
Automatic Task Re-organization in MapReduce

Zhenhua Guo1, Marlon Pierce2, Geoffrey Fox3, Mo Zhou4

School of Informatics and Computing, Indiana University, Bloomington, IN, 47405 U.S.

{1zhguo, 2mpierce, 3gcf, 4mozhou}@cs.indiana.edu

Abstract—MapReduce is increasingly considered as a useful

parallel programming model for large-scale data processing. It

exploits parallelism among execution of primitive operations.

Hadoop is an open source implementation of MapReduce that

has been used in both academic research and industry

production. However, its implementation strategy that one map

task processes one data block limits the degree of concurrency

and degrades performance because of inability to fully utilize

available resources. In addition, its assumption that task

execution time in each phase does not vary much does not always

hold, which makes speculative execution useless. In this paper,

we present mechanisms to dynamically split and consolidate

tasks to cope with load balancing and break through the

concurrency limit resulting from fixed task granularity. For

single-job system, two algorithms are proposed for circumstances

where prior knowledge is known and unknown. For multi-job

case, we propose a modified shortest-job-first strategy, which

minimizes job turnaround time theoretically when combined with

task splitting. We compared the effectiveness of our approach to

the default task scheduling strategy using both synthesized and

trace-based workloads. Simulation results show that our

approach improves performance significantly.

Keywords: MapReduce, Bag-of-Divisible-Tasks, Task

Splitting, Load Balancing

I. INTRODUCTION

MapReduce [1] has gained popularity as a programming

model for large-scale data processing in both academia [2]

and industry, because of scalability, fault tolerance and ease

of use. In contrast to the traditional parallel programming

models, e.g. MPI and workflow, where end users take the

responsibility of decomposing a job into multiple tasks, in

the MapReduce model, the framework itself takes the

burden of the job decomposition. The MapReduce model is

based on data parallelization [3] which focuses on

parallelization of data rather than operations applied to data.

In MapReduce model, input data is modeled as key-value

pairs. Two primitive operations (map and reduce) are

provided. Each map operation operates on a key-value pair

and may produce some key-value pairs. Different map

operations are independent. The reduce operation takes

output of map operations as input and produces final results.

On the implementation side, tasks are schedulable entities

and map operations must be organized as tasks for execution.

The model itself does not impose any constraint on how

map operations are grouped into tasks. Theoretically, map

operations of a job can be grouped arbitrarily without

affecting correctness. However, it affects efficiency of

execution. To maximize performance, load unbalancing

should be avoided and tradeoff between concurrency and

management overhead must be considered.

Hadoop provides an open source implementation of

MapReduce. In addition, a distributed file system - Hadoop

File System (HDFS) is provided which derives from Google

File System. HDFS chunks files into equally sized data

blocks. The default strategy of map operation organization

in Hadoop is that each map task processes key-value pairs

contained in one block. The size of key-value pairs may

vary so that number of key-value pairs stored in different

blocks may differ. This simple and intuitive implementation

strategy has several drawbacks we are targeting to solve.

Firstly, it limits the degree of concurrency that can be

achieved. Number of map tasks is fixed given input data

size, input format and block size. This imposes a limit on

how concurrent the processing can be, because even if

number of available resources is larger than that of map

tasks, not all available resources can be utilized. Secondly,

Hadoop assumes that map tasks of a job require the same

amount of work. This assumption may not hold for several

reasons. Firstly, the nature of the map operation may result

in computation time skew even if map tasks process the

same amount of data. In addition, each task may process

data of different sizes if user-defined input format is used.

Lastly, map tasks may slow down because of process hang,

software bug, software mis-configuration, and system

fluctuation. In clusters, the underlying hardware may be

heterogeneous and the time taken to run a map task may be

drastically different depending on the capacity of the node

the task is dispatched to.

Task execution time skew is observed in real studies. In

study of parallel BLAST, one task takes more than 18 hours

to complete while other tasks take 30 minutes to complete

on average [4]. Hadoop bugs may prohibit spawning of

speculative tasks even if some tasks run much longer than

expected.

Cluster resource usage varies depending on workload

characteristics. Usually severs are neither completely idle

nor fully loaded. A study [5] done by Google shows that

server utilization is between 10% and 50% most of the time

based on profiling result of 5000 servers during a six-month

period. As a result, the scheduling algorithm should fully

exploit parallelism to utilize available resources to reduce

job execution time. The above two drawbacks prohibit

Hadoop from making full use of available resources even if

they are idle under some circumstances.
In this paper, we mitigate the drawbacks described above

by dynamically splitting map tasks according to resource

availability. Our goal is to minimize average job turnaround
time which is defined as the time between job submission
and job completion. It is a metric that directly reflects how
the user perceives the performance of a system, compared
with throughput that measures performance from the
perspective of system owner. Analysis of collected data
from real Hadoop clusters shows that most of Hadoop jobs
are map-only [6]. So in our study, we only consider map-
only jobs. After discussing related work, we come up with
Bag-of-Divisible-Tasks model and propose two new
processing steps - task consolidation and task splitting which
dynamically modify tasks. Then algorithms are proposed for
single-job scenario where prior knowledge is known and
unknown. After that, multi-job scheduling is investigated
and scheduling algorithms are proposed integrating Shortest-
Job-First strategy and task splitting. Then extensive
simulation experiments are conducted and performance is
compared. Finally we summarize and conclude our work.

