
Performance of scalable, distributed database system

built on multicore systems with deterministic annealing

clustering
Kangseok Kim

a,b,
*

,1
, Marlon Pierce

b
, Geoffrey Fox

a,b

aComputer Science Department, Indiana University, Bloomington, IN 47404, USA
bCommunity Grids Laboratory, Indiana University, Bloomington, IN 47404, USA

Abstract Many scientific fields routinely generate huge datasets. In many cases, these datasets

are not static but rapidly grow in size. Handling these types of datasets, as well as allowing

sophisticated queries necessitates efficient distributed database systems that allow

geographically dispersed users to access resources and to use machines simultaneously in

anytime and anywhere. In this paper we present the architecture, implementation and

performance analysis of a scalable, distributed database system built on multicore systems.

The system architecture makes use of software partitioning of the database based on data

clustering with deterministic annealing, termed the SQMD (Single Query Multiple Database)

mechanism, a web service interface and multicore server technologies. The system allows

uniform access to concurrently distributed databases over multicore servers, using the SQMD

mechanism based on the publish/subscribe paradigm. We highlight the scalability of our

software and hardware architecture by applying it to a database of 17 million chemical

structures. In addition to simple identifier based retrieval, we will present performance results

for shape similarity queries, which is extremely, time intensive with traditional architectures.

Keywords Distributed database system; Data clustering; Web service; Multicore Performance

1. INTRODUCTION

In the last few years, we have witnessed a huge increase in the size of datasets in a

variety of fields (scientific observations for e-Science, environmental sensors, data

fetched from Internet, and so on) (Hey, 2003; SALSA, 2008). This trend is expected

to continue and future datasets will only become larger. Given this deluge of data,

there is an urgent need for technologies that will allow efficient and effective

processing of huge datasets. With the maturation of a variety of computing paradigms

and with the advance of a variety of hardware technologies such as multicore servers,

we can now start addressing the problem of allowing geographically dispersed users

to access resources and to use machines simultaneously in anytime and anywhere.

The problems of effectively partitioning a huge dataset and of efficiently

alleviating too much computing for the processing of the partitioned data have been

critical factor for scalability and performance. In today’s data deluge the problems are

becoming common and will become more common in near future. The principle

“Make common case fast” (or “Amdahl’s law”) (Hennessy, 1995) can be applied to

make the common case faster since the impact on making the common case faster

may be higher, while the principle generally applies for the design of computer

architecture.

∗ Corresponding author. Tel.: +82 10 6223 3881.
1Present address: Department of Knowledge Information Security, Graduate School of Ajou University, Suwon, Korea

E-mail addresses: kangskim@ajou.ac.kr (K. Kim), marpierc@indiana.edu (M. Pierce), gcf@indiana.edu (G.Fox).

mailto:kangskim@ajou.ac.kr
mailto:marpierc@indiana.edu
mailto:gcf@indiana.edu

To achieve scalability and maintain high performance, we have developed a

distributed database system on multicore servers. The databases are distributed over

multiple, physically distinct multicore servers by fragmenting the data using two

different methods: data clustering with deterministic annealing and horizontal

partitioning to increase the molecule shape similarity and to decrease the query

processing time. Each database operates with independent threads of execution over

multicore servers. The distributed nature of the databases is transparent to end-users

and thus the end-users are unaware of data fragmentation and distribution. The

middleware hides the details about the data distribution. To support efficient queries,

we used a Single Query Multiple Database (SQMD) mechanism which transmits a

single query that simultaneously operates on multiple databases, using a

publish/subscribe paradigm. A single query request from end-user is disseminated to

all the databases via middleware and agents, and the same query is executed

simultaneously by all the databases. The web service component of the middleware

carries out a serial aggregation of the responses from the individual databases.

Fundamentally, our goal is to allow high performance interaction between users and

huge datasets by building a scalable, distributed database system using multicore

servers. The multicore servers exhibit clear universal parallelism as many users can

access and use machines simultaneously (Qiu, 2007). Obviously our distributed

database system built on such multicore servers will be able to greatly increase query

processing performance. In this paper we focus on the issue of data scalability with

our software architecture and hardware technology.

