node

Number of
Virtual or

Bare-Metal
Nodes

Deployed

BM Bare-metal
node

8 32 16

1-VM-8-core 1 VM instance
per bare-
metal node

8 30 (2 GB is
reserved for
dom0)

16

2-VM-4-core 2 VM instances
per bare-
metal node

4 15 32

4-VM-2-core 4 VM instances
per bare-
metal node

2 7.5 64

8-VM-1-core 8 VM instances
per bare-
metal node

1 3.75 128

K10175_C012.indd 298 3/2/2010 6:50:09 PM

High-Performance Parallel Computing  ◾  299

as well. At 81 processes, the 8 VMs per node configuration shows about a 34%
decrease in speedup compared to the bare-metal results.

In Kmeans clustering, the effect of virtualized resources is much clearer than
in the case of matrix multiplication. All VM configurations show a lower perfor-
mance compared to the bare-metal configuration. In this application, the amount
of data transferred between MPI processes is extremely low compared to the

0

10

20

30

40

50

60

70

1024 2048 3072 4096 5120 6144

A
ve

ra
ge

 ti
m

e (
s)

Dimension of a matrix

Bare-metal
1-VM

2-VMs
4-VMs
8-VMs

Figure 12.10  Performance of the matrix multiplication application—average
time (in s) against the size of a matrix (number of MPI processes = 64).

0

100

200

300

400

500

9 16 25 36 64 81

Sp
ee

du
p

=
T(

1)
/T

(P
)

Number of MPI processes = number of CPU cores

Bare-metal
1-VM

2-VMs
4-VMs
8-VMs

Figure 12.11  Speedup of the matrix multiplication application—speedup
against the number of MPI processes = number of CPU cores used (fixed matrix
size = 5184 × 5184).

K10175_C012.indd 299 3/2/2010 6:50:09 PM

300  ◾  Cloud Computing and Software Services: Theory and Practice

amount of data processed by each MPI process, and also in relation to the amount
of computations performed. Figures 12.14 and 12.15 show the total overhead and
the parallel overhead for Kmeans clustering under different VM configurations.
From these two calculations, we found that, for VM configurations, the overheads
are extremely large for data-set sizes of less than 10 million points, for which the
bare-metal overhead remains less than 1 (for all cases). For larger data sets, such as
those of 40 million points, all overheads reached less than 0.5. The slower speedup

0

1

2

3

4

5

0.5 1 10 16 20 30 40

A
ve

ra
ge

 ti
m

e (
s)

Number of 3D data points (millions)

Bare-metal
1-VM
2-VM
4-VM
8-VM

Figure 12.12  Performance of Kmeans clustering—average time (in s) against the
number of 2D data points clustered (number of MPI processes = 128).AQ17

0

10

20

30

40

50

60

70

80

90

16 32 48 64 80 96 112 128

Sp
ee

du
p

=
T(

1)
/T

(P
)

Number of MPI processes = number of CPU cores

Bare-metal
1-VM

2-VMs
4-VMs
8-VMs

Figure 12.13  Speedup of Kmeans clustering—speedup against the number of
MPI processes = number of CPU cores used (number of data points = 860,160).

K10175_C012.indd 300 3/2/2010 6:50:10 PM

High-Performance Parallel Computing  ◾  301

of the VM configurations (shown in Figure 12.13) is due to the use of a smaller
data set (∼800K points) to calculate the speedups. The overheads are extremely
large for this region of the data sizes, and hence, this resulted in lower speedups
for the VMs.

The concurrent wave equation splits a number of points into a set of paral-
lel processes, and each parallel process updates its portion of the points in some

0

0.2

0.4

0.6

0.8

1

3e-006 6e-006 8e-006 1.25e-005

O
ve

rh
ea

d
=

(P
×
T(
P)

–
T(

1)
)/T

(1
)

1/grain size (log scale)

Bare-metal
1-VM

2-VMs
4-VMs
8-VMs

Figure 12.14  Total overhead of Kmeans clustering—overhead against 1/grain
size, grain size = number of 2D data points per parallel task (number of MPI
processes = 128).