II. RELATED WORK

Traditional task scheduler utilizes task graphs which

captures data flow and dependency among tasks to make

scheduling decisions. Each schedule has both spatial and

temporal aspect, which means it decides when to start a task

and on which node to start it. Traditional scheduling

algorithms such as list scheduling and clustering scheduling

take task graphs as input and map tasks to nodes [7]. The

task graph itself is not adjusted to improve performance.

Bag-of-Tasks [8,9] simplifies task graph by assuming that

tasks of each application are independent, which is

motivated by prior efforts such as SETI@home [10] and

parameter sweep applications[11]. Infrastructures (e.g.

Condor [12] and BOINC[13]) haven been developed for

both computing grids and more distributed and

heterogeneous architectures (e.g. desktop grids). Traditional

task scheduling research takes the strategy that once tasks

start running, they are not modified dynamically. Our work

is complementary in that during run time tasks can be split

and consolidated as needed to improve performance.

There has been substantial research on load balancing

which tries to balance resource usage in clusters [14]. Pre-

emptive process migration supports dynamically migrating

of processes from overloaded nodes to lightly-loaded nodes.

It’s possible that the whole system is well balanced while

some nodes are idle (e.g. when the number of task processes

is less than that of nodes). In that case, traditional load

balancing algorithms cannot utilize idle nodes while our

solution can split running tasks and dispatch spawned tasks

to idle nodes.

Hadoop supports speculative execution to cope with

situation where some tasks in a job become laggard

compared with other tasks. The assumption of speculative

execution is that the execution time of map tasks does not

differ much, which makes it possible for Hadoop to predict

map task execution time without any prior knowledge.

When Hadoop detects that a task runs longer than expected,

it starts a duplicate task to process the same data. Whenever

any task completes, other duplicate tasks are killed. This

can improve fault tolerance and mitigate performance

degradation. However the performance gain is obtained at

the expense of duplicate processing of some data and more

resource usage compared with process migration. In

addition speculative execution triggered by uneven map task

execution caused by nature of map operation does not

benefit at all, because duplicate task cannot shorten the run

time either. Our work is complementary to task speculation

in that task splitting and task duplication can be used

together to deal with long running tasks resulting from

either nature of map operation or system failure.
Divisible load theory [15] tries to solve the problem that

how load received at one node (called originator node) can
be distributed to other nodes in a system so that processing
time is minimized. By and large, load is assumed to be
arbitrarily partitionable, which has root in early sensor
network research. Initially all input data is stored on
originator node and during run time it is distributed to other
nodes. It assumes that computation time per unit of data is
known and task execution time is linear with amount of
processed data. Our work tries to minimize job turnaround
time instead of job execution time. In addition, our work
enables load to be dynamically adjusted across nodes even if
no prior knowledge is known.

III. PRELIMINARY

Resource Model In Hadoop, each slave/worker node
hosts a fixed number of map slots, which determines
maximum number of map tasks the node can run
simultaneously. If it is too small, resources cannot be fully
utilized. If it is too big, severe resource use contention may
happen and overhead is increased. For either case,
performance is not optimal. We assume the number of map
slots per node is perfectly turned, while how to tune it is out
of our scope.

Task Model We propose Bag-of-Divisible-Tasks,
derived from Bag-of-Tasks, as our task model. We use
Atomic Processing Unit (APU) to represent a segment of
processing that cannot be parallelized. Then we call a
nonempty set of APU a divisible task such that it could be
divided into sub-divisible-task(s) (or sub-task for short).
Each job is modeled as a bag of independent divisible tasks.
And from now on, we use divisible task and task
interchangeably if no confusion under context. APUs may
be heterogeneous in that data size and processing time varies.
Given a set of independent APUs derived from problem
domain, how to organize them into tasks has significant
impact on performance. The optimal solution depends on
both characteristics of APU and real-time system load. If
tasks are too coarse-grained and therefore too large, load
unbalancing is likely to happen because of large variation of
task execution time. If tasks are too fine-grained and
therefore too small, overhead and actual processing time get
comparable and latency becomes significant.

In MapReduce, each map operation is considered as an
APU. The limitation of default Hadoop implementation
results from fixed granularity of map tasks driven by data

blocks. Job turnaround time is affected by not only data size
but also other factors, such as system fluctuation and
hardware heterogeneity. We propose task splitting and task
consolidation to mitigate load unbalancing and fully utilize
available resources. Task splitting is a process that a task is
split to spawn new tasks. Meanwhile input data is also split
accordingly so that each newly spawned task processes part
of it. Given a task T, if it is split to spawn m new
tasks , following two equations hold where
 is unprocessed input data of task T. The processing
that has been done by a task is not re-done after it is split.

Task consolidation is the inverse process, by which
multiple tasks are merged into one task. Formally, if a set of
tasks are merged into a single task T,
following equation holds.