This paper is organized as follows. Section 2 presents the problem and our general

approach to a solution. We discuss related work in Section 3. Section 4 presents the

architecture of our scalable, distributed database system built on multicore systems

and briefly describes a database of 3D chemical structures, which we use as a case

study for our architecture. Section 5 presents experimental results to demonstrate the

viability of our distributed database system. Finally we conclude with a brief

discussion of future work and summarize our findings.

2. PROBLEM STATEMENT

With the advances in a variety of software/hardware technologies and wire/wireless

networking, coupled with large end-user populations, traditionally tightly-coupled

client-server systems have evolved to loosely-coupled three-tier systems as a solution

for scalability and performance. The workload of the server in two-tier system has

been offloaded into the middleware in three-tier system in considering bottlenecks

incurred from: increased number of service requests/responses, increased size of

service payload, and so on. Also with the explosion of information and data, and the

rapid evolution of Internet, centralized data have been distributed into locally or

geographically dispersed sites in considering such bottleneck as increased workload

of database servers. But in today’s data deluge, too much computing for the

processing of too much data leads to the necessity of effective data fragmentation and

efficient service processing task. One solution to the problem is to effectively

partition large databases into smaller databases. The individual databases can then be

distributed over a network of multicore servers. The partitioning of the database over

multicore servers can be a critical factor for scalability and performance. The purpose

of the multicore’s use is to facilitate concurrent access to individual databases

residing on the database server with independent threads of execution for decreasing

the service processing time. We have already encountered the scalability problems

with a single huge dataset – a collection of 3D chemical structures (Chembiogrid,

2006) during our research work. We believe that the software and hardware

architecture described in Section 4 will allow for effective data fragmentation and

efficient service processing resulting in a scalable solution.

3. RELATED WORK

The middleware in a three-tier distributed database system also has a number of

bottlenecks with respect to scalability. We do not address the scalability issues for

middleware in this paper since our system can be scaled well in size by a cluster (or

network) of cooperating brokers (Uyar, 2006; Gadgil, 2006). In this paper we focus

on the issue related on data scalability. For data scalability, other researchers showed

a database can be scaled across locally or geographically dispersed sites by using such

fragmentation methods as vertical partitioning, horizontal partitioning, heuristic GFF

(Greedy with First-Fit) (Sacca, 1985), hash partitioning (Baru, 1995), range/list/hash

partitioning (Baer, 2007), and so on. On the other hand, we address the problem of

partitioning a database over multicore servers, based on data clustering (Data

Clustering, 2007) such that intra-cluster similarity (using the Euclidean metric) is

greater than inter-cluster similarity. We performed the clustering using deterministic

annealing algorithms developed by the SALSA project (SALSA, 2008) at the CGL

(CGL, 2001). The details of the deterministic annealing clustering method are

described in (Qiu, 2007). Also in our work we utilized multicore servers which enable

multithreading of executions to provide scalable service to our distributed system.

The utilization of the hardware device to aid data scalability was not addressed yet.

The partitioning of the database over the multicore servers have emerged from a

necessity for the new architectural design of the distributed database system from

scalability and performance concerns against coming data deluge. Our architecture is

similar in concept to that of SIMD (Single Instruction stream, Multiple Data stream)

(Kumar, 2003), in that a single unit dispatches instructions to each processing unit.

The SQMD uses the data parallelism in a manner similar to that of SIMD, via a

publish/subscribe mechanism. In this paper we discuss data scalability in the

distributed database system with the software and hardware architecture, using a

collection of more 17 million 3D chemical structures.

4. ARCHITECTURE FOR SCALABLE DISTRIBUTED DATABASE SYSTEM

BUILT ON MULTICORE SYSTEMS

Fig. 1 shows a broad 3-tier architecture view for our scalable distributed database

system built on multicore systems. The scalable, distributed database system

architecture is composed of three tiers – the web service client (front-end), a web

service and message service system (middleware), agents and a collection of

databases (back-end). The distributed database system is a network of two or more

PostgreSQL (PostgreSQL, 2008) databases that reside on one or more multicore

servers or machines. Our hardware (multicore machines) and software (web service,

SQMD, and deterministic annealing clustering) architecture concentrates on

increasing scalability with increased size of distributed data, providing high

performance service with the enhancement of query/response interaction time, and

improving data locality. In order to decrease the processing time and to improve the

data locality of a query performed as the size of data increases, we used MPI

(Message Passing Interface) (MPI, 1995) style multi-threading on a multicore

machine by clustering data through clustering program developed by CGL and

associating the clustered data with each of threads generated within the database agent.

