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ABSTRACT 
 

Resource description framework, RDF, is a standard language model for representing 
semantic data.  As the concept of Semantic Web becomes more viable, the ability to retrieve 
and exchange semantic data will become increasingly more important. Efficient management 
of RDF data is one of the key research issues in Semantic Web; consequently, many RDF 
management systems have been proposed with data storage architectures and query 
processing algorithms for data retrieval. However, most of the proposed approaches require 
many join operations that result in the unnecessary processing of intermediate results for 
SPARQL queries. The additional processing becomes substantial as the RDF data volume is 
increased. In this paper, we propose an efficient structural index and a query optimizer to 
process queries without join operations. Empirical experimental results show that our 
proposed system outperforms conventional query processing approaches, such as Jena, up to 
79% in terms of query processing time by reducing the volume of unnecessary intermediate 
results. 
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1. Introduction 

As the Semantic Web becomes more viable, the ability to retrieve and exchange information 
through a Resource Description Framework [1], RDF, becomes increasingly important. This 
data format is currently receiving interest from both researchers as well as business enterprises. 
A functional Semantic Web will require efficient and effective methods to store and retrieve 
large volumes of data. However, managing large volumes of RDF data (up to billions of triples) 
is a challenging issue. The two main data management issues in Semantic Web [2] are as 
follows.  The first issue is related to the improvement of performance, scalability and query 
processing to manage large volumes of RDF data. The second issue is associated with 
increasing RDF data interoperability to enhance and utilize Semantic Web information with 
optimized inference engines. To solve these issues, many RDF data management system have 
been proposed that include data storage architectures and query processing algorithms. 
Currently, researchers are primarily focusing on two perspectives to optimize RDF storage for 
query processing: relation-based and graph-based. From the relation-based perspective, RDF 
data is just a particular type of relational data and already known relational database 
technoques of storing, indexing and procesing queires are reused and customized for RDF data 
[3,4]. Graph based approaches [5] try to store RDF data without sacreficing its rich graph 



characters. For example, navigation  in RDF graph is supported in this approach since it views 
RDF data as a classical graph. Typical queries are pattern matchings that find a certain graph. 
Among these perspectives, the structure index in graph-based perspective is considered to be a 
promising approach for solving issues related to complex query graphs. The perspective 
considers RDF data as a directed edge-labeled graph and the summary of the graph is 
represented as a structure index where the certain nodes are merged while maintaining all 
edges [6].  

Within the research area of RDF data management with structure indexes, we are interested 
in identifying methods to efficiently store and retrieve RDF data via SPARQL queries [7].  For 
efficient RDF data storage and retrieval, it is required to improve the response time for query 
processing. Specifically, data indexing and query optimization should be addressed. We 
conducted preliminary study to find a relation between query optimization through RDF data 
indexing and query processing time. Its results indicates that 1) the more optimized a query is, 
the less time is required to find a matching answer and 2) query efficiency plays an important 
role when dealing with large scale data. 

To evaluate query, most of recent approaches retrieves sub-graphs (i.e. RDF data) for each 
triple pattern in the query [8]. And then, the RDF data are joined (merged) to find a matching 
answer. Thus, the number of join operations increases with the number of triple patterns 
retrieved. This approach results in a large number of unnecessary intermediate data for each 
query and requires a substantial amount of time to generate and process data that will not 
contribute to the query results. When the RDF dataset is scaled up, the volume of intermediate 
results can have a significant effect on query performance. Thus, it is needed to minimize the 
amount of useless intermediate data obtained during query evaluation. 

In this paper, we propose a system that uses a new structure index and an effective query 
optimizer to solve the challenges of data indexing and query optimization, respectively. A new 
structural index that stores the RDF data source with key-values is adopted to enhance efficient 
data storage and retrieval for SPARQL query processing. RDF data indexing is done “offline” 
only once before users make queries. For query processing, an effective query optimization 
mechanism is proposed that has 1) an execution plan based on the query's pattern that leverages 
our indexing schema and 2) a query processing mechanism that merges matching data at every 
evaluation step and reduces invalid intermediate results. Query optimization is done “online” 
and enhances the query processing performance. Our empirical experiments show that query 
processing performance improves up to 79% for simple queries and about 50% for complex 
queries with 8 triple patterns.   

The rest of this paper is organized as follows. Section 2 introduces RDF and SPARQL 
queries as well as several related works. In section 3, we show an overview description of our 
system. Our indexing schema is also discussed to clarify how we store RDF triples. Then we 
describe the execution plan and algorithm for query processing. In section 4, the experimental 
setup is discussed, followed by experimental results. Finally, we provide a summary and define 
our future work in section 5. 

2. Background and Related Works 

2.1 RDF and SPARQL 
RDF is known as a standard language model for representing Semantic Web data. The 

proliferation of RDF data on the Web increases as increasing volumes of useful information are 
represented, queried and transformed across social networks [9]. In RDF, data is usually stored 
as statements in terms of triples {subject, predicate, object}, which is similar to entity 



representation {entity, property, value}. Subjects and predicates in triples are URIs when 
objects can be either URIs or literal values. An example of RDF data is presented in Table 1. 

