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Web-based social networks, online personal profiles, keyword tagging, and online bookmarking are staples of Web 2.0-style 
applications.  In this paper we report our investigation and implementation of these capabilities as a means for creating communities of 
like-minded faculty and researchers, particularly at minority serving institutions.  Our motivating problem is to provide outreach tools 
that broaden the participation of these groups in funded research activities, particularly in cyberinfrastructure and e-Science.   In this 
paper, we discuss the system design, implementation, social network seeding, and portal capabilities.  Underlying our system, and 
folksonomy systems generally, is a graph-based data model that links external URLs, system users, and descriptive tags.  We conclude 
with a survey of the applicability of clustering and other data mining techniques to these folksonomy graphs.   
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I. INTRODUCTION 
The proliferation of online communities and social 

networks such as Facebook, LinkedIn and many others, with 
memberships numbering in the millions, has reinvigorated the 
Web by making it a participatory entity with blurred lines 
between users and developers.  These social networking 
systems are part of a larger activity that is collectively labeled 
“Web 2.0” [1].   Although Web 2.0 is an uncoordinated 
activity when compared to Web Services or Grid computing, 
its disparate activities collectively define a comprehensive 
distributed computing approach [2][3].  As such, it is 
challenging many of the architectural foundations of 
cyberinfrastructure and e-Science.  

This paper describes our work to build a social networking 
portal that is geared toward enabling faculty and researchers to 
find both useful online resources and also potential 
collaborators on future research projects. We are particularly 
interested in helping researchers at Minority Serving 
Institutions (MSIs) connect with each other and with the 
education, outreach, and training services that are designed to 
serve them, expanding their participation in 
cyberinfrastructure research efforts.  This portal is a 
development activity of the Minority Serving Institution-
Cyberinfrastructure Empowerment Coalition (MSI-CIEC). 
The portal’s home page view is shown in Figure 1. 

Online bookmarking was pioneered by such sites as 
del.icio.us, Connotea, Digg, Slashdot, and CiteULike, among 
others (for a summary, see [4]).  These sites vary in purpose.  
General-purpose bookmarking sites such as del.icio.us can 
bookmark any link and have a time-independent view of the 
URLs.  Digg and Slashdot, on the other hand, are geared 
toward tagging and rating news links and more ephemeral 
subjects.  Connotea and CiteULike both cater to academic 
citation links and provide additional tools (such as automatic 
metadata fill-in with a provided Digital Object Identifier).  In 
related work, our lab’s IDIOM project [5] seeks to couple 
tagging of academic material with scholarly search engines 

such as Google Scholar and Microsoft Live Academic.  
   

 
Figure 1 The MSI-CIEC social networking Web portal 

combines social bookmarking and tagging with online curricula 
vitae profiles.  The display shows the logged-in user’s tag cloud 
(“My Tags” on left), taggable RSS feeds (center), and tag clouds 
of all users (“Favorite Tags” and “Recent Tags” on the right).  
Users may search tags (including researcher names, NSF 
directorates, and TeraGrid allocations) using the center text field.  

Apart from their utility, social bookmarking and tagging are 
interesting for Computer Science research because they create 
usage-driven descriptions of URLs (and potentially any URIs).  
Such descriptions are known as folksomomies and 
superficially resemble more structured ontology approaches 
pursued by the Semantic Web activity.  As we discuss below, 
folksonomies are in fact graphs (as are RDF and OWL-
represented ontologies).  Unlike ontologies, folksonomies lack 
the expression of logical associations in the arcs of the graph.  
This does not allow, for example, logical inferences to be 
made in the relationships in the graphs (as is the goal of 
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Semantic Web ontologies), but it does indicate that a wealth of 
data mining algorithms may be applied to discover interesting 
emergent relationships in the data in place of designed-in and 
derived relationships.  We conclude with a discussion our 
initial survey of these problems. 