But the threads do not communicate with each other as MPI does. The multithreading

within the database agent multitasks by concurrently running multiple databases, one

on each thread associated with each core.

Our message and service system, which represents a middle component, provides a

mechanism for simultaneously disseminating queries to and retrieving the results of

the queries from distributed databases. The message and service system interacts with

a web service which is another service component of the middleware, and database

agents which run on multicore machines. The web service acts as query service

manager and result aggregating service manager for heterogeneous web service

clients. The database agent acts as a proxy for database server. We describe them in

each aspect in the following subsections.

Fig. 1. Scalable, distributed database system architecture - three tiers: web service client, web service and

broker, and agents and a collection of databases.

……

……

……

 Topics:

1. Query / Response

2. Heart-beat

Web Server

Query / Response

Query / Response

Query / Response

Query / Response Query / Response

Web Service Client

(Front-end User Interface)

Web Service

Message Service

Message / Service
System (Broker)

…

…

…

Database Agent (DBA)

(JDBC to PostgreSQL)

DB Host Server

Thread Thread

…

…

…

Database Agent (DBA)

(JDBC to PostgreSQL)

DB Host Server

Thread Thread

4.1. Web Service Client

Web service clients can simultaneously access the data in several databases in a

distributed environment. Query requests from clients are transmitted to the web

service, disseminated through the message and service system to database servers via

database agents which reside on multicore servers. A web service client (front-end

user interface) for Pub3D (Pub3d, 2008) service was developed by the ChemBioGrid

project (Chembiogrid, 2006) at Indiana University.

4.2. Message and service middleware system

For communication service between the web service and middleware, and the

middleware and database agents, we have used NaradaBrokering (Pallickara, 2005)

for message and service middleware system as overlay built over heterogeneous

networks to support communications among heterogeneous communities and

collaborative applications. The NaradaBrokering from Community Grids Lab (CGL)

is adapted as a general event brokering middleware, which supports publish/subscribe

messaging model with a dynamic collection of brokers and provides services for

Multicast. In this paper we use the terms “message and service middleware” and

“broker” interchangeably.

4.3. Database Agent (DBA)

The DBA as a proxy for database server accepts query requests from front-end

users via middleware, translates the requests to be understood by database server and

retrieves the results from the database server. The retrieved results are presented

(published) to the front-end user via a broker and web service. Web service clients

interact with the DBA via middleware, and then the agent communicates with

PostgreSQL database server. The agent has responsibility for getting responses from

the database server and performs any necessary concatenations of responses occurred

from database for the aggregating operation of the web service. As an intermediary

between middleware and back-end, the agent retains communication interfaces and

thus can offload some computational needs. Also the agent generates multiple threads

which will be associated with multiple databases to improve query processing

performance.

4.4. Database Server

A number of data partitions split by deterministic annealing clustering are

distributed into PostgreSQL database servers. The partitioned data is assigned to a

database which is associated with a thread generated by database agent. According to

the number of cores supported by multicore servers, multiple threads can be generated

to maximize high performance service.

4.5 Pub3D Database

PubChem is a public repository of chemical information. To access the chemical

information or structure, one aspect that is not currently addressed by PubChem is the

issue of 3D structures. Though a 2D representation is sufficient to understand the

composition and connectivity of a molecule, many applications in chemoinformatics

require that one has a 3D structure of a molecule. Furthermore, given a set of 3D

structures one would then like to be able to search these structures for molecules

whose 3D shape is similar to that of a query. To address the lack of 3D information in

PubChem, to provide 3D shape searching capabilities and to allow efficient queries,

Pub3D database employing a 12-D shape representation coupled with an R-tree

(Guttman, 1984) spatial index was created. Then, given a 12-D point representation of

a query molecular shape, we retrieve those points from the database whose distance to

the query point is less than some distance cutoff, R.

