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Abstract—MapReduce is increasingly considered as a useful 

parallel programming model for large-scale data processing.  It 

exploits parallelism among execution of primitive operations.  

Hadoop is an open source implementation of MapReduce that 

has been used in both academic research and industry 

production.  However, its implementation strategy that one map 

task processes one data block limits the degree of concurrency 

and degrades performance because of inability to fully utilize 

available resources.  In addition, its assumption that task 

execution time in each phase does not vary much does not always 

hold, which makes speculative execution useless.  In this paper, 

we present mechanisms to dynamically split and consolidate 

tasks to cope with load balancing and break through the 

concurrency limit resulting from fixed task granularity.  For 

single-job system, two algorithms are proposed for circumstances 

where prior knowledge is known and unknown.  For multi-job 

case, we propose a modified shortest-job-first strategy, which 

minimizes job turnaround time theoretically when combined with 

task splitting.  We compared the effectiveness of our approach to 

the default task scheduling strategy using both synthesized and 

trace-based workloads.  Simulation results show that our 

approach improves performance significantly.   

Keywords: MapReduce, Bag-of-Divisible-Tasks, Task 

Splitting, Load Balancing 

I.  INTRODUCTION 

MapReduce [1] has gained popularity as a programming 

model for large-scale data processing in both academia [2] 

and industry, because of scalability, fault tolerance and ease 

of use.  In contrast to the traditional parallel programming 

models, e.g. MPI and workflow, where end users take the 

responsibility of decomposing a job into multiple tasks, in 

the MapReduce model, the framework itself takes the 

burden of the job decomposition.  The MapReduce model is 

based on data parallelization [3] which focuses on 

parallelization of data rather than operations applied to data.  

In MapReduce model, input data is modeled as key-value 

pairs.  Two primitive operations (map and reduce) are 

provided.  Each map operation operates on a key-value pair 

and may produce some key-value pairs.  Different map 

operations are independent.  The reduce operation takes 

output of map operations as input and produces final results.   

On the implementation side, tasks are schedulable entities 

and map operations must be organized as tasks for execution.  

The model itself does not impose any constraint on how 

map operations are grouped into tasks.  Theoretically, map 

operations of a job can be grouped arbitrarily without 

affecting correctness.  However, it affects efficiency of 

execution.  To maximize performance, load unbalancing 

should be avoided and tradeoff between concurrency and 

management overhead must be considered.   

Hadoop provides an open source implementation of 

MapReduce.  In addition, a distributed file system - Hadoop 

File System (HDFS) is provided which derives from Google 

File System. HDFS chunks files into equally sized data 

blocks.  The default strategy of map operation organization 

in Hadoop is that each map task processes key-value pairs 

contained in one block.  The size of key-value pairs may 

vary so that number of key-value pairs stored in different 

blocks may differ. This simple and intuitive implementation 

strategy has several drawbacks we are targeting to solve.  

Firstly, it limits the degree of concurrency that can be 

achieved.  Number of map tasks is fixed given input data 

size, input format and block size.  This imposes a limit on 

how concurrent the processing can be, because even if 

number of available resources is larger than that of map 

tasks, not all available resources can be utilized.  Secondly, 

Hadoop assumes that map tasks of a job require the same 

amount of work.  This assumption may not hold for several 

reasons.  Firstly, the nature of the map operation may result 

in computation time skew even if map tasks process the 

same amount of data.  In addition, each task may process 

data of different sizes if user-defined input format is used.  

Lastly, map tasks may slow down because of process hang, 

software bug, software mis-configuration, and system 

fluctuation.  In clusters, the underlying hardware may be 

heterogeneous and the time taken to run a map task may be 

drastically different depending on the capacity of the node 

the task is dispatched to.   

Task execution time skew is observed in real studies. In 

study of parallel BLAST, one task takes more than 18 hours 

to complete while other tasks take 30 minutes to complete 

on average [4]. Hadoop bugs may prohibit spawning of 

speculative tasks even if some tasks run much longer than 

expected.  

Cluster resource usage varies depending on workload 

characteristics.  Usually severs are neither completely idle 

nor fully loaded.  A study [5] done by Google shows that 

server utilization is between 10% and 50% most of the time 

based on profiling result of 5000 servers during a six-month 

period.  As a result, the scheduling algorithm should fully 

exploit parallelism to utilize available resources to reduce 

job execution time.  The above two drawbacks prohibit 

Hadoop from making full use of available resources even if 

they are idle under some circumstances.   
In this paper, we mitigate the drawbacks described above 

by dynamically splitting map tasks according to resource 



availability.  Our goal is to minimize average job turnaround 
time which is defined as the time between job submission 
and job completion.  It is a metric that directly reflects how 
the user perceives the performance of a system, compared 
with throughput that measures performance from the 
perspective of system owner.  Analysis of collected data 
from real Hadoop clusters shows that most of Hadoop jobs 
are map-only [6].  So in our study, we only consider map-
only jobs.  After discussing related work, we come up with 
Bag-of-Divisible-Tasks model and propose two new 
processing steps - task consolidation and task splitting which 
dynamically modify tasks.  Then algorithms are proposed for 
single-job scenario where prior knowledge is known and 
unknown.  After that, multi-job scheduling is investigated 
and scheduling algorithms are proposed integrating Shortest-
Job-First strategy and task splitting.  Then extensive 
simulation experiments are conducted and performance is 
compared. Finally we summarize and conclude our work.   

