
Task-parallel Analysis of Molecular Dynamics
Trajectories

Ioannis Paraskevakos1, Andre Luckow2,3, George Chantzialexiou1, Mahzad Khoshlessan4,
Oliver Beckstein4, Geoffrey C. Fox5 , Shantenu Jha1

1 Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
2 Institute of Computer Science, Ludwig-Maximilians-University, Munich, Germany

3 School of Computing, Clemson University, Clemson, SC 29634, USA
4 Department of Physics, Arizona State University, AZ 85281, USA

5 School of Informatics, Computing and Engineering, Indiana University Bloomington, IN 470405, USA

Abstract—Different frameworks for implementing parallel
data analytics applications have been proposed by the HPC and
Big Data communities. In this paper, we investigate three frame-
works: Spark, Dask and RADICAL-Pilot with respect to their
ability to support data analytics requirements on HPC resources.
We investigate the data analysis requirements of Molecular Dy-
namics (MD) simulations which are significant consumers of su-
percomputing cycles, producing immense amounts of data: a typ-
ical large-scale MD simulation of physical systems of O(100,000)
atoms can produce from O(10) GB to O(1000) GBs of data. We
propose and evaluate different approaches for parallelization of a
representative set of MD trajectory analysis algorithms, in partic-
ular the computation of path similarity and the identification of
connected atom. We evaluate Spark, Dask and RADICAL-Pilot
with respect to the provided abstractions and runtime engine ca-
pabilities to support these algorithms. We provide a conceptual
basis for comparing and understanding the different frameworks
that enable users to select the optimal system for its application.
Further, we provide a quantitative performance analysis of the
different algorithms across the three frameworks using different
high-performance computing resources.

Index Terms—Data analytics, MD Simulations Analysis, Par-
allel MD analysis, task-paralell

I. INTRODUCTION

Different frameworks for implementing parallel data an-
alytics have been developed by the HPC (MPI, OpenMP)
and Big Data communities (Spark, Dask) [1]. MPI is the
most widely used programming abstraction on HPC resources.
MPI assumes a SPMD execution model where each pro-
cess executes the same program; communication and synchro-
nization need explicit implementation. Big Data frameworks
like Spark utilize higher-level MapReduce-style programming
models avoiding explicit implementations of communication.
While MPI is well-suited for tightly-coupled, compute-centric
algorithms, Big Data frameworks are designed for loosely-
coupled, data-parallel algorithms.

Task-parallel applications are parallelized by partitioning the
work into a set of self-contained units of compute, which re-
quire small amounts of coordination. Depending on the appli-
cation, these tasks can be independent, i. e., with no interpro-
cess communication, or coupled with varying degrees of data
and compute dependencies. Big Data applications exploit task
parallelism for data-parallel parts (e. g., map operations), but
also require some coupling, viz., for computation of aggregates
(the reduce operation). The MapReduce [2] abstraction pop-

ularized this important execution pattern. Typically, the reduce
operation includes shuffling of intermediate data from a set
of nodes to node(s) where the reduce operation executes. Big
Data frameworks started adopting different HPC techniques to
efficiently support interprocess communication, e. g. efficient
shuffle operations [3] and other forms of communication [4].

Spark [5] and Dask [6] are two well-known Big Data frame-
works. Both provide high-level MapReduce abstractions and
are optimized for parallel processing of large data volumes,
interactive analytics and machine learning. Their runtime en-
gines can automatically partition data, generate parallel tasks,
and execute them on a cluster of nodes. In addition, Spark
offers in-memory capabilities that allows the caching of data
that is read multiple times, making it particularly suited for in-
teractive analytics and iterative machine learning algorithms.
Dask also provides a MapReduce API (Dask Bags). Further,
Dask’s API is more versatile and allows custom task DAGs
and parallel vector/matrix computations.

The attempt is not to determine which approach is better
(Big Data versus HPC), but how to provide the ”best of both”
to a diverse set of applications [4], [7]. Several recent pub-
lications have applied HPC techniques to advance traditional
Big Data applications and Big Data analytic frameworks [1].
The converse problem, viz., the application of Big Data frame-
works to traditional HPC analytics applications, has received
less attention. In this paper, we investigate the data analy-
sis requirements of Molecular Dynamics (MD) applications.
MD simulations are significant consumers of supercomputing
cycles, producing immense amounts of data: a typical MD
simulation of physical systems of O(100,000) atoms can pro-
duce from O(10) to O(1000) GBs of data [8]. In addition to
being the prototypical HPC application, there is increasingly
a need for the analysis to be integrated with the simulations
to drive the next stages of the simulation (analysis- driven-
simulation) [9].

In this paper, we investigate three frameworks and their suit-
ability for implementing MD trajectory analysis algorithms.
In addition to Spark and Dask, two Big Data frameworks, we
investigate RADICAL-Pilot [10], a Pilot-Job [11] framework
designed for implementing task-parallel applications on HPC.
MD trajectories are time series of atoms/particles positions and
velocities, which are analyzed using different statistical meth-

ods to infer certain properties, e. g. the relationship between
distinct trajectories, frames within a trajectory etc. Many of
these algorithms can be expressed using simple task abstrac-
tions or MapReduce [12]. Thus, the selected frameworks are
promising candidates for MD analysis applications.

The paper makes the following contributions: it (i) charac-
terizes and explains the behaviour of different MDAnalysis al-
gorithms on these frameworks, (ii) evaluates the performance
differences with respect to the architectures of these frame-
works, and (iii) provides a conceptual basis for comparing the
abstraction, capabilities and performance of these frameworks.

This paper is organized as follows: Section II discusses the
Molecular Dynamics analysis algorithms under investigation,
and tries to characterize them using the Big Data ogres clas-
sification ontology [13]. Section III, provides a description of
the different frameworks that were used for evaluation. Sec-
tion IV provides a description of the implementation of the
MD algorithms on top of RADICAL-Pilot, Spark and Dask,
as well as a performance evaluation and a discussion of find-
ings. Section V reviews different of MD analysis frameworks
in particular with respect to their ability to support scalable an-
alytics of large volume MD trajectories. The paper concludes
with a summary and discussion of future work in section VI.

II. MOLECULAR DYNAMICS ANALYSIS APPLICATIONS

Some of the commonly used algorithms in the analysis of
MD trajectories are Root Mean Square Deviation (RMSD),
Pairwise Distances (PD), Path Similarity (PS), Sub-setting,
“Leaflet Identification”. RMSD is used to identify the devi-
ation of atoms’ positions between frames produced by a MD
simulation. PD and PS methods calculate distances based on
different metrics either between atoms or trajectories. Sub-
setting methods are used to isolate parts of interest of MD
simulation. Leaflet identification methods provide information
about groups of atoms in space; named after the common use
case of identifying the two lipid leaflets in lipid bilayer. All
these methods, in some way, read and process the whole phys-
ical system generated via simulations. The analysis done re-
duces the data to either a number or matrix.

We discuss in more detail two of these methods and their
implementation in MDAnalysis [14], [15]. Specifically, we dis-
cuss a Path Similarity algorithm using the Hausdorff distance
and a Leaflet Identification method. In addition, we explore the
applications’ Ogres Facets and Views [13] which will provide
a more systematic characterization.

A. MDAnalysis
MDAnalysis is a Python library [14], [15] to analyze time

series of atom coordinates. It is based on existing PyData tools,
such as NumPy, and provides a comprehensive environment
for filtering, transforming and analyzing MD trajectories.