0

0.1

0.2

0.3

0.4

0.5

0.6

3e-006 6e-006 8e-006 1.25e-005

O
ve

rh
ea

d
=

(P
×
T(
P)

–
T(

1)
)/T

(1
)

1/Grain size (log scale)

Bare-metal
1-VM

2-VMs
4-VMs
8-VMs

Figure 12.15  Parallel overhead of Kmeans clustering—parallel overhead against
1/grain size (number of MPI processes = 128).

K10175_C012.indd 301 3/2/2010 6:50:11 PM

302  ◾  Cloud Computing and Software Services: Theory and Practice

number of steps. An increase in the number of points increases the amount of
computations performed. Since we fixed the number of steps in which the points
were updated, we obtained a constant amount of communication in all the test
cases, resulting in a C/C ratio of O(1/n). In this application also, the difference
in performance between the VMs and the bare-metal version was clearer, and at
the highest grain size, the total overhead of 8 VMs per node is about seven times

0

0.5

1

1.5

2

2.5

3

8,192 20,480 30,720 40,960 51,200

A
ve

ra
ge

 ti
m

e (
s)

Number of points

Bare-metal
1-VM

2-VMs
4-VMs
8-VMs

Figure 12.16  Performance of the Concurrent Wave Equation Solver—average
time (in s) against the number of points computed (number of MPI processes = 128).

0

0.2

0.4

0.6

0.8

1

0.004 0.008 0.012 0.016

O
ve

rh
ea

d
=

(P
×
T(
P)

–
T(

1)
)/T

(1
)

1/grain size

Bare-metal
1-VM

2-VMs
4-VMs
8-VMs

Figure 12.17  Total overhead of the Concurrent Wave Equation Solver—over-
head against 1/grain size, grain size = number of points assigned per parallel task
(number of MPI processes = 128).

K10175_C012.indd 302 3/2/2010 6:50:12 PM

High-Performance Parallel Computing  ◾  303

higher than the overhead of the bare-metal configuration. The performance differ-
ences between the different VM configurations became smaller with the increase
in grain size.

From the above experimental results, we can see that the applications with
lower C/C ratios experienced a slower performance in virtualized resources. When
the amount of data transferred between MPI processes is large, as in the case of the
matrix multiplication, the application is more susceptible to the bandwidth than
the latency. From the performance results of the matrix multiplication, we can see
that the virtualization has not affected the bandwidth considerably. However, all
the other results show that the virtualization has caused considerable latencies for
parallel applications, especially with smaller data transfer requirements. The effect
on latency increases as we use more VMs in a bare-metal node.

According to the Xen para-virtualization architecture (Barham et al. 2003),
domUs (VMs that run on top of a Xen para-virtualization) are not capable of
performing I/O operations by themselves. Instead, they communicate with dom0
(privileged OS) via an event channel (interrupts) and the shared memory, and
then the dom0 performs the I/O operations on behalf of the domUs. Although
the data is not copied between domUs and dom0, dom0 needs to schedule the
I/O operations on behalf of domUs. Figure 12.18 (left) and (right) shows this
behavior in the 1 VM per node and 8 VMs per node configurations, respectively,
that we used.

In all the above parallel applications we tested, the timing figures measured
correspond to the time for computation and communication inside the applica-
tions. Therefore, all the I/O operations performed by the applications are network
dependent. From Figure 12.19 (right), it is clear that dom0 needs to handle eight
event channels when there are eight VM instances deployed on a single bare-
metal node. Although the eight MPI processes run on a single bare-metal node,
since they are in different virtualized resources, each of them can only commu-
nicate via dom0. This explains the higher overhead in our results for 8 VMs per
node configuration. The architecture reveals another important feature as well,
that is, in the case of the 1 VM per node configuration, when multiple processes

Core 1 Core 1
Shared memory
Xen hypervisor

PV block
backend

driver

PV block
backend

driver

PV
block
driver

PV block
driver

PV
block
driver

MPI
1

1

2 2

3
1

3

MPI
8

MPI
1

MPI
8

MPI
2

Dom 0 Dom U1 Dom U8

Event channels Event channel
Dom 0 Dom U1

Core 8 Core 1 Core 1
Shared memory
Xen hypervisor

Core 8

Figure 12.18  (Left) Communication between dom0 and domU when 1 VM per
node is deployed. (Right) Communication between dom0 and domUs when 8 VMs
per node are deployed.