II. RELATED WORK 

Traditional task scheduler utilizes task graphs which 

captures data flow and dependency among tasks to make 

scheduling decisions.  Each schedule has both spatial and 

temporal aspect, which means it decides when to start a task 

and on which node to start it.  Traditional scheduling 

algorithms such as list scheduling and clustering scheduling 

take task graphs as input and map tasks to nodes [7].  The 

task graph itself is not adjusted to improve performance.  

Bag-of-Tasks [8,9] simplifies task graph by assuming that 

tasks of each application are independent, which is 

motivated by prior efforts such as SETI@home [10] and 

parameter sweep applications[11].  Infrastructures (e.g. 

Condor [12] and BOINC[13]) haven been developed for 

both computing grids and more distributed and 

heterogeneous architectures (e.g. desktop grids).  Traditional 

task scheduling research takes the strategy that once tasks 

start running, they are not modified dynamically.  Our work 

is complementary in that during run time tasks can be split 

and consolidated as needed to improve performance.   

There has been substantial research on load balancing 

which tries to balance resource usage in clusters [14].  Pre-

emptive process migration supports dynamically migrating 

of processes from overloaded nodes to lightly-loaded nodes.  

It’s possible that the whole system is well balanced while 

some nodes are idle (e.g. when the number of task processes 

is less than that of nodes). In that case, traditional load 

balancing algorithms cannot utilize idle nodes while our 

solution can split running tasks and dispatch spawned tasks 

to idle nodes. 

Hadoop supports speculative execution to cope with 

situation where some tasks in a job become laggard 

compared with other tasks.  The assumption of speculative 

execution is that the execution time of map tasks does not 

differ much, which makes it possible for Hadoop to predict 

map task execution time without any prior knowledge.  

When Hadoop detects that a task runs longer than expected, 

it starts a duplicate task to process the same data.  Whenever 

any task completes, other duplicate tasks are killed.  This 

can improve fault tolerance and mitigate performance 

degradation.  However the performance gain is obtained at 

the expense of duplicate processing of some data and more 

resource usage compared with process migration. In 

addition speculative execution triggered by uneven map task 

execution caused by nature of map operation does not 

benefit at all, because duplicate task cannot shorten the run 

time either.  Our work is complementary to task speculation 

in that task splitting and task duplication can be used 

together to deal with long running tasks resulting from 

either nature of map operation or system failure. 
Divisible load theory [15] tries to solve the problem that 

how load received at one node (called originator node) can 
be distributed to other nodes in a system so that processing 
time is minimized.  By and large, load is assumed to be 
arbitrarily partitionable, which has root in early sensor 
network research.  Initially all input data is stored on 
originator node and during run time it is distributed to other 
nodes.  It assumes that computation time per unit of data is 
known and task execution time is linear with amount of 
processed data.  Our work tries to minimize job turnaround 
time instead of job execution time.  In addition, our work 
enables load to be dynamically adjusted across nodes even if 
no prior knowledge is known. 

III. PRELIMINARY 

Resource Model In Hadoop, each slave/worker node 
hosts a fixed number of map slots, which determines 
maximum number of map tasks the node can run 
simultaneously.  If it is too small, resources cannot be fully 
utilized.  If it is too big, severe resource use contention may 
happen and overhead is increased. For either case, 
performance is not optimal.  We assume the number of map 
slots per node is perfectly turned, while how to tune it is out 
of our scope.   

Task Model We propose Bag-of-Divisible-Tasks, 
derived from Bag-of-Tasks, as our task model. We use 
Atomic Processing Unit (APU) to represent a segment of 
processing that cannot be parallelized.  Then we call a 
nonempty set of APU a divisible task such that it could be 
divided into sub-divisible-task(s) (or sub-task for short).  
Each job is modeled as a bag of independent divisible tasks.  
And from now on, we use divisible task and task 
interchangeably if no confusion under context.  APUs may 
be heterogeneous in that data size and processing time varies.   
Given a set of independent APUs derived from problem 
domain, how to organize them into tasks has significant 
impact on performance.  The optimal solution depends on 
both characteristics of APU and real-time system load.  If 
tasks are too coarse-grained and therefore too large, load 
unbalancing is likely to happen because of large variation of 
task execution time.  If tasks are too fine-grained and 
therefore too small, overhead and actual processing time get 
comparable and latency becomes significant.   

In MapReduce, each map operation is considered as an 
APU.  The limitation of default Hadoop implementation 
results from fixed granularity of map tasks driven by data 



blocks. Job turnaround time is affected by not only data size 
but also other factors, such as system fluctuation and 
hardware heterogeneity.  We propose task splitting and task 
consolidation to mitigate load unbalancing and fully utilize 
available resources.  Task splitting is a process that a task is 
split to spawn new tasks.  Meanwhile input data is also split 
accordingly so that each newly spawned task processes part 
of it.  Given a task T, if it is split to spawn m new 
tasks              , following two equations hold where 
      is unprocessed input data of task T.  The processing 
that has been done by a task is not re-done after it is split.   

