
Building a Cloud Control Framework for the TurtleBot
Leif Christiansen2, Supun Kamburugamuva1, Geoffrey Fox1

1 Indiana University
2 Lewis & Clark College

Components

 Introduction

 The availability of Internet connections and low manufacturing
costs have led to a surfeit in smart objects, simple devices consisting
of a CPU, memory storage, and a wireless connection.[3] When
equipped with sensors and actuators such objects may provide
exciting advances in areas including exploration, surveillance, and
emergency response; if a suitable framework can be deployed to
process sensor data and return control messages.

 For such sensors, cloud processing has been shown to be
advantageous over embedded processors due to numerous factors:
the ability to easily draw from vast stores of information, efficient
allocation of computing resources, a proclivity for parallelization,
the ability to handle large amounts of information, operation of
multiple units simultaneously, etc. [1]

 One sensor that has experienced great popularity, both in
academia and among the public, is the Microsoft Kinect. The Kinect
(shown in Fig. 1) is a fairly cheap and extremely useful sensor with a
host of applications ranging from physics to physical therapy. As a
result, there is a wealth of information and resources surrounding
the Kinect.

 Our project expands upon previous work on the Kinect, creating
a control framework for the TurtleBot (Fig. 2) that performs all data
processing on the cloud.

Reading Distance from the Kinect Processing/Functionality

 Acknowledgments

References

[1] G.C. Fox, S. Kamburugamuve, R.D. Hartman, Architecture and measured characteristics of a
cloud based internet of things API, in International Conference on Collaboration Technologies
and Systems, (Colorado, USA, 2012).
[2] S. Mehrotra, Z. Zhang, Q. Cai, C. Zhang, and P. A. Chou, Low-complexity, near-lossless coding
of depth maps from kinect-like depth cameras, in Proc. IEEE MMSP Workshop, (Hangzhou,
China, 2011), IEEE, pp 1-6.
[3] IPSO White Paper #1 “Internet Protocol for Smart Objects (IPSO) Alliance”
[4] OpenKinect, Imaging information. [Acces 2014 June 20] Available from: http://openkinect.
org/wiki/Imaging_Information
[5] RabbitMQ, Messaging that just works. [Accessed 2014 July 5] Available from: https://www.
rabbitmq.com/
[6] Storm, Distributed and fault-tolerant realtime computing. [Accessed 2014 July 14] Available
from: https://storm.incubator.apache.org

 Primary Contact

Fig. 4: The architecture of our project

Fig. 3: Sample frame from the depth camera

Thanks to Dr. Geoffrey Fox and Gregor Von Laszewksi for their consulting and
tutelage and also to the IU-SROC for making it all possible.

Future Work

Compression

 An Apache Storm topology was deployed on the cloud
implementing the follower program.

Fig. 1: Microsoft Kinect, without casing

 Each frame is sent as a
bytebuffer containing
307,200 10-bit disparity
values, 1024 indicating an
unreadable point. The
disparities are converted
into meters using an
algorithm given by
Stéphane Magnenat. [4]

Fig. 2: Willow Garage’s TurtleBot

Fig. 6: Example of LZ77 compression

libfreenect: An open-source Kinect driver produced by OpenKinect.

IoTCloud2: A sensor-centric middleware developed to bring sensor
data to the cloud. IoTCloud2 consists of a controller for holding
sensor specific state information and a message broker (RabbitMQ
was used in our project) for passing state updates, data messages
and control messages.

RabbitMQ: A message broker based on the Advanced Message
Queuing Protocol (AMQP) model. TCP is used for delivery. [5]

Apache Storm: A distributed real-time computation system. Apache
Storm consists of spouts and bolts, nodes used to stream and
process data respectively. The overall network of these nodes is
referred to as a topology. [6]

In order to test the scalability of our framework we are
currently in the process of developing a program to simulate
numerous sensors running simultaneously.

The framework is also being tested so as to determine the
optimal stage for compression, be it on the TurtleBot computer
or IoTCloud2, and identify areas most in need of improvement.

Supun Kamburugamuva, Indiana University, supun06@gmail.com

Conclusion

 Our framework successfully processes Kinect frames on the
cloud and returns control messages to the TurtleBot in real-
time. This is achieved through our two-stage compression
scheme coupled with effective message passing technologies.
We are confident that this framework may be scaled to process
and control a large number of TurtleBots.

 In order to process data in real-time the transmitted frames
needed to be compressed.

Inversion: Mehrotra et al’s inversion algorithm encodes
multiple values the same, taking advantage of the Kinect error.
JZlib: A Java implementation of Zlib, a compression library that
intelligently switches between LZ77 and Huffman coding.

Fig. 5: Our two-stage compression scheme, compresses 10:1 in 10ms

Fig. 7: Example of Huffman coding

Fig. 8: The follower calculates an average point (centroid) from the TurtleBot’s
FoV and seeks to maintain a constant distance