Table 1. Example of RDF data triples 
Subject Predicate Object 

id123 foaf:name Jon Foobar 
id123 rdf:type foaf:Agent 
id123 foaf:weblog http://foobar.xx/blog 
id456 rdf:type foaf:Agent 

http://foobar.xx/blog.rdf foaf:maker id123 
http://foobar.xx/blog.rdf foaf:maker id456 

http://foobar.xx/blog rdfs:seeAlso http://foobar.xx/blog.rdf 
 

SPARQL is a query language and protocol for retrieving data in RDF repositories. Its syntax 
is similar to SQL, thus it basically contains two main clauses, e.g., SELECT and WHERE. The 
SELECT clause identifies the variables that will appear in the query results. The WHERE 
clause provides the basic graph pattern to match against the data graph. We consider four 
disjoint sets V (variables), U (URIs), B (blank nodes) and L (literals). 

Almost every SPARQL query contains a set of triple patterns called a basic graph pattern. A 
basic graph pattern, BGP, is a finite set of patterns {tp1, tp2, …}, in which each tp is a triple  

 
 

 
A BGP and SPARQL query processing is as follows: the SPARQL query is formed by 

taking the description of what the users’ interest as variables. A BGP in the WHERE clause is 
the core of all SPARQL queries and it identifies a subgraph of the RDF data. The subgraph that 
is a set of variable mappings is evaluated by matching the triple patterns against the triples in 
the RDF data. The result of the BGP processing is then a RDF graph equivalent to the subgraph 
that may be substituted for the variables. Variables can occur in multiple patterns, thus join 
operations are required to identify all possible variable bindings that satisfy the given patterns. 
The query returns the info as an RDF graph that binds with the variables. 

An example BGP of a SPARQL query is shown in Figure 1(a) along with the corresponding 
query graph (in Figure 1(b)) that contains three triple patterns. The query retrieves information 
from the above RDF data graph in Table 1 and means “Find the person and name with a blog 
titled (‘title’)”. The answer for the query in this case has only one binding (?person, id123) and 
(?name, “Jon Foobar”). 

 
SELECT ?person ?name  
WHERE { 
 ?person foaf:name ?name.  

?person foaf:weblog ?blog.  
?blog dc:title “title”  

} 
 

(a) A SPARQL query 
 

 
(b) The corresponding query graph 

 

Fig. 1 Example query graph 
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2.2 RDF Data Management 
There are two main approaches to dealing with the storage and retrieval of RDF data: 

relational-based and graph-based. In relational-based database systems (RDBMS) for RDF 
storage, RDF triples are stored in tables (see Table 1) as in traditional RDBMS. However, the 
tables in this perspective do not have any relations or constraints between them. There are 
several solutions, each with their own pros and cons. First, triple store [10,11] stores one single 
giant table (as in Table 1) for all the IDs of triples, but uses minor tables for indexing resources 
and literals of triples. There are some benefits to this approach. One of the benefits is that minor 
tables help to minimize storage requirements. Another advantage to use this approach is that 
the number of tables is manageable, allowing the database to be easily manipulated (e.g., insert, 
update,… data). On the other hand, since every single triple pattern must be searched on the 
large table, look up times can be excessive. 

In the property table approach of Jena [12,13], each table stores a group of triples whose 
predicates relate to a certain topic or concept (e.g., movie awards’ info in Table 2). Properties 
are classified into identical tables of various concepts. The biggest benefit of this solution is 
that the query can be executed via a simple selection operator if all properties in a query are 
located inside a single property table. In contrast, an excessive number of NULL values can be 
returned for properties that are not contained in the table. Furthermore, if the query requires 
data from more than one property table, multiple union and join operations will be required, 
making the query processing both complex and time-consuming. 

Table 2. A property table with 1 subject and its predicates 
Subject Type Name Country 

ID1 MusicAward “XYZ” “uvw” 
ID2 MovieAward “ABC” “def” 
ID3 BestActor “LMN” NULL 
ID4 BestSong NULL “opq” 

In vertical partitioning [14], all triples with the same predicate are stored in a table named 
using that predicate. Every predicate table contains two columns, one for the subjects and 
another for the objects. For those triple patterns containing bounded predicates, it is easy to find 
the predicate tables to retrieve the appropriate triples, regardless of the data volume. However, 
the number of tables is proportional to the number of properties. Consequently, many tables 
may be required if a large number of predicates are used that appear only once or a few times. 
Figure 2 shows some example predicate tables. 

Title  Copyright  Language 
ID1 “XYZ”  ID1 2001  ID2 “French” 
ID2 “ABC”  ID2 1985  ID3 “English” 
ID3 “MNO”  ID4 1995    
ID4 “DEF”  ID5 2004    
ID5 “GHI”       

 
Fig. 2 Vertical partitioning approach example (three predicates represented by three tables) 

Atre et al. [15] also use a relation-based approach with BitMat, a matrix of bitmaps that is 
used to reduce the index size. Based on the compressed indexed data, lightweight semi-join 
operations are used for query processing. This approach helps to reduce the volume of 
intermediate data required to process queries. The approach does not, however, reduce the 
required number of join operations. 



RDF-3X [16] stores all triples in a single table with compressed indexes of clustered 
B+-trees.  The table is maintained with all six possible permutations of subject (S), predicate 
(P) and object (O). With sophisticated join planning and fast merge joins, the RDF-3X 
approach can perform a single index scan and then start processing from any literal/URI 
position in the pattern. However, this approach creates redundant indexes and when the size of 
the index is comparable to that of the data source, the increase in data storage requirements can 
be significant. The authors optimize join orderings and use an efficient query plan with a 
dedicated cost-model, which improves the selectivity estimation accuracy for joins on very 
large RDF graphs. However, indexing and processing queries against a whole data source still 
requires many join operations. When the RDF data is increased, join operations are used to 
produce many duplicated and useless intermediate results, increasing query response time.  