                                            
                               

Task consolidation is the inverse process, by which 
multiple tasks are merged into one task.  Formally, if a set of 
tasks              are merged into a single task T, 
following equation holds. 

                                             

Task consolidation and split can be used to adjust task 
organization to adapt system environment changes.  They 
make the scheduling more flexible and robust.  If tasks are 
split too aggressively, overhead of splitting and task 
management may outweigh benefit of higher concurrency.  
So being splittable does not mean task splitting is beneficial.  
Based on the fact that tasks usually run much longer than 
APU, we make a simplification that APU is arbitrarily small.  

A. Split Tasks Waiting in Queue 

In this section, we give examples about how to split tasks 
that are waiting in queue.  Running tasks are considered in 
next section.  All map tasks in queue, which may be from 
different jobs, are considered when task splitting decision is 
made.  If there are no available map slots, no map task in the 
queue is split.   

If the number of available map slots is smaller than that 
of map tasks in queue, one possible strategy is to consolidate 
map tasks so that all of them can be dispatched immediately.  
The data to be processed is the same no matter whether map 
tasks are consolidated or not.  Overall overhead of map task 
start-up and teardown is different because there are less tasks 
after consolidation. Another potential drawback brought up 
by consolidation is loss of data locality.  The more map tasks 
are consolidated, the smaller the possibility becomes that 
input blocks of all consolidated tasks are located on the same 
node.  As a result, amount of data transferred from remote 
nodes increases.  So optimal decision relies on the tradeoff 
between task overhead and data transfer.  Plot (b) in Fig. 1 
shows an example.  Three map tasks        and    are 
waiting and two nodes are available.  So we can schedule 
two map tasks at most immediately.  If we consolidate two 
map tasks, all map tasks can be scheduled to run 
immediately. In the plot, map task    and    are consolidated 
into map task      which is dispatched to node where block 
   is stored.  Block    is remotely accessed by task     .   

 If the number of available map slots is larger than that of 
map tasks in queue, map tasks can be split to spawn new 
map tasks to fill all available map slots.  Resultant benefits 

include better parallelism and load balancing.  As number of 
map tasks increases, overall task start-up and teardown 
overhead increases as well.  Another disadvantage is data 
locality may become worse.  If a map task cannot be 
dispatched to the node where its input block is stored, none 
of its spawned map tasks after split can be dispatched to the 
node either if they are run immediately.  Otherwise, one of 
the spawned map tasks is guaranteed to be able to be 
dispatched to that node while others may or may not be 
dispatched to it depending on map slot availability.  Plot (c) 
in Fig. 1 shows an example of task splitting.  Initially there 
are four available nodes and three map tasks       and   .  
Task    is split to task      and task      and all tasks are 
scheduled.  Task      and      share the same input block    
but process different portions.  Compared with the situation 
that split is not applied, task      needs to access    remotely 
but all nodes are utilized.  One way to mitigate the data 
locality problem is data replication.  When there are multiple 
copies of a block, the possibility is larger that data-local 
scheduling is achievable after task spit.  One extreme case is 
each block is replicated on all nodes so that data locality 
becomes less significant. 

 
Figure 1.  Task splitting and task consolidation. Arrows are scheduling 

decisions. Each node has one map slot and block    is input of task   . 

B. Split Running Tasks 

Besides tasks waiting in queue, running tasks can also be 
split dynamically to improve performance.  When tasks are 
scheduled and running, computation time skew of tasks may 
slow down the progress of the whole job.  Task splitting can 
be applied dynamically during task execution to offload 
some processing to other available map slots.  Plot (d) in Fig. 
1 shows an example.  At time   , four tasks are running.  At 
time   , task    completes and the slot originally occupied by 
task    becomes available while the other three tasks are still 
running.  Task    is chosen to spawn a new task      which 
is scheduled to the available slot released by completed 
task   .  Again, all nodes are utilized but task      accesses 
its input data    remotely.   

C. Summary 

The previous two algorithms are combined together to 
adjust all unfinished tasks (waiting tasks + running tasks), 
which achieves continuous optimization during whole 
lifetime of jobs.   



Task consolidation reduces the number of tasks to 
manage and schedule, which is highly beneficial if task 
management overhead is high and task start-up and teardown 
overhead is comparable to the actual execution time.  We 
assume task execution time is significant longer than task 
start-up and teardown time.  If this does not hold, blocks can 
be enlarged to increase task granularity.     

Task splitting is beneficial when loss of data locality does 
not impose critical performance degradation.  When data are 
replicated on every node, the data access time is approximate 
no matter where a task is dispatched if data access contention 
(e.g. multiple tasks access different data on the same node) is 
not severe.  If data access contention is severe, number of 
map slots on each node can be tuned appropriately to achieve 
optimal tradeoff between concurrency and resource use 
contention, so that data access does not affect scheduling 
much.  This conclusion also holds when jobs are CPU-
intensive and the data access cost is negligible.  In other 
words, if the ratio of computation to data access is large, the 
computation factor is critical and other factors, such as disk 
I/O and network I/O, can be ignored.  We focus on CPU-
intensive jobs in the following discussions. 

