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ABSTRACT

Molecular dynamics (MD) simulations accelerated by high-performance computing (HPC) methods are
powerful tools for investigating and extracting the microscopic mechanisms characterizing the properties
of soft materials such as self-assembled nanoparticles, virus capsids, confined electrolytes, and polymeric
fluids. However, despite the employment of optimal parallelization, the scientific simulations can often
take hours or days to furnish accurate information, and deep learning (DL) has the potential to address this
critical need. On the other hand, due to advances in hardware performances, richer and high-dimensional
scientific computation datasets are continued to generate, and the data-driven modeling approaches
coupled with machine learning (ML) and DL have opened new pathways to use these high-dimensional
datasets to solve some of the hardest problems in soft-matter research and applications. We discuss several
broad and effective deep learning models for temporal data in MD simulations and demonstrated their
current success in soft-matter simulation applications. While the use of the DL models in MD simulations
has many advantages, we highlight that further research is needed to make the approach more suitable
for practical applications due to significant challenges such as complex temporal dependency and chaotic
behaviors. Furthermore, we provide a brief insight into how some of these issues can be mitigated
through technological advances such as innovation in the NN architecture by fusing physical laws inside
a custom-tailored design of NN. Even though our focus is on using DL models to study time series
data in MD simulations, we note that our research can share insights on several other applicable across

different fields.



1. INTRODUCTION

Molecular dynamics (MD) simulations are powerful tools for investigating the microscopic origins of
the behavior of a wide range of materials, including soft matter [1]. These simulations have enabled
the understanding of microscopic mechanisms underlying the assembly of both biological and synthetic
soft materials such as virus capsids [2], [3], confined electrolytes [4], polymeric liquids [5], [6], and
self-assembled nanostructures (See Figure 1) [7], [8]. The molecular dynamics (MD) method solves
Newton’s equation of motion for a system of many particles and evolves the positions, velocities, and
forces (generally known as configurations) associated with these particles at each time step. At the heart
of the method is the integrator that propagates the configuration of the system one small timestep at a
time. While MD simulations are generalizable to study a broad range of phenomena in soft matter, they
incur high computational costs in several applications where the computational complexity per time step

is proportional to the square of the total number of particles in the simulated system.

Virus-like Particles Linker Nanoparticle superlattices
(P22 Bacteriophage) (G6 Dendrimer)
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Fig. 1. Example MD simulation model:Functional Nanomaterials, Virus-Linker Superlattices [8]

The high computational costs associated with MD simulations are typically mitigated by employ-
ing high-performance computing (HPC) resources and utilizing parallel computing techniques such as
OpenMP and MPI. However, despite the employment of the optimal parallelization models suited for
the size and complexity of the system, the scientific simulations can often take hours or days to furnish
accurate output data and desired information. To expedite MD simulation-driven design of advanced soft
materials, it is desirable to rapidly access trends associated with relevant physical quantities that could
be learned and predicted with reasonable accuracy based on the history of data generated from earlier
simulation runs. Further, in the area of using simulations in education, rapid access to simulation-driven
responses to student questions in classroom settings are desirable. In the end, there is a critical need for

new approaches to accelerate simulations, leverage past simulations to generate accurate predictions and



expedite the analysis of simulation data to classify material properties. Machine learning (ML) and deep
learning (DL) has the potential to address this critical need directly.

On the other hand, as continued advances in hardware performance (Moore’s Law), evolution of
multicore graphics processing units, and the preponderance of cloud computing, more and more scientific
computation data is continued to generate cheaper increasingly, and it is more accessible than ever before.
In soft matter simulation applications, the trend towards large data sets is primarily driven by continued
advances in hardware performance, while in experiments, it is driven by instrumentation innovations.
These large and rich datasets contain essential information that can inform and update the fundamental
understanding and guide the engineering and design of advanced soft materials. But these large datasets
can be so high-dimensional that the conventional analysis and domain-specific approaches might start to
fail. Data-driven modeling approaches coupled with ML and DL have opened new pathways to solve these
research and applications, and this is now commonly referred to as data-driven scientific simulations, is
under rapid development and attracting many researchers and industries.

Researchers all over the world have attempted to utilize state-of-the-art ML and statistical models on
a broad set of tasks that are difficult or even impossible to solve by traditional methods [9]. DL is one of
the most effective choices among all employed techniques mainly because of its capacity for multi-level
feature learning hierarchically. This has brought lots of significant successes in many areas with either
supervised [10], [11], [12], unsupervised [13], [14], [15], semisupervised [9] or reinforcement learning
[16], [17], [18] strategies. State of the art deep learning research has solved many difficult problems
such as recognizing and distinguishing thousands of human faces at a time [19], [20], understanding,
generating and translating human languages almost perfectly and flawlessly [21], [22], [23], and mastering
games and beating top human professional players [24] and aiming towards achieving of self-driving cars
[25]. Despite the amazing success, DL is improved with proposed new ideas and models updating the
state of the art research in this area every year. Moreover, there is plenty of flexible and fast-developing
open-source software libraries, such as TensorFlow [26], PyTorch [27], Theano [28], Caffe [29], MXNet
[30], Keras [31], and scikit-learn[32] freely available to make it easier for everyone to experience the
strength of deep learning in both research and production, leading to a widespread impacts and greater
success of deep learning.

Accordingly, there has been a surge in the use of ML to accelerate computational techniques aimed at
understanding material phenomena [9]. ML has been used to predict parameters, generate configurations
in material simulations, and classify material properties [33], [34], [35], [36], [37], [38], [39], [12], [9],
[40], [41]. Motivated by the advancements in ML, DL and by the challenges in employing MD simulations



in research and education, in recent papers [42], [43], we introduced the idea of integrating ML methods
with MD simulations to enhance their performance and overall usability. We demonstrated that an artificial
neural network (ANN) based regression model, trained on data generated via MD simulations, successfully
learns the simulation output features associated with the MD simulation. The ML model instantaneously
generated predictions in excellent agreement with results obtained from explicit MD simulations [43].
We also showed that DL models could be an aid to design an adaptive MD-based dynamical optimization
framework that updates the simulation timestep and auto-tunes the virtual parameters characterizing the
dynamics of ions near polarizable NPs to yield a more stable and efficient simulation [44]. More recently,
we have also demonstrated that the design of DL based integrators can propagate the dynamics of an
MD simulation with large timesteps [45].