5. PERFORMANCE ANALYSIS

In our experiment, we used deterministic annealing clustering software, developed

by SALSA to partition a huge dataset. The deterministic annealing clustering

algorithm is a modification of the K-means algorithm (K-means clustering), using

deterministic annealing (Rose, 1998). Experimental results with the software show

considerable gains for scalability and performance to cluster the 10 million chemicals

in NIH PubChem and the 6 million people in the state of Indiana (Qiu, 2008).

Databases are distributed over eight, physically distinct multicore servers by

fragmenting the data using two different methods: deterministic annealing clustering

and horizontal partitioning. Each database operates with independent threads (cores)

of execution over multicore servers. The algorithm is described in more detail in (Qiu,

2007; 2008). First, in this section we show the latency incurred from query/response

interaction between a web service client and a centralized Pub3D database via a

middleware and an agent. Then we show the viability of our architectural approach to

support efficient query processing in time among distributed databases into which the

Pub3D database is split, with horizontal partitioning and data clustering based on

deterministic annealing respectively. The horizontal partitioning in our experiments

was chosen due to such convenience factors as easy-to-split and easy-to-use. In our

experiments we used the example query shown in Fig. 2 as a function of the distance

R from 0.3 to 0.7. The choice of the distance R between 0.3 and 0.7 was due to

excessively small size of the result sets (0 hits for R=0.1 and 2 hits in R=0.2) for

small values of R and the very large result sets, which exceeded the memory capacity

(for the aggregation web service running on Windows XP platform with 2 GB RAM)

caused by the large numbers of responses in the values bigger than 0.7. Table 1 shows

the total number of hits for varying R, using the query of Fig. 2. In Section 5.1 we

show overhead timing considerations incurred from processing a query in our

distributed database system. In Section 5.2 we show the performance results for query

processing task in a centralized database. In Section 5.3 we show the performance of

a query/response interaction mechanism (SQMD using publish/subscribe mechanism)

between a client and distributed databases.

Fig. 2. An example query used in our experiment, varying R from 0.3 to 0.7, where the R means some
distance cutoff to retrieve those points from the database whose distance to the query point.

select * from (select cid, momsim, 1.0 / (1.0 + cube_distance (('3.0532197952271,
1.0399824380875, -0.092431426048279, 3.0814106464386, 1.0752420425415, -0.49167355895042,

5.3552670478821, 5.1984167098999, -0.41230815649033, 4.9449820518494, 4.9576578140259,

-0.093842931091785') ::cube, momsim)) as sim from pubchem_3d where cube_enlarge
(('3.0532197952271, 1.0399824380875, -0.092431426048279, 3.0814106464386, 1.0752420425415,

-0.49167355895042, 5.3552670478821, 5.1984167098999, -0.41230815649033, 4.9449820518494,

4.9576578140259, -0.093842931091785'), R, 12) @> momsim order by sim desc) as foo where
foo.sim != 1.0;

Table 1

The total number of response data occurred with varying the distance R in the query of Fig. 2.
Distance R 0.3 0.4 0.5 0.6 0.7

of hits 495 6,870 37,049 113,123 247,171

Size in bytes 80,837 1,121,181 6,043,337 18,447,438 40,302,297

5.1. Overhead timing considerations

Fig. 3 shows a breakdown of the latency for processing SQMD operation between

a client and databases in our distributed database system which is a network of eight

PostgreSQL database servers that reside on eight multicore servers respectively. The

cost in time to access data from the databases distributed over multicore servers has

four primary overheads. The total latency is the sum of transit cost and web service

cost.

 Transit cost (Tclient2ws) – The time to transmit a query (Tquery) to and receive a

response (Tresponse) from the web service.

 Web service cost (Tws2db) – The time between transmitting a query from a web

service component to all the databases through a broker and agents and retrieving

the query responses from all the databases including the corresponding execution

times of the middleware and agents.

 Aggregation (Taggregation) cost – The time spent in the web service for serially

aggregating responses from databases.