K10175_C012.indd 303 3/2/2010 6:50:12 PM

304  ◾  Cloud Computing and Software Services: Theory and Practice

(MPI or others) that run in the same VM communicate with each other via the
network, all the communications must be scheduled by dom0. This results in
higher latencies. We could verify this by running the above tests with LAM MPI
(a predecessor of OMPI, which does not have improved support for in-node com-
munications for multi-core nodes). Our results indicate that, with LAM MPI,
the worst performance for all the tests occurred when 1 VM per node was used.
For example, Figure 12.19 shows the performance of Kmeans clustering under
bare-metal, 1 VM per node, and 8 VMs per node configurations. This observation
suggests that, when using VMs with multiple CPUs allocated to each of them for
parallel processing, it is better to utilize parallel runtimes, which have better sup-
port for in-node communication.

Several others have also performed relevant research on the performance impli-
cations of virtualized resources. Youseff et al. (2006) present an evaluation of the
performance impact of Xen on MPI. According to their evaluations, the Xen does
not impose considerable overheads for HPC (high-performance computing) appli-
cations. However, our results indicate that the applications that are more sensitive
to latencies (smaller messages, lower C/C ratios) also experience higher overheads
under virtualized resources, and this overhead increases as more and more VMs
are deployed per hardware node. From their evaluations, it is not clear how many
VMs they deployed on the hardware nodes, or how many MPI processes were used
in each VM. According to our results, these factors cause significant changes in
possible results. Running 1 VM per hardware node produces a VM instance with
a similar number of CPU cores, such as in a bare-metal node. However, our results
indicate that, even in this approach, if the parallel processes inside the node com-
municate via the network, the virtualization may produce higher overheads under
the current VM architectures.

AQ18

AQ19

0

2

4

6

8

10

Bare-metal 1-VM per node 8-VMs per node

A
ve

ra
ge

 ti
m

e (
s)

LAM MPI
OpenMPI

Figure 12.19  LAM versus OMPI under different VM configurations.

K10175_C012.indd 304 3/2/2010 6:50:13 PM

High-Performance Parallel Computing  ◾  305

Evangelinos and Hill (2008) discuss the details of their analysis of the perfor-
mance of HPC benchmarks on the EC2 cloud infrastructure. One of the key obser-
vations noted in their paper is that both the OMPI and the MPICH2-nemsis show
extremely large latencies, while the LAM MPI, the GridMPI, and the MPICH2-
scok show smaller, smoother latencies. This observation is similar to what we
observed with the LAM MPI in our tests, and the same explanation holds valid for
their observation as well.

Walker (2008) presents benchmark results of the performance of HPC applica-
tions using “high-CPU extra-large” instances provided by EC2, and on a similar set
of local hardware nodes. The local nodes are connected using Infiniband switches,
whereas the Amazon EC2 network technology is unknown. The results indicate
about a 40%–1000% performance degradation on the EC2 resources, compared
to the local cluster. Since the differences in operating systems and the compiler ver-
sions between the VMs and bare-metal nodes may cause variations in results, for
our analysis, we used a cloud infrastructure over which we have complete control.
In addition, we used similar software environments in both VMs and bare-metal
nodes. In our results, we noticed that applications that are more susceptible to
latencies experience a higher performance degradation (around 40%) under virtu-
alized resources. Bandwidth does not seem to be a consideration in private cloud
infrastructures.

Gavrilovska et al. (2007) discuss several improvements over the current virtu-
alization architectures to support HPC applications, such as HPC hypervisors and
self-virtualized I/O devices. We notice the importance of such improvements and
research. In our experimental results, we used hardware nodes with 8 cores, and
deployed and tested up to 8 VMs per node in these systems. Our results show that
the virtualization overhead increases with the number of VMs deployed on a hard-
ware node. These characteristics will have a larger impact on systems having more
CPU cores per node. A node with 32 cores running 32 VM instances may produce
very large overheads under the current VM architectures.