Task consolidation and split can be used to adjust task
organization to adapt system environment changes. They
make the scheduling more flexible and robust. If tasks are
split too aggressively, overhead of splitting and task
management may outweigh benefit of higher concurrency.
So being splittable does not mean task splitting is beneficial.
Based on the fact that tasks usually run much longer than
APU, we make a simplification that APU is arbitrarily small.

A. Split Tasks Waiting in Queue

In this section, we give examples about how to split tasks
that are waiting in queue. Running tasks are considered in
next section. All map tasks in queue, which may be from
different jobs, are considered when task splitting decision is
made. If there are no available map slots, no map task in the
queue is split.

If the number of available map slots is smaller than that
of map tasks in queue, one possible strategy is to consolidate
map tasks so that all of them can be dispatched immediately.
The data to be processed is the same no matter whether map
tasks are consolidated or not. Overall overhead of map task
start-up and teardown is different because there are less tasks
after consolidation. Another potential drawback brought up
by consolidation is loss of data locality. The more map tasks
are consolidated, the smaller the possibility becomes that
input blocks of all consolidated tasks are located on the same
node. As a result, amount of data transferred from remote
nodes increases. So optimal decision relies on the tradeoff
between task overhead and data transfer. Plot (b) in Fig. 1
shows an example. Three map tasks and are
waiting and two nodes are available. So we can schedule
two map tasks at most immediately. If we consolidate two
map tasks, all map tasks can be scheduled to run
immediately. In the plot, map task and are consolidated
into map task which is dispatched to node where block
 is stored. Block is remotely accessed by task .

 If the number of available map slots is larger than that of
map tasks in queue, map tasks can be split to spawn new
map tasks to fill all available map slots. Resultant benefits

include better parallelism and load balancing. As number of
map tasks increases, overall task start-up and teardown
overhead increases as well. Another disadvantage is data
locality may become worse. If a map task cannot be
dispatched to the node where its input block is stored, none
of its spawned map tasks after split can be dispatched to the
node either if they are run immediately. Otherwise, one of
the spawned map tasks is guaranteed to be able to be
dispatched to that node while others may or may not be
dispatched to it depending on map slot availability. Plot (c)
in Fig. 1 shows an example of task splitting. Initially there
are four available nodes and three map tasks and .
Task is split to task and task and all tasks are
scheduled. Task and share the same input block
but process different portions. Compared with the situation
that split is not applied, task needs to access remotely
but all nodes are utilized. One way to mitigate the data
locality problem is data replication. When there are multiple
copies of a block, the possibility is larger that data-local
scheduling is achievable after task spit. One extreme case is
each block is replicated on all nodes so that data locality
becomes less significant.

Figure 1. Task splitting and task consolidation. Arrows are scheduling

decisions. Each node has one map slot and block is input of task .

B. Split Running Tasks

Besides tasks waiting in queue, running tasks can also be
split dynamically to improve performance. When tasks are
scheduled and running, computation time skew of tasks may
slow down the progress of the whole job. Task splitting can
be applied dynamically during task execution to offload
some processing to other available map slots. Plot (d) in Fig.
1 shows an example. At time , four tasks are running. At
time , task completes and the slot originally occupied by
task becomes available while the other three tasks are still
running. Task is chosen to spawn a new task which
is scheduled to the available slot released by completed
task . Again, all nodes are utilized but task accesses
its input data remotely.

C. Summary

The previous two algorithms are combined together to
adjust all unfinished tasks (waiting tasks + running tasks),
which achieves continuous optimization during whole
lifetime of jobs.

Task consolidation reduces the number of tasks to
manage and schedule, which is highly beneficial if task
management overhead is high and task start-up and teardown
overhead is comparable to the actual execution time. We
assume task execution time is significant longer than task
start-up and teardown time. If this does not hold, blocks can
be enlarged to increase task granularity.

Task splitting is beneficial when loss of data locality does
not impose critical performance degradation. When data are
replicated on every node, the data access time is approximate
no matter where a task is dispatched if data access contention
(e.g. multiple tasks access different data on the same node) is
not severe. If data access contention is severe, number of
map slots on each node can be tuned appropriately to achieve
optimal tradeoff between concurrency and resource use
contention, so that data access does not affect scheduling
much. This conclusion also holds when jobs are CPU-
intensive and the data access cost is negligible. In other
words, if the ratio of computation to data access is large, the
computation factor is critical and other factors, such as disk
I/O and network I/O, can be ignored. We focus on CPU-
intensive jobs in the following discussions.

IV. SINGLE-JOB TASK SCHEDULING

First, we consider the task scheduling problem when only
one job is running at most at any time. In the next section,
multi-job case is discussed. The following algorithm shows
how task splitting is hooked into the task scheduling process.

Algorithm skeleton

while isRunning = true:

 split_tasks();

 schedule_tasks();

In the beginning of each scheduling iteration, task
splitting is applied if needed. This step makes tradeoffs
between concurrency and overhead. Then an existing task
scheduling strategy (e.g. Hadoop’s data locality based
scheduling) is used to schedule tasks. So task splitting can
be seamlessly integrated with existing schedulers. We focus
on the task splitting process and present our proposed
solutions when prior knowledge about workload is known
and unknown. We summarize issues shown below that need
to be solved to address the problem.

a) When to trigger task splitting

b) Which tasks should be split and how many new tasks
to spawn; and

c) How to split

A. Task Splitting without Prior Knowledge

 When no prior knowledge is known about execution time,
a strategy we term Aggressive Splitting (AS) is proposed.