There are many different explanations on why and how deep learning works, either from theoretical
means, empirical results, or even thorough some intuitions but the practical reality of deep learning
models is not always smooth sailing, and we face many open questions when applying them to MD
simulations in the soft matter domain. This problem is especially severe when dealing with temporal data
in MD simulations due to complex temporal dependency and chaotic behavior, which imposes several
unique and critical challenges that lie in its practical aspects. While the use of the DL approach in MD
simulations has many unique benefits, further research is needed to make the approach more suitable
for practical applications. One of the significant challenges involves modeling dynamics of systems that
exhibit rare event characteristics or involves longer times to yield the low energy configurations due to
kinetic bottlenecks that can trap the particles in metastable pathways. In these cases, training a DL. model
to “see” a variety of possible distinct phase space explorations in the training dataset or generation of
datasets covering a range of physical properties such as interaction potential between particles may prove
challenging. Another challenge is scaling these DL approaches to more extensive simulations where the
particle population can be varying from a few hundred to thousands of particles.

The DL research in MD simulations of soft materials is primarily application-driven, but innovation is
in technology rather than application results [46], [47], [48]. Addressing the issues as mentioned earlier
will involve innovation in NN architecture, and smart design of experiments to generate the simulation
data. All the new research on NN architecture suggests innovation in the technology is tightly coupled
with a domain such as in physics and computer vision [46], [47]. We will investigate the design of DL-
based models for predicting the configurations in systems where self-organization into aggregates occurs
at longer times, depending on the combination of particle and potential attributes. Explore the training

of DL models using configurations produced via simulations in different ensembles (e.g., NVT) might



also be helpful in order to test its accuracy in predicting configuration updates where thermal effects
(often stochastic) are incorporated. The NN architecture innovation would be inspired by hierarchical
RNNs [49] and alternative DL approaches [50] including transformers [23], physics-informed neural
network architectures [46], [47] and its “recurrent” versions. So in contrast, our research plan involves
an innovation in NN architecture informed by time-series application and surrogate application, which is

driven by Simulation data such as MD simulation, Monte Carlo simulations.



2. BACKGROUND REVIEW

MD simulations serve as essential tools for understanding diverse self-assembly phenomena in nanoscale
materials [51], [52], [7], predicting material behavior in practical applications [53], and isolating interest-
ing regions of parameter space for experimental exploration [54]. Recent years have seen an unprecedented
rise in the use of machine learning (ML) and deep learning (DL) to enhance the performance of
simulations of materials and analyze the data they generate [9], [55], [56], [57], [58], [34], [37], [33], [59],
[35], [40], [39], [44], [44], [12], [60]. ML applications in MD simulations of materials include accelerating
the sampling of systems with rugged free-energy landscapes [40], generating new configuration updates in
latent-space (low-dimensional) variables in ab initio MD simulations of nuclei-electron systems [39], auto-
tuning timestep in MD simulations of ions near nanomembranes [44], classifying assembly landscapes
employing MD-generated particle trajectories [12], and surrogate modeling and uncertainty quantification
[61], [62], [63], [61], [62], [63]. We also note other related work that focuses on using DL to learn the
physical laws or properties of simple physical systems and respect conservation laws [46], [47], [64], [65],
[66], [67], [68], [69], [70]. Similarly, many classic deep neural networks can be seen as approximations
to differential equations and many focused on using DL to learn differential equations and replicate
numerical integrators [46], [47], [64], [65], [66], [67], [68], [69], [70], [71], [72], [73], [70], [74], [75],
[76]. So, all the literature of temporal data research in MD simulations can be broadly classified into three
main topics, such as Simulation surrogates using machine learning, physics informed neural networks,
and neural ordinary differential equations.

o Simulation surrogates using machine learning: The use of DL to derive networks that produce‘‘surrogates”

of large-scale simulations, including MD simulations [77], [42], [60], [43], [78]

o Physics Informed Neural Networks: The use of laws of physics to parameterize or constrain the
deep neural network architecture to solve many differential equations [46], [47], [64], [65], [66],
[67], [68], [69], [70], [71], [72], [73], [70]

o Neural Ordinary Differential Equations: The use of modern differential equation solvers or integrators

to enhance deep neural networks [79], [80], [81], [48], [82], [83], [64], [84].

A. Simulation surrogates using machine learning

In recent years, the ML methods which have been applied to enhance computational techniques can be
thought as surrogates to scientific simulations. These research projects aimed at understanding material

phenomena; ML has been used to predict parameters, generate configurations in material simulations,



and classify material properties [33], [34], [35], [36], [37], [38], [39], [12], [9], [40], [85], [44], [86],
[41], [87], [88].

Machine Learning (ML) abstractions for classification tasks and tuning have been extensively employed
in the performance enhancement of scientific simulation frameworks. Denil et al. [89] used artificial neural
network (ANN) and convolutional deep learning neural network (NN) to predict the parameters found in
image classification tasks with an accuracy of 95%. Yigitbasi et al. [90] employed ML-based auto-tuning
for diverse MapReduce applications and cluster configurations in their simulation framework. Their work
showed that support vector regression (SVR) exhibits good accuracy while being computationally efficient
for performance modelling of MapReduce applications. Fu et al. [35] employed ANN classification model
to select efficient updates to accelerate Monte Carlo simulations of classical Ising spin models near the
phase transition. More recently, ML has been used to predict specific outcomes (the dissociation timescale
of compounds) of ab initio MD simulations by bypassing the time evolution of the particle trajectories
[77]. Also, convolutional neural network-based ML “emulators” have been introduced recently to predict
output functions (e.g., power spectrum) of simulations in biogeochemistry and other domains [78].