IV. SINGLE-JOB TASK SCHEDULING 

First, we consider the task scheduling problem when only 
one job is running at most at any time.  In the next section, 
multi-job case is discussed. The following algorithm shows 
how task splitting is hooked into the task scheduling process.   

Algorithm skeleton 

while isRunning = true: 

  split_tasks(); 

  schedule_tasks(); 

In the beginning of each scheduling iteration, task 
splitting is applied if needed.  This step makes tradeoffs 
between concurrency and overhead.  Then an existing task 
scheduling strategy (e.g. Hadoop’s data locality based 
scheduling) is used to schedule tasks.  So task splitting can 
be seamlessly integrated with existing schedulers.  We focus 
on the task splitting process and present our proposed 
solutions when prior knowledge about workload is known 
and unknown.  We summarize issues shown below that need 
to be solved to address the problem.  

a) When to trigger task splitting 

b) Which tasks should be split and how many new tasks 
to spawn; and 

c) How to split 

A. Task Splitting without Prior Knowledge 

     When no prior knowledge is known about execution time, 
a strategy we term Aggressive Splitting (AS) is proposed. 

1) When to trigger task splitting:  The goal of task 

splitting is to shorten average job turnaround time by 

utilizing as many nodes as possible.  Assume the scheduler 

is invoked at time   , task splitting decision is made if 

following inequality is satisfied 

                                               

where        ,         and      are the number of map 

tasks in queue at time t, the number of running map tasks at 
time t and  the number of all map slots respectively.  That 
means there are idle map slots even if all tasks in queue are 
scheduled immediately.  In this case, the default scheduling 
strategy cannot use all idle slots. So the task splitting process 
should be initiated.  Otherwise, it does not make sense to 
split tasks because there are no idle slots where newly 
spawned tasks can run.  This will not make long-running 
tasks become stragglers because our task splitting process is 
invoked continuously and long-running tasks will become 
candidates of split target whenever there are idle slots.   

2) Which tasks should be split and how many new tasks 

to spawn:  We evenly distribute available map slots to 

unfinished tasks. Without prior knowledge, what we do is 

divide the number of idle map slots by the number of 

unfinished tasks to calculate how many new tasks to spawn 

for each task on average. Then tasks are split one by one 

until no map slots are idle. The algorithm skeleton is shown 

below.   

Algorithm skeleton 

UTS:set  unfinished tasks 

IMS:int  number of idle map slots 

MST:int                
for each task T in UTS: 

  if IMS ≤ 0: break 

  if IMS < MST: 

    NS  split(T, IMS) 

  else 

    NS  split(T, MST) 

  IMS  IMS - NS 

Function            splits task   to spawn   new tasks.  
Depending on map slot availability, split policy and 
overhead, the actual number of spawned tasks may be 
smaller than   . The actual number is returned from the 
function call so that following code can update number of 
available map slots accordingly.  Implementation of split is 
described in next section.   

3) How to split:  Given a task and maximum number of 

new tasks it may spawn, this section solves the problem 

how to split.  Firstly, the number of new tasks is adjusted so 

that it does not exceed number of available map slots.  Data 

block is logically split to equally sized sub-blocks. We 

consider the task processing one sub-block is atomic and not 

splittable.  So it specifies smallest granularity of spawned 

tasks.  For task T, total number of sub-blocks, the number of 

sub-blocks that have been processed or are being processed, 

and number of new tasks to spawn are denoted by      , 

      and       respectively. Since we don’t have prior 

knowledgeof map execution time, we blindly spawn new 

tasks so that each one processes the same amount of data. 

                                     
      –      

         
 

The remaining work is evenly divided among the task 
being split and newly spawned tasks.  The principle is to 



make them all complete simultaneously if map operation 
execution time is heterogeneous theoretically.  To avoid 
inefficiency caused by spawning small tasks, a threshold is 
set to prevent small tasks being split.  Optimal threshold 
depends on workload and map operation characteristics.  It is 
our future work to make the threshold automatically tuned.    

4) Complexity:  The whole task list is scanned at most 

once, so time complexity is      with regard to number of 

tasks.  

B. Task Splitting with Prior Knowledge 

Now we assume that prior knowledge about task 
execution time is known. By prior knowledge, we mean that 
Estimate Remaining Execution Time (ERET) is known or 
predictable. ERET indicates how long a task will run before 
completion approximately. We propose Aggressive Split with 
Prior Knowledge (ASPK) to optimize job turnaround time.   

1) When to trigger task splitting:  The same algorithm 

from last section can be reused here. 

2) Which tasks should be split and how many new tasks 

to spawn:  Ways to split tasks are not unique.  Number of 

task splits done during whole lifetime of a job should be as 

small as possible without degrading performance. Fig. 2 

demonstrates different ways to split tasks to achieve the 

same turnaround time.  Graph (a) shows a scenario where 

there are two running tasks -      , one idle slot and no 

waiting tasks.  ERET of    and    is    and   respectively.  