 Database agent service cost (Tagent2db) – The time between submitting a query from

an agent to and retrieving the responses of the query from a database server

including the corresponding execution time of the agent.

Fig. 3. Total latency (Ttotal) = Transit cost (Tclient2ws) + Web service cost (Tws2db)

T
q
u

ery

T
resp

o
n

se

T
clien

t2
w

s
T

w
s2

d
b

Taggregation

Tagent2db
……

……

Web Service

Client

WS

Broker

DB Agent

DB Agent

T
to

ta
l =

 T
clien

t2
w

s +
 T

w
s2

d
b

5.2. Performance for query processing task in a centralized database

In this section we show the performance results of latency incurred from

processing a query between a web service client and a centralized database. Note that

the results are not to show better performance enhancement but to quantify the

performance for a variety of latencies induced with the centralized database. In our

experiments, we measured the round trip time in latency involved in performing

queries between a web service client and database host servers via middleware and

database agents. The experiment results were measured from executing a web service

client running on Windows XP platform with 3.40 GHz Intel Pentium and 2 GB RAM

connected to Ethernet network, and executing a web service and a broker running on

Windows XP platform with 3.40 GHz Intel Pentium and 2 GB RAM connected to

Ethernet network. Agents and PostgreSQL database servers ran on each of eight 2.33

GHz Linux with 8 core / 8 GB RAM connected to Ethernet network as well.

Fig. 4 show the mean completion time to transmit a query and to receive a response

between a web service client and a database host server including the corresponding

execution time of the middleware and agents, varying the distance R described in

Section 4.5. As the distance R increases, the size of result set also increases, as shown

in Table 1. Therefore as the distance R increases, the time needed to perform a query

in the database increases as well, which is shown in the figure and thus the query

processing cost clearly becomes the biggest portion of the total cost. We can reduce

the total cost by making the primary performance degrading factor (Tagent2db) faster.

To make the primary degrading factor faster, the result which motivated our research

work will be used as a baseline for the speedup measurement of the experiments

performed in the following section.

Fig. 4. Mean query response time between a web service client and a centralized database host server

including the corresponding execution time of the middleware and agents, varying the distance R.

5.3. Performance for query processing task in distributed databases (Data

clustering with deterministic annealing vs. Horizontal partitioning vs. Data

clustering with deterministic annealing + Horizontal partitioning) over multicore

servers

The Pub3D database is split into eight separate partitions by horizontal partitioning

method and deterministic annealing data clustering method developed by SALSA

project at CGL. Each of partitions of the database is distributed across eight multicore

0

5000

10000

15000

20000

25000

30000

0.3 0.4 0.5 0.6 0.7

M
e
a
n
 t

im
e
 i
n
 m

ill
is

e
c
o
n
d
s

Distance R

Mean query response time
in a centralized (not fragmented) database

Network cost
Aggregation cost
Query processing cost

physical machines. Table 2 shows the partitioned data size in number by the data

clustering based on deterministic annealing.

Table 2

The data size (in number) in the fragmentations into which the Pub3D database is split by clustering with
deterministic annealing (Note that each database in the fragmentations by horizontal partitioning method

has about 2,154,000 dataset in number)

Segment

number

Dataset size

in number

Segment

number

Dataset size

in number

1 6,204,776 5 2,302,272

2 616,133 6 4,634,860

3 507,209 7 785,232

4 2,018,281 8 163,017

Table 3

The number of responses in segments occurred with varying the distance R, where S, D, and H mean

segment number, data clustering with deterministic annealing, and horizontal partitioning respectively.

S 1 2 3 4 5 6 7 8

 R

D

0.3 1 0 0 0 494 0 0 0

0.4 87 0 30 0 6,753 0 0 0

0.5 1,868 0 570 0 34,611 0 0 0

0.6 12,926 0 2,720 0 97,477 0 0 0

0.7 44,388 0 6,571 0 196,212 0 0 0

H

0.3 75 82 77 62 45 27 49 78

0.4 863 1,133 978 893 667 498 780 1,058

0.5 4,667 5,686 5,279 4,746 3,615 3,031 4,361 5,664

0.6 14,089 16,749 15,782 14,650 11,369 9,756 13,559 17,169

0.7 30,920 35,558 33,862 32,277 25,207 22,268 29,620 37,459

Examining overhead costs and total cost, we measured the mean overhead cost for

100 query requests in our distributed database system. We tested three different cases

with two different partitioning methods: data clustering with deterministic annealing

vs. horizontal partitioning vs. data clustering with deterministic annealing and

horizontal partitioning, varying the distance R in the example query which is shown

in Fig. 2. The results are summarized in Table 3 with the mean completion time of a

query request in the considerations of overhead timings between a client and

databases.