Regression-based prediction schemes have also been employed in different domain areas [91], [92],
[93], [94], [95], [96], [97]. Christine et al. [91] used random forest regression algorithm to predict host
tropism of influenza A virus proteins with an accuracy above 96%. Similarly, an ensemble of regression
trees was employed to perform face alignment for real-time applications (in one millisecond) by [92].
SVR has been used for wind speed prediction by [94]. ANN-based regression has been studied by [96]
to yield short term load prediction of electrical power systems based on wind power forecasting. Yadav
et al. [97] have employed ANN-based regression for forecasting solar radiation. Matthew et al. [33]
applied a simple feedforward ANN to discover interesting areas of parameter space corresponding to
crystal formation in the self-assembly of colloidal building blocks. Botu et al. [39] employed kernel
ridge regression (KRR) to accelerate the ab initio MD method for nuclei-electron systems by learning
the selection of probable configurations in MD simulations which enabled bypassing explicit simulations
for several steps. Balachandran et al. [95] have used SVR to create an adaptive ML model to aid the
design of new materials with desired elastic properties and enhanced long-term performance using a
minimum number of iterations. Recent work has also focused on adaptive ensemble simulations to enhance
the computational efficiency of biomolecular simulations [98]. We also note the development of auto-
tuning technology for high-performance computing applications to reduce execution time and enhance
programmer productivity [99]. Here, auto-tuning relates to the automatic generation of a search space of

possible kernels for a computational task to identify the best possible kernel, with recent work involving



the use of ML-based approaches for identifying the search space [100].

However, relative to “hard” condensed matter systems and other scientific simulations, a survey of
literature finds far fewer applications of ML in the area of MD simulations of soft materials [9], [44].
JCS et al. have used ML to design an adaptive MD-based dynamical optimization framework that updates
the simulation timestep and auto-tunes the virtual parameters characterizing the dynamics of ions near
polarizable NPs to yield a more stable and efficient simulation [44], [41]. Related work in the area of
adapting timestep in a simulation has involved using analytical approaches to multiple timestep integration
[101], [102]. JCS et al. also had introduced a “machine learning surrogate” for MD simulations of soft-
matter systems using neural network-based regression model which successfully learns nearly all the
interesting features associated with the output ionic density profiles over a broad range of ionic system

parameters [42], [43].

B. Physics Informed Neural Networks

We have witnessed a dramatic rise in research for Physics informed neural networks, which illustrates a
deep connection between deep neural networks and physical systems explained with differential equations
[71], [72], [73], [70], [46], [64], [103], [69], [47]. Researchers have demonstrated that many differential
equations (linear, elliptical, non-linear, and even stochastic PDEs) can be solved with the aid of deep
neural network with or without closely binding neural network architecture to physical laws, which are
described through these differential equations [71], [72], [73], [70].

There are many previous work have sought to furnish deep learning models with better physics priors
in specific domains such as molecular dynamics [67], [104], [68], [105], [106], quantum mechanics [107]
and robotics [108]. Raissi et al. introduces Physics Informed Neural Networks (PINNs) and demonstrates
how to use PINNs to solve several classical PDEs [71]. Liu et al. have addressed the problem of
stochastic differential equations (SDEs) but uses traditional generative adversarial neural (GANs) network
architecture to solve the SDEs [72]. Yang et al. have conducted a large study that applies PINNs using
GANSs to solve a set of large scale PDE problems and also provided uncertainty quantification of the
models [73]. Though these works have focused on Discovering physical concepts with neural networks
but relied on traditional neural networks in a supervised fashion without any architectural or loss function
changes and did not explicitly used parameterization techniques with physics laws such as Hamiltonians
or Lagrangian [109], [110], [111].

We also note that the related work that focuses on using DL to learn the Hamiltonian of simple physical
systems and respect conservation laws in an unsupervised manner [46], [47], [64], [65], [66], [67], [68],

[69], [70]. Here, instead of performing explicit time evolution, neural networks observe the positions



and momenta (inputs) and produce the Hamiltonian as output, in some cases leveraging the information
that the partial derivatives of the output with respect to inputs are the time derivatives of the inputs
[46]. Hamiltonian neural networks [46], Lagrangian neural networks [47], and symplectic RNNs [64] are
examples of these DL approaches that have been shown to learn the physics of simple systems such as
spring-mass problems in 1D. The Hamiltonian Neural Networks (HNN) is a deep neural network model
inspired by Hamiltonian mechanics to train models that learn and respect exact conservation laws (exhibits
in a physical system) in an unsupervised manner [46]. Similarly, the Lagrangian Neural Networks (LNN)
is a Deep Neural Network model inspired by Lagrangian mechanics to train models that learn and respect

exact conservation laws and Lagrangian functions in an unsupervised manner [47].

C. Neural Ordinary Differential Equations

Neural ordinary differential equations illustrate how traditional and modern differential equation solvers
or integrators informed the design, accuracy, and memory footprint of deep neural networks and simplify
the neural networks[48]. These networks are inspired by the deep residual networks and recurrent neural
network decoders which can be seen as an Euler discretization of a continuous transformation as hyy1 =
ht + f(he,60;) [112], [113]. So the interesting idea is that as we add more layers and take smaller steps
(in the limit where dt — 0), we parameterize the continuous dynamics of hidden units using an ordinary

%(tt) = f(h(t),t,0) so that the input layer

differential equation (ODE) specified by a neural network:
h(0) and the output layer h(7) becomes the solution to this initial value problem at time 7" [114], [48].
These ODE nets usually use a modern and accurate differential equation solver (black-box) to set the
outputs to the network and compute gradients using the adjoint sensitivity method [48].

Many research papers focused on using DL to learn differential equations and replicate numerical
integrators [79], [80], [81], [48], [82], [83], [64], [84]. Generally, these integrators have been derived to
operate with the time discretization associated with the baseline integrator timestep dt. Their applications
have been demonstrated on relatively simple 1D systems governed by ordinary differential equations.
Few studies have probed the DL applications to learn partial differential equations [81]. Few other recent
approaches try to improve the accuracy of integrators at a higher dt [115], [80]. Shen et al. [115] have
developed an artificial neural network (ANN) based Euler method for numerical integration with high
dt by approximating the local truncation error with deep neural networks to obtain accurate solutions
with dt up to 200 times larger than the baseline Euler approach. As applications, they have shown the
approach to work on 1D systems and relatively simple 2-body problems. For the 1D problems, a 100
fold increase in the timestep (from 2x to 200x) led to an increase in the prediction error by over three

orders of magnitude. More recently, JCS et al. have demonstrated that RNN-based integrators can limit



the rise in the error with increasing timestep (> 1000x the baseline) to within an order of magnitude,

even for the complex 3D systems [116], [45], [117].
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3. DATASETS IN MD SIMULATIONS

The classical MD simulation is one of the most well-known simulation technique which is based
on Newton’s equations of motion and relies on numerical integrators such as velocity verlet to solve
them. These simulations often simulate systems consist of different types of particles [118], [119], [120],
[121], [122], [123]. The configuration space of the simulation consists of many physical properties of
these particles, such as position, velocity, and force vectors. Using Newton’s equations of motion and a
numerical integrator, MD simulations propagate the dynamics (configuration space) of the system from
one state to the next state in a step-by-step process called verlet integration. A traditional MD simulation
will run a different number of computational steps from a few million to billions depending on the system
it is simulating. These simulations mainly generate two types of data, such as the time-series data of
the configuration space and several statistical quantities derived using the time series data. Now we will

describe two such datasets in the following sections.