1) Path Similarity Analysis (PSA): Hausdorff Distance:
Path Similarity Analysis (PSA) [16] is used to quantify the
similarity between two trajectories based on the properties of a
distance metric. The Hausdorff Distance is an example of such
a metric. Each trajectory is represented as a two dimensional

Algorithm 1 Path Similarity Algorithm: Hausdorff Distance
1: procedure HAUSDORFFDISTANCE(T1,T2) . T1 and T2 are a set of 3D points
2: List D1,D2

3: for ∀frame1 in T1 do
4: for ∀frame2 in T2 do
5: Append in D1 dRMS(frame1, frame2)
6: end for
7: Dt1

append min(D1)
8: end for
9: for ∀frame2 in T2 do

10: for ∀frame1 in T1 do
11: Append in D2 dRMS(frame2, frame1)
12: end for
13: Dt2

append min(D2)
14: end for
15: return max

(
max(Dt1),max(Dt2)

)
16: end procedure
17:
18: procedure PSA(Traj) . Traj is a set of trajectories
19: for ∀T1 in Traj do
20: for ∀T2 in Traj do
21: D(T1,T2)=HausdorffDistance

(
T1, T2

)
22: end for
23: end for
24: return D
25: end procedure

Algorithm 2 Two Dimensional Partitioning
1: Initially, there are N2 distances, where N is the number of trajectories. Each distance

defines a computation task.
2: Map the initial set to a smaller set with k = N/n1 elements, where n1 is a divisor

of N , by grouping n1 by n1 elements together.
3: Execute over the new set with k2 tasks. Each task is the comparisons between n1

and n1 elements of the initial set. They are executed with a double for loop.

array. The first dimension is a frame of the trajectory and the
second is position of the atoms, in 3-dimensional space.

Algorithm 1 shows the PSA: Hausdorff Distance algorithm
over multiple number of trajectories. We apply a 2-dimensional
data partitioning over the output matrix in order to parallelize
this algorithm. The partitioning is shown in algorithm 2. The
Hausdorff metric we employ is based on a brute-force algo-
rithm. Recently, an algorithm that uses early break was in-
troduced [17] to speedup the execution. However, we are not
aware of a parallel implementation of this algorithm.

2) Leaflet Finder: Algorithm 3 describes the Leaflet Finder
algorithms as presented in [14]. It can be used to identify the
outer and inner leaflets of a lipid membrane of arbitrary shape
from trajectory information provided by simulations. The algo-
rithm consists of two stages: first, a graph connecting particles
based on threshold distance (the cutoff) is constructed. In the
second stage the connected components of the graph are com-
puted. The largest and second largest subgraph are the leaflets.

B. Application Characterization Using Big Data Ogres

The Big Data Ogres [13] provide a framework for un-
derstanding and characterizing the data-intensive applications.
Ogres are organized into 4 classification dimensions, the views.
The possible features of a view are called facets. The combi-
nation of the facets from different views define an Ogre. Ogres
comprise of four views: 1) execution, 2) data source & style,
3) processing and 4) problem architecture. The execution view
describes aspects, such as the I/O, memory and compute ra-
tios, whether computations are iterative, and the 5 V’s of Big
Data. The data source & style view discusses the way input

Algorithm Execution View Data Source & Style Problem Architecture
View

Processing View

PSA O(n2), Large Input/Small Output, NumPy & Python
Arithmetic Libraries, Runtime

HPC Simulations, Permanent Data, Lus-
tre, produced & stored by simulations

Embarrassingly Parallel Linear Algebra Ker-
nels

Leaflet Finder Pairwise Distance: O(n2). Tree-based Nearest Neigh-
bor Construction: O(n log n), Search: O(log n).
Connected Components: O(|V | + |E|). Similar I/O,
Small intermediate Data, NumPy & Python Arithmetic
Libraries, Runtime, Graphs

HPC Simulations, Permanent Data, Lus-
tre, produced & stored by simulations

MapReduce Graph Algorithm,
Linear Algebra Ker-
nels

TABLE I: Mapping of the MDAnalysis algorithms to Big Data Ogres.

Algorithm 3 Leaflet Finder Algorithm
1: procedure LEAFLETFINDER(Atoms,Cutoff) . Atoms is a set of 3D points

that represent the position of atoms in space. Cutoff is an Integer Number
2: Graph G =(V = Atoms,E = ∅)
3: for ∀atom in Atoms do
4: N = [a ∈ V : d(a, atom) ≤ Cutoff]
5: Add edges [(atoms, a) : a ∈ N] in G
6: end for
7: C = ConnectedComponents(G)
8: return C
9: end procedure

data are collected, stored and accessed. The processing view
describes algorithms and kernels used for computation. The
problem architecture view, describes the application architec-
ture needed to support the application.

Table I summarizes the characteristics of the two MDAnaly-
sis algorithms. The PSA Hausdorff Distance is embarrassingly
parallel and uses some linear algebra kernels for calculations.
It has complexity O(n2) (problem architecture and process-
ing views). Its input data volume is medium to large while
the output is small. Specific execution environments, such as
HPC nodes, and Python arithmetic libraries, e.g., NumPy, are
used (execution view). The input data are produced by HPC
simulations. It is typically stored on HPC storage systems,
such as parallel filesystem like Lustre (data source & style
view).

The Leaflet Finder execution view can be described as fol-
lows. The application comprises of multiple stages with dif-
ferent complexities: The first stage is the identification of the
neighboring atoms. There are different implementation alter-
natives: (i) computation of the pairwise distance between all
atoms (O(n2)); (ii) utilizing a tree-based nearest neighbor
(Construction: O(n log n), Query: O(log n)). In both alterna-
tives the input data volume is medium size and the output of
this stage is smaller than the input. The complexity of con-
nected components is: O(|V |+ |E|) (V : Vertices, E: Edges),
i. e. it greatly depends on the characteristics of the graph (in
particular its sparsity).

The application typically uses HPC nodes as the execution
environment, NumPy arrays, and runtime as performance met-
ric. It uses matrices to represent the physical system and the
distance matrix. The output data representation is a graph, i. e.,
a set of connected atoms that make up the leaflet. The Leaflet
Finder can be efficiently implemented using the MapReduce
abstraction (problem architecture view). The map phase de-
termines adjacent atoms, and the reduce phase computes the
connected components. Furthermore, it uses graph algorithms
and linear algebra kernels, characteristics which are process-
ing view facets. The data source & style view facets are the

HPC/Big Data Scheduler

Pilot-Job

Cluster Scheduler

Distributed Execution Engine Spark Runtime

Task Abstraction Pilot-Abstraction Internal

Dask Distributed

Delay API

Spark RDD Dask Bag, Array

Spark Dataframe, MLlib Dask Dataframe

Functional Abstraction

Higher-Level Abstraction

RADICAL-Pilot Spark Dask

EnTK

Pilot-MapReduce*

*Prototype (Not part of RADICAL-Pilot Distribution)

Fig. 1: Architecture of RADICAL-Pilot, Spark and Dask:
The frameworks share common architectural components for
managing cluster resource, managing task. Spark and Dask
offer several high-level abstractions inspired by MapReduce.

same as the PSA algorithm.
III. BACKGROUND OF EVALUATED FRAMEWORKS

The landscape of frameworks for data-intensive applications
is manifold [7], [1] and has been extensively studied in the
context of scientific [18] applications. In this section, we inves-
tigate the suitability of frameworks, such as Spark [5], Dask [6]
and RADICAL-Pilot [10], for molecular dynamics data ana-
lytics.

