
High Performance Parallel Computing with Clouds and Cloud Technologies

Jaliya Ekanayake, Geoffrey Fox

Department of Computer Science

Indiana University, Bloomington, IN 47404, USA

{jekanaya,gcf}@indiana.edu

Abstract

 Infrastructure services (Infrastructure-as-a-service), provided by cloud venders, allow

any user to provision a large number of compute instances fairly easily. Whether leased from

public clouds or allocated from private clouds, utilizing these virtual resources to perform

data/compute intensive analyses requires employing different parallel runtimes to implement

such applications. Among many parallelizable problems, most “pleasingly parallel”

applications can be performed using MapReduce technologies such as Hadoop, CGL-

MapReduce, and Dryad, in a fairly easy manner. However, many scientific applications, which

require complex communication patterns, still require optimized runtimes such as MPI. We first

discuss large scale data analysis using different MapReduce implementations and then, we

present an performance analysis of high performance parallel applications on virtualized

resources.

1. Introduction

The introduction of commercial cloud infrastructure services such as Amazon EC2/S3[1][2],

GoGrid[3], and ElasticHosts[4] allow users to provision compute clusters fairly easily and

quickly by paying a monetary value only for the duration of the usage of resources. The

provisioning of resources happens in minutes as opposed to the hours and days required in the

case of traditional queue-based job scheduling systems. In addition, the use of such virtualized

resources allows the user to completely customize the Virtual Machine (VM) images and use

them with root/administrative privileges, which is another feature that is hard to achieve with

traditional infrastructures.

The availability of open source cloud infrastructure software such as Nimbus [5] and

Eucalyptus [6], and the open source virtualization software stacks such as Xen Hypervisor[7],

allows organizations to build private clouds to improve the resource utilization of the available

computation facilities. The possibility of dynamically provisioning additional resources by

leasing from commercial cloud infrastructures makes the use of private clouds more promising.

With all the above promising features of cloud, we can assume that the accessibility to

computation power is no longer a barrier for the users who need to perform large scale

data/compute intensive applications. However, to perform such computations, two major pre-

conditions need to be satisfied: (i) the application should be parallelizable to utilize the available

resources; and (ii) there should be an appropriate parallel runtime to implement it.

We have applied several cloud technologies such as Hadoop[8], Dryad[9], and CGL-

MapReduce[10], to various scientific applications wiz: (i) Cap3[11] data analysis; (ii) High

Energy Physics(HEP) data analysis; (iii) Word Histogramming; (iv) Distributed Grep; (v)

Kmeans clustering[12]; and, (vi) Matrix Multiplication. The streaming based MapReduce [13]

runtime - CGL-MapReduce- developed by us extends the MapReduce model to iterative

MapReduce domain as well. Our experience suggests that although most “pleasingly parallel”

applications can be performed using cloud technologies such as Hadoop, CGL-MapReduce, and

Dryad, in a fairly easy manner, scientific applications, which require complex communication

patterns, still require more efficient runtimes such as MPI[14].

In order to understand the performance implications of virtualized resources on MPI

applications, we performed an extensive analysis using Eucalyptus based private cloud

infrastructure. The use of a private cloud gives us complete control over both VMs and bare-

metal nodes, a feature that is impossible to achieve in commercial cloud infrastructures. It also

assures a fixed network topology and bandwidth with the nodes deployed in the same

geographical location, improving the reliability of our results. For this analysis, we used several

MPI applications with different communication/computation characteristics, namely Matrix

Multiplication, Kmeans Clustering, and Concurrent Wave Equation Solver and performed them

on several VM configurations. Instead of measuring individual characteristics such as

bandwidth and latency using micro benchmarks we used real applications to understand the

effect of virtualized resources for such applications, which makes our results unique.

In the sections that follow, we first present the work related to our research followed by a

brief introduction to the data analysis applications we used. Section 4 presents the results of our

evaluations on cloud technologies and a discussion. In section 5, we discuss an approach with

which to evaluate the performance implications of using virtualized resources for high

performance parallel computing. Section 6 presents the results of this evaluation along with a

discussion of the results. In the final section we give our conclusions and we discuss implications

for future work.

