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Abstract Many scientific fields routinely generate huge datasets. In many cases, these datasets 

are not static but rapidly grow in size. Handling these types of datasets, as well as allowing 

sophisticated queries necessitates efficient distributed database systems that allow 

geographically dispersed users to access resources and to use machines simultaneously in 

anytime and anywhere. In this paper we present the architecture, implementation and 

performance analysis of a scalable, distributed database system built on multicore systems.  

The system architecture makes use of software partitioning of the database based on data 

clustering with deterministic annealing, termed the SQMD (Single Query Multiple Database) 

mechanism, a web service interface and multicore server technologies. The system allows 

uniform access to concurrently distributed databases over multicore servers, using the SQMD 

mechanism based on the publish/subscribe paradigm. We highlight the scalability of our 

software and hardware architecture by applying it to a database of 17 million chemical 

structures. In addition to simple identifier based retrieval, we will present performance results 

for shape similarity queries, which is extremely, time intensive with traditional architectures. 
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1. INTRODUCTION 

In the last few years, we have witnessed a huge increase in the size of datasets in a 

variety of fields (scientific observations for e-Science, environmental sensors, data 

fetched from Internet, and so on) (Hey, 2003; SALSA, 2008). This trend is expected 

to continue and future datasets will only become larger. Given this deluge of data, 

there is an urgent need for technologies that will allow efficient and effective 

processing of huge datasets. With the maturation of a variety of computing paradigms 

and with the advance of a variety of hardware technologies such as multicore servers, 

we can now start addressing the problem of allowing geographically dispersed users 

to access resources and to use machines simultaneously in anytime and anywhere. 

The problems of effectively partitioning a huge dataset and of efficiently 

alleviating too much computing for the processing of the partitioned data have been 

critical factor for scalability and performance. In today’s data deluge the problems are 

becoming common and will become more common in near future. The principle 

“Make common case fast” (or “Amdahl’s law”) (Hennessy, 1995) can be applied to 

make the common case faster since the impact on making the common case faster 

may be higher, while the principle generally applies for the design of computer 

architecture. 
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To achieve scalability and maintain high performance, we have developed a 

distributed database system on multicore servers. The databases are distributed over 

multiple, physically distinct multicore servers by fragmenting the data using two 

different methods: data clustering with deterministic annealing and horizontal 

partitioning to increase the molecule shape similarity and to decrease the query 

processing time. Each database operates with independent threads of execution over 

multicore servers. The distributed nature of the databases is transparent to end-users 

and thus the end-users are unaware of data fragmentation and distribution. The 

middleware hides the details about the data distribution. To support efficient queries, 

we used a Single Query Multiple Database (SQMD) mechanism which transmits a 

single query that simultaneously operates on multiple databases, using a 

publish/subscribe paradigm. A single query request from end-user is disseminated to 

all the databases via middleware and agents, and the same query is executed 

simultaneously by all the databases. The web service component of the middleware 

carries out a serial aggregation of the responses from the individual databases. 

Fundamentally, our goal is to allow high performance interaction between users and 

huge datasets by building a scalable, distributed database system using multicore 

servers. The multicore servers exhibit clear universal parallelism as many users can 

access and use machines simultaneously (Qiu, 2007). Obviously our distributed 

database system built on such multicore servers will be able to greatly increase query 

processing performance. In this paper we focus on the issue of data scalability with 

our software architecture and hardware technology. 

This paper is organized as follows. Section 2 presents the problem and our general 

approach to a solution. We discuss related work in Section 3. Section 4 presents the 

architecture of our scalable, distributed database system built on multicore systems 

and briefly describes a database of 3D chemical structures, which we use as a case 

study for our architecture. Section 5 presents experimental results to demonstrate the 

viability of our distributed database system. Finally we conclude with a brief 

discussion of future work and summarize our findings. 