If overhead and data locality are negligible, we definitely 

should split tasks to fill the idle slot.  We can split task    to 

spawn a new task and both will run for period   before 

completion, which is demonstrated in (b).  At time   all 

tasks complete.  Another way shown in (c) is to split task    

to spawn a new task and both will run for period    .  At 

time    , two slots become idle and task    is split to spawn 

two new tasks each of which runs for               .  

In both cases, the final job turnaround time is t.  However 

number of spawned tasks is different.  In (b), one task is 

spawned while in (c) three tasks are spawned.  More task 

splits incur higher probability to degrade performance and 

destabilize system.  In the example, (b) is preferred to (c).   
Tasks that complete last determine when a job finishes.  

For jobs with tasks that have highly varied execution time, 
the scenario should be avoided that few long tasks last much 
long after other short jobs complete.  When long running 
tasks exist, to split tasks with small ERET generates smaller 
tasks, which doesn’t affect job turnaround time.  So our 
heuristics is that tasks with large ERET should be split first 
so that they do not become “stragglers”.   

 

Figure 2.  Different ways to split tasks (Processing time is the same). 

Dashed boxes represent newly spawned tasks. 

Firstly, tasks with small ERET are filtered because to 
split a task that will end very soon does not provide much 
benefit.  In addition, task filtering is an optimization step that 
reduces num of map tasks considered by following steps for 
faster processing.  Secondly remaining tasks are sorted by 
ERET in descending order.  After that, tasks are clustered 
into              according to ERET so that tasks with 
similar ERET belong to the same cluster.  Each cluster   has 
several pieces of information including task list (    ), 
number of tasks (       ), sum of ERET (      ) and 
average of ERET (    ).  We go through task clusters one 
by one to evaluate whether task splitting is beneficial.  
Initially, we only consider tasks in cluster   .  Tasks in    
are split to fill all idle slots, and average task execution time 
   is calculated.  If    is larger than      , it doesn’t benefit 
to split tasks contained in following clusters and estimated 
execution time of newly spawned tasks is set to      .  If 
    is significantly smaller than      , spawned tasks are 
small compared with tasks in   .  So we consider tasks from 
both    and    for split. Time    is calculated and compared 
with       .  If    much smaller, we consider   ,     and   .  
This process is repeated until     is larger than or comparable 
to          or all clusters are included. The algorithm 
skeleton is shown below. 

Algorithm skeleton 

IMS  number of idle map slots 

UTS  unfinished tasks 

FTS  filterTasks (UTS) 

STS  sortByERET (FTS) 

{C1,C2,…,Cm}  clusterTasks (STS) 

sumERET  0, count  IMS 

for cluster Ci, 1≤i≤m: 

  sumERET += Ci.ERET 

  count += Ci.Count 

  avgERET = sumERET / count 

  if i = m: break 

  if avgERET << Ci+1.AE: 

    continue 

  else 

 break 

Filtering Ideally, how tasks are filtered should depend on 
the ERET of unfinished tasks.  A pre-set threshold is not 
flexible enough to capture task characteristics.  Instead, we 
calculate the optimal remaining job execution time (ORJET) 
by assuming that tasks are split to use all available nodes.  
Total ERET is gained by summing ERET of all unfinished 
tasks.  It is divided by number of all nodes (including both 
occupied and idle slots) to get ORJET.  ORJET measures 
optimally how long a job will run before completion.  Then 
ERET of each task is compared with ORJET.  If task ERET 
is significant smaller than ORJET, it is filtered out.  Towards 
end of job execution, ORJET becomes increasingly small 
because running tasks are close to completion and more slots  
are released.  In this situation, task splitting is not beneficial 
because overhead of task splitting outweighs potential gain 



of higher concurrency.  So we filter out tasks that are close to 
completion without affecting overall performance.  Thus the 
filtering process is adaptive to workloads of different types.   

Clustering Task clustering algorithm is designed to 
group tasks with similar ERET and separate tasks with 
significantly different ERET.  Existing clustering algorithms, 
such as K-means, Expectation-Maximization and 
agglomerative hierarchical clustering, from the machine 
learning community can be used without modification.  
Considering that scheduling routine is called frequently and 
its performance is critical to the whole system, we favor 
simple linear algorithms.  Tasks being clustered have been 
ordered by ERET, which guarantees that tasks belonging to 
the same cluster are consecutive in the task list.  Our current 
algorithm requires that the task list is scanned once by 
moving a “cursor” from beginning to end.  A running list is 
maintained to contain tasks that are before the “cursor” and 
belong to current cluster.  If ERET of the task pointed by 
cursor is much smaller than the average ERET of the current 
cluster, then the current cluster is added to cluster set and a 
new cluster is created which initially only contained the task 
pointed by cursor.  This guarantees maximal ERET of tasks 
within a cluster is significantly different than average ERET 
of tasks within previous cluster.   

3) How to split:  The way to split tasks can be optimized 

if we also have prior knowledge about mean task execution 

time, network throughput, disk I/O throughput, etc.  For task 

T, disk I/O cost, network I/O cost, and computation cost are 

denoted by        ,        and       respectively.  So 

total time is                          , if these 

operations don’t overlap.  Task being split is denoted by 

    , and newly spawned tasks are {    
 ,     

 , …,     
 }.  

