
Kumar Satyam: Final Report: CSCI Y790

Final Report for Independent Study: CSCI Y790

under Dr. Geoffrey C. Fox

Research Topic: Serverless Computing

 Name: Kumar Satyam

 Email-Id: ksatyam@indiana.edu

mailto:ksatyam@indiana.edu

Kumar Satyam: Final Report: CSCI Y790

Table of Contents

Table of Contents .. 2

Abstract ... 3

Introduction .. 3

Triggers.. 3

HTTP Trigger .. 4

Database Trigger ... 4

Object Storage .. 4

Trigger Comparison ... 4

Feature comparison among different cloud function function .. 5

IAAS vs FAAS Pricing information: .. 6

Language Comparison: .. 8

Use Cases .. 10

Bibliography .. 10

Kumar Satyam: Final Report: CSCI Y790

Abstract
Serverless computing also called Function-as-a-Service (FaaS) provides a small runtime container to

execute lines of codes without management of infrastructure which is more like simpler version of PaaS.

Amazon, Google, Microsoft and IBM offer serverless computing with various features but some

limitations. We intend to generate a comparison with benchmarking results therefore our report

becomes a guideline of further research on serverless computing. We also investigate existing platforms

to see if it can be used to perform large distributed computation and apply to big data analytics. This

report provides comparisons towards 1) elasticity, 2) scalability, 3) flexibility, 4) cost efficiency, 5)

concurrency and 6) functionality.

Introduction
Serverless computing is a first commercial cloud service that uses 100 milliseconds as a charging metric

compared to traditional cloud services using an hourly charge metric. Serverless is a miss-leading

terminology because it runs on a physical server but it succeeded in emphasizing no infrastructure

configuration requirement to manage compute workload. Geoffrey (Fox, Geoffrey C, Ishakian, Vatche ,

& Muthusamy) defines serverless computing among other existing solutions i.e. Function-as-a-Service

(FaaS) and Event-Driven Computing. We also understand that serverless evolved recently because

container technology allows to create a namespace for the workload within a minute and certain

restrictions e.g. 300 seconds timeout increase overall resource utilization from the provider perspective.

In the following sections, we simply investigate current serverless platforms in terms of their elasticity,

scalability, flexibility, cost efficiency, concurrency and functionality and describe existing issues and

restrictions. Use cases are followed to demonstrate its capacity to run large and distributed tasks

including scientific computing applications.

Triggers
The serverless computing is a subset of event-driven computing which has a front-end event handler to

invoke functions. We find that event types variously depends on application behaviors and purposes.

For example, IoT device sends a notification when sensors detect new changes and the notification

might be a trigger of other applications to process the sensor data. Serverless computing providers

support various types of events including HTTP requests, object storage e.g. AWS S3, and a database e.g.

IBM Cloudant thus as many actions as they can handle in order to answer back the event messages.

Event handlers also called triggers either listen events and create a function invocation (push model) or

collect changes at a regular interval to invoke a function (pull model). In this section, we measure trigger

resolutions to see how sensitive it is and understand its capacity of concurrent event messages. We

measured a latency of triggers between different serverless providers such as AWS Lambda, IBM

OpenWhisk, Google Cloud Functions and Microsoft Azure Functions. We executed the same function

across different cloud function. We first started with AWS Lambda. We tested AWS Lambda with triggers

from HTTP API gateway, DynamoDB and S3 as well. For IBM OpenWhisk, we tested an HTTP trigger and

the IBM Cloudant trigger. For Google Cloud Function, we had triggers from HTTP and Google Cloud

Storage. For Google Cloud Function do not offer database trigger, although a pub/sub messaging trigger

is offered. For Azure Functions, we had triggers from HTTP and storage. The data for trigger result is in

the report.

https://github.com/satyamsah/Serverless-Technologies/blob/master/latency-comparison.xlsx

Kumar Satyam: Final Report: CSCI Y790

HTTP Trigger
Http trigger provides a simple format to invoke a function with various input types e.g. JSON and an

asynchronous call is optional which is useful for dealing with concurrent requests without blocking. Note

that the asynchronous option and concurrent request limit vary by providers and quotas by personal

accounts. As per Figure 1 we see that Microsoft Azure has the highest number 142 of invocations per

second whereas Google Functions shows the least throughput as they invoke very less number of

functions per second.

 Database Trigger
 Database trigger invokes a function when there is an insertion/modification/deletion of a record in a

table which behaves like a message queuing system. Google supports pub/sub trigger in their serverless

platform and it might be exchangeable with a database trigger since Google Functions does not have a

database trigger. We see the comparison of the database type of trigger with AWS DynamoDB and IBM

Cloudant as a direct trigger to their respective vendors' functions. As of now we cannot compare Azure

and Google Cloud as they do not have a direct trigger available to their respective functions. As per the

graph, we see that performance of the AWS DynamoDB trigger surpasses the IBM Cloudant trigger.