II. MSI-CIEC NETWORKING PORTAL FEATURES 
Our portal is designed to support academic user 

communities through a combination of online user profiles 
and shared online bookmarks that are described with keyword 
tags. The system capabilities include the following:  

• Users can create public profiles of themselves to 
describe their research interests, provide their 
publication lists, academic and professional training, 
and other curricula vitae. 

• Profiles are also decorated with the user’s tag cloud 
(see Figure 1).  

• By importing RSS feeds, users can further enhance 
their profiles with other information, such as 
Connotea publication feeds, SciVee videos, etc. 

• Users can bookmark any URL during normal 
browsing and have it stored in the MSI-CIEC portal 
database.   Users describe bookmarks with one or 
more keyword tags. 

• Users can search their own bookmarks by navigating 
tags, and they can also search publicly tagged URLs 
from other users. 

• Researchers can also “click tag” featured RSS feeds, 
such as NSF Recently Announced Funding 
Opportunities [6].  Click-tagging allows a user to 
label entries in the feed with “interesting” or 
“uninteresting” tags.  Users can later view their own 
and public “interested” tags.  

• Users can search award funding and project data.  
We currently import data and auto-generate tags 
from the NSF’s awards database and the NSF 
TeraGrid’s allocations database.  These tags can be 
searched and navigated just as normal, user-
generated tags. 

Social networking sites depend upon a minimal number of 
users and richness of data to be self-sustaining, so our initial 
capabilities have been chosen to support uncorrelated usage.  
Bookmarking, NSF award navigation, and click-tagging are all 
applications that are independent of the number of users. The 
social networking properties (such as joining groups, finding 
most interesting tags, and viewing other users’ profiles) are 
emergent capabilities of the system that become richer as more 
people use the system. We now review these capabilities in 
more detail through example usage scenarios in the following 
section. 

III. USAGE SCENARIOS 

A. Creating an Online Profile 
As described above, one of the portal’s primary functions is 

to provide online, customizable and extensible curricula vitae 
for users.  In addition, users with previous NSF awards have 

automatically generated profile stubs that they can enhance.   
Figures 2-4 display the sections of this form.  Figure 2 shows a 
display of basic portal information (the user’s name and 
profile tags).  Forms for updating the user’s professional 
preparation are shown in Figure 3.   
 
 

 

 
Figure 2 Logged-in users can edit basic user information.  

Autogenerated information may also be provided.  “Profile Tags” 
section shows the results of a user’s interaction with the system. 

Figure 4 shows the user’s network of friends, list of NSF 
collaborators, and list of NSF awards.  Award and collaborator 
information sections are automatically created from publicly 
available data, harvested as described below.  Although we 
have concentrated on NSF data sources in our implementation, 
we believe the approach can be adapted to other, similar data 
sources. 

As we discuss below, these profiles are discoverable 
through tag navigation.   To illustrate this from the profile 
point of view, we can see in Figure 2 that the user has a tag 
cloud resulting from his interactions with the system.  The tags 
such as “Grids” can be used by others while searching and 
walking the tag graphs underlying the display in Figure 1.  
These will eventually take users to profile pages such as 
Figures 2-4.   
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Figure 3 Additional forms allow users to describe professional 

preparation and research. 

 

 
Figure 4 Social networking information, including lists of 

friends (links to other profiles), collaborators, and funded 
projects. Users can decorate their profiles with arbitrary RSS 
feeds such as Connotea publication lists.  

B. Tagging a URL 
As shown in Figure 1, users’ profiles include their tag 

clouds.  These are keyword links to external URLs that a user 
has found useful or interesting.   Bookmarking a link is done 

in an unobtrusive manner using a small JavaScript 
bookmarklet that a user drags into the bookmark toolbar (see 
Figure 5).  

 

 
Figure 5 A logged-in user can drag the bookmarklet into the 

bookmark toolbar. 