From the graph-based perspective, RDF data is considered as a graph with directed edges 
and vertices [17]. There are many algorithms and solutions related to graph theory that can be 
applied here. Tran et al. [18] create an index graph on whole graph data that serves as a 
revised/summary graph for the data source graph. The summary graph contains the extension 
nodes of the original nodes which have the same structure as in the source graph. For example, 
Figure 3 shows the index graph of a source graph in which the items (p1, p2, i1, i2, …) inside the 
rectangles are its nodes and the labels (“name”, “worksAt”,…) are its edges. Node p1 and p3 
have same value (29) of predicate “age”, hence they are grouped into extension node E2; node 
i1 and i2 both have name “AIFB” so they are grouped into extension node E3; and so on. To 
process the query, the algorithm finds the matched index graph with query patterns using the 
isomorphism of two graphs. For each of the matched triple patterns in a query, the algorithm 
retrieves the matched triples in a dataset. The triples are then combined to get the final query 
results. With this mechanism, the structures are optimally indexed when the graph data has a 
similar structure. In addition, the diverse graph data may be very large. In this case, the index 
graph may also be very large with limited utility. 

 

 
Fig. 3 An example of the structure index graph  

The authors in dipLODocus [19] use a hybrid approach for indexing data with a cluster 
manager (property table) and a template list (an inverted list of clusters for a literal value). 
Hence, dipLODocus can respond to both triple pattern queries and analytic queries efficiently. 
The approach focuses on finding and processing molecule query patterns. With complex 
queries, however, to the approach must join many clusters, which requires the use of redundant 
intermediate data. 

Picalausa et al. [20] use a similar method for indexing RDF triples as the approach proposed 
here. There are, however, two fundamental differences between their approach and ours. First, 



they consider two triples as common if there exists an equality type in which they have the 
same subject, predicate, or object, and then group these triples into index blocks. By looking at 
this structural index, they can prune triples that do not realize the desired equality type. In the 
approach proposed here, only the subject and object are considered, and only the query's 
patterns, not RDF triples, are applied. Consequently, when the RDF graph source has diverse 
data with just a few triples sharing common values, structure index proposed by Picalausa et al. 
is of limited utility. Second, they still need to join the pattern matches to obtain the final result.  

The query processing approach of Zeng et al. [21] is also similar to the method proposed 
here. They use a sequence of patterns in which consecutive patterns have a common item 
(described in details in next section). Since the queries already contain a sequence of patterns, 
multiple patterns can be processed quickly through graph exploration. However, in some cases 
only a partial sequence of patterns from the query's patterns can be built. Consequently, this 
algorithm is only applicable when all the patterns in a query can be formed into a sequence of 
patterns. For example, from the below list of patterns,  

tp1 = (?a p1 b) 
tp4 = (?e p2 ?d) 
tp2 = (?a p3 ?c) 
tp3 = (?c p4 ?e) 
tp5 = (?d p5 ?f) 
tp6 = (?e p6 g), 

a sequence for all patterns cannot be built. One of the possible sequences is 
tp1 = (?a p1 b) 
tp2 = (?a p3 ?c) 
tp3 = (?c p4 ?e) 
tp4 = (?e p2 ?d) 
tp5 = (?d p5 ?f), 

where the tp6 = (?e p6 g) is left out. The approach proposed in our paper addresses this problem 
by finding the longest sequence within the patterns, and then appending the remaining patterns 
to this sequence. Moreover, after using the exploration plan to find matches for the sequence of 
patterns, a final join operation is required to assemble the answer. The proposed approach does 
not require this final join operation. At each step of matching, we check the valid binding of a 
pattern for the whole graph. 

Although each of the related works above presents a unique solution for storage with 
indexes and query processing, many share a similar problem: queries are not optimized for 
processing.  Consequently, many irrelevant intermediate results are created. The idea proposed 
in this paper overcomes this issue by generating an execution plan for the query, which reduces 
the intermediate results substantially. In the following section, a structural index for RDF data 
storage is described along with development of a query execution plan for optimizing query 
processing. 

3. Data Indexing and Query Optimization 

In this section, we describe our system in detail and discuss potential implementation issues 
that may arise during implementation. First, we provide an overview of the system, including 
the component and their interactions. Next, the main contributions of the paper, the RDF data 
indexer and query optimizer, are discussed. We show that our storage system works with 
key-value based structural indexes and an algorithm to build query execution plans. Finally, we 
elaborate on the query processor to demonstrate how the matching answer of a query is found 
using an execution plan. 



3.1 System Overview 

 
Fig. 4 System architecture for full query processing 

 
As discussed in Section 1, the challenges of RDF data indexing and query optimization must 

be addressed to achieve high performance during query processing and data retrieval. Query 
optimization reduces response times for finding matching answers. On the other hand, RDF 
data indexing enhances query efficiency by facilitating data retrieval with large scale data. 

We propose an efficient architecture to address these challenges while supporting full query 
search.  The architecture is depicted in Figure 4 and the circled numbers in the figure are 
representing the sequence of process (i.e., the offline indexing process as 1.x and the querying 
process as 2.x). Our RDF Data Indexer supports efficient RDF data retrieval using a structure 
index schema stored in a key-value based system. A general SPARQL Query Engine 
component receives SPARQL queries from users, processes them against the RDF triples in 
key-value storage and then returns the answer to users. 