By comparing the total costs for the three different cases with the total cost

incurred from a centralized database system, we computed the speedup gained by the

distribution of data with the use of multicore devices:

Speedup = Ttotal(1db)/Ttotal(8db)=(Tclient2ws(1db)+Tws2db(1db))/(Tclient2ws(8db)+Tws2db(8db)) (1)

 = 1 / ((1 – (Tagent2db (1db) / Ttotal (1db))) + ((Tagent2db (1db) / Ttotal (1db)) / (Tagent2db (1db)

/ Tagent2db (8db)))) (2)

where (1db) means a centralized database and (8db) means a distributed

database.

(1) means the value of speedup is the mean query response time in a centralized

database system over the mean query response time in a distributed database system.

(2) means the speedup gained by incorporating the un-enhanced and enhanced

portions respectively. Fig. 5 shows the overall speedup obtained by applying (1) to the

test cases respectively. For brevity we explain the overall speedup with the distance

0.5 as an example. In case of using horizontal partitioning, the overall speedup by (1)

is 1.62. The speedup by (2) is 1.93. This means some additional overheads were

incurred during the query/response. We measured the duration between first and last

response messages from agents, and that between first and last response messages

arriving into web service component in middleware for global aggregation of

responses. As expected, there was a difference between the durations. The difference

is due to network overhead between web service component and agents, and the

global aggregation operation overhead in web service that degrades the performance

of the system since the web service has to wait, blocking the return of the response to

a query request client until all database servers send the response messages. From the

results with the example query in our distributed database system, using horizontal

partitioning is faster than using data clustering with deterministic annealing since

fragments partitioned by the data clustering can be different in the size of data as

shown in Table 2. Then obviously as the responses occurred in performing a query in

a large size of cluster increase, the time needed to perform the query in the cluster

increases as well, which is shown in the graph in Fig. 6. But the responses hit by a

query may not be occurred from all the distributed databases, then the data clustering

will benefit more, increasing data locality while resulting in high latency. Therefore

there may be unnecessary query processing with some databases distributed by the

data clustering, using the SQMD mechanism as shown in Table 3. We thus identified

the problems, data locality and latency, from our experimental results. To reduce the

latency with increasing data locality in using the data clustering, we combined the

deterministic annealing clustering with the horizontal partitioning to maximize the use

of multicore with independent threads of execution by concurrently running multiple

databases, one on each thread associated with each core in a multicore server. Figs. 7,

8, and 9 show the experimental results with deterministic annealing data clustering,

horizontal partitioning, and the combination of both methods respectively. Our

experimental results show there is a data locality vs. latency tradeoff. Compare the

query processing time in Fig. 7 with that in Fig. 8, with Table 3. Also while the

figures show that the query processing cost increases as the distance R increases, the

cost becomes a smaller portion of overall cost than the transit cost in the distribution

of data over multicore servers, with increasing data locality and decreasing query

processing cost as shown in Fig. 9. This result shows our distributed database system

is scalable with the partitioning of database over multicore servers by data clustering

based on deterministic annealing for increasing data locality, and with multithreads of

executions associated with multiple databases split by horizontal partitioning in each

cluster for decreasing query processing cost, and thus the system improves overall

performance as well as query processing performance.

Fig. 5. The value of speedup is the mean query response time in a centralized database system over the

mean query response time in a distributed database system.

Fig. 6. Mean query processing time in each cluster (Tagent2db), in the case of the distance R=0.5.