A. Time series data of a system with many particles interacting via Lennard-Jones (LJ) potential

For this 3D system, the interaction potential energy between any two particles is given by the LJ

1\ 12 1\ 6
U(r) = 4e <<r> - <7"> ) +0.0163¢ for r < 2.5. (1)

For r > 2.5, U is 0. We prepared two different types of simulation boxes to generate the datasets:

potential:

cubic box with periodic boundary conditions and spherical box with reflective boundary. Figure 2 shows
snapshots of these MD simulations. In each box, we performed simulations with N = 3,8, and 16
particles. Each of these simulations was created as a separate dataset that yielded six different datasets.
The dataset is generated by varying two input parameters: the mass of the particle m € [1,10], and the
initial position of the particles (zo, yo, zo) with each Cartesian coordinate chosen between —3.0 and 3.0.
The well depth was held constant to € = 1 in creating the training dataset. Initial velocities were chosen
to be zero. The parameter sweep generated a dataset of 5000 simulations for each of the aforementioned
cases (or 30,000 simulations in total). Each simulation in this dataset generated 2 million configurations

(position, velocity, and force vectors).

B. Ion density profile data of ions in confinement simulation

This data set was created by varying five input parameters characterizing the ionic system: confinement
length h, salt (electrolyte) concentration c, positive ion valency z,, negative ion valency z,, and the ion

diameter d. All ions are assumed to have the same diameter; in general, oppositely charged ions have
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cubic box with periodic Spherical box with
boundary conditions reflective boundary

Fig. 2. Simulation snapshots of a MD simulation with 16 particles interacting via Lennard-Jones (LJ).

different sizes. The range of each parameter is selected as follows: h € (3.0,4.0) nm, ¢ € (0.3,0.9) M,
zp€1,2,3, 2z, € —1,and d € (0.5,0.75) nm. The salt concentration is defined as the number of negative
ions per unit volume [42], [44], [124]. We note that the system temperature is another important input
parameter. In this initial application, the temperature is held fixed, and we have employed data generated
at room temperature (298 K). The converged distribution for positive ions is selected as the output. This
dataset was generated by sweeping over a few discrete values for each of the input parameters to create
and run 6,864 MD simulations utilizing HPC resources. On average, each MD simulation was performed
in the NVT (canonical) ensemble for over ~ 5 nanoseconds of ionic dynamics and took 4200 CPU hours
(= 36 minutes per simulation with MPI/OpenMP parallelization). The dataset creation took approximately
25 days, including the queue wait times on the Indiana University BigRed2 supercomputing cluster. The
data associated with the ionic density profiles (dataset relevant to our investigation), was over 2 GB.
Each MD simulation produces positive ion distribution characterized by ionic density measured at ~ 300
positions as output, as shown in Figure 3. For simplicity, using the symmetry of ionic density around
the confinement center z = 0 (resulting from neutral surfaces), approximately half of the 300 points are

selected as the output parameters.
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Fig. 3. Simulation snapshot and output of ions in confinement simulation

4. TEMPORAL DATA ANALYTIC MODELS
A. Basic Temporal Data Analytic Models

Temporal data analysis is the process to model and explains data points which have time-dependency.
In this section, we review several standard statistical and machine/deep learning models for temporal data
related to scientific simulations, which are time series classification, prediction and forecasting.

1) Auto regressive integrated moving average model: The autoregressive integrated moving average
(ARIMA) model or often denoted as ARIMA (p, d, q) is a popular model fitting to time series data to
understand the data better or to predict future points in the series [125]. It can be seen as the combination of
the auto-regression (AR), moving average (MA), and the integrated (I) and is designed for non-stationary
data. The p, d, and q in the notation are the parameters for the order of the AR model, the number of
differencing parts, and the order of the MA model, respectively. ARIMA attempts to forecast z;, the
value of the time series at time t, from its past value(s). Firstly the AR part indicates that the evolving
variable of interest is regressed on its own lagged (i.e., prior) values, and the AR model of order p (i.e.,

AR(p)) can be written as:

P
Ty = Z Pz +er+c
i=1
where @, are the parameters, €; are the error terms, and c¢ is a constant. Secondly the MA part
indicates that the regression error is actually a linear combination of error terms whose values occured

contemporaneously and at various times in the past. The MA model of order q (i.e., MA(q)) can be

written as:

p
Tt = E @7;675_@' +ée+c
=1
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where ©; are the parameters of the MA model. Finally, the I part indicates that the data values have
been replaced with the difference between their values and the previous values. By combining all three

parts together, the full model of ARIMA(p, d, q) can be written as:

p q
<1 -> <1>i1u'> (1-L)z =c+ (1 + @ﬂ[ﬁ) €
1=1

i=1

where L is the lag operator defined as L*z; = x,_j. One wat to chose a proper order is to minimize
the Akaike information criterion (AIC) or Bayesian information criterion (BIC) [126]. These models can
be straightforwardly generalized from univariate to multivariate and lead to the vector autoregression
(VAR) models.

2) Kalman filters (KF): Kalman filters (KF) is one kind of state space models for time series data
estimation which assumes the linear dynamic properties of the system and Gaussian (white) noise in the
temporal data observations [127]. To be more specific, the KF model for states x, control vectors u and

observations z can be represented by the following two equations:

xr = Axy_1 + Bup + wy
zt = Hxy + v @)

where A, B, H are the state transition model, the control input model, and the emission model,
respectively. w ~ N (0, Q) and v ~ N (0, R;) are the process noise and the observation noise, respectively
and both w and v from a zero mean multivariate (();, R;) normal distributions. The Kalman filters can
be fitted by using five update equations. The first two equations are for the time prediction (update) as

follows:

P = AP 1 AT +Q 3)

The following three equations are used as the measurement correction steps:

K;=P HY'(HP,H + R)™*
.CAUt = jft_ + Kt(zt - H:f;)

P,=(I - KH)P 4)
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Here, P is the error covariance, K is the Kalman gain, x~ and * denote the prior and estimate of the
variable %, respectively. By taking the update equations iteratively, Kalman filters converge to the relevant
values after enough N steps.