2. Related Work

Traditionally, most parallel applications achieve fine grained parallelism using message

passing infrastructures such as PVM [15] and MPI. Applications achieve coarse-grained

parallelism using workflow frameworks such as Kepler [16] and Taverna [17], where the

individual tasks could themselves be parallel applications written in MPI. Software systems such

as Falkon [18], SWARM [19], and DAGMan [20] can be used to schedule applications which

comprise of a collection of a large number of individual sub tasks.

Once these applications are developed, in the traditional approach, they are executed on

compute clusters, super computers, or Grid infrastructures [21]. In this approach, the focus on

allocating resources is heavily biased by the availability of computational power. The application

and the data both need to be moved to the available computational power in order for them to be

executed. Although these infrastructure are highly efficient in performing compute intensive

parallel applications, when the volumes of data accessed by an application increases, the overall

efficiency decreases due to the inevitable data movement.

Cloud technologies such as Google MapReduce, Google File System (GFS) [22], Hadoop

and Hadoop Distributed File System (HDFS) [8], Microsoft Dryad, and CGL-MapReduce adopt

a more data-centered approach to parallel runtimes. In these frameworks, the data is staged in

data/compute nodes of clusters or large-scale data centers, such as in the case of Google. The

computations move to the data in order to perform data processing. Distributed file systems such

as GFS and HDFS allow Google MapReduce and Hadoop to access data via distributed storage

systems built on heterogeneous compute nodes, while Dryad and CGL-MapReduce support

reading data from local disks. The simplicity in the programming model enables better support

for quality of services such as fault tolerance and monitoring. Table 1 highlights the features of

three cloud technologies that we used.

Table 1. Comparison of features supported by different cloud technologies

Feature Hadoop Dryad CGL-MapReduce

Programming

Model

MapReduce DAG based execution flows MapReduce with

Combine phase

Data Handling HDFS Shared directories/ Local

disks

Shared file system / Local

disks

Intermediate

Data

Communication

HDFS/

Point-to-point via HTTP

Files/TCP pipes/ Shared

memory FIFO

Content Distribution Network

(NaradaBrokering [23])

Scheduling Data locality/

Rack aware

Data locality/ Network

topology based

run time graph optimizations

Data locality

Failure Handling Persistence via HDFS

Re-execution of map and

reduce tasks

Re-execution of vertices Currently not implemented

(Re-executing map tasks,

redundant reduce tasks)

Monitoring Monitoring support of

HDFS Monitoring

MapReduce computations

Monitoring support for

execution graphs

Programming interface to

monitor the progress of jobs

Language

Support

Implemented using Java

Other languages are

supported via Hadoop

Streaming

Programmable via C#

DryadLINQ [24] provides

LINQ programming API for

Dryad

Implemented using Java

Other languages are

supported via Java wrappers

Y. Gu, et al., present Sphere [25] architecture, a framework which can be used to execute

user-defined functions on data stored in a storage framework named Sector, in parallel. Sphere

can also perform MapReduce style programs and the authors compare the performance with

Hadoop for tera-sort application. Sphere stores intermediate data on files, and hence is

susceptible to higher overheads for iterative applications.

All-Paris [26] is an abstraction that can be used to solve a common problem of comparing all

the elements in a data set with all the elements in another data set by applying a given function.

This problem can be implemented using typical MapReduce frameworks such as Hadoop, but the

implementation will not be efficient, because all map tasks need to access all the elements of one

of the data sets. We can develop an efficient iterative MapReduce implementation using CGL-

MapReduce to solve this problem. The algorithm is similar to the matrix multiplication algorithm

we will explain in section 3.

Lamia Youseff, et al., presents an evaluation on the performance impact of Xen on MPI [27].