MapReduce [2] and the open source Hadoop implementa-
tion pioneered the concept of combining a simple functional
API with a powerful distributed computing engine that ex-
ploits data locality to allow optimal I/O performance. It is
widely recognized that MapReduce is inefficient for interactive
workloads and iterative machine learning algorithms [5], [19].
Spark and Dask are more modern systems providing richer
APIs, caching and other capabilities critical for analytics ap-
plications. RADICAL-Pilot is a Pilot-Job framework [11] that
supports task-level parallelism on HPC resources. It has been
successfully utilized for adding a parallelization level on top
of HPC applications based on MPI.

As described in [7], these frameworks typically comprise of
several distinct layers, e. g., for accessing the cluster scheduler,
for framework-level scheduling and higher-level abstractions.
On top of these low-level resource management capabilities
various higher-level abstractions can be provided, e. g., high-
level MapReduce-inspired functional APIs. These then provide
the foundation for analytics abstractions, such as Dataframes
and machine learning capabilities. Figure 1 visualizes the dif-
ferent components of RADICAL-Pilot, Spark and Dask. In the
following, we describe each framework in detail.
A. Spark

Spark [5] is a distributed computing framework that extends
the MapReduce programming model [2] providing a richer set

of transformations on top of the resilient distributed dataset
(RDD) abstraction [20]. RDDs are cached in-memory making
Spark well suitable for iterative machine learning applications
that need to cache a working set of data across multiple stages.
PySpark provides a comprehensive Python API to Spark.

A Spark job consists of multiple stages; a stage comprises
of a set of tasks that can be executed without communication
(e. g., map) and an action (e. g., reduce, groupby). After
each action a new stage is started. The DAGScheduler is
responsible for translating the logical execution plan specified
via RDD transformation to a physical plan.

The Spark distributed execution engine handles the low-
level details of task execution based on the specified lineage
of RDD transformations. The framework handles parallelism
(e. g., by RDDs partitioning) and generates dataflow graph (re-
ferred to as DAG) that is executed according to the specified
dependencies. Transformation are not scheduled for execution
until the data they generate are needed by an action. Actions
are Spark instructions that do an operation over a dataset. Ex-
ecution of jobs is triggered by actions.

Spark can read data from different data sources, e. g., HDFS,
blob storage (such S3), parallel and local filesystems. While
Spark caches loaded data in memory, it is capable of offloading
to disk when an executor has not sufficient memory available
to hold all the data of its assigned partition. Persisted RDDs
remain in memory unless it is specified to use the disk ei-
ther complementary or as the single target. In addition, Spark
writes to disk data that are used in a shuffle. As a result, it
allows quick access to those data when transmitted to another
executor. Finally, Spark provides a set of actions that allow
to directly write text files, Hadoop sequence files or object
files to the local filesystem, HDFS or any other filesystem that
supports Hadoop. In addition to RDDs, Spark supports higher-
level API for processing structured data, such as dataframes,
Spark-SQL, datasets, and for streaming data.
B. Dask

Dask [6] provides a Python-based parallel computing li-
brary, which is designed to inter-operate and to parallelize
native Python code written for NumPy and Pandas. In con-
trast to Spark, Dask also provides a lower-level task API (the
delayed API) that allows the user to construct arbitrary
graphs. Dask is written in Python and does not require a JVM
avoiding some of the inefficiencies of PySpark, e. g., the ne-
cessity to move data from the Java/Scala to Python interpreter.

In addition to the low-level task API, Dask offers three
higher-level abstractions: bags, arrays and dataframes. Dask
Arrays are collection of independent NumPy arrays organized
as a grid. Dask Bags are similar to Spark RDDs and are used to
analyze semi-structured data, like JSON files. Dask Dataframe
is a distributed collection of Pandas dataframes that can be an-
alyzed in parallel.

In addition, Dask offers three schedulers: multithreading,
multiprocessing and distributed. The multithreaded and multi-
processing schedulers can be used only on a single node and
the parallel execution is done through threads or processes re-
spectively. The distributed scheduler creates a cluster with a

RADICAL-Pilot Spark Dask
Languages Python Java, Scala,

Python, R
Python

Task Task Map-Task Delayed
Abstraction
Functional
Abstraction

- RDD API Bag

Higher-Level
Abstractions

EnTK [21] Dataframe, ML
Pipeline, ML-
lib [22]

Dataframe, Ar-
rays for block
computations

Resource
Management

Pilot-Job Spark Execution
Engines

Dask Distributed
Scheduler

Scheduler Individual Tasks Stage-oriented
DAG

DAG

Caching - RDD are in-
memory cached

-

Shuffle - hash/sort-based
shuffle

hash/sort-based
shuffle

Limitations no shuffle,
filesystem-based
communication

high overheads
for Python tasks
(serialization)

Dask Array can
not deal with
dynamic output
shapes

TABLE II: Frameworks Comparison: Dask and Spark are
designed for data-related task, while RADICAL-Pilot focuses
on compute-intensive tasks.

scheduling process and multiple worker processes. A client
process creates and communicates a DAG to the scheduler.
The scheduler assigns tasks to workers.

C. RADICAL-Pilot
RADICAL-Pilot [10] is a Pilot-Job framework [11], im-

plemented in Python, which allows concurrent task execution
on HPC resources. The user can define a set of Compute-
Units (CU) - the abstraction used to define a task along with
its dependencies - which are submitted to RADICAL-Pilot.
RADICAL-Pilot then schedules these CUs to be executed un-
der the acquired resources. RADICAL-Pilot uses the existing
environment of the resource to execute tasks. Any data com-
munication between tasks is done via the use of the underlying
parallel filesystem, e.g., Lustre. Task execution coordination
and communication is done through a database (MongoDB).

D. Discussion
Table II summarizes the properties of these frameworks with

respect to abstractions and runtime properties provided to cre-
ate and execute parallel data applications.

API and Abstractions: RADICAL-Pilot provides a low-
level API for scheduling tasks onto resources. While this API
can be used to implement high-level capabilities, e. g. MapRe-
duce [23], they are not provided out-of-the box. Both Spark
and Dask provide higher-level abstractions: Dask’s APIs are
generally lower-level than the comparable Spark APIs, e. g.,
it allows the specification of arbitrary task DAGs. Further, the
data partition size needs to be manually specified (via the block
size). However, in many cases it is also necessary to fine-tune
the parallelism in Spark by specifying the number of parti-
tions.

Another important consideration is the availability of high-
level abstractions. Higher-level tools for RADICAL-Pilot, such
as the Ensemble Toolkit (EnTK) [21] are designed for work-
flows involving compute-intensive tasks. For Spark and Dask
a set of high-level data-oriented abstractions exist, such as
Dataframes and machine learning APIs.

Scheduling: Both Spark and Dask create a Direct Acyclic
Graph (DAG) based on the specified transformations, which
is then executed using the execution engine. Spark jobs are
separated into stages. Once all tasks in a stage are completed,
the scheduler moves to the next stage.

Dask’s DAGs are represented by a tree where each node is a
task. Leaf tasks do not depend on other task for the execution.
Dask starts executing leaf tasks; tasks are executed as soon as
their dependencies are satisfied. When a task is reached with
unsatisfied dependencies, the scheduler executes the dependent
task first. In contrast to Spark, the Dask scheduler does not
rely on synchronizations points that the Spark stage-oriented
scheduler introduces. RADICAL-Pilot does provide a DAG
execution engine and requires the execution order to be spec-
ified explicitly, i. e. the user needs to describe, submit and
synchronize tasks.