3) Dynamic time warping (DTW): Calculating similarity between two temporal sequences (which
may or may not have different lengths), is a fundamental problem in time series data analysis and
serves as a basis requirement for many other tasks. Dynamic time warping (DTW) is one of the most
popular similarity measures used in temporal sequence analysis, which aims to target the speed difference
between the two time sequences [128]. DTW attempts to find the optimal alignment between two temporal
sequences X = (x1,...,z7) and Y = (y1,...,yy) with certain restrictions and rules. First, the two
sequences X and Y should be aligned (z; and y; to 7 and y;). Second, each z; and y, must be
included in the alignment, and the order of indices should be non-decreasing. If we use d, ;/ to indicate
the (partial) dynamic time warping distance between (z1,...,2z7) and (y1,...,yp ), then DTW can be

calculated by using dynamic programming as:

dpy =min{dy_yp,dyy 1 dyiyp 1} + |[ve —yp

DTW can also be generalized to multivariate time series in practice by using the euclidean distance

as the local distance metric for all (z¢, y,/) [129].

B. Deep Learning Models for Temporal Data

Deep learning models, or deep neural networks, have become successful approaches for automated
extraction of complex data representations for various applications, including temporal data modeling.
Deep learning models consist of layered and hierarchical architectures of neurons for learning and
understanding the hidden relationships in data [130]. The hierarchical learning architecture is motivated
by artificial intelligence emulating the deep and layered learning process of the primary sensorial areas
of the neocortex in the human brain, which automatically extracts features and abstractions from the
underlying data [131]. Each neuron in a deep neural network receives one or more inputs and sums
them to produce one or many outputs. These neurons in the hidden layers are consists of weights and
activation function. The weights are learned from a training process performed on the available data,
and the activation function introduces a non-linear capability into the hidden layer. The deep learning
models thus can understand the complicated relationship between multidimensional input data and output

temporal data through the hierarchical non-linear architecture exhibits in deep neural networks.
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1) Deep feed-forward neural network (DNN): Deep feed-forward neural network (DNN) is one of
the most basic deep neural models and it is composed with multiple non-linear transformation layers to
extract features from the data and possibly one prediction layer on the top to solve either a classification
or a regression task [132]. The output from the each layer is fed to the next layer as inputs. For a DNN
model with n layers (i.e., n-1 hidden layers and one final output layer), the input vector for the n-th layer

is denoted as z[™ € RPI" | and the transformation of each layer n can be written as:

2+ =l (glnly — gl il gl . pin)y

where W™ and b[") are respectively the weight matrix and bias vector of layer n, and f is a nonlinear

activation function, which usually takes one of sigmoid (logistic sigmoid, o(z) = )), tanh

(hyperbolic tangent, tanh(x) = 20(2z)—1), and ReLU (recti fied linear unit, ReLU(z) = max(0, x))
[133]. These DNNs are trained using an optimization process called backpropagation that requires a loss
function to calculate the error between model prediction and the true value and update the respective
weight matrix and bias vector of all the layers. The Maximum likelihood estimation provides the necessary
details for choosing a proper loss function based on the particular application and every machine learning
model in general. When it come to DNNs, cross-entropy and mean squared error (MSE) are the two main
types of loss functions which are being used across varies applications. The application of DNNs can be
broadly classified for three different types such as regression problems, binary classification problems,
and multi-class classification problems which uses MSE, binary cross-entropy and cross-entropy as the
loss functions respectively [132], [134]. Taking the binary classification problem as an example, we can

train DNN and learn the weights and biases by optimizing binary cross-entropy loss function during

training as following equation:

N
Loss ==Y (y10g(5") + (1 = y?) log(1 — §))

i=1
Where y(® is the binary label for i-th sample in the training dataset (total size of S samples), and g)(i))
is the output of the DNN model (final layer output after the activation). Note that the ideas of using non-
linear activation functions, training by backpropagation, and learning layer-wise features (representations)
are not only used for simple DNN models but almost in all other deep learning models. We can directly
use DNN for applications with temporal data as discussed the literature review section. Example DNN
architecture is shown in Figure 4 [86], [44], [43].
2) Convolutional neural network (CNN): Another popular primary neural network is the convolutional

neural network (CNN), which is good at capturing local structure and commonly applied in computer
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Fig. 4. Architecture of a DNN model

vision applications where the data is either in the form of images or videos [135]. CNN models are build
using a combination of three main types of layers: convolutional layer, pooling layer, and fully connected
layer. The convectional layer is the core building block of CNN models, which attempts to learn the
spatially activated map of features via lots of filters over the inputs with parameter sharing. The pooling
layer is used to reduce the size of the feature representations mainly, and the number of parameters
learned in the convectional layer. The fully connected layer is just a regular layer which is similar to
DNNs and connects to all outputs from its previous layer. A variety of different CNN architectures made
up of the mentioned main three types of layers and are proposed to solve different problems. A traditional
CNN architecture diagram is shown in Figure 5. There are two ways we can use CNN on temporal data,
such as using traditional two-dimensional convolutional operation over the temporal dimension and the
input feature per time sample dimensions and using one-dimensional convolutional operation only over

the temporal dimension [136], [137].
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3) Recurrent neural networks (RNN): Recurrent neural networks (RNN) are a class of neural networks
that allow previous outputs to be used as inputs while having hidden states. RNNs can use their internal
state (memory) to process a variable length sequences of inputs. The most used versions of basic RNNs
are described as follows:

a) Vanilla recurrent neural network (RNN): In order to handle sequential or temporal data of
arbitrary length and capture temporal information from the data, recurrent neural network (RNN) models
are widely used [138]. Unlike DNNs, RNN performs the same operation at each time step of a sequence
of inputs, and feed the output to the next time step as part of the input. Because of that, the RNN models
can memorize what they have seen before and benefit from shared model weights for all time steps. For

example, at time step t, the output of a vanilla RNN layer can be calculated as:

hy = f(Wyxy + Uphi—1 + b)