2. PROBLEM STATEMENT 

With the advances in a variety of software/hardware technologies and wire/wireless 

networking, coupled with large end-user populations, traditionally tightly-coupled 

client-server systems have evolved to loosely-coupled three-tier systems as a solution 

for scalability and performance. The workload of the server in two-tier system has 

been offloaded into the middleware in three-tier system in considering bottlenecks 

incurred from: increased number of service requests/responses, increased size of 

service payload, and so on. Also with the explosion of information and data, and the 

rapid evolution of Internet, centralized data have been distributed into locally or 

geographically dispersed sites in considering such bottleneck as increased workload 

of database servers. But in today’s data deluge, too much computing for the 

processing of too much data leads to the necessity of effective data fragmentation and 

efficient service processing task. One solution to the problem is to effectively 

partition large databases into smaller databases. The individual databases can then be 

distributed over a network of multicore servers. The partitioning of the database over 

multicore servers can be a critical factor for scalability and performance. The purpose 

of the multicore’s use is to facilitate concurrent access to individual databases 



residing on the database server with independent threads of execution for decreasing 

the service processing time. We have already encountered the scalability problems 

with a single huge dataset – a collection of 3D chemical structures (Chembiogrid, 

2006) during our research work. We believe that the software and hardware 

architecture described in Section 4 will allow for effective data fragmentation and 

efficient service processing resulting in a scalable solution. 

3. RELATED WORK 

The middleware in a three-tier distributed database system also has a number of 

bottlenecks with respect to scalability. We do not address the scalability issues for 

middleware in this paper since our system can be scaled well in size by a cluster (or 

network) of cooperating brokers (Uyar, 2006; Gadgil, 2006). In this paper we focus 

on the issue related on data scalability. For data scalability, other researchers showed 

a database can be scaled across locally or geographically dispersed sites by using such 

fragmentation methods as vertical partitioning, horizontal partitioning, heuristic GFF 

(Greedy with First-Fit) (Sacca, 1985), hash partitioning (Baru, 1995), range/list/hash 

partitioning (Baer, 2007), and so on. On the other hand, we address the problem of 

partitioning a database over multicore servers, based on data clustering (Data 

Clustering, 2007) such that intra-cluster similarity (using the Euclidean metric) is 

greater than inter-cluster similarity. We performed the clustering using deterministic 

annealing algorithms developed by the SALSA project (SALSA, 2008) at the CGL 

(CGL, 2001). The details of the deterministic annealing clustering method are 

described in (Qiu, 2007). Also in our work we utilized multicore servers which enable 

multithreading of executions to provide scalable service to our distributed system. 

The utilization of the hardware device to aid data scalability was not addressed yet. 

The partitioning of the database over the multicore servers have emerged from a 

necessity for the new architectural design of the distributed database system from 

scalability and performance concerns against coming data deluge. Our architecture is 

similar in concept to that of SIMD (Single Instruction stream, Multiple Data stream) 

(Kumar, 2003), in that a single unit dispatches instructions to each processing unit. 

The SQMD uses the data parallelism in a manner similar to that of SIMD, via a 

publish/subscribe mechanism. In this paper we discuss data scalability in the 

distributed database system with the software and hardware architecture, using a 

collection of more 17 million 3D chemical structures. 

4. ARCHITECTURE FOR SCALABLE DISTRIBUTED DATABASE SYSTEM 

BUILT ON MULTICORE SYSTEMS 

Fig. 1 shows a broad 3-tier architecture view for our scalable distributed database 

system built on multicore systems. The scalable, distributed database system 

architecture is composed of three tiers – the web service client (front-end), a web 

service and message service system (middleware), agents and a collection of 

databases (back-end). The distributed database system is a network of two or more 

PostgreSQL (PostgreSQL, 2008) databases that reside on one or more multicore 

servers or machines. Our hardware (multicore machines) and software (web service, 

SQMD, and deterministic annealing clustering) architecture concentrates on 

increasing scalability with increased size of distributed data, providing high 



performance service with the enhancement of query/response interaction time, and 

improving data locality. In order to decrease the processing time and to improve the 

data locality of a query performed as the size of data increases, we used MPI 

(Message Passing Interface) (MPI, 1995) style multi-threading on a multicore 

machine by clustering data through clustering program developed by CGL and 

associating the clustered data with each of threads generated within the database agent. 

But the threads do not communicate with each other as MPI does. The multithreading 

within the database agent multitasks by concurrently running multiple databases, one 

on each thread associated with each core. 