Suitability for MDAnalysis Algorithms: Trajectory analysis
methods are often embarrassingly or pleasingly parallel, i. e.,
they are ideally suited for task management and functional
MapReduce APIs. For example, PS methods typically require
a single pass over the data and return a set of values that
correspond to a relationship between frames or trajectories.
They can easily be expressed as a bag of independent tasks
using a task management API and a map-only application in
a MapReduce-style API.

The Leaflet Finder is more complex and requires two stages:
(i) in the edge discovery stage atoms that have a distance
smaller than a defined cutoff are connected to a graph, and
(ii) in the connected components stage it computes the con-
nected components on this graph. While it is possible to imple-
ment Leaflet Finder with a simple task-management API, the
MapReduce programming model enables the developer to ex-
press this problem more efficiently with a map for computing
and filtering the distance and a reduce phase for computing
the graph. The data movement or shuffling required between
the map and reduce phase is medium as the number of edges
represents a fraction of the input data.

IV. EXPERIMENTS AND DISCUSSION

In this section, we characterize the performance of
RADICAL-Pilot, Spark and Dask. In section IV-A we eval-
uate the task throughput using a synthetic workload. In
sections IV-B and IV-C we evaluate the performance of two
algorithms from the MDAnalysis library: Hausdorff Distance
and LeafletFinder using different real-world datasets. We
investigate: (i) what capabilities and abstractions of the frame-
works are needed to efficiently express these algorithms, (ii)
what architectural approaches can be used to implement these
algorithms with these frameworks, and (ii) the performance
trade-offs of these frameworks.

The experiments were executed on the XSEDE Supercom-
puters: Comet and Wrangler. SDSC Comet is a 2.7 PFlop/s
cluster with 24 Haswell cores/node and 128 GB memory/n-
ode (6,400 nodes). TACC Wrangler is a cluster optimized for
data-intensive computing; it has 48 cores/node and 128 GB
memory/node (120 nodes). Experiments were carried using

0.01
0.1

1
10

100
1000

Ti
m

e
(s

ec
s)

16 32 64 128 256 512 1k 2k 4k 8k 16k 32k 65k 131k
Number of Tasks

1
10

100
1000

10000

Th
ro

ug
hp

ut
(T

as
ks

 p
er

 se
c)

Spark Dask RADICAL-Pilot

Fig. 2: Task Throughput by Framework (Single Node)::
Time/Throughput for execution of a given number of zero-
workload tasks on Wrangler. Dask performs best. Dask &
Spark has very small delays for few tasks. RADICAL-Pilot
offers the smallest throughput.

RADICAL-Pilot and the Pilot-Spark [24] extension, which al-
lows the efficient management of Spark clusters on HPC in-
frastructures using a common interface for resource manage-
ment. For Dask, we utilize a set of custom scripts to start the
Dask cluster. We used RADICAL-Pilot 0.46.3rc, Spark 2.2.0,
Dask 0.14.1 and Dask Distributed 1.16.3.

A. Frameworks Evaluation

As data-parallelism often involves a large number of short-
running tasks, task throughput is a critical metric to assess the
different frameworks. To evaluate the throughput we use zero
workload tasks (/bin/hostname), We submit an increasing
number of such tasks to RADICAL-Pilot, Spark and Dask and
measure the execution time.

For RADICAL-Pilot, all tasks were submitted as bulk CUs.
The RADICAL-Pilot backend database was running on the
same node to avoid larger communication latencies. For Spark,
we created an RDD with as many partitions as the number
of tasks – each partition is mapped to a task by Spark. For
Dask, we created tasks using delayed functions that were
executed using the Distributed scheduler. We utilized Wrangler
and Comet for this experiment.

The results are shown in Figure 2. Dask needed the least
time to schedule and execute the assigned tasks, followed by
Spark and RADICAL-Pilot. Dask and Spark quickly reach
their maximum throughput, which is sustained while the num-
ber of tasks is increasing. RADICAL-Pilot showed the worst
throughput and scalability mainly due to some architectural
limitations, e. g., the reliance on MongoDB to communicate
between the Pilot-Manager and Agents. Thus, we were not
able to scale RADICAL-Pilot to more 32k or more tasks.

Figure 3 illustrate the throughput when scaling to multiple
nodes measured by submitting 100, 000. Dask’s throughput
on all three resources increases almost linearly to the number
of nodes. Spark’s throughput is an order of magnitude lower
than Dask’s. RADICAL-Pilot’s throughput plateaus at below
100 task/sec.

10

100

1000

10000
Th

ro
ug

hp
ut

(T
as

ks
 p

er
 se

c) Com
et

Dask Spark RADICAL-Pilot

1 2 3 4
Nodes

10

100

1000

10000

Th
ro

ug
hp

ut
(T

as
ks

 p
er

 se
c) W

rangler

Fig. 3: Task Throughput by Framework (Multiple Nodes):
Task throughput for 100k zero-workload tasks on different
numbers of nodes for each framework. Consistent with the
previous experiments: Dask has the largest throughput, fol-
lowed by Spark and RADICAL-Pilot. Wrangler and Comet
show a comparable performance with Comet slightly outper-
forming Wrangler.

B. Path Similarity: Hausdorff Distance

The Hausdorff distance algorithm is embarrassingly parallel
and can be implement using simple task-level parallelism or a
map only MapReduce application. The input data, i. e. a set of
trajectory files, is equally distributed over the cores, generating
one task per core. Each task reads its respective input files in
parallel, executes and writes the result to a file.

For RADICAL-Pilot we define a Compute-Unit for each
task and execute them using a Pilot-Job. For Spark, we create
an RDD with one partition per task. The tasks are executes in
a map function. In Dask the tasks are defined as delayed
functions.

The experiments were executed on Comet and Wrangler.
The dataset used consists of three different atom count tra-
jectories: small (3,341 atoms/frame), medium (6,682 atom-
s/frame) and large (13,364 atoms/frame). Each trajectory has
102 frames and 128 trajectories of each size were used.

Figure 4 shows the runtime for 128 trajectories and 256 tra-
jectories on Wrangler. Figure 5 compares the execution times
between Comet and Wrangler for the large trajectories. We
see that the frameworks have similar performance on both
systems. As a result, moving the execution between resources
will not affect the performance of the frameworks apart from
the expected difference due to hardware differences.

RADICAL-Pilot, Spark and Dask have similar performance
when they are used to execute algorithms that are pleasingly
parallel. In all cases the overheads are comparable low in re-
lation to the overall runtime. All frameworks achieved similar
speedups as the number of cores increased. RADICAL-Pilot
had the largest overheads because it creates links to files for
moving data. In addition, RADICAL-Pilot large deviation is
due to sensitivity to communication delays with the database.
In summary, all three frameworks provide appropriate abstrac-
tions and runtime performance for embarrassingly parallel al-
gorithms. In this case aspects such as programmability and
integrate-ability are the most important considerations, e. g.,
both RADICAL-Pilot and Dask are native Python frameworks
making the integration with MDAnalysis easier and more ef-

0

2000

4000

6000

8000

Ru
nt

im
e

Small Size Trajectories Medium Size Trajectories
128 trajectories

Large Size Trajectories

RADICAL-Pilot Spark Dask

16 64 256
0

2000

4000

6000

8000

16 64 256
Number of Cores

16 64 256

256 trajectories

Fig. 4: Hausdorff Distance on Wrangler using RADICAL-
Pilot, Spark and Dask: Runtimes over different number of
cores, trajectory sizes and number of trajectories. All frame-
works scaled by a factor of 6 from 16 to 256 cores.