Object Storage
Object storage is widely used to store and access data from various platforms and we find that the

object storage trigger is supported in the most serverless providers. AWS S3 trigger performs better

than the Google Cloud storage trigger. Note that we were not able to perform the object storage trigger

for IBM cloud storage it does not offer a direct trigger to IBM Openwhisk as of now.

 Trigger Comparison
In this section, we measured a trigger throughput to describe how many event messages that they can

process at a time. Certain triggers e.g. Timer are not meant to deal with concurrent messages thus we

chose three types of triggers across serverless providers; HTTP, database and object storage triggers. In

Figure 1,we find that the median throughput of the HTTP trigger is 55.7 functions per seconds and the

object storage has the 25.16 functions per seconds median throughput. The AWS Lambda Database

trigger has throughput of 864.60 function per second which is approx. 32 time of object storage and

approx. 15 times of HTTP trigger. It is understandable because the database trigger in AWS is

configurable to add more database nodes in response to the number of event messages. The reason for

this is that there is huge gap between the number of functions invoked per second among different

trigger types. As of now we cannot compare Azure and Google Cloud database trigger as they do not

have a direct trigger available to their respective functions.

Kumar Satyam: Final Report: CSCI Y790

 Figure 1: Trigger comparison among cloud providers

Feature comparison among different cloud functions

Table 1, AWS Lambda offers a wide range of trigger endpoints compared to the other cloud providers.

We also see that the cost of usage of serverless function is based on two metrics. First, the number of

invocation of serverless functions. Second, the time taken by a serverless function to execute and

complete paired with an amount of memory in terms of gigabytes allocated. Invocation to the serverless

functions is really cost effective in all serverless providers if an application is executable with certain

restrictions that serverless computing has. All providers have similar pricing tables but IBM Openwhisk

does not charge the number of invocations whereas the other providers do charge. Google upscales in

terms of memory as it provides maximum of 2 GB of memory to run a serverless function. Google also

outperforms in terms of providing maximum execution timeout of 9 minutes which would be helpful for

long running jobs. IBM OpenWhisk has the container which can provided the best clock speed of 2100

*4 MHz.

Kumar Satyam: Final Report: CSCI Y790

Item AWS Lambda Azure Functions Google Functions IBM OpenWhisk

Runtime
languague

Node.js, Python,
Java, C#

C#, F#, Node.js, Java,
PHP, Python

Node.js Node.js, Python,
Java, C#, Swift,

PHP, Docker

Trigger 18 triggers (i.e.
S3, DynamoDB)

6 triggers (i.e. Blob,
Cosmos DB)

3 triggers (i.e.
HTTP, Pub/Sub)

3 triggers(i.e.
HTTP,mCloudant)

Price per
Memory

$0.0000166/GB-s $0.000016/GB-s $0.00000165/GB-s $0.000017/GB-s

Price per
Execution

$0.2 per 1M $0.2 per 1M $0.4 per 1M Not applicable

Free Tier First 1 M Exec First 1 M Exec First 2 M Exec Free Exec /
40,000GB-s

Maximum
Memory

1536MB 1536MB 2048MB 512MB

Container OS Linux ip-10-13-
100-130 4.9.43-

17.39.amzn1.x86
64

Windows NT Debian GNU/Linux
8 (jessie)

Alpine
Linux;14.04.1-

Ubuntu

Max CPU 2900.05 MHz,1
core

1.4GHZ 2200 MHz, 2
Processor

4 cpu
cores,2100.070

MHz

Temp
Directory

512 MB (/tmp) 500 MB (%Local%)

Execution
Timeout

5 mins 5 mins 5 mins 5 mins

Code size limit 512 MB 16MB 100MB
(compressed) for
sources. 500MB
(uncompressed)
for sources plus

modules

48 MB

API references cli tool .NET,
python,node,java,ruby,

rest

gcloud CLI tool,
rest api, rpc

api

cli tool

Table 1: Comparison of Features

IaaS vs FaaS Pricing information:
People who are new in the FaaS environment may get confused between functionality of IaaS and FaaS.

The underlying concept states is that FaaS is supported by the containers which get started and killed

many times during a cloud function lifecycle. We conducted an experiment by deploying in-house

Apache Openwhisk. We found that the containers also maintain lifecycle that is instantiation, pause and

killed. If a new function is invoked within a particular timeframe with respect to previous invocation,

then the same container is invoked, which is currently in running state. This save the computation time.

This is often term as hot start of function.

Next, if the container is ideal for a long time which means no function invocation (new function or the

same old function) is happening within a certain timeframe (we analyzed 3 mins), the container goes to

paused state for a fixed timeframe. If a function is invoked (different function or the same previous

Kumar Satyam: Final Report: CSCI Y790

function) within a specific period while the container is in paused state, then same container will get

activated from paused to running state and then take the request of deploying and running the function.