During usual browsing, a user can click this bookmarklet to 
post the URL to the portal, along with descriptive tags and 
keywords.  This information is supplied through a popup 
window. See Figure 6. 
 

 
Figure 6 By clicking the portal bookmarklet, a user can tag a 

particular URL while browsing.  The user specifies tag keywords 
through a popup window (lower right).  These are used to 
generate the tag clouds in Figure 1. 

C. Click Tagging a Featured RSS Feed 
Although the portal is can be used to bookmark any URL, it 

is intended to foster research collaborations.  To encourage 
this, we provide relevant RSS feed displays through the portal, 
such as recent funding announcements from the NSF (Figure 
7).  

We reformat RSS feeds to allow a user to quickly tag the 
individual feed entries as "interesting" or "uninteresting".  
These tags will appear in the user's tag cloud.  The list of all 
such feeds tagged as "interesting" are also available from the 
system tag cloud, such as shown in Figure 8. 

This approach can be used to convert any RSS feed. 
Unfortunately, not all information on funding is currently 
available in RSS or Atom syndication formats: grants.gov 
provides a prominent example.  We can convert these sites 
into RSS feeds using tools such as OpenKapow’s RoboMaker 
(see http://openkapow.com/).  
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Figure 7 Portal displays of RSS feeds may be “click tagged” as 

interesting or uninteresting.  Tagged material will be displayed in 
tag clouds. 

 

 
Figure 8 Users can see all recent funding announcements that 

have been tagged as interesting by clicking the “Interested” tag in 
either the “Favorite Tags” or “Recent Tags” clouds on the left. 

D. Searching NSF Awards 
As described below, we populated the system by harvesting 

publicly available data from sources include the NSF awards 
database and the TeraGrid allocations database.  This 
information results in several automatically generated tags that 
are summarized in Table 2.     

 
 

 
Figure 9 Cloud of all NSF namespace tags.   

There are several pathways through this data in the portal.  
One option is for the user to click the “NSF Tag Cloud” link 
(left side of Figure 1).   This will display the cloud of NSF-

namespaced tags in the central display (Figure 9).   
 

 
Figure 10 A tag cloud of users funded through NSF ENG. 

“Small”, “medium”, and “large” tags refer to the size of the 
grant.  Years (“2007”, “2008”, etc) refer to project end dates. 
Other tags (“cse”, “eng”, etc) refer to NSF divisions or 
directorates.  Clicking one of these (“eng”) produces a cloud 
of researchers funded through this division (Figure 10). 

 

 
Figure 11 Tag cloud and funded projects for the user "Wei 

Li". 

By selecting a name from the above cloud (“Wei Li”), a 
user can see this researcher’s tag cloud and list of funded 
projects.  The funded project links are URLs to the appropriate 
NSF award abstract page.  

IV. IMPLEMENTATION DETAILS 

A. User Interface Design 
The blueprint of our design was distilled from use case 

scenarios acquired through interviews and discussions with 
MSI-CIEC team members.  In the design phase, content 
analysis was used to do content mapping where content 
chunks are formed and then mapped onto the different 
positions on the web pages.  

As shown in Figure 1, the portal is divided into different 
content components. This has helped in the design and 
development of the wire-frame. The components are divided 
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into 4 content areas: 
• Header: This contains the logo, title info of the portal, 

and the login area. The login area uses an Ajax updater 
library that gives a slide-down effect. 

• Footer: this contains redundant navigational links and 
funding agency acknowledgments.  

• Content: The center is the main content area where most 
of the content is dynamically generated using Ajax 
libraries imported from Scriptaculous (http:// 
script.aculo.us). Some example content chunks are NSF 
Tag Clouds, User Tag Clouds, Profile Information, 
Search Results, RSS Feeds, etc. 