16 64 256
Number of Cores

0

500

1000

1500

2000

2500

Ti
m

e
(s

ec
s)

Comet

16 64 256
Number of Cores

Wrangler

RADICAL-Pilot Spark Dask

Fig. 5: Hausdorff Distance on Comet and Wrangler: Run-
time for 128 large trajectories.

ficient than with other frameworks.

C. Leaflet Finder
In this section, we investigate four different approaches for

implementing the Leaflet Finder algorithm using RADICAL-
Pilot, Spark and Dask (see Table III and Figure 6):
1) Broadcast and 1-D Partitioning: Use of the RDD API

(broadcast) and Dask Bag API (scatter) to distribute data
to all nodes. The physical system is broadcasted and parti-
tioned through a RDD. A map function calculates the edge
list using the cdist function of SciPy [25]. This list is
collected by the master process and the connected compo-
nents are calculated.

2) Task API and 2-D Partitioning: Data management is
done outside of the data-parallel framework, i. e., outside
of Spark and Dask. The framework is used solely for task
scheduling. The data are pre-partitioned in 2-D partitions
and passed to a map function that calculates the pairwise
distance and the edge list. Results are collected and the
connected components are calculated

3) Parallel Connected Components (Parallel-CC): Data
are managed as in approach 2. Each map task performs
the pairwise-distance and connected components computa-
tions. The reduce phase joins the calculated graph compo-
nents into one, if there is at least one common node.

4) Tree-based Nearest Neighbor and Parallel-Connected
Components (Tree-Search): This approach is different to
approach 3 only on the way edge discovery in the map
phase is implemented. A tree-structure containing all atoms
is created which is then used to query for adjacent atoms.

We use four physical systems with 131k, 262k, 524k and
4M atoms withand 896k, 1.75M , 3.52M and 44.6M edges in

Approach 1: Broadcast and 1-D Partitioning

2-D
Partitioning

Edge Discovery:
Approach 2 & 3: Pairwise Distance
Approach 4: Tree-based Neighbor Search

Shuffle:
Approach 2: Edge List
Approach 3 & 4: Partial Connected Components

1-D
Partitioning

Broadcast

Edge Discovery:
Pairwise Distance

Shuffle:
Edge List

Reduce: Connected
Components

Approach 2: Task-API and 2-D Partitioning
Approach 3: Parallel Connected Components
Approach 4: Tree-Search

Data (Partition, Intermediate, Output) Map Tasks Data MovementInput Data (3D Atoms positions)

Reduce:
Approach 2: Connected Components
Approach 3, 4: Join Connected Components

Reduce Tasks Broadcast

Result:
Edge List

Result:
Edge List

Fig. 6: Leaflet Finder Architectural Approaches: (1) Higher-Level Functional API used for data distribution in the map
phase and subsequent reduce for connected components, (2) using the Task-API and framework-external data management and
a reduce function, (3) optimization of the shuffle traffic by computing partial connected components in the map phase, and (4)
optimizing edge discovery processing using tree-search algorithm.

1

10

100

1000

10000

Ru
nt

im
e

Broadcast & 1-D Partitioning Task API & 2-D Partitioning Parallel Connected Components

Spark

Tree-Search &
Parallel-Connected Components

131k 262k 524k 4M

32 64 128 256

10

100

1000

10000

32 64 128 256 32 64 128 256
Number of Cores

32 64 128 256

Dask

Fig. 7: Leaflet Finder: Performance of Different Architec-
tural Approaches for Spark & Dask: Runtimes for different
system sizes over different number of cores for all approaches
and frameworks.

the graphs respectively. The experiments were conducted on
Wrangler where we utilized up to 256 cores. The data is par-
titioned into 1024 parts so that 1024 tasks are used during the
edge discovery phase. The only exception is with Approach 3
and the 4M atoms dataset. Due to cdist’s memory footprint
– uses double precision floating point internally – the data is
partitioned into 42k parts, and thus tasks.

Figure 7 shows the runtimes for all datasets for Spark and
Dask. The RADICAL-Pilot performance is illustrated in Fig-
ure 9. In the following we analyze the performance of the
architectural approaches and used frameworks in detail.

1) Broadcast and 1-D Partitioning: Approach 1 utilizes a
broadcast to distribute the data to all nodes, which is only
supported by Spark and Dask. All nodes maintain a complete
copy of the dataset. Each map task will then compute the
pairwise distance on its partition. We use 1-D partitioning.
Figure 8 shows the detailed results: as expected the usage of
a broadcast has severe limitations. It only scales up to 262k
atoms for Dask and 524k atoms for Spark on Wrangler. An-
other observation is that Dask’s broadcast implementation is
slower than the one of Spark. The main reason is that Spark
is the more mature framework with a more optimized com-
munication subsystem. Nevertheless, the limited scalability of
this approach due to the need to retain the entire dataset in
memory renders it only usable for small datasets. It shows the

32 64 128 256
Number of Cores

0

20

40

60

80

100

Ti
m

e
(s

ec
s)

131k atoms.

32 64 128 256
Number of Cores

262k atoms.

Spark Runtime
Spark Broadcast

Dask Runtime
Dask Broadcast

Fig. 8: Broadcast and 1-D Partitioned Leaflet Finder (Ap-
proach 1): Runtime for multiple system sizes on different
number of cores for Spark and Dask. Spark provides a more
efficient broadcast implementation. Broadcast times are about
3% – 15% of the edge discovery time for Spark, while 40%
– 65% for Dask.

worst performance of all four approaches.

32 64 128 256
Number of Cores

0

100

200

300

400

500

600

Ru
nt

im
e

131k 262k 524k

Fig. 9: RADICAL-Pilot Task API and 2-D Partitioned
Leaflet Finder (Approach 2): Runtime for multiple system
sizes over different number of cores using RADICAL-Pilot.
RADICAL-Pilot is in the overheads since execution times for
the pairwise distance are similar despite the system size.

2) Task-API and 2-D Partitioning: Approach 2 attempts
to overcome the limitations of approach 1, in particular the
broadcast and the 1-D partitioning. A 2-D block partitioning
is essential, as it evenly distributes the compute and more effi-
ciently utilizes the available memory. Unfortunately, 2-D par-
titioning is not well supported by Spark and Dask. Spark’s
RDDs are optimized for data-parallel applications with 1-D
partitioning. While the Dask distributed array supports 2-D

block partitioning, it cannot be used for the Leaflet finder. The
main reason is that Dask’s map_block is always required to
return an array of the same size, i. e., the pairwise distance
cannot be computed without storing n2 points in memory and
then running a reduce which requires the shuffling of these
points. Thus, we implemented a 2-D partitioning outside of
RADICAL-Pilot, Spark and Dask. Each task will work on a
2-D pre-partitioned, rectangular part of the input data.

The runtimes of approach 2 are shown in Figure 7 for Spark
and Dask and in Figure 9 for RADICAL-Pilot. As expected
this approach overcomes the limitations of approach 1 and can
easily scale to larger datasets (e. g., 524k atoms) while improv-
ing the overall runtime. However, we were not able to scale
this implementation to the 4M dataset. For RADICAL-Pilot
we observed significant task management overheads (see also
section IV-A). This is a limitation of RADICAL-Pilot with re-
spect to managing large numbers of tasks. This is particularly
visible when the scenario was run on a single node with 32
cores. As more resources for the RADICAL-Pilot agent be-
come available in the scenarios with more than 64 cores the
performance improves dramatically.