1) When to trigger task splitting: The goal of task

splitting is to shorten average job turnaround time by

utilizing as many nodes as possible. Assume the scheduler

is invoked at time , task splitting decision is made if

following inequality is satisfied

where , and are the number of map

tasks in queue at time t, the number of running map tasks at
time t and the number of all map slots respectively. That
means there are idle map slots even if all tasks in queue are
scheduled immediately. In this case, the default scheduling
strategy cannot use all idle slots. So the task splitting process
should be initiated. Otherwise, it does not make sense to
split tasks because there are no idle slots where newly
spawned tasks can run. This will not make long-running
tasks become stragglers because our task splitting process is
invoked continuously and long-running tasks will become
candidates of split target whenever there are idle slots.

2) Which tasks should be split and how many new tasks

to spawn: We evenly distribute available map slots to

unfinished tasks. Without prior knowledge, what we do is

divide the number of idle map slots by the number of

unfinished tasks to calculate how many new tasks to spawn

for each task on average. Then tasks are split one by one

until no map slots are idle. The algorithm skeleton is shown

below.

Algorithm skeleton

UTS:set unfinished tasks

IMS:int number of idle map slots

MST:int
for each task T in UTS:

 if IMS ≤ 0: break

 if IMS < MST:

 NS split(T, IMS)

 else

 NS split(T, MST)

 IMS IMS - NS

Function splits task to spawn new tasks.
Depending on map slot availability, split policy and
overhead, the actual number of spawned tasks may be
smaller than . The actual number is returned from the
function call so that following code can update number of
available map slots accordingly. Implementation of split is
described in next section.

3) How to split: Given a task and maximum number of

new tasks it may spawn, this section solves the problem

how to split. Firstly, the number of new tasks is adjusted so

that it does not exceed number of available map slots. Data

block is logically split to equally sized sub-blocks. We

consider the task processing one sub-block is atomic and not

splittable. So it specifies smallest granularity of spawned

tasks. For task T, total number of sub-blocks, the number of

sub-blocks that have been processed or are being processed,

and number of new tasks to spawn are denoted by ,

 and respectively. Since we don’t have prior

knowledgeof map execution time, we blindly spawn new

tasks so that each one processes the same amount of data.

 –

The remaining work is evenly divided among the task
being split and newly spawned tasks. The principle is to

make them all complete simultaneously if map operation
execution time is heterogeneous theoretically. To avoid
inefficiency caused by spawning small tasks, a threshold is
set to prevent small tasks being split. Optimal threshold
depends on workload and map operation characteristics. It is
our future work to make the threshold automatically tuned.

4) Complexity: The whole task list is scanned at most

once, so time complexity is with regard to number of

tasks.

B. Task Splitting with Prior Knowledge

Now we assume that prior knowledge about task
execution time is known. By prior knowledge, we mean that
Estimate Remaining Execution Time (ERET) is known or
predictable. ERET indicates how long a task will run before
completion approximately. We propose Aggressive Split with
Prior Knowledge (ASPK) to optimize job turnaround time.

1) When to trigger task splitting: The same algorithm

from last section can be reused here.

2) Which tasks should be split and how many new tasks

to spawn: Ways to split tasks are not unique. Number of

task splits done during whole lifetime of a job should be as

small as possible without degrading performance. Fig. 2

demonstrates different ways to split tasks to achieve the

same turnaround time. Graph (a) shows a scenario where

there are two running tasks - , one idle slot and no

waiting tasks. ERET of and is and respectively.

If overhead and data locality are negligible, we definitely

should split tasks to fill the idle slot. We can split task to

spawn a new task and both will run for period before

completion, which is demonstrated in (b). At time all

tasks complete. Another way shown in (c) is to split task

to spawn a new task and both will run for period . At

time , two slots become idle and task is split to spawn

two new tasks each of which runs for .

In both cases, the final job turnaround time is t. However

number of spawned tasks is different. In (b), one task is

spawned while in (c) three tasks are spawned. More task

splits incur higher probability to degrade performance and

destabilize system. In the example, (b) is preferred to (c).
Tasks that complete last determine when a job finishes.

For jobs with tasks that have highly varied execution time,
the scenario should be avoided that few long tasks last much
long after other short jobs complete. When long running
tasks exist, to split tasks with small ERET generates smaller
tasks, which doesn’t affect job turnaround time. So our
heuristics is that tasks with large ERET should be split first
so that they do not become “stragglers”.

Figure 2. Different ways to split tasks (Processing time is the same).

Dashed boxes represent newly spawned tasks.