Where W, Uy, and b are the network parameters, f(.) is a non-linear function, and the initial value of
the hidden state hg is usually set to 0. Like DNN and CNN models, RNN models can also have multiple
stacked hidden layers at each time-step. Finally, additional feed-forward layers may also be applied on top
of the last output hp or each output h; of the final RNN layer. Backpropagation through time algorithm
is usually used to train RNN models [139].

b) Long short-term memory (LSTM): In order to capture complex long temporal dependency and
avoid vanishing gradient problems, modified RNN models have been proposed with state-of-the-art
performance. Long Short-Term Memory (LSTM) is one of the earliest and most commonly used RNN
models and there are several architectures of LSTM units [140]. A common architecture is composed
of a cell (the memory part of the LSTM unit) and three “regulators”, usually called gates, that regulate
the flow of information inside the LSTM unit. An input gate (¢;) controls how much new information
is added from the present input (x;) and past hidden state (h;—1) to our present cell state (c;). A forget
gate (f;) decides what is removed or retained and carried forward to the current cell state (c;) from the
previous cell state (c;—1). An output gate (o;) decides what to output as the current hidden state (h;)
from the current cell state (c;). These gated units work as a fully-connected neural network layer that

receives the weighted sums of the input x; and the previous hidden state h;_; as its input. Because of
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that, LSTM are also often referred to as FC-LSTM [141]. The LSTM formulation can be expressed as:
Jt=o04Wysxe+Ushi—1 + by)
iy = og(Wixy + Uihy—1 + by)
o = 0g(Wowy + Ushi—1 + by)
¢ = op(Wexy + Uchy—1 + be)
¢t = froci—1+itoc
hi = ot o op(ct).

Here, 2; € R? is the input vector to the LSTM unit, f; € R” is the forget gate’s activation vector,
i; € R is the input gate’s activation vector, o; € R” is the output gate’s activation vector, h; € R"
is the hidden state vector also known as the output vector of the LSTM unit, ¢; € R is the cell state
vector, and o is the Hadamard product operator. W € R"*? and U € R"*" are the weight matrices and
b € R" are the bias vector parameters which need to be learned during training. o4 and oy, represent
sigmoid function and hyperbolic tangent functions respectively. d and h refer to the number of input
features and the number of hidden units respectively. The initial values of hg and cy are both usually set
to be 0. A traditional LSTM architecture diagram used in temporal data predictions, is shown in Figure
6 [116].

c) Extending LSTM with Peephole Connections: Since the invention of LSTM network, a couple of
related implementations have been introduced to further improve the performance. One example extends
the LSTM by having so called peephole connections [142], [143]. In traditional LSTM each gate receives
connections from the input units (z;) and the outputs of all cells (h;—_1), but there is no direct connection
from the internal cell state (c;). When the output gate is closed, there might be a situation of lack of
essential information to the gates which may harm network performance. So as a solution the peephole
connection from the cell state (c;) has been introduced to all three gates. These additional connections
have the purpose that each gating unit has a direct access to the previous memory cell state Cy_1. The
motivation for this is to allow the units to learn when to open or close their gates based on the cell state,

in order to learn more precise timings. The LSTM with Peephole Connections can be expressed as:
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Fig. 6. Architecture of a LSTM model used in temporal data prediction model: LSTM integrator designed to perform a single
timestep (Agr) evolution of an NN particle system characterized by features of size d. Input system and LSTM parameters are

shown for 16 particles in 3D.

fi=04Wysaxy +Ushy—1 + Wye 0 c—1 + by)
iy = og(Wize + Uihy—1 + Wic o ce—1 + by)
Gt = Uh(WcCUt + Uchi—q + bc)

ct = froc1+itoc

O = O'g(Woxt + Uohtfl + Woeocr + bo)

hi = op o op(ct).

Here, W,. € R are the weight vectors of * gate (can be any of the three gates) for the peephole
connections which need to be learned during training. All other symbols are defined in the above LSTM
section. Note that the output gate takes the current cell state as a peephole connection. An LSTM cell
architecture diagram with peephole connections is shown in Figure 7

d) Gated recurrent unit (GRU): Gated recurrent unit (GRU) is another popular RNN model which
has a simpler architecture compared to LSTM and has been shown to achieve similar state-of-the-

art performance compared to LSTM models for modeling temporal/sequential data [144], [145]. GRU

attempts to solve the vanishing gradient problem of a standard RNN, similar to LSTMs but only using
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Fig. 7. Architecture of a Long Short-term Memory Cell with Peephole connections [141]

two gates (three gate in LSTM) so-called, update gate and reset gate. These two gates control what
information should be passed to the output and what information is irrelevant to the final output. The
weight associated with these gates can be trained to keep past information without loosing it through

time. The update functions of GRU is shown as:

2z = 0g(Woay + Ushy—1 +bs)

re = og(Wyay + Urhi—1 + by)

hy = on(Wexy + Ue(ry o hy—1) + be)
hi =z 0hy+ (1 —2z)ohiy

Here, z; € R? is the input vector to the GRU unit, z; € R" is the update gate’s activation vector,
r. € R" is the reset gate’s activation vector, h; € R" is the hidden state vector also known as the
output vector of the GRU unit, h; € R is the cell state vector, and o is the Hadamard product operator.
W € R and U € R"*" are the weight matrices, and b € R" are the bias vector parameters which
need to be learned during training. o, and o}, represent sigmoid function and hyperbolic tangent functions
respectively. d and h refer to the number of input features and the number of hidden units, respectively.
The initial value of hg is usually set to be O.

4) Deep Markov model (DMM): Deep Markov model (DMM) is one of the most influential of models
for understanding the hidden, latent variables in temporal data evolution. Unlike other deep learning

models introduced above, DMM is a class of generative models which empower Gaussian state-space
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models to leverage the representational capacity of deep learning models [146], [147]. Deep Markov
models keep the Markov property as hidden Markov models and replace the classic linear emission and
transition distributions by multiple deep neural network layers (DNNs). Deep Markov models can be
learnt by stochastic gradient ascent on a variational lower bound of the likelihood.