The proposed SPARQL Query Engine has three subcomponents: Query Parser, Query 
Optimizer and Query Processor. The Query Optimizer is a key feature of our system; it 
optimizes the SPARQL queries before processing them in the Query Processor. This section 
provides a high level description of our architecture and introduces a general picture of the 
overall approach. We briefly describe the system’s workflow as follows: 
 
- Query Parser. This subcomponent obtains input queries from users, extracts their BGPs for 

the Query Optimizer and creates a variable list for the query processing step. In this paper, 
we only consider the basic SPARQL queries with simple clauses, i.e. SELECT and WHERE 
clauses. The proposed system can support other operators, such as ORDER, FILTER, and 
OPTIONAL, but these operators are beyond the scope of this paper and will be 
demonstrated in future work. 

 
- Query Optimizer. This subcomponent generates an execution plan for the query. Query 

processing is optimized by evaluating the query patterns in an efficient manner. Triple 



patterns are arranged in an order such that the matching result of a pattern serves as input for 
the next pattern in the plan. Since the result of each pattern is checked for validity at every 
processing step, the number of intermediate results is substantially reduced. 

 
- Query Processor. The Query Processor’s tasks consist of finding matching points with the 

query’s variables, verifying the matching points and then combining them to retrieve the full 
answer for the whole query. The use of an execution plan allows these tasks to be 
implemented more easily. We process a query through the use of a hash table, which maps 
nodes between the query and matched data. By reducing the volume of intermediate data, 
the query processing performance is improved. 

 
- RDF data Indexer. RDF triple data is stored in a key-value based system with three main 

collections of data. The collections of data include all resources (URIs), literal text from the 
source of triples, and an index schema to retrieve data. RDF data indexing is performed once 
“offline”; afterwards, the data can be used indefinitely to address users’ queries. 

 
- Data Loader. The Query Processor uses this subcomponent to fetch RDF data from the 

key-value based storage.  Data retrieval is performed for each query pattern in the execution 
plan. 

 
In the following sections, we provide additional detail about the efficiency of the structural 

index in RDF data Indexer, as well as the working mechanisms of the Query Optimizer and 
Query Processor. 

3.2 Structural Indexed RDF Data with Key-value Based Storage 
In this section, we describe our RDF Data Indexer component using an index schema with 

key-value storage. The storage system consists of three collections of nodes and RDF data 
relations. The three collections are 1) a vertex collection that stores subjects and objects (since 
a subject can be an object and vice versa in RDF), 2) a predicate collection that stores predicate 
data and its corresponding subject and objects, and 3) a pre_obj collection that stores the list of 
subjects for each pair (predicate, object). 

The first two collections do not store RDF data in the triples typically used in conventional 
RDF infrastructure, e.g. Jena [11]. This approach reduces the size of stored data since triples 
may contain long string literals and URIs. Mapping collections with a key-value storage 
provides a natural approach to replace all literals & URIs with ids (pID and vID). 

The predicate collection and vertex collections use pID and vID values to index the edges 
(predicates) and vertices (subjects, objects). To do this, pID and vID values are assigned to 
predicate and vertex values, respectively. More specifically, the values stored in the predicate 
collection are strictly URIs, whereas values stored in the vertex collection include store both 
literals and URIs. The pre_obj collection contains an index pair, (pID, vID) corresponding to 
the subject’s ids (in this case, vID is the object’s identifier). 

Furthermore, in the predicate collection, Sub_Obj documents are also stored that represent 
ids of subjects and objects in a form that indicates the relation of a predicate to subjects and 
objects. For example, in Table 3, the predicate “0” (“foaf:name”) connects subject node “0” 
(“id123”) and object node “1” (“Jon Foobar”), and so on. The format of data entries in the 
predicate collection is described as this following formula. 

 (1) 



To illustrate this formula, we give an example of an entry stored in the data storage 

 

Table 3, 4 show the illustration of predicate and pre_obj collections, respectively, for the 
graph depicted in Figure 5. In the Figure 5, numbers with green colour represent index number 
for vertex collection, and numbers with blue colour represent index number for predicate 
collection. 

 
Fig. 5 Example of RDF graph for Table 1 

 
Table 3. Index for the data in Figure 5 – predicate collection 

predicate value Sub_Obj 
0 foaf:name {“0” : [1]} 
1 [rdf:type] {“0” : [2], “4”:[2]} 
2 [foaf:maker] {“3” : [0, 4]} 
3 [foaf:weblog] {“0” : [5]} 
4 [rdfs:seeAlso] {“5” : [3]} 
5 [dc:title] {“5” : [6]} 

 
Table 4. Index for the data in Figure 5 – pre_obj collection 

Pre_Obj Subjects 
0, 1 [0] 
1, 2 [0, 4] 
2, 0 [3] 
2, 4 [3] 
3, 5 [0] 
4, 3 [5] 
5, 6 [5] 

 
The above design improves the performance of retrieving RDF data. The input RDF data 

files are first preprocessed to extract the structural indexed data shown in Tables 3 and 4. The 
triples are then parsed from these files and all subjects, predicates and objects are extracted. 
Next, the values are stored and indexed in their appropriate collections with correlative keys. 
This step can require substantial time to read files, parse triples, extract URI/literals and insert 
key-value pairs. However, these collections need only be generated once (“offline”) and they 
can then be used indefinitely. 

With these three collections, retrieval of all possible types of patterns can be supported. The 
following Table specifies patterns that are supported by correlative collections. 