3) Parallel Connected Components: Another important as-
pect is the communication between the edge discovery and the
connected components stage. For the 524k atoms dataset the
output of the edge discovery phase is ≈100MB. To reduce
the amount of data that needs to be shuffled, we refined the
algorithm to compute the connected components on the par-
tial dataset in the map phase. The connected components are
then merged in the reduce phase. This reduces the amount
of shuffle data by more than 50% (e. g., to 12MB for Spark
and 48MB for Dask). Figure 7 shows the improvements in
the runtimes, by ≈ 20% for both Spark and Dask. Further, we
were able to run very large datasets, such as the 4M dataset,
using this architectural approach.

4) Tree-Search: Another bottleneck of the previous ap-
proaches is the edge discovery via brute-force calculation of
the distances between all pairs of atoms. In approach 4 we re-
place the pairwise distance function with a tree-based, nearest
neighbor search algorithm, in particular BallTree [26]. The al-
gorithm has two stages: (i) construction of a tree and (ii) the
querying tree for neighboring atoms. Using the tree-search the
complexity of the problem can be reduced from n2 to a log
complexity. For our implementation we use the BallTree im-
plementation of Scikit-Learn [27].

Figure 7 illustrates the performance of the implementation.
For small datasets, i. e., 131k and 262k atoms, approach 2 is
faster than the tree-based approach, since the number of points
is too small. For the large dataset, the tree approach is faster.
In addition, the tree algorithm has a smaller memory footprint
than cdist. This allows us to scale to larger problems, e. g.,
a 4M atoms and 44.6M edges dataset without changing the
total number of tasks or other optimizations.

D. Conceptual Framework and Discussion
In this section we provide a conceptual framework that al-

lows application developers to carefully select a framework

according to their requirements (e. g., computational and I/O
characteristics). Thus, it is important to understand both the
properties of the application and Big Data frameworks: Ta-
ble III summarizes how the two algorithms can be imple-
mented using the well-known MapReduce abstraction. Ta-
ble IV illustrates the criteria of the conceptual framework and
ranks the three frameworks.

1) Application Perspective: We have shown that it is pos-
sible to implement analytics applications for MD trajectory
data using all three frameworks. The performance critically
depends on implementation aspects, such as the computational
complexity, and the amount of data that needs to be shuffled
across the network. For embarrassingly parallel applications,
such as the path similarity analysis, with coarse grained tasks,
the choice of the framework does not have a large influence
on the performance. Thus, other aspects, such as programma-
bility and integrate-ability become more important. For fine-
grained data parallelism, a Big Data framework, such as Spark
and Dask, clearly outperforms RADICAL-Pilot. If some cou-
pling is introduced, i. e. communication between the tasks is
required, e. g., a reduce, the usage of Spark becomes advanta-
geous. However, the integrating Spark with other tools needs
to be carefully considered: the integration of Python tools, e. g.
MDAnalysis, often causes overheads due to the frequent need
for serialization and copying data between the Python and Java
space.

2) Framework Perspective: RADICAL-Pilot is particularly
suited for HPC applications, e. g., ensembles of parallel MPI
applications. It has some scalability limitations with respect
to supporting large numbers of tasks as often found in data-
intensive workloads. Further, the file staging implementation
of RADICAL-Pilot is not suitable for supporting the data ex-
change patterns, in particular shuffling, required for these ap-
plications. However, with the ability to efficiently run MPI
and Spark applications alongside on the same resource makes
RADICAL-Pilot particularly suitable for scenarios where dif-
ferent programming paradigms need to be combined.

Dask provides a highly flexible, low-latency task manage-
ment and excellent support for parallelization of Python li-
braries. While the communication subsystem of Dask showed
some weaknesses in particular visible in the broadcast and
shuffle performance: the broadcast (Leaflet Finder approach 1)
and shuffle (Leaflet Finder approaches 2-4) performance for
larger problems is significantly better for Spark than Dask.

Spark needs to be particularly considered for shuffle-
intensive and machine learning applications: (i) the in-memory
caching mechanism is particularly suited for iterative algo-
rithms that maintain a static set of points in-memory and
conduct multiple passes on the set, (ii) MLlib [22] provides
several scalable, parallel machine learning algorithms.

V. RELATED WORK

MD analysis algorithms were until recently executed seri-
ally and parallelization was not straightforward. During the
last years several frameworks emerged providing parallel al-
gorithms for analyzing MD trajectories. Some of those frame-

Hausdorff Distance Leaflet Finder Leaflet Finder Leaflet Finder Leaflet Finder
Broadcast and 1-D Task API and 2-D Parallel Connected Components Tree-based Edge Discovery
Approach 1 Approach 2 Approach 3 Approach 4

Data Partitioning 2D 1D 2D 2D 2D
Map Path Similarity Edge Discovery via

Pairwise Distance
Edge Discovery via Pairwise
Distance

Edge Discovery via Pairwise Dis-
tance and Partial Connected Com-
ponents

Edge Discovery via Tree-based
Algorithm and Partial Con-
nected Components

Shuffle no Edge List (O(E)) Edge List (O(E)) Partial Connected components
(O(n))

Partial Connected components
(O(n))

Reduce no Connect Components Connected Components Joined Connected Components Joined Connected Components

TABLE III: MapReduce Operations used by MD Applications

RADICAL-
Pilot

Spark Dask

Task Management
Low Latency - o +
Throughput - + ++
MPI/HPC Tasks + o o
Task API + o ++
Large Number of Tasks – ++ ++
Application Characteristics
Python/native Code ++ o +
Java o ++ o
Higher-Level Abstraction - ++ +
Shuffle - ++ +
Broadcast - ++ +
Caching - ++ o

TABLE IV: Decision Framework: Criteria and Ranking for
Framework Selection

works are CPPTRAJ [28], HiMach [29], Pteros 2.0 [30], MD-
Traj [31], and nMoldyn-3 [32]. We compare these frame-
works with our approach over the parallelization techniques
used. Any performance, functionality or usability comparison
is more suited for a literature review. We show, to the best of
our knowledge, the efforts being done for parallelizing MD
analysis algorithms.

CPPTRAJ [28] provides several analysis algorithms paral-
lelized through MPI and OpenMP. MPI is being used to par-
allelize the execution over the frame of a single trajectory or
each trajectory in an ensemble of trajectories. OpenMP is used
to parallelize the execution of compute intensive algorithms.

HiMach [29] was developed by D. E. Shaw Research group
to provide a parallel analysis framework for MD simulations,
extends Google’s MapReduce. HiMach API defines trajecto-
ries, does per frame data acquisition (Map) and cross-frame
analysis (Reduce). HiMach’s runtime is responsible to paral-
lelize and distribute Map and Reduce phases to resources. Data
transfers are done through a communication protocol created
specifically for HiMach.

Pteros-2.0 [30] is a open-source library that is used for mod-
eling and analyzing MD trajectories, providing a plugin for
each supported algorithm. The execution is done by a user de-
fined driver application, which setups trajectory I/O and frame
dispatch for analysis. It offers a C++ and Python API. Pteros
2.0 parallelizes computational intensive algorithms by using
OpenMP and Multithreading. As a result, it is bounded to ex-
ecute on a single node, making any analysis execution highly
dependent on memory size. Through RADICAL-Pilot, Spark
and Dask, we avoided the need to recompile every time there
is a change to the underlying resource, ensuring the applica-
tion’s execution.