12.7  Conclusions and Future Work
We have described several different studies of clouds and cloud technologies on both
real applications and standard benchmark. These address different aspects of paral-
lel computing using either traditional (MPI) or the new cloud-inspired approaches.
We find that cloud technologies work well for most pleasingly parallel problems
(“map-only” and “map-reduce” classes of applications). In addition, their support
for handling large data sets, the concept of moving computation to data, and the
better quality of services provided such as fault tolerance and monitoring, all serve
to simplify the implementation details of such problems. Applications with com-
plex communication patterns observe higher overheads when implemented using

K10175_C012.indd 305 3/2/2010 6:50:13 PM

306  ◾  Cloud Computing and Software Services: Theory and Practice

cloud technologies, and even with large data sets, these overheads limit the usage
of cloud technologies for such applications. Enhanced MapReduce runtimes, such
as CGL-MapReduce, allow iterative-style applications to utilize the MapReduce
programming model, while incurring minimal overheads, as compared to other
runtimes, such as Hadoop and Dryad.

Handling large data sets using cloud technologies on cloud resources is an area
that needs more research. Most cloud technologies support the concept of mov-
ing computation to data where the parallel tasks access data stored in local disks.
Currently, it is not clear to us whether this approach would work well with the VM
instances that are leased only for the duration of use. A possible approach is to stage
the original data in high-performance parallel file systems or Amazon S3–type
storage services, and then move the data to the VMs each time they are leased to
perform computations.

MPI applications that are sensitive to latencies experience moderate-to-higher
overheads when performed on cloud resources, and these overheads increase as the
number of VMs per bare-hardware node increases. For example, in Kmeans clus-
tering, 1 VM per node shows a minimum of an 8% total overhead, while 8 VMs per
node show at least a 22% overhead. In the case of the Concurrent Wave Equation
Solver, both these overheads are around 50%. Therefore, we expect the CPU-core
assignment strategies, such as half a core per VM, to produce very high overheads
for applications that are sensitive to latencies. Applications that are not suscep-
tible to latencies, such as those that perform large data transfers and/or higher C/C
ratios, show minimal total overheads in both bare-metal and VM configurations.
Therefore, we expect that the applications developed using cloud technologies will
work fine with cloud resources, because the milliseconds-to-seconds latencies that
they already have under the MapReduce model will not be affected by the addi-
tional overheads introduced by the virtualization. This is also an area we are cur-
rently investigating. We are also building applications (biological DNA sequencing)
whose end-to-end implementation from data processing to filtering (data-mining)
involves an integration of MapReduce and MPI (Fox et al. 2008).

Acknowledgments
We would like to thank Joe Rinkovsky and Jenett Tillotson from University
Information Technology Services, Indiana University (IU UITS), for their dedicated
support in setting up a private cloud infrastructure and helping us with various con-
figurations associated with our evaluations. We would also like to thank the ARTS
team at Microsoft Research for their support on hardware and software infrastruc-
tures. We are grateful to Mina Rho and Haixu Tang from the Indiana University
School of Informatics and Computing for their help in understanding ALU sequence
clustering and providing human and chimpanzee gene sequence data.

AQ20

K10175_C012.indd 306 3/2/2010 6:50:13 PM

High-Performance Parallel Computing  ◾  307

References
Amazon.com, Inc. 2009. Simple Storage Service (S3). http://aws.amazon.com/s3
ASF. 2009a. Apache Hadoop Core. http://hadoop.apache.org/core
ASF. 2009b. Apache Hadoop Pig. http://hadoop.apache.org/pig/
Barham, P., B. Dragovic et al. 2003. Xen and the art of virtualization. Proceedings of the 19th

ACM Symposium on Operating Systems Principles, Bolton Landing, NY.
Batzer, M.A. and P.L. Deininger. 2002. ALU repeats and human genomic diversity. Nat. Rev.

Genet. 3(5): 370–379.
Condor Team. 2009. Condor DAGMan. http://www.cs.wisc.edu/condor/dagman/
Dean, J. and S. Ghemawat. 2008. MapReduce: Simplified data processing on large clusters.

Commun. ACM 51(1): 107–113.
Dongarra, J., C.A. Geist et al. 1993. Integrated PVM framework supports heterogeneous

network computing. Comput. Phys. 7(2): 166–175.
Ekanayake, J., S. Pallickara et al. 2008. MapReduce for data intensive scientific analyses.

IEEE Fourth International Conference on eScience ’08, Indianapolis, IN.
ElasticHosts Ltd. 2009. Cloud Hosting. http://www.elastichosts.com/
Ericsson 2009. Erlang programming language. http://www.erlang.org/
Evangelinos, C. and C. Hill. 2008. Cloud computing for parallel scientific HPC applications:

Feasibility of running coupled atmosphere-ocean climate models on Amazon’s EC2.
The First Workshop on Cloud Computing and its Applications (CCA’08), Chicago, IL.