Firstly, tasks with small ERET are filtered because to
split a task that will end very soon does not provide much
benefit. In addition, task filtering is an optimization step that
reduces num of map tasks considered by following steps for
faster processing. Secondly remaining tasks are sorted by
ERET in descending order. After that, tasks are clustered
into according to ERET so that tasks with
similar ERET belong to the same cluster. Each cluster has
several pieces of information including task list (),
number of tasks (), sum of ERET () and
average of ERET (). We go through task clusters one
by one to evaluate whether task splitting is beneficial.
Initially, we only consider tasks in cluster . Tasks in
are split to fill all idle slots, and average task execution time
 is calculated. If is larger than , it doesn’t benefit
to split tasks contained in following clusters and estimated
execution time of newly spawned tasks is set to . If
 is significantly smaller than , spawned tasks are
small compared with tasks in . So we consider tasks from
both and for split. Time is calculated and compared
with . If much smaller, we consider , and .
This process is repeated until is larger than or comparable
to or all clusters are included. The algorithm
skeleton is shown below.

Algorithm skeleton

IMS number of idle map slots

UTS unfinished tasks

FTS filterTasks (UTS)

STS sortByERET (FTS)

{C1,C2,…,Cm} clusterTasks (STS)

sumERET 0, count IMS

for cluster Ci, 1≤i≤m:

 sumERET += Ci.ERET

 count += Ci.Count

 avgERET = sumERET / count

 if i = m: break

 if avgERET << Ci+1.AE:

 continue

 else

 break

Filtering Ideally, how tasks are filtered should depend on
the ERET of unfinished tasks. A pre-set threshold is not
flexible enough to capture task characteristics. Instead, we
calculate the optimal remaining job execution time (ORJET)
by assuming that tasks are split to use all available nodes.
Total ERET is gained by summing ERET of all unfinished
tasks. It is divided by number of all nodes (including both
occupied and idle slots) to get ORJET. ORJET measures
optimally how long a job will run before completion. Then
ERET of each task is compared with ORJET. If task ERET
is significant smaller than ORJET, it is filtered out. Towards
end of job execution, ORJET becomes increasingly small
because running tasks are close to completion and more slots
are released. In this situation, task splitting is not beneficial
because overhead of task splitting outweighs potential gain

of higher concurrency. So we filter out tasks that are close to
completion without affecting overall performance. Thus the
filtering process is adaptive to workloads of different types.

Clustering Task clustering algorithm is designed to
group tasks with similar ERET and separate tasks with
significantly different ERET. Existing clustering algorithms,
such as K-means, Expectation-Maximization and
agglomerative hierarchical clustering, from the machine
learning community can be used without modification.
Considering that scheduling routine is called frequently and
its performance is critical to the whole system, we favor
simple linear algorithms. Tasks being clustered have been
ordered by ERET, which guarantees that tasks belonging to
the same cluster are consecutive in the task list. Our current
algorithm requires that the task list is scanned once by
moving a “cursor” from beginning to end. A running list is
maintained to contain tasks that are before the “cursor” and
belong to current cluster. If ERET of the task pointed by
cursor is much smaller than the average ERET of the current
cluster, then the current cluster is added to cluster set and a
new cluster is created which initially only contained the task
pointed by cursor. This guarantees maximal ERET of tasks
within a cluster is significantly different than average ERET
of tasks within previous cluster.

3) How to split: The way to split tasks can be optimized

if we also have prior knowledge about mean task execution

time, network throughput, disk I/O throughput, etc. For task

T, disk I/O cost, network I/O cost, and computation cost are

denoted by , and respectively. So

total time is , if these

operations don’t overlap. Task being split is denoted by

 , and newly spawned tasks are {
 ,

 , …,
 }.

Ideally, following equation should be satisfied to make tasks

complete simultaneously after split.

Because we assume and are negligible
compared to , the above equation is converted to

So unfinished work of task T is evenly distributed to T
and newly spawned tasks after split.

4) Complexity: In ASPK, complexity of sorting is

 and that of other operations is not greater

than So overall complexity is . However,

sorting can be further optimized considering that in each

iteration, except the first one, tasks are mostly ordered.

C. Fault Tolerance

Our proposed algorithms do not handle fault tolerance
directly. Task splitting is not enough to cope with situations
where some tasks stall or fail due to hardware failure, severe
system fluctuation or hanging process. We integrate
speculative execution to solve the problem. Whenever the
system detects failure, duplicate tasks are created

automatically to replace failed tasks. Now we have a
complete solution which can speed single-job execution by
splitting relatively long tasks and speculatively re-execute
failed tasks.

V. MULTI-JOB OPTIMIZATION

We put multi-job scheduling into the context of classic
queuing theory. We adopted M/G/s model [16]. Jobs arrive
according to a homogeneous Poisson process. Job execution
time is independent and may follow generic distributions.
Also there is more than one server in the system. One
difference from the classic model is that a job may use
multiple servers during its execution and the execution time
depends on the number of used nodes. We propose Greedy
Task Splitting (GTS) which minimizes run time of each job
by splitting tasks to occupy all map slots and making tasks of
last round complete simultaneously. Because each job uses
all available nodes, following jobs cannot execute until
current running job completes. In other words, queue time of
some jobs is increased compared with non-GTS scheduling.
As a result, change of job turnaround time depends on both
decrease of job execution time and possible increase of job
queue time. We will show that GTS gives optimal job
turnaround time. Recall that we assume tasks are arbitrarily
splittable.