MDTraj [31] is a Python package for analyzing MD trajec-

tories. It links MD data and Python statistical and visualization
software. MDTraj proposes parallelizing the execution by us-
ing the parallel package of IPython as a wrapper along with
an out-of-core trajectory reading method. Our approach sup-
port of data analysis frameworks allows data parallelization on
any level of the execution, not only in data read.

nMoldyn-3 [32] parallelizes the execution through a Mas-
ter/Worker architecture. The master or client defines analysis
tasks, submits them to a task manager, which then are executed
by the worker process. In addition, it provides adaptability al-
lowing on-the-fly addition of resources, and execution fault
tolerance when worker processes disconnect.

In contrast, our approach utilizes more general purpose
frameworks for parallelization. Because they provide higher
level abstractions, e.g machine learning, any integration with
other data analysis methods can be fast and easier. In addition,
resource acquisition and management is done transparently.

VI. CONCLUSION AND FUTURE WORK

In this paper, we investigated the use of different program-
ming abstractions and frameworks for the implementation of a
range of algorithms for molecular dynamics trajectory analy-
sis. We conducted an in-depth analysis of the application char-
acteristics and assessed the architectures of RADICAL-Pilot,
Spark and Dask. We provide a conceptual framework that en-
ables application developers to qualitatively evaluate Big Data
frameworks with respect to their application requirements. Our
benchmarks enable them to quantitatively assess framework
performance as well as the expected performance of different
implementation alternatives.

While the task abstractions provided by all frameworks
are well-suited for implementing all use cases, the high-level
MapReduce programming model provided by Spark and Dask
provides several advantages: it is easier to use and efficiently
support common data exchange patterns, such as the shuffling
of data between the map and reduce stage. In our bench-
marks Spark outperforms Dask in communication-intensive
tasks, such as broadcasts and shuffles. Further, the in-memory
RDD abstraction is great for iterative algorithms (as many ma-
chine learning algorithms). Dask provides more versatile low-
level and high-level APIs and integrates better with the PyData
ecosystems. RADICAL-Pilot does not provide a MapReduce
API, but is well suited for coarse-grained task-level paral-
lelism and for cases where HPC and analytics framework need
to be integrated. We also identified severe limitation in Dask
and Spark: while both frameworks provide some support for

linear algebra – both provide abstractions for distributed ar-
ray – these proofed not flexible enough for implementing the
all-pairs patterns efficiently requiring significant workarounds
in the implementation and the utilization of out-of-framework
functions to read and partition the input data.

In the future, we will further improve the performance of
the presented algorithms, e. g., by reducing the memory and
computation footprint, data transfer sizes between stages, by
optimizing filesystem usage. To better support PyData tools
from RADICAL-Pilot, we plan to extend the Pilot-Abstraction
to support Dask and other Big Data frameworks. Further, we
will refine the RADICAL-Pilot task execution engine to meet
the requirement of data analytics application and devise task
execution strategies that can mitigate with issues occurring at
large scale, such as stragglers. Another area of research, is
dynamic resource management and the ability to dynamically
scale the resource pool (e. g., by adding or removing nodes)
to meet the requirements of a specific application stage.

Acknowledgements We thank Andre Merzky and Thomas Cheatham for
useful discussions. This work is funded by NSF 1443054 and 1440677. Com-
putational resources were provided by NSF XRAC award TG-MCB090174.

REFERENCES

[1] S. Kamburugamuve, P. Wickramasinghe, S. Ekanayake†, and G. C. Fox,
“Anatomy of machine learning algorithm implementations in mpi, spark, and
flink,” in Technical Report, Indiana University, Bloomington, 2017.

[2] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large
Clusters,” in OSDI’04: Proceedings of the 6th conference on Symposium on
Opearting Systems Design & Implementation. Berkeley, CA, USA: USENIX
Association, 2004, pp. 137–150.

[3] X. Lu, D. Shankar, S. Gugnani, and D. K. Panda, “High-performance design
of apache spark with rdma and its benefits on various workloads,” December
2016.

[4] G. Fox, J. Qiu, S. Jha, S. Kamburugamuve, and A. Luckow, “Hpc-abds high
performance computing enhanced apache big data stack,” in Proceedings
of Workshop on Scalable Computing For Real-Time Big Data Applications
(SCRAMBL’15). Shenzhen, China: 15th IEEE/ACM International Sympo-
sium on Cluster, Cloud and Grid Computing, 2015.

[5] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark:
Cluster computing with working sets,” in Proceedings of the 2Nd USENIX
Conference on Hot Topics in Cloud Computing, ser. HotCloud’10. Berkeley,
CA, USA: USENIX Association, 2010, pp. 10–10.

[6] M. Rocklin, “Dask: Parallel computation with blocked algorithms and task
scheduling,” in Proceedings of the 14th Python in Science Conference, K. Huff
and J. Bergstra, Eds., 2015, pp. 130 – 136.

[7] S. Jha, J. Qiu, A. Luckow, P. K. Mantha, and G. C. Fox, “A tale of two data-
intensive paradigms: Applications, abstractions, and architectures,” Proceed-
ings of 3rd IEEE Internation Congress of Big Data, vol. abs/1403.1528, 2014.

[8] T. Cheatham and D. Roe, “The impact of heterogeneous computing on work-
flows for biomolecular simulation and analysis,” Computing in Science Engi-
neering, vol. 17, no. 2, pp. 30–39, 2015.

[9] V. Balasubramanian, I. Bethune, A. Shkurti, E. Breitmoser, E. Hruska,
C. Clementi, C. Laughton, and S. Jha, “Extasy: Scalable and flexible coupling
of md simulations and advanced sampling techniques,” in Accepted for IEEE
International Conference on eScience, 2016, https://arxiv.org/abs/1606.00093.

[10] A. Merzky, M. Santcroos, M. Turilli, and S. Jha, “Executing Dynamic and
Heterogeneous Workloads on Super Computers,” 2016, (under review) http:
//arxiv.org/abs/1512.08194.

[11] A. Luckow, M. Santcroos, A. Merzky, O. Weidner, P. Mantha, and S. Jha,
“P*: A model of pilot-abstractions,” IEEE 8th International Conference on e-
Science, pp. 1–10, 2012,
http://dx.doi.org/10.1109/eScience.2012.6404423.

[12] M. Khoshlessan, I. Paraskevakos, S. Jha, and O. Beckstein, “Parallel Analysis
in MDAnalysis using the Dask Parallel Computing Library,” in Proceedings
of the 16th Python in Science Conference, K. Huff, D. Lippa, D. Niederhut,
and M. Pacer, Eds., Austin, TX, 2017, pp. 64–72. [Online]. Available:
http://conference.scipy.org/proceedings/scipy2017/mahzad khoslessan.html

[13] G. C. Fox, S. Jha, J. Qiu, and A. Luckow, “Towards an understanding of facets
and exemplars of big data applications,” in Proceedings of Beowulf’14. An-
napolis, MD, USA: ACM, 2014.

[14] N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein,
“Mdanalysis: A toolkit for the analysis of molecular dynamics simulations,”
Journal of Computational Chemistry, vol. 32, no. 10, pp. 2319–2327, 2011.
[Online]. Available: http://dx.doi.org/10.1002/jcc.21787

[15] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel
N. Melo, Sean L. Seyler, Jan Domański, David L. Dotson, Sébastien Buchoux,
Ian M. Kenney, and Oliver Beckstein, “MDAnalysis: A Python Package for
the Rapid Analysis of Molecular Dynamics Simulations,” in Proceedings of
the 15th Python in Science Conference, Sebastian Benthall and Scott Rostrup,
Eds., 2016, pp. 98 – 105.