Forum, MPI. n.d. MPI (Message Passing Interface). http://www.mcs.anl.gov/research/
projects/mpi/

Foster, I. 2001. The anatomy of the grid: Enabling scalable virtual organizations. Int.
J. Supercomput. Appl. 15: 200–222.

Fox, G.C., A. Hey, and S. Otto. 1987. Matrix algorithms on the hypercube I: Matrix multi-
plication. Parallel Comput. 4: 17.

Fox, G., S. Bae et al. 2008. Parallel data mining from multicore to cloudy grids. Proceedings
of the International Advanced Research Workshop on High Performance Computing and
Grids (HPC2008), Cetraro, Italy.

Gabriel, E., G.E. Fagg et al. 2004. Open MPI: Goals, concept, and design of a next genera-
tion MPI implementation. Proceedings of the 11th European PVM/MPI Users’ Group
Meeting. Budapest, Hungary.

Gavrilovska, A., S. Kumar et al. March 2007. Abstract high-performance hypervisor archi-
tectures: Virtualization in HPC systems. Proceedings of the HPCVirt 2007, Lisbon,
Portugal.

Ghemawat, S., H. Gobioff et al. 2003. The Google file system. SIGOPS Oper. Syst. Rev.
37(5): 29–43.

Gotoh, O. 1982. An improved algorithm for matching biological sequences. J. Mol. Biol.
162: 705–708.

Gu, Y. and R.L. Grossman. 2009. Sector and sphere: The design and implementation
of a high-performance data cloud. Phil. Trans. A: Math Phys. Eng. Sci. 367(1897):
2429–2445.

Huang, X. and A. Madan. 1999. CAP3: A DNA sequence assembly program. Genome Res.
9(9): 868–877.

Hull, D., K. Wolstencroft et al. 2006. Taverna: A tool for building and running workflows of
services. Nucleic Acids Res. 34(Web Server issue): W729–32.

AQ21

K10175_C012.indd 307 3/2/2010 6:50:13 PM

308  ◾  Cloud Computing and Software Services: Theory and Practice

Isard, M., M. Budiu et al. 2007. Dryad: Distributed data-parallel programs from sequential
building blocks. SIGOPS Oper. Syst. Rev. 41(3): 59–72.

Johnsson, S.L., T. Harris et al. 1989. Matrix multiplication on the connection machine.
Proceedings of the 1989 ACM/IEEE conference on Supercomputing, Reno, NV. ACM,
New York.

Jurka, J. 2000. Repbase update: A database and an electronic journal of repetitive elements.
Trends Genet. 9:418–420.

Keahey, K., I. Foster et al. 2005. Virtual workspaces: Achieving quality of service and quality
of life in the Grid. Sci. Program. 13(4): 265–275.

Ludscher, B., I. Altintas et al. 2006. Scientific workflow management and the Kepler system
[research articles]. Concurr. Comput. Pract. Exper. 18(10): 1039–1065.

Macqueen, J. 1967. Some methods for classification and analysis of multivariate observations.
Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability,
Vol. 1: Statistics, Berkeley, CA, pp. 281–297.

Moretti, C., H. Bui et al. 2009. All-pairs: An abstraction for data intensive computing on
campus grids. IEEE Trans. Parallel Distrib. Syst. 99(1).

Nokia. 2009. Disco project. http://discoproject.org/
Nurmi, D., R. Wolski et al. 2009. The eucalyptus open-source cloud-computing system.

Proceedings of the Ninth IEEE/ACM International Symposium on Cluster Computing and
the Grid, Shanghai, China.

Pallickara, S. and G. Fox. 2003. NaradaBrokering: A distributed middleware framework
and architecture for enabling durable peer-to-peer grids. Proceedings of the ACM/
IFIP/USENIX 2003 International Conference on Middleware, Rio de Janeiro, Brazil.
Springer-Verlag, New York.

Pallickara, S. L. and M. Pierce. 2008. SWARM: Scheduling large-scale jobs over the loosely-
coupled HPC clusters. Proceedings of the IEEE Fourth International Conference on
eScience ’08 (eScience, 2008), Indianapolis, IN.