• Navigation: The navigational structure is composed of 
Global, Sub-Global, and contextual navigation. This type 
of navigation is often described as an embedded 
navigation system. Such navigation helps users in 
understanding where they are and where they can go on a 
website. The global navigation in this case consists of 
global links, namely Home, News, Contact, Help, and 
About. The sub-global navigation on the left consists of a 
drop down menu for My Tags and My Account. The right 
navigational structure consists of modules that are Tag 
Clouds. There are four different tag cloud structures: 

o User Tag Cloud: containing tags tagged by real 
users 

o NSF Tag Cloud: containing self-generated tags 
imported from NSF awards.  

o Favorite Tags: containing the list of favorite 
tags of all users. 

o Recent Tags: containing tags recently 
generated by all users. 

We implemented the portal with numerous third party tools.  
These are summarized in Table 1.  

 
Table 1 Third party tools and technologies used in the portal. 

Tools / Technologies Uses 
PHP / PEAR Backend database programming, 

function calls, creating rss feeds 
etc. 

Scriptaculous 
Javascript Libraries 

Animated visual effects such as 
drop-downs, draggable and 
droppable menus, etc. 

Adobe Photoshop,  
Illustrator 

Graphic design for the portal, wire 
frames 

Adobe Dreamweaver HTML/PHP/CSS Editor 
MySQL /phpmyadmin 
utility 

Database creation, updating etc. 

Google Analytics Analyze traffic patterns, finding 
sources where the users come from 
etc. 

 

B. Grant Information Harvesting 
The NSF maintains a publicly searchable online database of 

awards (see http://nsf.gov/awardsearch/).  The online forms 
use HTTP GET URLs and support several output formats 
(including XML, text with comma-separated values, and 
Microsoft Excel spreadsheets) in addition to HTML.  This 

provides us with a REST-like (if undocumented) programming 
interface that we can use for development.  Information 
retrieved in this fashion includes the following fields: 

• Project name, 
• Award size,  
• Organization,  
• Directorate, and  
• Co-investigators. 

In order to download and incorporate this data into our 
portal and our tag data model, we decided to use a crawling 
approach seeded with researcher names.  The co-investigators 
returned in the HTTP response message were used in the next 
round of searches.  Co-investigators were then harvested from 
those projects and were added to a queue where the same 
information was downloaded for them.  We have currently 
harvested over 8,600 researchers in this fashion. 

We next must convert this information into tags.  The NSF 
query responses are obviously tabular data (see list above for 
column headings), so these can be converted into tag families, 
or namespace groups.  We convert the individual table entries 
(such as award size and date for a particular entry) into tags.  
For entries with ranges of values (award sizes, for example), 
we have defined tags (i.e., small, medium, and large) with 
range values.  These are summarized in Table 2.  

Tags gleaned in this way are prepended with a namespace 
value (nsf.*). This prevents tag name collisions with user-
supplied tags (i.e. “small” may be a user-supplied tag 
irrelevant to award sizes).  It also provides us with a simple 
organizational label that can be used for separating out the 
NSF tags into separate clouds.   
 

Table 2 Harvested NSF award and allocation data are 
converted into tags.  We use namespaces to distinguish these tags 
from user-supplied keywords.  Namespaces are not displayed by 
the portal (i.e. “nsf.date.2008” is displayed as “2008” in a tag 
cloud.) 

Tag Format Tag Description Example Tag 

nsf.investigator. 
 

The name of an 
investigator of this 
project 

nsf.investigator.firstn
ame.geoffery 
nsf.investigator.lastna
me.fox 

nsf.date. 
 

End year of this 
project 

nsf.date.2008 
 

nsf.number. Award number nsf.number.0407040 

nsf.award Award size nsf.award.medium 
nsf.organization. Associated NSF 

organization 
nsf.organization.ast 

nsf.directorate. 
 

Associated NSF 
directorate 

nsf.directorate.mps 
 

nsf.tghours. 
 