Our message and service system, which represents a middle component, provides a 

mechanism for simultaneously disseminating queries to and retrieving the results of 

the queries from distributed databases. The message and service system interacts with 

a web service which is another service component of the middleware, and database 

agents which run on multicore machines. The web service acts as query service 

manager and result aggregating service manager for heterogeneous web service 

clients. The database agent acts as a proxy for database server. We describe them in 

each aspect in the following subsections. 

 
Fig. 1. Scalable, distributed database system architecture - three tiers: web service client, web service and 

broker, and agents and a collection of databases. 
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4.1. Web Service Client 

Web service clients can simultaneously access the data in several databases in a 

distributed environment. Query requests from clients are transmitted to the web 

service, disseminated through the message and service system to database servers via 

database agents which reside on multicore servers. A web service client (front-end 

user interface) for Pub3D (Pub3d, 2008) service was developed by the ChemBioGrid 

project (Chembiogrid, 2006) at Indiana University. 

4.2. Message and service middleware system 

For communication service between the web service and middleware, and the 

middleware and database agents, we have used NaradaBrokering (Pallickara, 2005) 

for message and service middleware system as overlay built over heterogeneous 

networks to support communications among heterogeneous communities and 

collaborative applications. The NaradaBrokering from Community Grids Lab (CGL) 

is adapted as a general event brokering middleware, which supports publish/subscribe 

messaging model with a dynamic collection of brokers and provides services for 

Multicast. In this paper we use the terms “message and service middleware” and 

“broker” interchangeably. 

4.3. Database Agent (DBA) 

The DBA as a proxy for database server accepts query requests from front-end 

users via middleware, translates the requests to be understood by database server and 

retrieves the results from the database server. The retrieved results are presented 

(published) to the front-end user via a broker and web service. Web service clients 

interact with the DBA via middleware, and then the agent communicates with 

PostgreSQL database server. The agent has responsibility for getting responses from 

the database server and performs any necessary concatenations of responses occurred 

from database for the aggregating operation of the web service. As an intermediary 

between middleware and back-end, the agent retains communication interfaces and 

thus can offload some computational needs. Also the agent generates multiple threads 

which will be associated with multiple databases to improve query processing 

performance. 

4.4. Database Server 

A number of data partitions split by deterministic annealing clustering are 

distributed into PostgreSQL database servers. The partitioned data is assigned to a 

database which is associated with a thread generated by database agent. According to 

the number of cores supported by multicore servers, multiple threads can be generated 

to maximize high performance service. 

4.5  Pub3D Database 

PubChem is a public repository of chemical information. To access the chemical 

information or structure, one aspect that is not currently addressed by PubChem is the 

issue of 3D structures. Though a 2D representation is sufficient to understand the 

composition and connectivity of a molecule, many applications in chemoinformatics 

require that one has a 3D structure of a molecule. Furthermore, given a set of 3D 



structures one would then like to be able to search these structures for molecules 

whose 3D shape is similar to that of a query. To address the lack of 3D information in 

PubChem, to provide 3D shape searching capabilities and to allow efficient queries, 

Pub3D database employing a 12-D shape representation coupled with an R-tree 

(Guttman, 1984) spatial index was created. Then, given a 12-D point representation of 

a query molecular shape, we retrieve those points from the database whose distance to 

the query point is less than some distance cutoff, R. 

5. PERFORMANCE ANALYSIS 

In our experiment, we used deterministic annealing clustering software, developed 

by SALSA to partition a huge dataset. The deterministic annealing clustering 

algorithm is a modification of the K-means algorithm (K-means clustering), using 

deterministic annealing (Rose, 1998). Experimental results with the software show 

considerable gains for scalability and performance to cluster the 10 million chemicals 

in NIH PubChem and the 6 million people in the state of Indiana (Qiu, 2008). 