Fig. 7. Mean query response time between a web service client and databases distributed by data clustering
including the corresponding execution times of the middleware and agents, varying the distance R.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0.3 0.4 0.5 0.6 0.7

S
p
e
e
d
u
p

Distance R

Speedup

Data clustering + Horizontal partitioning

Horizontal partitioning

Data clustering

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8

M
e
a
n
 t

im
e
 i
n
 m

ill
is

e
c
o
n
d
s

Cluster number

Mean query processing time in each cluster (Tagent2db)
(R = 0.5)

Data clustering

Horizontal partitioning

Data clustering + Horizontal partitioning

0

5000

10000

15000

20000

25000

0.3 0.4 0.5 0.6 0.7

M
e
a
n
 t

im
e
 i
n
 m

ill
is

e
c
o
n
d
s

Distance R

Mean query response time
in databases distributed by data clustering

based on deterministic annealing

Network cost
Aggregation cost
Query processing cost

Fig. 8. Mean query response time between a web service client and databases distributed by horizontal

partitioning including the corresponding execution times of the middleware and agents, varying the

distance R.

Fig. 9. Mean query response time between a web service client and databases distributed by data clustering

and horizontal partitioning including the corresponding execution times of the middleware and agents,

varying the distance R.

6. SUMMARY AND FUTURE WORK

We have developed a scalable, distributed database system that allows uniform

access to concurrently distributed databases over multicore servers by the SQMD

mechanism, based on a publish/subscribe paradigm. Also we addressed the problem

of partitioning the Pub3D database over multicore servers for scalability and

performance with our architectural design. Our experimental results show our

distributed database system is scalable with the partitioning of database over

multicore servers by data clustering with deterministic annealing for increasing data

locality, and with multithreads of executions associated with multiple databases split

by horizontal partitioning in each cluster for decreasing query processing cost. In our

experiments with our scalable, distributed database system, we encountered a few

problems. The first problem occurred with the global aggregation operation in web

service that degrades the performance of the system with an increasing number of

0

2000

4000

6000

8000

10000

12000

14000

0.3 0.4 0.5 0.6 0.7

M
e
a
n
 t

im
e
 i
n
 m

ill
is

e
c
o
n
d
s

Distance R

Mean query response time
in databases distributed by horizontal partitioning

Network cost

Aggregation cost

Query processing cost

0

2000

4000

6000

8000

10000

12000

14000

16000

0.3 0.4 0.5 0.6 0.7

M
e
a
n
 t

im
e
 i
n
 m

ill
is

e
c
o
n
d
s

Distance R

Mean query response time
in databases distributed by data clustering based on
deterministic annealing and horizontal partitioning

Network cost
Aggregation cost
Query processing cost

responses from distributed database servers. In future work we will consider

asynchronous invocation web service and also redesign our current distributed

database system with MapReduce (Dean, 2004) style data processing interaction

mechanism by moving the computationally bound aggregating operation to a broker

since the number of network transactions between web service and broker, and the

workload for the aggregating operation are able to decrease. The second problem was

found in extra hits. We will investigate the use of the M-tree index (Ciaccia, 1997)

which has been shown to be more efficient for near neighbor queries in high-

dimensional spaces such as the ones being considered in this work.

REFERENCES

Baer, H. (2007). Partitioning in Oracle Database 11g. An Oracle White Paper.

Baru, C. K., Fecteau, G., Goyal, A., Hsiao, H., Jhingran, A., Padmanabhan, S., Copeland, G. P.,

and Wilson, W. G. (1995). DB2 Parallel Edition, IBM System Journal. Volume 34, pp 292-

322.

Community Grids Lab (CGL) (2001). http://communitygrids.iu.edu

Chembiogrid (Chemical Informatics and Cyberinfrastructure Collaboratory) (2006).

http://www.chembiogrid.org/wiki/index.php/Main_Page

Ciaccia, P., Patella, M., and Zezula, P. (1997). Proc. 23rd Intl. Conf. VLDB.

Data Clustering (2007). http://en.wikipedia.org/wiki/Data_clustering

Dean, J. and Ghemawat, S. (2004). MapReduce: Simplified Data Processing on Large Clusters.

OSDI'04: Sixth Symposium on Operating System Design and Implementation. San

Francisco, CA.