A. Optimality of Greedy Task Splitting

Fig. 2 shows two examples of execution arrangement of a
job J. In (a), job J starts at S(J) and completes at F(J). It
uses all resources during the execution. In (b), the
processing is grouped to four segments - 1, 2, 3 and 4. Now
we formulate the scheduling model. C denotes capacity of a
certain type of resource in the system. n denotes number of
jobs to run. Si (1 ≤ i ≤ n) denotes total resource requirement
of job i. Resource usage function represents amount
of resource consumed by job i at time t. Constraints are:

 (6)

 (7)

 (8)

and objective function is

 (9)

Inequality (7) means that at any moment, resource consumed
by all jobs must not be more than capacity. Inequality (8)
means that the sum of resource consumption by any job
across time is not less than requirement of the job. The ideal
case that actual resource consumption is equal to resource
requirement, which means no overhead is incurred. In the
objective function, is turnaround time for
job i. So our goal is to minimize overall job turnaround time.

Firstly we will show that once a job starts running, it
should complete as soon as possible by using all available
resources. Secondly we will convert this problem to n/1 (n
jobs/1 machine) scheduling problem solved in [17].

 Given a job J, its start time and its completion
time , Fig. 3 shows possible strategies of execution
arrangements. Execution arrangement of J affects
completion time of other jobs. One fact is start time of job J

does not matter when is fixed. Intuitively, all parts of
execution of Job J should be placed as close to as
possible. In plot (b) execution of job J is interspersed along
time axis. Execution arrangement demonstrated in plot (b)
can be converted to that demonstrated in plot (a) by
interchanging interspersed execution segments of job J (e.g.
marked by 1, 2 and 3 in the plot) and execution segments of
other jobs falling into the continuous area S. After the
interchange, completion time of those affected jobs either
does not change or becomes earlier because their changed
execution segments starts earlier. This interchange process
can be iterated until each job utilizes all resources during its
execution (see Fig. 3 for an example). In each iteration, only
one job is considered. The whole process makes overall
turnaround time monotonically decrease regardless of order
of jobs picked during iterations.

Figure 3. Different ways to arrange execution of a job.

Figure 4. Multiple scheduled jobs (Each uses all resources for execution)

However, different job execution orders may result in
different overall turnaround time. The next question is how
to determine job execution order so that objective function is
minimized. Because at any moment only one job consumes
all resources, we can view the whole system as a single big
virtual node. This problem becomes the n/1 problem (n jobs
/ 1 machine) solved in [17]. Shortest-job-first strategy gives
overall optimal turnaround time. So jobs should be executed
in ascending order of execution time.

B. Multi-Job Scheduling

Given a number of jobs to run, the algorithm skeleton of
Shortest Job First Scheduling (SJFS) is shown below. Serial
Execution Time (SET) represents how long a job runs
serially.

Algorithm skeleton of SJFS

order jobs by SET in ascending order

schedule jobs in turn

If we know serial execution time of all jobs that are to be
run, we can apply SJFS directly. However, in real systems,

it is hard, if not impossible, to know all jobs to run ahead.
Jobs are submitted dynamically by end users or batch scripts.
To cope with the uncertainty, we use Non Overlapped
Periodic Shortest Job First Scheduling (NOPSJFS) in which
SJFS is run periodically. Let I be interval that SJFS is called.
So scheduling decision is made at time Let be
set of jobs that are submitted at or earlier than time t. At
time , SJFS is applied to the job set . So

jobs that are scheduled at time only include those
submitted between time and . Jobs submitted
prior than time are not considered at all even if
some of them are still waiting in the queue. This strategy
makes each job scheduled just once and jobs scheduled
during different period do not overlap. But unexpected
system fluctuation exists and prior knowledge of SET may
be inaccurate. So assumptions made when a job is scheduled
may be rendered useless by the time it is dispatched to run.
Overlapped Shortest Job First Scheduling (OSJFS) is
proposed in which all jobs are considered that have been
submitted but not completed yet. To avoid starvation of long
jobs, an aging factor is associated with each job which
measures how long a job has been waiting in the queue.
Priority is positively correlated to aging factor. So the longer
a job has waited, the higher its priority becomes.

VI. EXPERIMENT

We conduct experiments using the MapReduce simulator
mrsim [18] which is built on top of an event-driven
framework. Table 1 shows the configuration of simulated
system. Data is placed randomly on nodes. Each node hosts
only 1 map slot. We will assess effectiveness of our
approaches. So hardware configuration affects absolute job
turnaround time, but it does not affect comparison between
our strategies and default strategy.

TABLE I. CONFIGURATION OF TEST ENVIRONMENT

Number of nodes 64 Disk I/O - read 40MB/s

Processor frequency 500MHz Disk I/O - write 20MB/s

Map slots per node 1 Network 1Gbps

Several distributions are used to model execution time of

map operations - Gaussian distribution and step functions
abstracted from real workload trace. Firstly, we set up tests
to show that our approach improves performance in single
job environment.

A. Single-Job

In this set of tests, we investigate the effect of variation
of map task execution time on performance. We design a
micro-benchmark to measure performance improvement of
task splitting. Based on number of all map slots and that of
map tasks, two cases are considered. When the number of
map tasks is smaller than that of available map slots, the
default strategy cannot utilize all resources.