Allocated teragrid 
hours (in a log10 
format) 

nsf.tghours.log6 
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V. TAGGING AND FOLKSONOMIES 
Development of the MSI-CIEC Networking Portal is 

motivated by a real application, but it also provides us with a 
test bed for investigating interesting computer science research 
issues, particularly the application of data mining and 
clustering techniques to folksonomies.    

A. Exploring communities in collaborative tagging systems 
Collaborative tagging systems have been drawing wide 

attention as an open medium to freely share information on the 
Internet. The key aspect of such systems is that objects such as 
URLs and URIs can be simply tagged by a list of keywords 
provided by any user. Due to its semantic-free format, 
collaborative tagging systems have intrinsically a low barrier 
to promote a user’s participation.  

Community activities are also an important aspect in most 
collaborative tagging systems. A user may want to see other 
people who have tagged on the same object that he or she 
tagged. A user may want to find a group of people who might 
have the same interest and look at their bookmarks or 
resources.  To help such users to discover unexposed 
communities and explore them efficiently in the system, we 
need to develop and apply data mining algorithms. In the 
following, we describe the model of tagging system and 
discuss possible solutions for supporting community 
exploring.  

B. Models of collaborative tagging system 
The main elements of collaborative tagging systems consist 

of tags, resources, and users. In most scenarios of using 
collaborative tagging systems, a user uses tags – which can be 
keywords, terms, or neologisms – to tag a resource that is 
normally an URL but generally can include an URI. We can 
represent those tagging activities as a tuple consisting of a 
user, a set of tags, and a resource.  Alternatively, we can use 
graphical connections in a tripartite graph where links are 
drawn between three domains of users, tags, and resources 
(see Figure 12) [7]. In general, the purpose of such systems is 
to find specific resources tagged collaboratively by multiple 
users and retrieve information about resources or users, 
entangled in the mesh of tags and resources by using query 
tags. 
 

 
Figure 12. Tripartite graph of a tagging system. 

To build a system for this purpose, we can use two different 
models: a vector space model and a graph model. Although 
the two models can be convertible to each other in general, 

they are distinct in their ways of representations and usages. 
While the vector space model uses vectors in an orthogonal 
basis tag space, the graph model exploits graph structures of 
three elements — tags, users, and resources. The vector space 
model considers the frequencies of tag occurrences for 
searching, but the graph model focuses on graphical 
characteristics such as paths and the degree of connectivity 
between nodes. The vector space model has been widely 
developed and applied in many different ways in the field of 
conventional information retrieval for its simplicity, and the 
graph model has become popular in the areas such as the 
Internet search engines and social network analysis. 

 

 
(a) 

 
 

 
(b) 

Figure 13 (a) A tag graph example and (b) a part of the tag 
graph of MIS-CIEC portal. Tags, resources (URLs), and users 
are represented as a square, a circle, and a box respectively. (b) 
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shows only resource-tag graphs and each independent network 
(connected graph) is assigned to a unique color. 

More precisely, in the vector space model, a resource (or a 
user)1 is represented as a vector of tag occurrences in a tag 
space. For example, a resource tagged by 2 occurrences of tag1 
and 1 occurrence of tag2 can be expressed as a vector <2, 1>. 
A dimension is often used to describe the size of a tag space, 
which equals the number of total tags used in the system. 
Thus, <2, 1> is a 2 dimensional vector.  

In reality, the dimension of these tag vector spaces is huge. 
Connotea and del.icio.us have tens of thousands of 
dimensions, and the dimension of our MIS-CIEC portal is 
about 180. In the vector space model, queries are also given as 
tag vectors in the same space and then searching is a process 
to find the exact or, more likely, the most similar vectors.  

In practice, since searching a space of tens of thousands 
dimension is a daunting task, we can use dimension reduction 
schemes for decreasing dimensions to search by removing 
noisy and unrelated tags. Latent Semantic Analysis (LSA) and 
Principal Component Analysis (PCA) are the well-known 
algorithms for this purpose. We can use the vector space 
model for finding specific frequency patterns. For example, 
finding a group of people who share specific set of tags of 
interest, finding a person whose tags are similar with mine, 
and so on. 