[16] S. L. Seyler, A. Kumar, M. F. Thorpe, and O. Beckstein, “Path similarity
analysis: A method for quantifying macromolecular pathways,” PLoS
Comput Biol, vol. 11, no. 10, pp. 1–37, 10 2015. [Online]. Available:
http://dx.doi.org/10.1371%2Fjournal.pcbi.1004568

[17] A. A. Taha and A. Hanbury, “An efficient algorithm for calculating the ex-
act hausdorff distance,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 37, no. 11, pp. 2153–2163, Nov 2015.

[18] S. Jha, D. S. Katz, A. Luckow, N. Chue Hong, O. Rana, and Y. Simmhan,
“Introducing distributed dynamic data-intensive (d3) science: Understanding
applications and infrastructure,” Concurrency and Computation: Practice and
Experience, vol. 29, no. 8, pp. e4032–n/a, 2017, e4032 cpe.4032. [Online].
Available: http://dx.doi.org/10.1002/cpe.4032

[19] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and G. Fox,
“Twister: A runtime for iterative mapreduce,” in Proceedings of the 19th
ACM International Symposium on High Performance Distributed Computing,
ser. HPDC ’10. New York, NY, USA: ACM, 2010, pp. 810–818. [Online].
Available: http://doi.acm.org/10.1145/1851476.1851593

[20] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.
Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: A fault-
tolerant abstraction for in-memory cluster computing,” in Proceedings of the
9th USENIX Conference on Networked Systems Design and Implementation,
ser. NSDI’12. Berkeley, CA, USA: USENIX Association, 2012, pp. 2–2.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2228298.2228301

[21] V. Balasubramanian, M. Turilli, W. Hu, M. Lefebvre, W. Lei, G. Cervone,
J. Tromp, and S. Jha, “Harnessing the Power of Many: Extensible Toolkit for
Scalable Ensemble Applications,” ArXiv e-prints, Oct. 2017.

[22] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu,
J. Freeman, D. Tsai, M. Amde, S. Owen, D. Xin, R. Xin, M. J. Franklin,
R. Zadeh, M. Zaharia, and A. Talwalkar, “Mllib: Machine learning in apache
spark,” Journal of Machine Learning Research, vol. 17, no. 34, pp. 1–7, 2016.
[Online]. Available: http://jmlr.org/papers/v17/15-237.html

[23] P. K. Mantha, A. Luckow, and S. Jha, “Pilot-MapReduce: an extensible and
flexible MapReduce implementation for distributed data,” in Proceedings
of third international workshop on MapReduce and its Applications,
ser. MapReduce ’12. New York, NY, USA: ACM, 2012, pp. 17–24.
[Online]. Available: https://raw.github.com/saga-project/radical.wp/master/
publications/pdf/pilot-mapreduce2012.pdf

[24] A. Luckow, I. Paraskevakos, G. Chantzialexiou, and S. Jha, “Hadoop on HPC:
Integrating Hadoop and Pilot-based Dynamic Resource Management,” IEEE
International Workshop on High-Performance Big Data Computing in con-
junction with The 30th IEEE International Parallel and Distributed Processing
Symposium (IPDPS 2016), 2016.

[25] E. Jones, T. Oliphant, P. Peterson et al., “SciPy: Open source scientific tools
for Python,” 2001–. [Online]. Available: http://www.scipy.org/

[26] S. M. Omohundro, “Five balltree construction algorithms,” Tech. Rep., 1989.
[27] “Scikit-Learn: Nearest Neighbors,” http://scikit-learn.org/stable/modules/

neighbors.html, 2016.
[28] D. R. Roe and I. Thomas E. Cheatham, “Ptraj and cpptraj: Software for

processing and analysis of molecular dynamics trajectory data,” Journal of
Chemical Theory and Computation, vol. 9, no. 7, pp. 3084–3095, 2013,
pMID: 26583988. [Online]. Available: http://dx.doi.org/10.1021/ct400341p

[29] T. Tu, C. A. Rendleman, D. W. Borhani, R. O. Dror, J. Gullingsrud, M. O.
Jensen, J. L. Klepeis, P. Maragakis, P. Miller, K. A. Stafford, and D. E. Shaw,
“A scalable parallel framework for analyzing terascale molecular dynamics
simulation trajectories,” in 2008 SC - International Conference for High Per-
formance Computing, Networking, Storage and Analysis, Nov 2008, pp. 1–12.

[30] S. O. Yesylevskyy, “Pteros 2.0: Evolution of the fast parallel molecular
analysis library for c++ and python,” Journal of Computational Chemistry,
vol. 36, no. 19, pp. 1480–1488, 2015. [Online]. Available: http://dx.doi.org/
10.1002/jcc.23943

[31] R. McGibbon, K. Beauchamp, M. Harrigan, C. Klein, J. Swails, C. Hernández,
C. Schwantes, L.-P. Wang, T. Lane, and V. Pande, “Mdtraj: A modern
open library for the analysis of molecular dynamics trajectories,” Biophysical
Journal, vol. 109, no. 8, pp. 1528 – 1532, 2015. [Online]. Available:
//www.sciencedirect.com/science/article/pii/S0006349515008267

[32] K. Hinsen, E. Pellegrini, S. Stachura, and G. R. Kneller, “nmoldyn 3:
Using task farming for a parallel spectroscopy-oriented analysis of molecular
dynamics simulations,” Journal of Computational Chemistry, vol. 33, no. 25,
pp. 2043–2048, 2012. [Online]. Available: http://dx.doi.org/10.1002/jcc.23035

https://arxiv.org/abs/1606.00093
http://arxiv.org/abs/1512.08194
http://arxiv.org/abs/1512.08194
http://dx.doi.org/10.1109/eScience.2012.6404423
http://conference.scipy.org/proceedings/scipy2017/mahzad_khoslessan.html
http://dx.doi.org/10.1002/jcc.21787
http://dx.doi.org/10.1371%2Fjournal.pcbi.1004568
http://dx.doi.org/10.1002/cpe.4032
http://doi.acm.org/10.1145/1851476.1851593
http://dl.acm.org/citation.cfm?id=2228298.2228301
http://jmlr.org/papers/v17/15-237.html
https://raw.github.com/saga-project/radical.wp/master/publications/pdf/pilot-mapreduce2012.pdf
https://raw.github.com/saga-project/radical.wp/master/publications/pdf/pilot-mapreduce2012.pdf
http://www.scipy.org/
http://scikit-learn.org/stable/modules/neighbors.html
http://scikit-learn.org/stable/modules/neighbors.html
http://dx.doi.org/10.1021/ct400341p
http://dx.doi.org/10.1002/jcc.23943
http://dx.doi.org/10.1002/jcc.23943
//www.sciencedirect.com/science/article/pii/S0006349515008267
http://dx.doi.org/10.1002/jcc.23035

	Introduction
	Molecular Dynamics Analysis Applications
	MDAnalysis
	Path Similarity Analysis (PSA): Hausdorff Distance
	Leaflet Finder

	Application Characterization Using Big Data Ogres

	Background of Evaluated Frameworks
	Spark
	Dask
	RADICAL-Pilot
	Discussion

	Experiments and Discussion
	Frameworks Evaluation
	Path Similarity: Hausdorff Distance
	Leaflet Finder
	Broadcast and 1-D Partitioning
	Task-API and 2-D Partitioning
	Parallel Connected Components
	Tree-Search

	Conceptual Framework and Discussion
	Application Perspective
	Framework Perspective

	Related Work
	Conclusion and Future Work
	References