In first test, we compose a job whose input data has 32
blocks each of which is 64MB. The cluster has 64 nodes.
We assume that task execution time follows Gaussian
distribution with negative values cut off. Mean is fixed and
variance is varied which is an indicator of variation of

execution time of map tasks. Baseline distribution is
uniform distribution with mean and coefficient of variance
(CV) is zero by definition. We let Gaussian distributions
have the same mean and change variance to
 So CV is between 1 and 10. Job
turnaround time is shown in plot (a) in Fig. 5. One
observation is that job turnaround time increases as CV
increases. That results from cut-off of negative values
sampled from tested distributions. So the mean of sampled
values is no longer and it increases slightly with CV. Both
AS and ASPK improves performance significantly and
performance gain increases with CV. AS incurs larger
variation compared with ASPK. When CV is small, the
difference between AS and ASPK is not significant. As CV
becomes large, ASPK performs significantly better than AS.
When CV is 10, ASPK improves AS by 50%.

Now, we increase number of map tasks of a job to 200 to
make it significantly larger than number of map slots. Test
environment is the same as previous test. Plot (b) shows
results. Distributions of task execution time are the same as
in previous test. Default scheduling has embedded support
for load balancing. Whenever a map slot becomes available,
it dispatches a waiting task to it. Because execution time of
map tasks is sampled from the same distribution, the sum of
task execution time for different nodes follows the same
distribution as well. In other words, mixture of long and
short tasks dispatched to nodes naturally makes the load
balanced during early lifetime of the job. In the early phase
of job execution, all map slots are occupied so that task
splitting does not benefit. Towards the end of execution, all
tasks are either running or completed. Any released map slot
cannot be utilized because there is no waiting task. Then
task splitting improves performance by rebalancing load.
Considering task splitting is mostly applied near job
completion, it may not benefit much. Test result shows that
even in that situation, AS and ASPK improves performance
by 50% at most. Also as CV becomes large, ASPK
increasingly outperforms AS.

Besides synthesized workload, workload data collected in
real clusters is also used. Concretely, we use cluster data
published by Google [19]. It is analyzed in [20] to extract
characteristics of jobs and tasks. One observation made in
the paper is that task execution time for three types of jobs is
bimodal. Around 75% of map tasks are short, running for
approximately 5 minutes. Around 20% of map tasks are
long, running for approximately 360 minutes. Execution
time of the remaining 5% the map tasks is between 5 minutes
and 360 minutes. This distribution is used to model task
execution time in this test. We measured both job
turnaround time and completion time variation. Fig. 6 shows
the results. AS and ASPK shorten job turnaround time by
20% - 30%. ASPK performs slightly better than AS by
reducing job turnaround time by 5% - 10%. Standard
deviation of slot completion time is shown in plot (b). For
default scheduling, the value is 8521 seconds which indicates
that the last round of map task execution results in severe
load unbalancing. ASPK achieves the smallest standard
deviation around 9 seconds, so that its histogram is almost
invisible in the plot. This result is surprisingly good

considering that the job runs for tens of thousands of
seconds. For AS, standard deviation is around 570 seconds.
To figure out whether best performance of ASPK is achieved
by splitting much more tasks than AS, number of spawned
tasks is measured. Plot (c) shows that ASPK even has
smaller number of spawn tasks. So ASPK achieves shortest
job turnaround time and smallest variation of slot completion
time by spawning fewer tasks. This means when prior
knowledge is known additional optimization done in ASPK
is effective.

Figure 5. Single-Job test results (Gaussian distribution is used)

Figure 6. Single-Job test results (Real profiled distribution is used)

Above tests demonstrate that task splitting strategy
improves performance significantly and the degree of
improvement is related to characteristics of map tasks.

B. Multiple jobs

As M/G/s model is adopted for multi-job scenario, inter-
arrival time of jobs follows exponential distribution. We
generate a workload to have 100 jobs each of which is
synthesized according to Google cluster data. We measure
average job turnaround time with and without SJF policy
applied. If interarrival time is longer than job execution
time, on average one job is running at most at any time.
Single-Job scheduling can be used directly. So we set mean
of interarrival time to be much shorter than average job
execution time.

In this test, all jobs have the same number of map tasks,
which is equal to the number of all map slots, so that each
job can occupy all map slots. Execution time of tasks
belonging to a job is the same. 75% of jobs are short, 20%
of jobs are long and 5% of jobs are medium. 100 jobs are
generated. Task splitting in this test does not benefit much
because all map tasks of a job complete almost
simultaneously and load unbalancing occurs rarely. Results
are shown in Fig. 7. Non-SJF scheduling and SJF
scheduling have comparable makespan. SJF decreases
average job turnaround time by 63%.

Then we tested the case where different jobs have the
same serial execution time. Obviously SJF strategy does not
make sense because all jobs are equally long. So we ignore

SJF and evaluate task splitting strategies. Task execution
time of each job follow the same distribution extracted from
Google cluster data. 100 jobs are generated and all slots are
used at any time except near completion. Fig. 8 shows that
both job turnaround time and makespan are shortened by 5%
- 10%. One well-known fact is that if a system is fully
loaded, it is harder to make optimization compared with the
situation where a system is partially loaded. Our test results
show that even if the system is fully loaded and SJF is
useless, task splitting still benefits. Considering that study in
Google shows CPU utilization ratio is between 20% and
50% for their production clusters, we believe task splitting
will give more improvement in real clusters than in this test.