In contrast, the graph model takes advantage of graph 
structural relationships between tags, resources, and users. 
Those relationships can be depicted in a graph, which is 
known as a tag graph, where each tag, a resource and a user 
are represented as a node and a relationship between them as 
an edge (see Figure 13(a)). Tag graphs of real systems are 
more complicated, consisting of thousands of thousands 
nodes. A part of the tag graph of our MSI-CIEC portal is 
shown in Figure 13(b).  

In this model, graph properties such as connectivity, hop 
distance, and strength are the important figures to measure, 
and thus searching is a task to find specific properties in the 
graph. For example, to find strong relationships between two 
nodes is to identify a path that consists of a high degree of 
connectivity but with short hop distance. In this way, we can 
use the graph model to investigate more sophisticated 
relationships between tags, resources, and users. Examples of 
complicated questions we can have include finding a person 
who is related with my friend, discovering a group of people 
who is working on the same topic, and so on. 

 
Table 3 A summary of potential questions for discovering 

communities in a collaborative tagging system and the 
appropriate algorithm. 

Questions Technology or Algorithm 
Who is sharing a similar 
interest with me? 

LSA, TagRank, Graph-
based algorithm, Clustering 

Which group of people is LSA, Graph-based 

 
 
 

working on a specific topic? algorithm 
What are the characteristics of a 
community group? 

Clustering algorithm, 
Graph-based algorithm 

Who is the most influential in a 
community? 

LSA, TagRank 

What kind of recommendations 
can I obtain?  

TagRank, Graph-based 
algorithms 

How similar is two different 
communities? 

Graph-based algorithm 

What is the most outstanding 
trend? 

TagRank 

C. Discovering Communities 
Tagging a resource that has already tagged by other users, 

watching other user’s tagging activities, and expressing one’s 
interests though tags can be the most common examples of 
social activities in a network. Now the most of collaborative 
tagging systems explicitly support community activities by 
enabling users to create a new community or to join other 
communities of interest. By doing so, users can actively 
collect more valuable information by contacting other people 
in the net who share the same interest of the users.  

In this situation, finding a group of people who are working 
on the same topics or interests, which we call discovering a 
community, will be an inevitable task in the systems. For 
example, users may ask to the system; “Who is sharing a 
similar interest with me?”, “Who is the most influential in a 
community?”, or “What kind of recommendations can I 
obtain?” A list of feasible questions users might ask and the 
appropriate technique is summarized in Table 3. Considering 
the size of such networks, solutions for those problems are not 
trivial and will require efficient, parallel algorithms.  

Depending on the models discussed in the previous section, 
we can classify potential solutions into two main categories: 
frequency analysis that rely on the vector space model and 
structural analysis that are based on the graph model. 

D. Frequency Analysis and Clustering  
Based on the vector space model, the frequency analysis 

can be performed over the frequencies of tag occurrences in a 
system. In this analysis, the more frequently used tags, the 
more referenced resources, and more actively involved users 
are considered to be more significant and thus have stronger 
impacts in a system.  

Preparing data is relatively simple: one makes a frequency 
matrix by counting the number of tag occurrences with respect 
to each resource or each user. Instead of simple counting, 
more sophisticated methods, such as entropy or scores, can be 
used. Finding specific patterns means matching a target vector 
in the frequency matrix. Latent Semantic Analysis is one of 
the most popular algorithms among many conventional 
algorithms used in the field of information retrieval [9] for 
these types of problems.  

Latent Semantic Analysis (LSA) has been developed since 
1990 for the use of information retrieval [8]. The key ability of 
LSA is to eliminate statistically unrelated tags from a 
frequency matrix, which is also known as dimension 
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reduction, and enable users to compare them with only the 
most significant components. As a result, LSA helps users to 
recover “latent” core tags obscured by “noisy” (or the less 
significant) tags and thus can give more insightful 
perspectives regardless of presence of noises.  