Ideally, following equation should be satisfied to make tasks 

complete simultaneously after split. 

                
            

            
   

        
          

            
            

  
          

            
            

   

Because we assume        and        are negligible 
compared to       , the above equation is converted to 

          
           

                 
          

   

So unfinished work of task T is evenly distributed to T 
and newly spawned tasks after split.   

4) Complexity:  In ASPK, complexity of sorting is 

          and that of other operations is not greater 

than      So overall complexity is          . However, 

sorting can be further optimized considering that in each 

iteration, except the first one, tasks are mostly ordered.   

C. Fault Tolerance 

Our proposed algorithms do not handle fault tolerance 
directly.  Task splitting is not enough to cope with situations 
where some tasks stall or fail due to hardware failure, severe 
system fluctuation or hanging process.  We integrate 
speculative execution to solve the problem.   Whenever the 
system detects failure, duplicate tasks are created 

automatically to replace failed tasks.  Now we have a 
complete solution which can speed single-job execution by 
splitting relatively long tasks and speculatively re-execute 
failed tasks. 

V. MULTI-JOB OPTIMIZATION 

We put multi-job scheduling into the context of classic 
queuing theory.  We adopted M/G/s model [16].  Jobs arrive 
according to a homogeneous Poisson process.  Job execution 
time is independent and may follow generic distributions.  
Also there is more than one server in the system.  One 
difference from the classic model is that a job may use 
multiple servers during its execution and the execution time 
depends on the number of used nodes.  We propose Greedy 
Task Splitting (GTS) which minimizes run time of each job 
by splitting tasks to occupy all map slots and making tasks of 
last round complete simultaneously.  Because each job uses 
all available nodes, following jobs cannot execute until 
current running job completes.  In other words, queue time of 
some jobs is increased compared with non-GTS scheduling.  
As a result, change of job turnaround time depends on both 
decrease of job execution time and possible increase of job 
queue time.  We will show that GTS gives optimal job 
turnaround time.  Recall that we assume tasks are arbitrarily 
splittable.   

A. Optimality of Greedy Task Splitting 

Fig. 2 shows two examples of execution arrangement of a 
job J.  In (a), job J starts at S(J) and completes at F(J).  It 
uses all resources during the execution.  In (b), the 
processing is grouped to four segments - 1, 2, 3 and 4.  Now 
we formulate the scheduling model. C denotes capacity of a 
certain type of resource in the system.  n denotes number of 
jobs to run.  Si (1 ≤ i ≤ n) denotes total resource requirement 
of job i.  Resource usage function        represents amount 
of resource consumed by job i at time t.  Constraints are: 

     (6) 

            
      (7) 

                 
                  

  

   
     (8) 

and objective function is  

                    
      (9) 

Inequality (7) means that at any moment, resource consumed 
by all jobs must not be more than capacity.  Inequality (8) 
means that the sum of resource consumption by any job 
across time is not less than requirement of the job.  The ideal 
case that actual resource consumption is equal to resource 
requirement, which means no overhead is incurred.  In the 
objective function,                is turnaround time for 
job i.  So our goal is to minimize overall job turnaround time.   

Firstly we will show that once a job starts running, it 
should complete as soon as possible by using all available 
resources.  Secondly we will convert this problem to n/1 (n 
jobs/1 machine) scheduling problem solved in [17].   

 Given a job J, its start time      and its completion 
time      , Fig. 3 shows possible strategies of execution 
arrangements.  Execution arrangement of J affects 
completion time of other jobs.  One fact is start time of job J 



does not matter when      is fixed.  Intuitively, all parts of 
execution of Job J should be placed as close to      as 
possible.  In plot (b) execution of job J is interspersed along 
time axis.  Execution arrangement demonstrated in plot (b) 
can be converted to that demonstrated in plot (a) by 
interchanging interspersed execution segments of job J (e.g. 
marked by 1, 2 and 3 in the plot) and execution segments of 
other jobs falling into the continuous area S.  After the 
interchange, completion time of those affected jobs either 
does not change or becomes earlier because their changed 
execution segments starts earlier.  This interchange process 
can be iterated until each job utilizes all resources during its 
execution (see Fig. 3 for an example).  In each iteration, only 
one job is considered.  The whole process makes overall 
turnaround time monotonically decrease regardless of order 
of jobs picked during iterations.   

 
Figure 3.  Different ways to arrange execution of a job. 

 
Figure 4.  Multiple scheduled jobs (Each uses all resources for execution) 

However, different job execution orders may result in 
different overall turnaround time.  The next question is how 
to determine job execution order so that objective function is 
minimized.  Because at any moment only one job consumes 
all resources, we can view the whole system as a single big 
virtual node.  This problem becomes the n/1 problem (n jobs 
/ 1 machine) solved in [17].  Shortest-job-first strategy gives 
overall optimal turnaround time.  So jobs should be executed 
in ascending order of execution time. 