Table 5. Supported patterns by data collections 
Pattern Collection 
s   p  o pre_obj 
s   p ?o predicate 
s  ?p o pre_obj 
s  ?p ?o pre_obj 
?s  p o pre_obj 
?s  p ?o predicate 
?s ?p o pre_obj 

3.3 Query Optimization with Execution Plan 
In this section, we describe the Query Parser and Query Optimizer subcomponents that are 

used to extract the triple patterns and generate an execution plan. Since basic queries with 
simple SELCET-WHERE clauses are considered here, the Query Parser can easily extract 
variables from the SELECT clause and BGP from the WHERE clause. The Query Parser can 
be extended in future work to support full SPARQL queries with complex operators like 
UNION, OPTIONAL, etc. 

An example execution plan will be developed using the list of triple patterns in the extracted 
BGP above. We define an execution plan as follows: 

Definition 1 (Execution Plan) An execution plan EP for a query is a path-based sequence 
of triple patterns {tp1, tp2, …, tpn} such that there exists an ordered list of patterns, in which 
every pair of consecutive patterns tpk and tpk+1 has at least 1 common item (subject S, predicate 
P, or object O). In other words, one of the following conditions should hold: 
 

 
   

 
 
where S(tp) and O(tp) are the subject and object of pattern tp, respectively. The execution plan 
assigned to the Query Optimizer subcomponent in Figure 4 is an example. 

To construct the execution plan, the query is processed as in Algorithm 1, which stores the 
triple patterns in a simple hash table that maps each node to corresponding triples. In other 
words, the hash table contains a list of adjacent triple patterns for each node in the query, i.e. 
(node, [adjacent_triple_list]). From this hash table and a given triple tp, the next triple nextTp 
is added to the plan in such a way that a common subject (object) is shared with nextTp’s. 

Zeng et al. [21] propose the use of an exploration plan for query processing that is similar to 
the method proposed here. They use an algorithm to generate the plan with a complexity of 
O(|E|·|V|) where |E|, |V| are the number of edges and vertices, respectively, in the query graph.  
In contrast, our algorithm’s complexity is O(|E| + |V|) because we consider every node and 
edge only once. 

After generating the ordered list of patterns for the plan, the remaining triple patterns that 
are not in the list are appended to the current plan. This is the final execution plan for the query 
evaluation. The motivation to build an ordered sequence of patterns is to take advantage of the 
structural indexed RDF data and inherent characteristics of sequential triple patterns to 
improve query processing. Based on the sequence of patterns satisfying Definition 1, matching 
data for each triple pattern is found and stored for use in the next triple, and so on. Hence, join 
operations are not required and the quantity of intermediate results is significantly reduced. In 
the next section, we describe how to process a query using an execution plan. 
 
 



Algorithm 1 GET_PLAN(sNode, tp) 
Input: sNode  considered starting node 
            tp  considered triple pattern 
            H  hash table stores patterns for every node in the query  
Output: EP, the longest path-based sequence of triple patterns. 
1:  EP  tp 
2:  nextNode  getNextNode(tp, sNode)  
      // if startingNode is subject, nextNode is its object, vice versa. 
3:  adjacentTripleList  getTripleList(H, nextNode) 
4:  subPlan  Ø // store remaining part for plan EP 
5:  for each triple tpl  adjacentTripleList do 
6:          if (tpl is not visited) then 
7:         tmpPlan  GET_PLAN(nextNode, tpl) 
8:          if size(subPlan) < size(tmpPlan) then  
9:         subPlan  tmpPlan 
10:         nexTriple  tpl 
11:         end 
12:        end 
13:end 
14:EP  adjacentTripleList  {nextTriple, tp} 
      // nextTriple is included in subPlan 
15: EP  subPlan 
16:return EP 

Algorithm 1. Algorithm to build execution plan for the query 
 

3.4 Query Processing 
In this section, we explain how to process queries based on the execution plan generated 

above. To do so, we need to find all mapping nodes from the data storage and remove or 
identify invalid answers. We execute the following steps in Algorithm 2 using a hash table: 

1) Based on the common node N with the previously considered pattern, we retrieve the 
next triple pattern TP from the execution plan and obtain the mappings for this common 
node from a hash table M (described later). 

2) For each mapping of the common node N, which is one of the elements in triple pattern 
TP, we find the matched result of the variable in TP and add this mapping to the hash 
table M. 

3) If any mapping m of common node N has no matches for triple pattern TP, we remove m 
and all of the related connectors from hash table M. 

4) Finally, as long as a mapping of common node N exists that answers the triple pattern TP, 
we continue processing next pattern in the execution plan. 

 
The hash table M keeps the mappings of a pattern’s variable, varX, with the corresponding 

values and connectors (note: hash table M is different from the hash table referenced in the 
previous section). In other words, M stores a list of key-value pairs, in which the key is a 
variable from the pattern and the values are the matching URIs/literals and connector. A 
matching value connector is a matching value to an adjacent variable of varX. For example, 



considering a patterns tp in the execution plan and x is a matching value of tp's subject, the 
matching values of tp's object ?varX, are found to be {x1, x2, x3}. Hash table M will store an 
entry of key-value pair as: M: ?varX  {x | [x1, x2, x3]}. 

This type of data structure helps to track the mappings of variables visited during execution. 
By evaluating each triple pattern in the execution plan sequentially, we can find the answer for 
each pattern and remove all invalid results at each processing step. In the algorithm below, the 
findMatches() method finds the matching data for a given triple pattern with type and 
supporting index (for retrieving data) listed in the Table 5. 
 