Clustering is another prominent method used for frequency 
analysis. Discovering communities of similar interests can be 
performed by identifying clusters of users based on their tag 
patterns. Well-known clustering algorithms can be applied for 
this purpose. Hierarchical clustering [11], k-means clustering 
[12], and deterministic annealing algorithms [13] are good 
candidates. Other clustering algorithms can be found in [14].  

When selecting algorithms, performance is also a critical 
issue in the frequency analysis since the dimension of 
frequency matrix will exceed tens of thousands or even more. 
Indeed, a few clustering algorithms have been designed to deal 
with high-dimensional problems by exploiting parallelism. For 
example, parallel hierarchical clustering [15] and parallel k-
means method [16] can be found in literature. However, 
although the most recent advent of multi-core technologies 
now supports intra-chip parallelisms, very little research has 
been done so far [17][18] on parallelizing and optimizing 
these algorithms on these new chip architectures. More 
performance gains can be obtained in the frequency analysis 
by adapting those algorithms – LSA and various clustering 
algorithms – to the multi-core environments. 

E. Structural Analysis 
In contrast to the frequency analysis, which uses tag 

frequencies in a vector space, the structural analysis considers 
the tagging activities as a graph, described in the graph model, 
and utilizes graph-structural properties in the tag graph for 
discovering communities in a collaborative tagging system. 
Compared with the data used in the frequency analysis (i.e., 
frequency matrix), the representation of data in a graph 
structure is more intuitive and human-understandable. For this 
reason, structural analysis may help users to find other 
information that is not obtainable when performing the 
frequency analysis. Example properties we may want to find 
out are connectivity, connection distances between users, size 
of communities, and the degree of strength of a connection.   

In literature, many graph-based algorithms can be found for 
the structural analysis. Among them, FolkRank [10] and 
graph-based clustering algorithms, as shown in [19][20][21], 
are applicable in our purpose.  

The concept of FolkRank algorithm, which is a variant of 
well-known PageRank algorithm of Google, is to assign each 
node – which is a tag, a user, or a resource – a system-wide 
numeric score, also known as a rank, by measuring 
contributions or a degree of importance in system. To obtain 
such rank scores, the algorithm starts with random seeds of 
nodes and recursively follows sub-graphs by utilizing the 
graph structures of tagging. This process is iteratively repeated 
until the scores converge to a certain threshold.  

Like other clustering algorithms used in the frequency 
analysis, graph-based clustering algorithms, as shown in 
[19][20][21], can be used for identify or searching similar 

group of people in a system. Similarly, there is very little 
study in literature on parallel graph-based clustering 
algorithms working on multi-core environments, so these 
remain open and important problems. 

VI. SUMMARY AND FUTURE WORK 
This paper describes the design and implementation of the 

MSI-CIEC Networking Portal, a Web 2.0-style tagging and 
social network style application.    This work is motivated by 
the need to support social networks of researchers, particularly 
at minority serving institutions. 

In addition to this practical motivation, we hope also to use 
the portal as a laboratory for core computer science work on 
social network analysis.  As described in Section V, we are 
researching the application of various techniques for clustering 
and mining the data we are harvesting.   Although some form 
of this is quite familiar from many social Web sites, we hope 
to put the techniques on a firm, open academic footing, 
avoiding proprietary and ad hoc algorithms.  

The key problem with most social network applications is 
the lack of interoperability, but this fortunately is beginning to 
change.  The major social network activities, Facebook and 
the Google-led Open Social consortium, are both providing 
programming APIs that allow developers to embed 
applications in existing social networks and, conversely, allow 
embedding social network tools into other Web sites.  It will 
be crucial for our project, in the next phase, to establish 
interoperability with these social networking tools. 
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