Pike, R., S. Dorward et al. 2005. Interpreting the data: Parallel analysis with Sawzall. Sci.
Program. 13(4): 277–298.

Raicu, I., Y. Zhao et al. 2007. Falkon: A fast and light-weight tasK executiON framework.
Proceedings of the 2007 ACM/IEEE Conference on Supercomputing, Reno, NV. ACM,
New York.

ServePath. 2009. GoGrid Cloud Hosting. http://www.gogrid.com/
Smith, T.F. and M.S. Waterman. 1981. Identification of common molecular subsequences.

J. Mol. Biol. 147:195–197.
Smith, A.F.A., R. Hubley, and P. Green. 2004. Repeatmasker. http://www.repeatmasker.org
Smith Waterman Software. http://jaligner.sourceforge.net/naligner/
Vermorel, J. 2005. NAligner (Smith Waterman software with Gotoh enhancement). http://

jaligner.sourceforge.net/naligner/
Walker, E. 2008. Benchmarking Amazon EC2 for high-performance scientific computing.

http://www.usenix.org/publications/login/2008–10/openpdfs/walker.pdf.
Youseff, L., R. Wolski et al. 2006. Evaluating the performance impact of Xen on MPI and

process execution for HPC systems. Proceedings of the First International Workshop on
Virtualization Technology in Distributed Computing, Tampa, FL.

Yu, Y., M. Isard et al. 2008. DryadLINQ: A system for general-purpose distributed data-
parallel computing using a high-level language. Proceedings of the Symposium on
Operating System Design and Implementation (OSDI  ), San Diego, CA.

AQ22

AQ23
AQ24

K10175_C012.indd 308 3/2/2010 6:50:13 PM

AUTHOR QUERIES
[AQ1]	 Please check if the fixed running head is ok.
[AQ2]	 Please expand “MPI,” if appropriate.
[AQ3]	 Please expand “PVM,” if appropriate.
[AQ4]	 Please check whether “italics” for emphasis be changed to bold.
[AQ5]	 �Fox and Hey (1987) has been changed to Fox et al. (1987) to match with

the reference list. Please check.
[AQ6]	 Please check if the edit of the sentence starting “In the two…” is correct.
[AQ7]	 Please expand “ALU,” if appropriate.
[AQ8]	 �En dashes have been inserted for the combinations “Smith Waterman”

and “Smith Waterman Gotoh” in this chapter. Please check.
[AQ9]	 �Smith and Hubley (2004) has been changed to Smith et al. (2004) to

match with the reference list. Please check.
[AQ10]	 �Smith et al. (1981) has been changed to Smith and Waterman (1981) to

match with the reference list. Please check.
[AQ11]	 Please expand “MDS,” if appropriate.
[AQ12]	 �Please check if the edit of the sentence starting “We decompose…” is

correct.
[AQ13]	 �“PairEnumertator” has been changed to “PairEnumerator” in the sentence

starting “We implemented…” Please check.
[AQ14]	 �In the sentence starting “Therefore, we…,” please check whether the phrase

at the end of the sentence “this file system” refers to the “high-performance
parallel file system” or the “Lustre file system,” and modify the sentence
accordingly for clarity.

[AQ15]	 �Please check if the edit of the sentence starting “On 744 cores…” is correct.
[AQ16]	 �Please check the last part of the sentence starting “This could lead…” for

sense, and whether “Windows handing” should be changed to “Windows
handling.”

[AQ17]	 �Please check the caption of Figure 12.12 against the respective artwork.
Caption says “2D data points,” whereas artwork says “3D data points.”

[AQ18]	 Please expand “LAM,” if appropriate.
[AQ19]	 Please check if the expansion inserted for “HPC” is correct.
[AQ20]	 Please expand “ARTS,” if appropriate.
[AQ21]	 �Please check the inserted volume no. in Dongarra et al. (1993) for

correctness.
[AQ22]	 �Please check the location of publisher in Johnsson et al. (1989) and Raicu

et al. (2007) for correctness.
[AQ23]	 �Please check the inserted volume no. and page range in Macqueen (1967)

for correctness.
[AQ24]	 Please provide page range for Moretti et al. (2009).

K10175_C012.indd 309 3/2/2010 6:50:13 PM