Algorithm 2 PROCESS_PATTERN(cNode) 
Input: cNode  common node (considered node of the pattern) 
Data:   EP  execution plan of the query’s triple patterns 
             M  hash table stores intermediate result of each pattern 
Output: mappings of nodes between query & RDF data 
1: tp  EP.getNext()            // get next triple pattern to be processed 
2: cMatchList  M(cNode) // get match list of common node 
3: for each cnt  getConnectorList(cMatchList) do 
4: for each mVal  cMatchList.getMatchValues(cnt) do 
5:  nextNode  getNextNode(tp, cNode)   
6:  nextNodeMatchList  findMatches(nextNode, mVal)  
7:  if there is mapping of nextNode then 
8:  M.addMapping(nextNode, mVal, nextNodeMatchList) 
                          // mVal is now the connector of nextNode 
9: else 
10: remove(mVal) // remove this matching value and its  
                                                   // corresponding connectors 
11: end 
12: end 
13: end 
14: if there is any match for answer of tp then 
15: nCommonNode  findNextCommonNode(tp) 
16: PROCESS_PATTERN(nCommonNode) 
17: end 

Algorithm 2. Algorithm to process a pattern from execution plan 
 

To demonstrate the execution plan efficiency, we can consider the example query in section 
2.2 with this execution plan as follows: 
 

EP = {tp1, tp2, tp3, tp4, tp5, tp6} 
tp1 = (?a p1 b) 
tp2 = (?a p3 ?c) 
tp3 = (?c p4 ?e) 
tp4 = (?e p2 ?d) 
tp5 = (?d p5 ?f) 
tp6 = (?e p6 g) 

 



As shown in Figure 6, we assume that each individual triple pattern has a fixed number of 
matches with RDF data (e.g. five matches for tp1, ten matches for tp2, etc.). The query 
processing algorithm and execution plan EP are then applied to find the query answer. 
 

 
Fig. 6 Processing pattern tp1 

 
Starting from node b in tp1, we can find the five matching values of variable ?a (because tp1 

has five matches), M(?a) = {[a1, a2, a3, a4, a5], b}.  With this notation, ([m],n) denotes that n is 
the connector of value m and [m] is the list of match values for a given variable. As shown in 
Figure 7,we then process the next triple pattern tp2={?a p3 ?c} to find the five correlative 
matches of variable ?c from the previous five values of ?a, M(?c) = {[c1],a1; [c2],a2; [c3],a3; 
[c4],a4; [c5],a5} as in. 
 

 
Fig. 7 Processing pattern tp2 

 
Next, we process tp3={?c p4 ?e} with the matching values of ?c to find two matches of 

variable ?e,  M(?e) = {[e1],c2; [e2], c5}. As shown in Figure 8, our algorithm then removes the 
invalid matches {c1, c3, c4} of ?c as well as their correlative connectors {a1, a3, a4} from the 
hash table M. 

 
Fig. 8 Processing pattern tp3 

 



We continue to process the remaining patterns, tp4 and tp5, with the two matching values of 
variable ?c. For the final triple pattern tp6={?e p6 g}, since the matching values of ?e are 
already stored in M, the number of valid matches for ?e can be reduced when checking for 
matches of ?e with predicate p6 and object g. Since unnecessary matches for tp2 and tp3 have 
been removed, the system only has to consider five matches for pattern tp2 (instead of 10) and 
two matches for tp3 (instead of four).  

From the above query processing example, we can see that our system improves the query 
performance by reducing the unnecessary intermediate matches for each triple pattern and 
removing all invalid data at each processing step. To verify system efficiency, an experiment is 
described in the next section. 

4. Evaluation 

This section provides an empirical evaluation and verification of the proposed system. The 
experiment characterizes the query performance of both our system as well as a conventional 
RDF management system. 

4.1 Experimental Environment and Data Setup 
To evaluate of query performance, a conventional desktop computer was used with the 

configuration described in Table 6. The Eclipse with Java 1.7.0 platform was used to simulate 
both our system and Jena. MongoDB [22] is chosen for the key-value storage associated with 
the structural index. 

Table 6. Experiment specifications 
Specifications 

CPU type Intel® Core™ i3-2120 
CPU clock 3.3 GHz 

RAM 2 GB 
#Cores 2 

OS Windows 7 Enterprise 32-bit 
IDE Eclipse (Indigo Service Release 2) 

Database MongoDB 
 
A diverse RDF dataset collected from DBpedia 3.9 [23] was used for input data (Number of 

Triples: 2,403,306). The DBpedia data set uses a large multi-domain ontology (RDF triples) 
which has been derived from Wikipedia and external RDF data sets. Hence, the dataset allows 
queries to be processed on diverse data areas (described in next section). We first use Jena to 
extract data triples from this dataset and then store them in the MongoDB database with our 
indexing schema. 

In our system, we first create a structural index for the entire RDF dataset using “off-line” 
preprocessing and then store the structural index in MongoDB storage. The indexed data will 
improve the retrieval time for query processing. In our experiment, the query processing 
performance is only evaluated for “online” processing, which includes processing queries from 
the indexed RDF data. Although the preprocessing time required building the structural index 
of RDF data can be substantial, this task is only performed once. In addition, the key-value 
storage allows for easy modification (update, delete). To add a new dataset, the preprocessing 
algorithm is used to insert any new data to the existing index. 
 