Figure 7. Multi-Job test results (task execution time is the same for a job)

Figure 8. Multi-Job test results (job execution time is the same)

VII. CONCLUSIONS

In this paper, we examined strategies for optimizing job
turnaround time in MapReduce. Firstly, we analyzed the
MapReduce model and its Hadoop implementation, and
found that the way map operations are organized into tasks in
Hadoop has several drawbacks, such as limit of concurrency,
task completion time skew and load unbalancing. Then we
proposed task splitting, which is a process to split unfinished
tasks to fill idle map slots, to tackle those problems. For
single-job scheduling, Aggressive Scheduling (AS) and
Aggressive Scheduling with Prior Knowledge (ASPK) were
proposed for cases where prior knowledge is known and
unknown respectively. For multi-job scheduling, we proved
that combination of Shortest-Job-First strategy and task
splitting mechanism gives optimal average job turnaround
time if tasks are arbitrarily splittable. Overlapped Shortest-
Job-First Scheduling (OSJFS) was proposed which invokes
basic short-job-first scheduling algorithm periodically and
schedules all waiting jobs. We also conducted extensive
experiments to show that our proposed algorithms improve
performance significantly compared with default strategy.

One thing we may explore in the future is how task splitting
and consolidation can benefit IO intensive applications.
Tradeoffs between data access concurrency and data locality
should be considered to achieve optimal performance.

ACKNOWLEDGMENT

This work is funded in part by the Pervasive Technology
Institute. We would like to thank Lizhe Wang for in-depth
discussions and feedbacks about our work.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: simplified data processing
on large clusters,” Commun. ACM 51, 1 (January 2008),p107-113

[2] X. Qiu, J. Ekanayake, S. Beason, T. Gunarathne, G. Fox, R. Barga
and D. Gannon, “Cloud Technologies for Bioinformatics
Applications,” 2nd MTAGS, SC2009

[3] A. Grama, A. Gupta, G. Karypis, and V. Kumar, Introduction to
Parallel Computing, 2nd edition, Pearson AddisonWesley, London,
UK, 2003

[4] W. Lu, J. Jackson, J. Ekanayake, R. S. Barga, and N. Araujo,
“Performing Large Science Experiments on Azure: Pitfalls and
Solutions,” in Proc. CloudCom’10, 2010, p209-217

[5] L. A. Barroso and U. H. Olzle, “The case for energy-proportional
computing,” Computer, 40(12), 2007.

[6] S. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan, “An Analysis of
Traces from a Production MapReduce Cluster,” in Proc. CCGRID
'10, 2010. p. 94-103

[7] O. Sinnen, Task Scheduling for Parallel Systems, Wiley 2007

[8] M. Adler, Y. Gong, and A. L. Rosenberg. “Optimal sharing of bags of
tasks in heterogeneous clusters,” In Proc SPAA'03 2003. p1-10.

[9] C. Weng and X. Lu, “Heuristic scheduling for bag-of-tasks
applications in combination with QoS in the computational grid,”
FGCS, Vol. 21, no. 1, pp. 271–280, 2005.

[10] SETI@home, http://setiathome.ssl.berkeley.edu

[11] H. Casanova and F. Berman, “Parameter sweeps on the grid with
APST,” in Grid Computing: making the global infrastructure a
reality, F. Berman, G. Fox, and T. Hey, Eds. Wiley, 2003

[12] M. Litzkow, M. Livny, and M. W. Mutka, “Condor - A hunter of idle
workstations,” In Proc. ICDCS’88 1988, pp. 104–111.

[13] BONIC http://boinc.berkeley.edu

[14] X. Zhang, Y. Qu and L. Xiao, “Improving Distributed Workload
Performance by Sharing both CPU and Memory Resources,” in Proc.
ICDCS’00, 2000, p.233-241

[15] V. Bharadwaj, D. Ghose, and T. G. Robertazzi, “Divisible Load
Theory: A New Paradigm for Load Scheduling in Distributed
Systems,” Cluster Computing Vol. 6, no. 1, Jan. 2003, p7-17

[16] D. G. Kendall, “Stochastic Processes Occurring in the Theory of
Queues and their Analysis by the Method of the Imbedded Markov
Chain,” The Ann. Math Stat. Vol. 24, No. 3, Sep. 1953, pp. 338-354

[17] R. W. Conway, W. L. Maxwell, and L. W. Miller, “Theory of
Scheduling,” Addison Wesley, 1967.

[18] S. Hammoud, M. Li, Y. Liu, N. K. Alham, and Z. Liu, “MRSim: A
discrete event based MapReduce simulator,” FSKD 2010, p2993-
2997

[19] http://code.google.com/p/googleclusterdata/

[20] Y. Chen, A. S. Ganapathi, R. Griffith, and R. H. Katz, “Analysis and
Lessons from a Publicly Available Google Cluster Trace,” University
of California, Berkeley, CA, Tech. Rep. 2010