According to their evaluations, the Xen does not impose considerable overheads for HPC

applications. However, our results indicate that the applications that are more sensitive to

latencies (smaller messages, lower communication to computation ratios) experience higher

overheads under virtualized resources, and this overhead increases as more and more VMs are

deployed per hardware node. From their evaluations it is not clear how many VMs they deployed

on the hardware nodes, or how many MPI processes were used in each VM. According to our

results, these factors cause significant changes in results. Running 1-VM per hardware node

produces a VM instance with a similar number of CPU cores as in a bare-metal node. However,

our results indicate that, even in this approach, if the communication processes inside the node

communicate via the network, the virtualization may produce higher overheads under the current

VM architectures.

C. Evangelinos and C. Hill discuss [28] the details of their analysis on the performance of

HPC benchmarks on EC2 cloud infrastructure. One of the key observations noted in their paper

is that both the OpenMPI and the MPICH2-nemsis show extremely large latencies, while the

LAM MPI, the GridMPI, and the MPICH2-scok show smaller smoother latencies. However, they

did not explain the reason for this behavior in the paper. We also observed similar characteristics

and a detailed explanation of this behavior and related issues are given in section 5.

Edward Walker presents benchmark results of performing HPC applications using “high

CPU extra large” instances provided by EC2 and on a similar set of local hardware nodes [29].

The local nodes are connected using infiniband switches while Amazon EC2 network technology

is unknown. The results indicate about 40%-1000% performance degradation on EC2 resources

compared to the local cluster. Since the differences in operating systems and the compiler

versions between VMs and bare-metal nodes may cause variations in results, for our analysis we

used a cloud infrastructure that we have complete control. In addition we used exactly similar

software environments in both VMs and bare-metal nodes. In our results, we noticed that

applications that are more susceptible to latencies experience higher performance degradation

(around 40%) under virtualized resources. The bandwidth does not seem to be a consideration in

private cloud infrastructures.

Ada Gavrilvska, et al., discuss several improvements over the current virtualization

architectures to support HPC applications such as HPC hypervisors (sidecore) and self-

virtualized I/O devices [30] . We notice the importance of such improvements and research. In

our experimental results, we used hardware nodes with 8 cores and we deployed and tested up to

8VMs per node in these systems. Our results show that the virtualization overhead increases with

the number of VMs deployed on a hardware node. These characteristics will have a larger impact

on systems having more CPU cores per node. A node with 32 cores running 32 VM instances

may produce very large overheads under the current VM architectures.

3. Data Analysis Applications

The applications we implemented using cloud technologies can be categorized into three

classes, depending on the communication topologies wiz: (i) Task parallel; (ii) MapReduce style;

and (iii) Iterative/Complex Style. In our previous papers [10][31], we have presented details of

MapReduce style applications and a Kmeans clustering application that we developed using

cloud technologies, and the challenges we faced in developing these applications. Therefore, in

this paper, we simply highlight the characteristics of these applications in table 2 and present the

results. The two new applications that we developed, Cap3 and matrix multiplication, are

explained in more detail in this section.

Table 2. Task parallel and MapReduce style applications

Application Class Task Parallel MapReduce style

Program/data flow

Cap3 Analysis application implemented as a

map-only operation. Each map task

processed a single input data file and

produces a set of output data files.

HEP data analysis application implemented

using MapReduce programming model

(ROOT is an object-oriented data analysis

framework).

More Examples Converting a collection of documents to

different formats, processing a collection of

medical images, and

Brute force searches in cryptography

Histogramming operations,

distributed search, and distributed sorting.

Applications used

for the analysis

Cap3 - a sequence assembly program that

operates on a collection of gene sequence

files

HEP data analysis, Histogramming of words,

and Distributed “grep”

More information about these applications can

be found in references [10][31].

3.1. Cap3

 Cap3 is a sequence assembly program that operates on a collection of gene sequence files

which produce several output files. In parallel implementations, the input files are processed

concurrently and the outputs are saved in a predefined location. For our analysis, we have

implemented this application using Hadoop, CGL-MapReduce and Dryad.