4.2 Query Preparation 



To prepare for the experiment, five SPARQL queries are generated that correspond to five 
different categories of data. They store information about a) water storage areas (Q1), b) 
vehicle engines (Q2), c) spaceships (Q3), d) car specifications and features (Q4), and e) 
satellites (Q5). As a result, query characteristics vary greatly.  
- Query Q1 retrieves data associated with water storage areas, which only have two properties, 

i.e. shore length and catchment area. Query Q1 is representative of simple queries with only 
one or two triple patterns.  

- Query Q2 retrieves data associated with vehicle engines, which have more properties, such 
as power output, acceleration, torque output, and piston stroke (five triple patterns).  

- Query Q3 retrieves data associated with spaceships, including mission duration, lunar 
surface time, orbit time and lunar sample mass (six triple patterns). 

- Query Q4 retrieves data associated with cars, many of which have similar specification 
values, such as wheel base, fuel capacity, and so on. This type of query contains seven or 
eight triple patterns.  

- Query Q5 uses ten or more patterns to retrieve data associated with different satellites which 
represents a complex query in our experiments. 
These five queries are described in detail in the Appendix. In summary, the queries represent 

the entire spectrum of different data areas included in the dataset of RDF triples. As shown in 
the Appendix, the complexity of each query varies with number of patterns. Therefore, queries 
of various lengths and different ranges of the dataset are used to verify query processing 
performance. A complete set of queries is not used to cover all data in the RDF dataset, 
however, the results are indicative of overall performance.  

4.3 Experiment Result 
We conduct the experiment by executing the above five queries and comparing the running 

time with Jena [24,25]. Jena has recently graduated from the Apache incubator and is known as 
a general system for managing and querying RDF data. Jena provides APIs and corresponding 
documentation for researchers to process SPARQL queries against RDF datasets. Hence, we 
choose Jena as the conventional system for comparison.  

With our structural index, RDF data for all types of SPARQL query patterns can be 
retrieved. Since the execution plan is built as an ordered sequence of triple patterns, the 
matched data for each triple pattern is found and stored for use by the next triple. By excluding 
unnecessary results at each processing step, intermediate results are reduced significantly, 
which improves running time. The objective of our experiment is to verify the efficiency of 
processing SPARQL queries by evaluating the triple patterns in the execution plan generated 
from query’s BGP. 

To demonstrate the performance consistency, Figure 9 shows the running time for each of 
the five queries that are of different complexities and extract different data domains. As shown 
in Figure 9, each query has a relatively stable execution time and it shows the diversity of 
queries and low variance on the processing times of each query. 

In our system, we assume that users prefer to make queries that contain triple patterns in 
which at least one item (S, P, or O) is bound. Users are also assumed to use query patterns with 
simple operators (such as SELECT, WHERE) and a single BGP as noted earlier. 
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Fig. 9 Processing time of 5 queries executed 20 times. 

Each query is executed 20 times (see Figure 9) and the average query processing time is 
used as the result. As shown in Figure 10, our system reduces the processing time up to 79% 
(average time of processing queries in the experiment) as compared to Jena. We can achieve 
66~79% of performance improvement for simple queries (Q1, Q2, and Q3) with small number 
of triple patterns and about 50% gains for complex queries (Q4 and Q5) in processing time. 
The improvement in response time does require additional computation time in the form of 
preprocessing. In fact, the performance is only considering “online” query processing, and 
does not include the time required to build the index (our system) and store data in memory 
(Jena). We do not include the RDF preprocessing step because the Data Indexer requires a 
substantial amount of time to create the structural indexed data. However, this “offline” task 
only needs to be executed once before fast querying can be supported. 

 

 
Fig. 10 Queries’ average running time of Jena and our system. 

The advantage of our system (as seen from the experimental result) comes from the use of 
an execution plan that reduces intermediate results and expedites the look up of data. Since 
Jena stores triples in property tables, Jena still needs to locate the correct table and then process 



the queries, even if the data result for a query is located at the beginning of the database (file). 
In contrast, our system can quickly find the data, thereby reducing the query processing time. 
This experiment demonstrates the benefits of our structure index and shows that our system 
improves query processing performance over Jena. Our proposed system builds structure index 
one-time only as an offline processing and is able to update incrementally. Thus, it is very 
efficient approach for the long term management and usage of RDF data.  

5. Conclusion and future work 

In this paper, we addressed the challenge of efficiently storing and retrieving RDF data. 
Two perspectives (relational-based and graph-based) are currently being applied by 
researchers. However, most current work focuses on indexing RDF data and/or evaluating 
queries with join operations. This approach increases the query processing time by creating 
unnecessary intermediate results.  

An efficient RDF data management approach was proposed herein for processing queries 
using a query optimizer and a new indexing schema. A structure index was used to obtain RDF 
data for evaluating query patterns based on an execution plan, thereby reducing the volume of 
unnecessary intermediate data. This approach allows queries with multiple triple patterns to be 
solved very efficiently. The contributions of this paper can be summarized as follows: 
- A new structure index for storing RDF data source in key-value based storage with 

improved data retrieval time. 
- An efficient query processing approach with a query optimization mechanism. Under this 

approach, we built an execution plan and merged matching data at each step to reduce 
invalid intermediate results without using join operations. 

- Empirical experiments that verify the performance of the proposed system and allow 
comparison of query processing time. We created five queries that span various data areas in 
the dataset. The evaluation shows that our system can significantly reduce the query 
processing time. 
For simple queries of one single triple pattern, our system performs well because the 

structural index supports all types of patterns and a B+-tree structure is used for storage of 
key-value storage with MongoDB. Our system is more effective for complex queries with 
multiple triple patterns, when each triple pattern of the query has multiple matching data triples. 
In this case, our system processes queries based on an execution plan and query processing 
time is minimized by reducing the number of unnecessary intermediate results.  