Databases are distributed over eight, physically distinct multicore servers by 

fragmenting the data using two different methods: deterministic annealing clustering 

and horizontal partitioning. Each database operates with independent threads (cores) 

of execution over multicore servers. The algorithm is described in more detail in (Qiu, 

2007; 2008). First, in this section we show the latency incurred from query/response 

interaction between a web service client and a centralized Pub3D database via a 

middleware and an agent. Then we show the viability of our architectural approach to 

support efficient query processing in time among distributed databases into which the 

Pub3D database is split, with horizontal partitioning and data clustering based on 

deterministic annealing respectively. The horizontal partitioning in our experiments 

was chosen due to such convenience factors as easy-to-split and easy-to-use. In our 

experiments we used the example query shown in Fig. 2 as a function of the distance 

R from 0.3 to 0.7. The choice of the distance R between 0.3 and 0.7 was due to 

excessively small size of the result sets (0 hits for R=0.1 and 2 hits in R=0.2) for 

small values of R and the very large result sets, which exceeded the memory capacity 

(for the aggregation web service running on Windows XP platform with 2 GB RAM) 

caused by the large numbers of responses in the values bigger than 0.7. Table 1 shows 

the total number of hits for varying R, using the query of Fig. 2. In Section 5.1 we 

show overhead timing considerations incurred from processing a query in our 

distributed database system. In Section 5.2 we show the performance results for query 

processing task in a centralized database. In Section 5.3 we show the performance of 

a query/response interaction mechanism (SQMD using publish/subscribe mechanism) 

between a client and distributed databases. 

 

 

 

 

 

 

 

Fig. 2. An example query used in our experiment, varying R from 0.3 to 0.7, where the R means some 
distance cutoff to retrieve those points from the database whose distance to the query point. 

select * from (select cid, momsim, 1.0 / (1.0 + cube_distance  ( ('3.0532197952271,  
1.0399824380875, -0.092431426048279, 3.0814106464386, 1.0752420425415, -0.49167355895042, 

5.3552670478821, 5.1984167098999,  -0.41230815649033,  4.9449820518494, 4.9576578140259, 

-0.093842931091785') ::cube, momsim)) as sim from pubchem_3d where cube_enlarge 
(('3.0532197952271, 1.0399824380875, -0.092431426048279, 3.0814106464386, 1.0752420425415, 

-0.49167355895042, 5.3552670478821, 5.1984167098999, -0.41230815649033, 4.9449820518494, 

4.9576578140259, -0.093842931091785'),  R,  12) @> momsim order by sim desc ) as foo where 
foo.sim != 1.0; 



Table 1 

The total number of response data occurred with varying the distance R in the query of Fig. 2. 
Distance R 0.3 0.4 0.5 0.6 0.7 

# of hits 495 6,870 37,049 113,123 247,171 

Size in bytes 80,837 1,121,181 6,043,337 18,447,438 40,302,297 

5.1. Overhead timing considerations 

Fig. 3 shows a breakdown of the latency for processing SQMD operation between 

a client and databases in our distributed database system which is a network of eight 

PostgreSQL database servers that reside on eight multicore servers respectively. The 

cost in time to access data from the databases distributed over multicore servers has 

four primary overheads. The total latency is the sum of transit cost and web service 

cost. 

 Transit cost (Tclient2ws) – The time to transmit a query (Tquery) to and receive a 

response (Tresponse) from the web service. 

 Web service cost (Tws2db) – The time between transmitting a query from a web 

service component to all the databases through a broker and agents and retrieving 

the query responses from all the databases including the corresponding execution 

times of the middleware and agents. 

 Aggregation (Taggregation) cost – The time spent in the web service for serially 

aggregating responses from databases.  

 Database agent service cost (Tagent2db) – The time between submitting a query from 

an agent to and retrieving the responses of the query from a database server 

including the corresponding execution time of the agent. 

 

Fig. 3. Total latency (Ttotal) = Transit cost (Tclient2ws) + Web service cost (Tws2db) 
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5.2. Performance for query processing task in a centralized database 

In this section we show the performance results of latency incurred from 

processing a query between a web service client and a centralized database. Note that 

the results are not to show better performance enhancement but to quantify the 

performance for a variety of latencies induced with the centralized database. In our 

experiments, we measured the round trip time in latency involved in performing 

queries between a web service client and database host servers via middleware and 

database agents. The experiment results were measured from executing a web service 

client running on Windows XP platform with 3.40 GHz Intel Pentium and 2 GB RAM 

connected to Ethernet network, and executing a web service and a broker running on 

Windows XP platform with 3.40 GHz Intel Pentium and 2 GB RAM connected to 

Ethernet network. Agents and PostgreSQL database servers ran on each of eight 2.33 

GHz Linux with 8 core / 8 GB RAM connected to Ethernet network as well. 