B. Multi-Job Scheduling 

Given a number of jobs to run, the algorithm skeleton of 
Shortest Job First Scheduling (SJFS) is shown below.  Serial 
Execution Time (SET) represents how long a job runs 
serially.  

Algorithm skeleton of SJFS 

order jobs by SET in ascending order 

schedule jobs in turn 

If we know serial execution time of all jobs that are to be 
run, we can apply SJFS directly.  However, in real systems, 

it is hard, if not impossible, to know all jobs to run ahead.  
Jobs are submitted dynamically by end users or batch scripts.  
To cope with the uncertainty, we use Non Overlapped 
Periodic Shortest Job First Scheduling (NOPSJFS) in which 
SJFS is run periodically.  Let I be interval that SJFS is called.  
So scheduling decision is made at time           Let    be 
set of jobs that are submitted at or earlier than time t.  At 
time    , SJFS is applied to the job set               .  So 

jobs that are scheduled at time     only include those 
submitted between time         and    .  Jobs submitted 
prior than time         are not considered at all even if 
some of them are still waiting in the queue.  This strategy 
makes each job scheduled just once and jobs scheduled 
during different period do not overlap.  But unexpected 
system fluctuation exists and prior knowledge of SET may 
be inaccurate.  So assumptions made when a job is scheduled 
may be rendered useless by the time it is dispatched to run.  
Overlapped Shortest Job First Scheduling (OSJFS) is 
proposed in which all jobs are considered that have been 
submitted but not completed yet.  To avoid starvation of long 
jobs, an aging factor is associated with each job which 
measures how long a job has been waiting in the queue.  
Priority is positively correlated to aging factor.  So the longer 
a job has waited, the higher its priority becomes.   

VI. EXPERIMENT 

We conduct experiments using the MapReduce simulator 
mrsim [18] which is built on top of an event-driven 
framework.  Table 1 shows the configuration of simulated 
system.  Data is placed randomly on nodes.  Each node hosts 
only 1 map slot.  We will assess effectiveness of our 
approaches.  So hardware configuration affects absolute job 
turnaround time, but it does not affect comparison between 
our strategies and default strategy.     

TABLE I.  CONFIGURATION OF TEST ENVIRONMENT 

Number of nodes 64 Disk I/O - read 40MB/s 

Processor frequency 500MHz Disk I/O - write 20MB/s 

Map slots per node 1 Network 1Gbps 

 
Several distributions are used to model execution time of 

map operations - Gaussian distribution and step functions 
abstracted from real workload trace.  Firstly, we set up tests 
to show that our approach improves performance in single 
job environment.   

A. Single-Job 

In this set of tests, we investigate the effect of variation 
of map task execution time on performance.  We design a 
micro-benchmark to measure performance improvement of 
task splitting.  Based on number of all map slots and that of 
map tasks, two cases are considered.  When the number of 
map tasks is smaller than that of available map slots, the 
default strategy cannot utilize all resources.     

In first test, we compose a job whose input data has 32 
blocks each of which is 64MB.  The cluster has 64 nodes.  
We assume that task execution time follows Gaussian 
distribution with negative values cut off.  Mean is fixed and 
variance is varied which is an indicator of variation of 



execution time of map tasks.  Baseline distribution is 
uniform distribution with mean   and coefficient of variance 
(CV) is zero by definition.  We let Gaussian distributions 
have the same mean and change variance to    
               So CV is between 1 and 10.  Job 
turnaround time is shown in plot (a) in Fig. 5.  One 
observation is that job turnaround time increases as CV 
increases. That results from cut-off of negative values 
sampled from tested distributions.  So the mean of sampled 
values is no longer   and it increases slightly with CV.  Both 
AS and ASPK improves performance significantly and 
performance gain increases with CV.  AS incurs larger 
variation compared with ASPK.  When CV is small, the 
difference between AS and ASPK is not significant.  As CV 
becomes large, ASPK performs significantly better than AS. 
When CV is 10, ASPK improves AS by 50%.     

Now, we increase number of map tasks of a job to 200 to 
make it significantly larger than number of map slots.  Test 
environment is the same as previous test.  Plot (b) shows 
results.  Distributions of task execution time are the same as 
in previous test.  Default scheduling has embedded support 
for load balancing. Whenever a map slot becomes available, 
it dispatches a waiting task to it.  Because execution time of 
map tasks is sampled from the same distribution, the sum of 
task execution time for different nodes follows the same 
distribution as well.  In other words, mixture of long and 
short tasks dispatched to nodes naturally makes the load 
balanced during early lifetime of the job.  In the early phase 
of job execution, all map slots are occupied so that task 
splitting does not benefit.  Towards the end of execution, all 
tasks are either running or completed.  Any released map slot 
cannot be utilized because there is no waiting task.  Then 
task splitting improves performance by rebalancing load.  
Considering task splitting is mostly applied near job 
completion, it may not benefit much. Test result shows that 
even in that situation, AS and ASPK improves performance 
by 50% at most.  Also as CV becomes large, ASPK 
increasingly outperforms AS.   