5) Transformers: RNN networks are generally slower as all the temporal input sequence data needs
to be passed sequentially or serially one after the other as it needs inputs of the previous state to make
any operations on the current state. Such sequential flow does not make use of today’s GPUs and other
parallelization techniques very well, which are designed for parallel computation. LSTM networks were
introduced to capture long temporal dependency and avoid vanishing gradient problems, but they are even
slower than vanilla RNN due to architectural complexity. The transformer neural network architecture
was introduced in 2017 to address this issue so that the input sequence can be passed in parallel [23].
The network employs an encoder-decoder architecture much like encoder-decoder models with RNNs.
The first transformer network is used to perform machine translation from English sentences to French
sentences.

The first component of the encoder is an input embedding which converts inputs features to vectors.
The next component adds positional encoding to the word vectors, so it produces a vector which has the
information about the position in the sequence (in terms of distances). The original architecture uses a
sine and cosine function to generate the position encoding vectors, but it could be any reasonable function
[23]. Above two layers converts an input English sentence to an embedding to represent the meaning and
then added with the positional vectors which capture the context of the words in the sentence. These word
vectors then processed inside Multi-head attention layer where it computes how relevant is one word in
a sentence (English) relevant to other words in the same sentence. This is done through mapping a query
and a set of key-value pairs to an output and the output is computed as a weighted sum (hence, the multi
head attention) of the values, where the weight assigned to each value is computed by a compatibility
function of the query with the corresponding key. The next component of the encoder block is a feed-
forward net which is a simple DNN which is applied to every one of the attention vectors and transform
the attention vectors into a form that is digestible by the next encoder blocks or decoder blocks. The
decoder architecture follows the same output embedding, positional encoding and multi-head attention
layers, except that it has a masked out multi-head attention for the French language. While generating
the next French word, the network uses all the words from the English sentence; however, it only uses
the previous words from the French sentence. This masking allows the network to learn the language

relationship between English-French and use that to predict the next french word rather than just learning
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to predict the next french word from past french words. Then the output vectors (only the past french
word vectors) of the masked out multi-head attention and the output vectors from the encoder block (all
English word vectors) is passed to another attention block where the relationship between two languages
are encapsulated. Next, the output vectors goes a feed-forward net similar to the encoder following a
linear layer which expands the dimensions up to the number of words in the translated language (French
in this case). Finally, a soft-max activation layer is applied to get a probability distribution resulting in
a final word (corresponding to the highest probability) in the French language. So this process should
be applied iteratively until the token for an end of the sentence is generated as a prediction. We can
apply the transformer architecture for temporal data prediction by removing the embedding layers and the
softmax layer at the end. An architecture diagram of transformer customized for temporal data prediction

is shown in Figure 8.
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Fig. 8. Architecture of a Transformer network for time-series regression [23]

6) Combination of deep learning models: An essential advantage of using deep learning models to
learn temporal data is the flexibility in structure and model architecture with end-to-end training, which
allows us to combine different types of layers and networks into one model [148]. For example, we can

use a CNN model to look at the structural information, RNN model to take the temporal inputs and a
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DNN model to take the non-temporal inputs, and add additional layers that take the output of the outputs
from all the combined networks. All components of the entire model (a combination of a few networks)
can be trained jointly by backpropagation. One famous example of this type of network is CNN-LSTM,
where we first pass all the inputs through a CNN network followed by an LSTM network to reduce the
input features per temporal dimension [149]. To learn the temporal features, CNN behaves like a spatial
feature extractor and feeds the output to LSTM layers. Another famous architecture is ConvLSTM, where
we introduce convolution operation inside the LSTM cell to replace the traditional matrix multiplication
calculation of the input [150]. So, ConvLSTM and CNN LSTM full fills the same functionally where
ConvLSTM has the convolution embedded in the architecture while CNN-LSTM concatenates the types
of networks together externally.

a) Fully-Convolutional LSTM (ConvLSTM): As highlighted earlier one of the major drawback of
traditional LSTM (FC-LSTM) is that it doesn’t encode any spatial information in its usage of full
connections in input-to-state and state-to-state transitions. ConvLSTM address this by converting all
the inputs (x;), hidden states (h;) and cell outputs (¢t) to 3D tensors (X, H:, C:). The gates fy, iy,
o of the ConvLSTM are also 3D tensors whose last two dimensions are spatial dimensions (rows and
columns) and the inputs and states could be thought as vectors standing on a spatial grid. The ConvLSTM
uses convolution operator (instead of matrix multiplication in traditional LSTM) in the state-to-state and
input-to-state transitions to determine the future state of a cell in the grid by the inputs and past states

of its local neighbors. The ConvLSTM formulation can be expressed as:
fi=0q(Wpx X +UpxHi1 + Wye0Cio1 + by)
it =0g(Wix X + U x He1 + WicoCi1 + b;)
Cr = on(Wes Xy + Ue x Hy_1 + be)
Ci=froCi1+it0C
or = 0g(Wox Xy + Uy x Hy—1 + Woe 0 Cp + by)
Hi = op 0 op(Cy).

where, ; € R% is the input to the LSTM unit, f; € R3" is the forget gate’s activation vector, i; € R>"
is the input gate’s activation vector, o; € R3" is the output gate’s activation vector, h; € R*" is the hidden
state vector also known as the output tensor of the LSTM unit, ¢; € R*" is the cell state tensor, ‘o’ is the
Hadamard product operator, and ‘*” denotes the convolution operator. W, W;, W, € R34 1, € R4
and Uy, U;, Uy, Wy € R3"" U, € R"" are the weight matrices and by, bi,bo, € R3" b,, € R" are

the bias vector parameters which need to be learned during training. * represents three gates (i, f,0). o4
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and oy, represent sigmoid function and hyperbolic tangent functions respectively. d and h refer to the
number of input features and the number of hidden units respectively. The initial values of hy € R*"
and co € R*" are both usually set to be 0. All other symbols are defined in the above LSTM sections.
An ConvLSTM cell architecture diagram with peephole connections is shown in Figure 9. Furthermore,

BN represents the batch normalization.
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Fig. 9. Architecture of a ConvLSTM cell [150]: The simplified structure of the batch-normalized ConvLSTM cell including
peephole connections. The inputs and previous hidden states are convolved to produce 3D tensors that flow through each cell.

Changes to standard FC-LSTM are highlighted in red.