3.2. Iterative/Complex Style applications

 Parallel applications implemented using message passing runtimes can utilize various

communication constructs to build diverse communication topologies. For example, a matrix

multiplication application that implements Cannon’s Algorithm [32] assumes parallel processes

to be in a rectangular grid. Each parallel process in the gird communicates with its left and top

neighbors as shown in Figure 1(left). The current cloud runtimes, which are based on data flow

models such as MapReduce and Dryad, do not support this behavior, where the peer nodes

communicate with each other. Therefore, implementing the above type of parallel applications

using MapReduce or Dryad models requires adopting different algorithms.

 We have implemented matrix multiplication applications using Hadoop and CGL-

MapReduce by adopting a row/column decomposition approach to split the matrices. To clarify

our algorithm, let’s consider an example where two input matrices A and B produce matrix C, as

the result of the multiplication process. We split the matrix B into a set of column blocks and the

matrix A is split to a set of row blocks. In each iteration, all the map tasks consume two inputs:

(i) a column block of matrix B, and (ii) a row block of matrix A; collectively, they produce a row

block of the resultant matrix C. The column block associated with a particular map task is fixed

throughout the computation while the row blocks are changed in each iteration. However, in

Hadoop’s programming model (typical MapReduce model), there is no way to specify this

behavior and hence, it loads both the column block and the row block in each iteration of the

computation. CGL-MapReduce supports the notion of long running map/reduce tasks where

these tasks are allowed to retain static data in memory across invocations, yielding better

performance for iterative MapReduce computations. The communication pattern of this

application is shown in Figure 1(right).

Figure 1. Communication topology of matrix multiplication applications implemented using Cannon’s
algorithm (left) and MapReduce programming model (right).

4. Evaluations and Analysis

 For our evaluations, we used two different compute clusters (details are shown in Table 3).

Dryad applications are run on the Barcelona cluster while Hadoop, CGL-MapReduce, and MPI

applications are run on the Gridfarm cluster. We measured the performance of these applications

and then we calculated the overhead induced by different parallel runtimes using the following

formula, in which P denotes the number of parallel processes (map tasks) used and T denotes

time as a function of the number of parallel processes used. T(1) is the time it takes when the task

is executed using a single process. The results of these analyses are shown in Figures 2 –7.

 Overhead = [P * T(P) –T(1)]/T(1) (1)

Table 3. Different computation clusters used for the analyses

Cluster Name # Nodes used CPU Memory Operating System

Barcelona 4 2 x AMD Quad Core

Opteron 8356, 2.3GHz

16GB Windows Server

HPC Edition (Service Pack 1)

Gridfarm 4 - 8 2 x Quad core Intel

Xeon E5345, 2.3GHz

8GB Red Hat Enterprise

Linux 4

Figure 2. Performance of the Cap3 application

Figure 3. Performance of HEP data analysis

applications

Figure 4. Performance of the Word Histogramming

applications

Figure 5. Performance of the Distributed Grep

applications

Figure 6. Overhead induced by different parallel

programming runtimes for the Kmeans Clustering
application (Note: Both axes are in log scale)

Figure 7. Overhead induced by different parallel

programming runtimes for the matrix multiplication
application (8 nodes are used)

 From these results, it is clearly evident that the cloud runtimes perform competitively well

for both the task parallel and the MapReduce style applications. However, for iterative and

complex classes of applications, cloud runtimes show considerably high overheads compared to

the MPI versions of the same applications, implying that, for these types of applications, we still

need to use high performance parallel runtimes or use alternative approaches. (Note: The

negative overheads observed in the matrix multiplication application are due to the better

utilization of a cache by the parallel application than the single process version). CGL-

MapReduce shows a close performance to the MPI for large data sets in the case of Kmeans

clustering and matrix multiplication applications, highlighting the benefits of supporting iterative

computations and the faster data communication mechanism in the CGL-MapReduce. These

observations lead us to the next phase of our research.