Challenges still remain for future work. In reality, general SPARQL queries sometimes 
contain UNION, OPTIONAL, ORDER, LIMIT, OFFSET or FILTER operators. We did not 
include these operators due to the associated complexity of processing these queries. Our 
research focused on improving the performance of query processing by optimizing the storage 
and query pattern evaluation. If we can support processing queries with these operators, the 
query results will be further refined and there will be additional ways to represent the result. 
Also, we will extend our system to integrate a keyword search feature. In other words, we can 
offer the queries in which one or many object nodes have a keyword specified. To do so, we 
can store the keywords that are in the literal objects or crawled from the URIs’ content. For 
example, the query SELECT ?x ?y WHERE { ?x p1 ?y. ?y p2 ?z. ?z contains “hello”} can 
return the result that satisfies a condition {variable “?z” contains word “hello”}. That is, we 
will consider all the URIs (map with ?z) whose contents or literal values hold at least the term 
“hello”. Such feature is helpful for users who don’t remember exactly the whole URI strings to 
specify in the query. 
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APPENDIX 
SPARQL queries. The queries used in our experiment are provided here. For the ease of 

reading, the patterns are provided in compact format, meaning that the URI parts are removed 
and their meaningful names and values are kept. For example, URI 
“http://dbpedia.org/ontology/Lake/shoreLength” in Q1 will be represented as “shoreLength”. 
The five queries are as follows: 

 
 Q1: reservoirs with variable ?reservoir. The returned reservoirs have a catchment area 

of 1388 km2 and shore length of 170 km. 
  SELECT ?reservoir  

WHERE { 
   ?reservoir <areaOfCatchment> "1388.0"<squareKilometre> ; 
         <shoreLength> "170.0"<kilometre>  
  } 
 
 Q2: vehicle engines (A), (B) and (B)’s power outputs with 

variables ?vehicleA, ?vehicleB and ?powerOutput, respectively. (A) has an 
acceleration of 5.1 seconds and the same torque outputs (510 newtonMetre) as (B), 
which  has a 92 mm piston’s stroke. 

  SELECT *  
WHERE { 

   ?vehicleA <torqueOutput> "510.0"^^<newtonMetre> ; 
           <acceleration> "5.1"^^<second> . 
   ?vehicleB <powerOutput> ?powerOutput ; 
          <torqueOutput> "510.0"^^<newtonMetre> ; 
              <pistonStroke> "92.0"^^<millimetre> 
  } 
 
 Q3: spaceships and their properties (Lunar Sample Mass and Lunar Orbit Time) with 

variables ?spaceShip, ?lunarSampleMass and ?lunarOrbitTime, respectively. These 
spaceships have a mission duration of 11 days. They have the same lunar surface time 
(48 hours) as the orbit time of one or more other spaceships (?anotherSpaceShip) with 
a mission duration of 8 days. 

  SELECT ?spaceShip ?lunarSampleMass ?lunarOrbitTime  
WHERE { 

   ?spaceShip <lunarSurfaceTime> "48"<hour> ; 
           <lunarOrbitTime> ?lunarOrbitTime ; 
           <lunarSampleMass> ?lunarSampleMass ; 
                 <missionDuration> "11"<day> . 
   ?anotherSpaceShip <missionDuration> "8"<day> ; 
            <lunarOrbitTime> "48"<hour> 
  } 
 
 Q4: cars with variable ?carX and a wheel base property corresponding to 

variable ?wheelbaseX. These cars have the same wheel base (BYD_e6, Opel_Signum, 
Isuzu_Oasis, BMW5_E39) and fuel capacity (80 litre) with some other cars (?carY) 
whose wheelbases are 2659 mm. 

  SELECT ?carX ?wheelbaseX  
WHERE { 



   <BYD_e6> <wheelbase> ?wheelbaseX . 
   <Opel_Signum> <wheelbase> ?wheelbaseX . 
   <Isuzu_Oasis> <wheelbase> ?wheelbaseX . 
   <BMW5_E39> <wheelbase> ?wheelbaseX . 
   ?carX <wheelbase> "80"<litre> ; 
              <fuelCapacity> ?wheelbaseX . 
   ?carY <fuelCapacity> "80"<litre> ; 
              <wheelbase> “2659"<millimetre> 
  } 
 
 Q5: some satellites (X), (Y), (Y)’s detailed info and satellites (Z) with 

variables ?satelliteX, ?satelliteY, ?meanRadiusXY, ?averageSpeedY, ?orbitalPeriodY,
 ?surfaceAreaY and ?satelliteZ, respectively. (Y) has the same mean radius as (X), 
which has an orbital period of 18 days. (Z) has a surface area of 23200 km2, a mean 
radius of 43 km and the same temperature (124oC) as (Y). 

  SELECT *  
WHERE { 

   ?satelliteX <meanRadius> ?meanRadiusXY ; 
          <orbitalPeriod> "18"<day> . 
   ?satelliteY <temperature> "124"<kelvin> ; 
          <averageSpeed> ?averageSpeedY ; 
          <orbitalPeriod> ?orbitalPeriodY ; 
                <meanRadius> ?meanRadiusXY ; 
                <surfaceArea> ?surfaceAreaY . 
   ?satelliteZ <temperature> "124"<kelvin> ; 
         <meanRadius> "43"<kilometre> ; 
               <surfaceArea> "23200"<squareKilometre> 

  } 
 
 