7) Physics informed neural networks (PINN): Recent years have seen a dramatic rise in research for
Physics informed neural networks which illustrates a deep connection between deep neural networks
and physical systems explained with differential equations [71], [72], [73], [70], [46], [64], [103], [69],
[47]. So this section will describe some of the important ideas which would change the neural network
architecture to fuse in physical laws inside the deep neural models.

a) HNN: Hamiltonian Neural Networks (HNN) is a deep Neural Network model inspired by
Hamiltonian mechanics to train models that learn and respect exact conservation laws (exhibits in a
physical system) in an unsupervised manner [46]. Hamiltonian mechanics allows us to update a state of
a system described with a set of coordinates (¢, p) where ¢ = (q1,...,qnN) represents the positions of
a set of objects whereas p = (p1,...,pn) denotes their momentum. A scalar function H(q,p) called
Hamiltonian drives the state updates (time evolution of the coordinates) of the system with respect to

time as:
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dg _on dp _ oM
dt dp dt dq
The scalar quantity Hamilton used in this process is the total energy of the system (g, p). So the vector
OH _ OH

field Sy = <%, _Tq> over the inputs of H describes the moving direction and update of the (g, p)

coordinates using:

t
(96, p¢) = (qt—1,Pt-1) +/ Su(q,p)dt
-1

The traditional way to train a baseline DNN model to predict the state updates, would be to set
the target as state updates (%, %) and input as current coordinates (g, p) as shown in left side of the
Figure 10. The objective would be to minimize the L5 loss function between actual (% gt dt) and network
predicted (ZZ, ‘Z’ ) time derivatives values of (¢, p). HNNs are trained in a slightly different method so
that the input to the network are position data (p) and momentum data (q) (note that input is similar
to baseline DNN) while output is a single scalar “energy-like” quantity (Hy) as shown in right side of
the Figure 10. This allows the network to use the properties of Hamilton mechanics to parameterize a
deep neural network with parameters 6. Then, before computing the loss, in-graph gradient of the output
(ad—?;" and %) with respect to the inputs (p and q) is calculated. So the objective of this network is to
optimize the gradient of the neural network or in other words to minimize the loss function as follows:

oH
Lunn = Hape %

N

k = flow of data
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Fig. 10. High level comparison of DNN vs HNN [46]: The forward pass of an HNN is composed of a forward pass through a

differentiable model as well as a backpropagation step through the model
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b) LNN: Lagrangian Neural Networks (LNN) is a Deep Neural Network model inspired by La-
grangian mechanics to train models that learn and respect exact conservation laws and Lagrangian
functions (exhibits in a physical system) in an unsupervised manner [47]. Lets take a physical system
which has coordinates z; = (g, ¢) and system state is updated from z¢ = (go, Go) to 1 = (q1, ¢1). There
are an infinite amount of paths that these coordinates may take as they pass from x( to z1, and these
paths are associated with a scalar value S called “the action.” Lagrangian mechanics states that the S is

related to kinetic (K.E or T) and potential energy (P.E or V) described as:

to

As shown in Figure 11, the system always update its state from x( to x1, by following one path (green
path in Figure 11, this is the path which has the least action hence the principle of least action) which

gives a stationary value of S.

Fig. 11. Possible paths for a physical system from go to gi in configuration space[47]: The action is stationary (S = 0) for

small perturbations (dq) to the path that the system actually takes (green).

To drive complete mechanics of solid and fluid bodies, the modern Euler-Lagrange equation is defined

as:

with the constrain equation as follows:

doc_oc
dt 9¢  Oq
As L is a function of both ¢ and ¢, we can expand the % using chain rule as: % = % + q'a% + c'ja%

and rewrite the Euler-Lagrange constrain equation as:
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0L 0L oL
Tog0q " T4z ~ 0q

We can reformulate the above equation using a matrix inverse to solve for ¢ as:

L (PL\T (0L L
1=\ 92 oq 10904

For a given set of coordinates z; = (¢, §;), we can calculate &; = (¢, G;) from the above Lagrangian

constrain equation and integrate §; to obtain the dynamics of the system.

The traditional way to train a baseline DNN model to predict the §, would be to set the target as ¢
and input as current coordinates (g, ¢) as shown in top (Baseline NN) of the Figure 12. The objective
would be to minimize the loss (L) function between actual (§) and network predicted ((3). Similar to
HNNs, LNNs are trained in a slightly different method so that the input to the network are the current
coordinates (g, ¢) (note that input is similar to baseline DNN) while output is a single scalar quantity
(Lg) as shown in bottom (Lagrangian NN) of the Figure 12. This allows the network to use Lagrangian

mechanics properties to parameterize a deep neural network with parameters 6. Then, before computing

OLo

the loss, in-graph gradient of the output ( 4

and 87‘:}9) with respect to the inputs (¢ and ¢) is extracted
via modern automatic differentiation. Note that LNN involves both the Hessian and the gradient of a
neural network during the forward pass of the LNN. This is not a trivial operation, but modern automatic
differentiation makes things surprisingly smooth. So the objective of this network is to minimize the loss

function as follows:

Linn =

. (LN (oL 9L
Gactual 6(]2 aq q 8(]8(] ,
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Fig. 12. High level comparison of DNN vs LNN [47]: The forward pass of an LNN is composed of a forward pass through a

differentiable model as well as a backpropagation step through the model (Hessian and the gradient)
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101107, 2020, Elsevier.

Kadupitiya, JCS and and Fox, Geoffrey and Jadhao, Vikram, Deep Learning Based Integrators for

Solving Newton’s Equations with Large Timesteps, 2020, (Submitted).
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6. CONCLUSION

While the use of the DL approach in MD simulations has many unique benefits, further research is
needed to make the approach more suitable for practical applications. In this review, we have discussed
several effective deep learning models for temporal data in MD simulations and demonstrated their
success in soft-matter simulation applications. We have also highlighted the main critical challenges with
temporal data in MD simulations such as complex temporal dependency and chaotic behaviors, which
imposes several unique issues exist in its practical aspects, modeling dynamics of systems that exhibit
rare event characteristics or involves longer times to yield the low energy configurations due to kinetic
bottlenecks, and scaling these DL approaches to more extensive simulations. We have also provided a
brief insight into how some of these issues can be mitigated using innovation in NN architecture informed
by time-series application and surrogate applications. Future work will aim to address these issues to

make DL models more applicable to practical applications in soft-matter simulations.
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