5. Performance of MPI on Clouds

 After the previous observations, we analyzed the performance implications of cloud for

parallel applications implemented using MPI. Specifically, we were trying to find the overhead

of virtualized resources, and understand how applications with different communication-to-

computation (C/C) ratios perform on cloud resources. We also evaluated different CPU core

assignment strategies for VMs in order to understand the performance of VMs on multi-core

nodes.

Table 4. Computation and communication complexities of the different MPI applications used.

Application Matrix multiplication Kmeans Clustering Concurrent Wave Equation

Description Implements Cannon’s

Algorithm

Assume a rectangular

process grid (Figure 1-

left)

Implements Kmeans Clustering

Algorithm

Fixed number of iterations are

performed for each test

A vibrating string is

decomposed (split) into

points, and each MPI

process is responsible for

updating the amplitude of a

number of points over time.

Grain size (n) Number of points in a

matrix block handled by

each MPI process

Number of data points handled

by a single MPI process

Number of points handled

by each MPI process

Communication

Pattern

Each MPI process

communicates with its

neighbors in both row

wise and column wise.

All MPI processes send partial

clusters to one MPI process

(rank 0). Rank 0 distribute the

new cluster centers to all the

nodes

In each iteration, each MPI

process exchanges boundary

points with its nearest

neighbors.

Computation per

MPI process
O(𝑛

3
) 𝑂 𝑛 𝑂 𝑛

Communication

per MPI process
O(𝑛

2
) 𝑂 1 𝑂 1

C/C
O

1

 𝑛
 𝑂

1

𝑛
 𝑂

1

𝑛

Message Size 𝑛
2
= n 𝐷 – Where D is the number of

cluster centers.

𝐷 ≪ 𝑛

Each message contains a

double value

Communication

routines used

MPI_Sendrecv_replace() MPI_Reduce()

MPI_Bcast()

MPI_Sendrecv()

 Commercial cloud infrastructures do not allow users to access the bare hardware nodes, in

which the VMs are deployed, a must-have requirement for our analysis. Therefore, we used a

Eucalyptus-based cloud infrastructure deployed at our university for this analysis. With this

cloud infrastructure, we have complete access to both virtual machine instances and the

underlying bare-metal nodes, as well as the help of the administrators; as a result, we can deploy

different VM configurations allocating different CPU cores to each VM. Therefore, we selected

the above cloud infrastructure as our main test bed.

 For our evaluations, we selected three MPI applications with different communication and

computation requirements, namely, (i) the Matrix multiplication, (ii) Kmeans clustering, and (iii)

the Concurrent Wave Equation solver. Table 4 highlights the key characteristics of the programs

that we used for benchmarking.

6. Benchmarks and Results

 The Eucalyptus (version 1.4) infrastructure we used is deployed on 16 nodes of an iDataplex

cluster, each of which has 2 Quad Core Intel Xeon processors (for a total of 8 CPU cores) and 32

GB of memory. In the bare-metal version, each node runs a Red Hat Enterprise Linux Server

release 5.2 (Tikanga) operating system. We used OpenMPI version 1.3.2 with gcc version 4.1.2.

We then created a VM image from this hardware configuration, so that we have a similar

software environment on the VMs once they are deployed. The virtualization is based on Xen

hypervisor (version 3.0.3). Both bare-metal and virtualized resources utilize giga-bit Ethernet

connections.

Table 5. Different hardware/virtual machine configurations used for performance evaluations.

Ref Description Number of CPU cores

accessible to the virtual

or bare-metal node

Amount of memory (GB)

accessible to the virtual or

bare-metal node

Number of virtual

or bare-metal

nodes deployed

BM Bare-metal node 8 32 16

1-VM-8-core 1 VM instance per

bare-metal node

8 30 (2GB is reserved for

Dom0)

16

2-VM-4- core 2 VM instances per

bare-metal node

4 15 32

4-VM-2-core 4 VM instances per

bare-metal node

2 7.5 64

8-VM-1-core 8 VM instances per

bare-metal node

1 3.75 128

 When VMs are deployed using Eucalyptus, it allows configuring the number of CPU cores

assigned to each VM image. For example, with 8 core systems, the CPU core allocation per VM

can range from 8 cores to 1 core per VM, resulting in several different CPU core assignment

strategies. In Amazon EC2 infrastructure, the standard instance type has ½ a CPU per VM

instance [28]. In the current version of Eucalyptus, the minimum number of cores that we can

assign for a particular VM instance is 1; hence, we selected five CPU core assignment strategies

(including the bare-metal test) listed in Table 5.