Fig. 4 show the mean completion time to transmit a query and to receive a response 

between a web service client and a database host server including the corresponding 

execution time of the middleware and agents, varying the distance R described in 

Section 4.5. As the distance R increases, the size of result set also increases, as shown 

in Table 1. Therefore as the distance R increases, the time needed to perform a query 

in the database increases as well, which is shown in the figure and thus the query 

processing cost clearly becomes the biggest portion of the total cost. We can reduce 

the total cost by making the primary performance degrading factor (Tagent2db) faster. 

To make the primary degrading factor faster, the result which motivated our research 

work will be used as a baseline for the speedup measurement of the experiments 

performed in the following section. 

 
Fig. 4. Mean query response time between a web service client and a centralized database host server 

including the corresponding execution time of the middleware and agents, varying the distance R. 

5.3. Performance for query processing task in distributed databases (Data   

clustering with deterministic annealing vs. Horizontal partitioning vs. Data 
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method and deterministic annealing data clustering method developed by SALSA 
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physical machines. Table 2 shows the partitioned data size in number by the data 

clustering based on deterministic annealing. 

Table 2 

The data size (in number) in the fragmentations into which the Pub3D database is split by clustering with 
deterministic annealing (Note that each database in the fragmentations by horizontal partitioning method 

has about 2,154,000 dataset in number) 

Segment 

number 

Dataset size  

in number 

Segment 

number 

Dataset size  

in number 

1 6,204,776 5 2,302,272 

2 616,133 6 4,634,860 

3 507,209 7 785,232 

4 2,018,281 8 163,017 

Table 3 

The number of responses in segments occurred with varying the distance R, where S, D, and H mean 

segment number, data clustering with deterministic annealing, and horizontal partitioning respectively. 

S 1 2 3 4 5 6 7 8 

 R 

 

 
D 

0.3 1 0 0 0 494 0 0 0 

0.4 87 0 30 0 6,753 0 0 0 

0.5 1,868 0 570 0 34,611 0 0 0 

0.6 12,926 0 2,720 0 97,477 0 0 0 

0.7 44,388 0 6,571 0 196,212 0 0 0 

 

 

H 

0.3 75 82 77 62 45 27 49 78 

0.4 863 1,133 978 893 667 498 780 1,058 

0.5 4,667 5,686 5,279 4,746 3,615 3,031 4,361 5,664 

0.6 14,089 16,749 15,782 14,650 11,369 9,756 13,559 17,169 

0.7 30,920 35,558 33,862 32,277 25,207 22,268 29,620 37,459 

Examining overhead costs and total cost, we measured the mean overhead cost for 

100 query requests in our distributed database system. We tested three different cases 

with two different partitioning methods: data clustering with deterministic annealing 

vs. horizontal partitioning vs. data clustering with deterministic annealing and 

horizontal partitioning, varying the distance R in the example query which is shown 

in Fig. 2. The results are summarized in Table 3 with the mean completion time of a 

query request in the considerations of overhead timings between a client and 

databases. 

By comparing the total costs for the three different cases with the total cost 

incurred from a centralized database system, we computed the speedup gained by the 

distribution of data with the use of multicore devices: 

Speedup = Ttotal(1db)/Ttotal(8db)=(Tclient2ws(1db)+Tws2db(1db))/(Tclient2ws(8db)+Tws2db(8db)) (1) 

     = 1 / ((1 – (Tagent2db (1db) / Ttotal (1db))) + ((Tagent2db (1db) / Ttotal (1db)) / (Tagent2db (1db) 

/ Tagent2db (8db))))       (2) 

where (1db) means a centralized database and (8db) means a distributed 

database. 



(1) means the value of speedup is the mean query response time in a centralized 

database system over the mean query response time in a distributed database system.  