Besides synthesized workload, workload data collected in 
real clusters is also used.  Concretely, we use cluster data 
published by Google [19].  It is analyzed in [20] to extract 
characteristics of jobs and tasks.  One observation made in 
the paper is that task execution time for three types of jobs is 
bimodal.  Around 75% of map tasks are short, running for 
approximately 5 minutes.  Around 20% of map tasks are 
long, running for approximately 360 minutes.  Execution 
time of the remaining 5% the map tasks is between 5 minutes 
and 360 minutes.  This distribution is used to model task 
execution time in this test.  We measured both job 
turnaround time and completion time variation. Fig. 6 shows 
the results.  AS and ASPK shorten job turnaround time by 
20% - 30%.  ASPK performs slightly better than AS by 
reducing job turnaround time by 5% - 10%.  Standard 
deviation of slot completion time is shown in plot (b).  For 
default scheduling, the value is 8521 seconds which indicates 
that the last round of map task execution results in severe 
load unbalancing.  ASPK achieves the smallest standard 
deviation around 9 seconds, so that its histogram is almost 
invisible in the plot.  This result is surprisingly good 

considering that the job runs for tens of thousands of 
seconds.  For AS, standard deviation is around 570 seconds.  
To figure out whether best performance of ASPK is achieved 
by splitting much more tasks than AS, number of spawned 
tasks is measured.  Plot (c) shows that ASPK even has 
smaller number of spawn tasks.  So ASPK achieves shortest 
job turnaround time and smallest variation of slot completion 
time by spawning fewer tasks. This means when prior 
knowledge is known additional optimization done in ASPK 
is effective. 

 
Figure 5.  Single-Job test results (Gaussian distribution is used) 

 
Figure 6.  Single-Job test results (Real profiled distribution is used) 

Above tests demonstrate that task splitting strategy 
improves performance significantly and the degree of 
improvement is related to characteristics of map tasks.   

B. Multiple jobs 

As M/G/s model is adopted for multi-job scenario, inter-
arrival time of jobs follows exponential distribution. We 
generate a workload to have 100 jobs each of which is 
synthesized according to Google cluster data. We measure 
average job turnaround time with and without SJF policy 
applied.  If interarrival time is longer than job execution 
time, on average one job is running at most at any time.  
Single-Job scheduling can be used directly. So we set mean 
of interarrival time to be much shorter than average job 
execution time.   

In this test, all jobs have the same number of map tasks, 
which is equal to the number of all map slots, so that each 
job can occupy all map slots.  Execution time of tasks 
belonging to a job is the same.  75% of jobs are short, 20% 
of jobs are long and 5% of jobs are medium.  100 jobs are 
generated.  Task splitting in this test does not benefit much 
because all map tasks of a job complete almost 
simultaneously and load unbalancing occurs rarely.  Results 
are shown in Fig. 7.  Non-SJF scheduling and SJF 
scheduling have comparable makespan.  SJF decreases 
average job turnaround time by 63%. 

Then we tested the case where different jobs have the 
same serial execution time.  Obviously SJF strategy does not 
make sense because all jobs are equally long.  So we ignore 



SJF and evaluate task splitting strategies.  Task execution 
time of each job follow the same distribution extracted from 
Google cluster data.  100 jobs are generated and all slots are 
used at any time except near completion.  Fig. 8 shows that 
both job turnaround time and makespan are shortened by 5% 
- 10%.  One well-known fact is that if a system is fully 
loaded, it is harder to make optimization compared with the 
situation where a system is partially loaded.  Our test results 
show that even if the system is fully loaded and SJF is 
useless, task splitting still benefits.  Considering that study in 
Google shows CPU utilization ratio is between 20% and 
50% for their production clusters, we believe task splitting 
will give more improvement in real clusters than in this test.   

 
Figure 7.  Multi-Job test results (task execution time is the same for a job) 

 
Figure 8.  Multi-Job test results (job execution time is the same) 

VII. CONCLUSIONS 

In this paper, we examined strategies for optimizing job 
turnaround time in MapReduce.  Firstly, we analyzed the 
MapReduce model and its Hadoop implementation, and 
found that the way map operations are organized into tasks in 
Hadoop has several drawbacks, such as limit of concurrency, 
task completion time skew and load unbalancing.  Then we 
proposed task splitting, which is a process to split unfinished 
tasks to fill idle map slots, to tackle those problems.  For 
single-job scheduling, Aggressive Scheduling (AS) and 
Aggressive Scheduling with Prior Knowledge (ASPK) were 
proposed for cases where prior knowledge is known and 
unknown respectively.  For multi-job scheduling, we proved 
that combination of Shortest-Job-First strategy and task 
splitting mechanism gives optimal average job turnaround 
time if tasks are arbitrarily splittable.  Overlapped Shortest-
Job-First Scheduling (OSJFS) was proposed which invokes 
basic short-job-first scheduling algorithm periodically and 
schedules all waiting jobs.  We also conducted extensive 
experiments to show that our proposed algorithms improve 
performance significantly compared with default strategy.  

One thing we may explore in the future is how task splitting 
and consolidation can benefit IO intensive applications.  
Tradeoffs between data access concurrency and data locality 
should be considered to achieve optimal performance. 
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