Dong, X., Gilbert, K., Guha, R., Heiland, R., Pierce, M., Fox, G., Wild, D.J., J. (2007). Chem.

Inf. Model., 47, 1303-1307.

Gadgil, H., Fox, G., Pallickara, S., and Pierce, M. (2006). Managing Grid Messaging

Middleware. Proceedings of IEEE Conference on the Challenges of Large Applications in

Distributed Environments (CLADE), Paris France, pp. 83–91.

Guttman, A. (1984). ACM SIGMOD, 47-57.

Hennessy, J. L., and Patterson, D. A. (1995). Computer Architecture: A Quantitative Approach.

2nd Edition. Morgan Kaufmann.

Hey, T. and Trefethen, A. (2003). The data deluge: an e-Science perspective in “Grid

Computing: Making the Global Infrastructure a Reality” edited by Fran Berman, Geoffrey

Fox and Tony Hey, John Wiley & Sons, Chicester, England, ISBN 0-470-85319-0.

K-means clustering. http://en.wikipedia.org/wiki/K-means_clustering

Kumar, V., Grama, A., Gupta, A. and Karypis, G. (2003). Instruction to Parallel Computing:

Design and Analysis of Algorithms. 2nd Edition. Addison Wesley.

Message Passing Interface Forum (1995). University of Tennessee, Knoxville, TN. MPI: A

Message Passing Interface Standard. http://www.mcs.anl.gov/mpi

Multicore CPU (or chip-level multiprocessor) (2008), http://en.wikipedia.org/wiki/Multi-

core_(computing)

Pallickara, S., Gadgil, H. and Fox, G. (2005). On the Discovery of Topics in Distributed

Publish/Subscribe systems. Proceedings of the IEEE/ACM GRID 2005 Workshop, pp 25-

32, Seattle, WA.

PostgreSQL, http://www.postgresql.org/

Pub3d – Web Service Infrastructure (2008),

http://www.chembiogrid.org/wiki/index.php/Web_Service_Infrastructure

Qiu, X., Fox, G., Yuan, H., Bae, S., Chrysanthakopoulos, G., Nielsen, H. F. (2007). High

Performance Multi-Paradigm Messaging Runtime Integrating Grids and Multicore Systems.

Proceedings of eScience 2007 Conference Bangalore India.

http://communitygrids.iu.edu/
http://www.chembiogrid.org/wiki/index.php/Main_Page
http://en.wikipedia.org/wiki/Data_clustering
http://en.wikipedia.org/wiki/K-means_clustering
http://www.mcs.anl.gov/mpi
http://en.wikipedia.org/wiki/Multi-core_(computing)
http://en.wikipedia.org/wiki/Multi-core_(computing)
http://www.postgresql.org/
http://www.chembiogrid.org/wiki/index.php/Web_Service_Infrastructure

Qiu, X., Fox, G., Yuan, H., Bae, S., Chrysanthakopoulos, G., Nielsen, H. F. (2008).

Performance of Multicore Systems on Parallel Data Clustering with Deterministic

Annealing ICCS 2008: "Advancing Science through Computation" Conference; ACC

CYFRONET and Institute of Computer Science AGH University of Science and

Technology Kraków, POLAND. Springer Lecture Notes in Computer Science Volume

5101, pages 407-416. DOI

Sacca, D. and Wiederhold, G. (1985). Database Partitioning in a Cluster of Processors. ACM

Transaction on Database System, Vol. 10, No. 1, Pages 29-56.

SALSA (Service Aggregated Linked Sequential Activities) (2008),

http://www.infomall.org/salsa

Uyar, A., Wu, W., Bulut, H., Fox, G. (2006). Service-Oriented Architecture for Building a

Scalable Videoconferencing System, in book "Service-Oriented Architecture - Concepts &

Cases" published by Institute of Chartered Financial Analysts of India (ICFAI) University.

Rose, K. (1998). Deterministic annealing for clustering, compression, classification, regression,

and related optimization problems. Proc IEEE Vol. 86, pages 2210-2239.

http://www.iccs-meeting.org/
http://dx.doi.org/10.1007/978-3-540-69384-0_46
http://www.infomall.org/salsa