(2) means the speedup gained by incorporating the un-enhanced and enhanced 

portions respectively. Fig. 5 shows the overall speedup obtained by applying (1) to the 

test cases respectively. For brevity we explain the overall speedup with the distance 

0.5 as an example. In case of using horizontal partitioning, the overall speedup by (1) 

is 1.62. The speedup by (2) is 1.93. This means some additional overheads were 

incurred during the query/response. We measured the duration between first and last 

response messages from agents, and that between first and last response messages 

arriving into web service component in middleware for global aggregation of 

responses. As expected, there was a difference between the durations. The difference 

is due to network overhead between web service component and agents, and the 

global aggregation operation overhead in web service that degrades the performance 

of the system since the web service has to wait, blocking the return of the response to 

a query request client until all database servers send the response messages. From the 

results with the example query in our distributed database system, using horizontal 

partitioning is faster than using data clustering with deterministic annealing since 

fragments partitioned by the data clustering can be different in the size of data as 

shown in Table 2. Then obviously as the responses occurred in performing a query in 

a large size of cluster increase, the time needed to perform the query in the cluster 

increases as well, which is shown in the graph in Fig. 6. But the responses hit by a 

query may not be occurred from all the distributed databases, then the data clustering 

will benefit more, increasing data locality while resulting in high latency. Therefore 

there may be unnecessary query processing with some databases distributed by the 

data clustering, using the SQMD mechanism as shown in Table 3. We thus identified 

the problems, data locality and latency, from our experimental results. To reduce the 

latency with increasing data locality in using the data clustering, we combined the 

deterministic annealing clustering with the horizontal partitioning to maximize the use 

of multicore with independent threads of execution by concurrently running multiple 

databases, one on each thread associated with each core in a multicore server. Figs. 7, 

8, and 9 show the experimental results with deterministic annealing data clustering, 

horizontal partitioning, and the combination of both methods respectively. Our 

experimental results show there is a data locality vs. latency tradeoff. Compare the 

query processing time in Fig. 7 with that in Fig. 8, with Table 3. Also while the 

figures show that the query processing cost increases as the distance R increases, the 

cost becomes a smaller portion of overall cost than the transit cost in the distribution 

of data over multicore servers, with increasing data locality and decreasing query 

processing cost as shown in Fig. 9. This result shows our distributed database system 

is scalable with the partitioning of database over multicore servers by data clustering 

based on deterministic annealing for increasing data locality, and with multithreads of 

executions associated with multiple databases split by horizontal partitioning in each 

cluster for decreasing query processing cost, and thus the system improves overall 

performance as well as query processing performance. 



 
Fig. 5. The value of speedup is the mean query response time in a centralized database system over the 

mean query response time in a distributed database system. 

 
Fig. 6. Mean query processing time in each cluster (Tagent2db), in the case of the distance R=0.5. 

 
Fig. 7. Mean query response time between a web service client and databases distributed by data clustering 
including the corresponding execution times of the middleware and agents, varying the distance R. 
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Fig. 8. Mean query response time between a web service client and databases distributed by horizontal 

partitioning including the corresponding execution times of the middleware and agents, varying the 

distance R. 

 
Fig. 9. Mean query response time between a web service client and databases distributed by data clustering 

and horizontal partitioning including the corresponding execution times of the middleware and agents, 

varying the distance R.

6. SUMMARY AND FUTURE WORK 

We have developed a scalable, distributed database system that allows uniform 

access to concurrently distributed databases over multicore servers by the SQMD 

mechanism, based on a publish/subscribe paradigm. Also we addressed the problem 

of partitioning the Pub3D database over multicore servers for scalability and 

performance with our architectural design. Our experimental results show our 

distributed database system is scalable with the partitioning of database over 

multicore servers by data clustering with deterministic annealing for increasing data 

locality, and with multithreads of executions associated with multiple databases split 

by horizontal partitioning in each cluster for decreasing query processing cost. In our 

experiments with our scalable, distributed database system, we encountered a few 

problems. The first problem occurred with the global aggregation operation in web 

service that degrades the performance of the system with an increasing number of 
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responses from distributed database servers. In future work we will consider 

asynchronous invocation web service and also redesign our current distributed 

database system with MapReduce (Dean, 2004) style data processing interaction 

mechanism by moving the computationally bound aggregating operation to a broker 

since the number of network transactions between web service and broker, and the 

workload for the aggregating operation are able to decrease. The second problem was 

found in extra hits. We will investigate the use of the M-tree index (Ciaccia, 1997) 

which has been shown to be more efficient for near neighbor queries in high-

dimensional spaces such as the ones being considered in this work. 
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