This may cost some more microseconds for the underlying container to come from paused to running

state. But, if a good amount of time has passed by and no function got invoked while the container is

paused state then the container is killed. If new function call happens after that then the new container

will be instantiated and will serve the function invocation which may take more than the previous two

cases. This is called cold start of function.

Whereas the IAAS works on the VMs. there is no concept of autoboot and auto killing of VMs. The

disadvantage of VMs is that we need to keep them running irrespective of work is available or not. Most

of the time the VMs are running ideally without doing any work and costing good amount of money to

the customer. Also, the disadvantage is the compute resource like VMs are changed per hour, so if a

work/process which gets invokes not very frequently and needs only seconds of compute time, VMs are

not ideal scenarios and there FAAS has always has upper hand in this case.

We did a price comparison between IaaS and FaaS because it is unclear whether invoking FaaS is cost
effective over running a VM instance. The charging unit is different, FaaS is based on 100 milliseconds
per invocation and IaaS is based on an hour per a VM instance but when we break down the cost in a
second, FaaS is not always cheaper than IaaS. We ran implementation of creation of binary trees of 18
depths and ran in different FaaS and IaaS platforms among AWS, IBM, Azure and Google cloud. We
calculated the price per executing this binary tree creation program in each of the IaaS and FaaS.

Table 2 shows the execution time of the creating binary trees and the total cost with the rank ordered

by cost effectiveness.

Table 2: Building Binary Tree with cost awareness

Platform RAM Cost/Sec Elapsed Second Total Cost (Rank)

AWS Lambda 3008 MB $4.897e-5 20.3 $9.9409e-4 (6)

AWS EC2
(t2.micro)

1GiB $3.2e-6 29.5 $9.439e-05 (3)

Azure Functions 192MB $3e-6 71.5 $2.145e-4 (4)

Azure VM 1GiB $3.05e-6 88.9 $2.71145e-4 (5)

Google Functions 2GB $2.9e-5 34.5 $0.001 (7)

Google Compute
(f1-micro)

600MB $2.1e-6 19.2 $4.0319e-05 (1)

IBM OpenWhisk 128MB $2.2125e-6 34.2 $7.5667e-05 (2)

Kumar Satyam: Final Report: CSCI Y790

Language Comparison:
A function in serverless computing has a writable temporary directory with a small size (e.g. 500MB) but

it is useful for various purposes, for example, extra libraries, tools and intermediate data files can be

stored while a function runs. We again ran a simple write/read function with a file size of 100MB and

400MB over 100 times in each serverless provider. The measured I/O performance toward a temporary

directory is shown in Figure 2, Figure 3. Google Functions shows good performance in both writing

and reading files because it consumes the temporary directory in memory. Reading speed in AWS

Lambda is the most competitive among others although its writing speed is the opposite. IBM shows

some variant, we may conduct other set of tests to get more accurate results in writing and reading files.

The median speed of the test results is available in the Table 3.

 Figure 2 : Write Speed in Temp Directory

Kumar Satyam: Final Report: CSCI Y790

 Figure 3 : Read Speed in Temp Directory

Table 3: Median Write/Read Speed

Provider Write (MB/s) Read (MB/s)

AWS 84.816877 1822.876337

Azure 99.601698 250.941013

Google 636.314804 897.581341

IBM 98.951235 73.074927

Kumar Satyam: Final Report: CSCI Y790

 Use Cases
There are several areas where serverless can play an important role in research applications as well as in

commercial cloud. Serverless map-reduce can be used to execute big data map-reduce jobs in a more

tolerant and more cost-effective way (Sunil Mallya, 2017). Also, the commercial cloud backend logic can

be run on serverless and persisting data in the cloud hosted database.

Image processing for CDN is also widely used by commercial purpose to process thumbnails of the

images to client such as mobile and tablets which can be taken care by serverless. IOT is also one of

demanding use case for serverless. IOT devices will trigger the lambda function using a rule.

For example, in case of a data-center, cooling facility is very important for proper functioning of servers.

If the cooling of the datacenter is down, the sensors will call a lambda function which will contain the

logic sending alerts to the support team. In near future, we will see a huge number of use-cases as

serverless would be adopted as mainstream cloud based development.

Conclusion:
Adoption for serverless is happening at a very fast pace due to its event driven and simple programming

management platform without thinking about the infrastructure/server. The performance and cost are

the important factors behind the adoption. Many more research is expected to happen majorly driven

by big cloud providers and universities. With this huge demand, we can expect a paradigm shift on how

application would be developed in near future.

Bibliography
Fox, Geoffrey C, Ishakian, Vatche , & Muthusamy. (n.d.). Status of Serverless Computing and Function-

as-a-Service (FaaS) in Industry and Research. 2017.

Sunil Mallya, A. (2017, 09/ 11). Retrieved from https://aws.amazon.com/blogs/compute/ad-hoc-big-

data-processing-made-simple-with-serverless-mapreduce