 We ran all the MPI tests, on all 5 hardware/VM configurations, and measured the

performance and calculated speed-ups and overheads. We calculated two types of overheads for

each application using formula (1). The total overhead induced by the virtualization and the

parallel processing is calculated using the bare-metal single process time as T(1) in the formula

(1). The parallel overhead is calculated using the single process time from a corresponding VM

as T(1) in formula (1).

 In all the MPI tests we performed, we used the following invariant to select the number of

parallel processes (MPI processes) for a given application.

Number of MPI processes = Number of CPU cores used

For example, for the matrix multiplication application, we used only half the number of nodes

(bare-metal or VMs) available to us, so that we have 64 MPI processes = 64 CPU cores. (This is

mainly because the matrix multiplication application expects the MPI processes to be in a square

grid, in contrast to a rectangular grid). For Kmeans clustering, we used all the nodes, resulting in

a total of 128 MPI processes utilizing all 128 CPU cores. Some of the results of our analysis

highlighting different characterizes we observe are shown in Figures 8 through 15.

For the matrix multiplication, the graphs show very close performance characteristics in

all the different hardware/VM configurations. As we expected, the bare-metal has the best

performance and the speedup values, compared to the VM configurations (apart from the region

close to the matrix size of 4096x4096 where the VM perform better than the bare-metal. We

have performed multiple tests at this point, and found that it is a due to cache performances of

the bare-metal node). After the bare-metal, the next best performance and speed-ups are recorded

in the case of 1-VM per bare-metal node configuration, in which the performance difference is

mainly due to the overhead induced by the virtualization. However, as we increase the number of

VMs per bare-metal node, the overhead increases. At the 81 processes, 8-VMs per node

configuration shows about a 34% decrease in speed-up compared to the bare-metal results.

 In Kmeans clustering, the effect of virtualized resources is much clearer than in the case of

the matrix multiplication. All VM configurations show a lower performance compared to the

bare-metal configuration. In this application, the amount of data transferred between MPI

processes is extremely low compared to the amount of data processed by each MPI process, and

also, in relation to the amount of computations performed. Figure 11 and Figure 13 show the

total overhead and the parallel overhead for Kmeans clustering under different VM

configurations. From these two calculations, we found that, for VM configurations, the

overheads are extremely

Figure 8. Performance of the matrix multiplication

application (Number of MPI processes = 64)

Figure 9. Speed-up of the matrix multiplication

application (Matrix size = 5184x5184)

Figure 10. Performance of Kmeans clustering

(Number of MPI Processes = 128)

Figure 11. Total overhead of the Kmeans clustering

(Number of MPI Processes = 128)

Figure 12. Speed-up of the Kmeans clustering

(Number of data points = 860160)

Figure 13. Parallel overhead of the Kmeans

clustering (Number of MPI Processes = 128)

Figure 14. Performance of the Concurrent Wave

Solver (Number of MPI Processes = 128)

Figure 15. Total overhead of the Concurrent Wave

Solver (Number of MPI Processes = 128)

large for data set sizes of less than 10 million points, for which the bare-metal overhead remains

less than 1 (<1 for all the cases). For larger data sets such as 40 million points, all overheads

reached less than 0.5. The slower speed-up of the VM configurations (shown in Figure 12) is due

to the use of a smaller data set (~800K points) to calculate the speed-ups. The overheads are

extremely large for this region of the data sizes, and hence, it resulted in lower speed-ups for the

VMs.

 Concurrent wave equation splits a number of points into a set of parallel processes, and each

parallel process updates its portion of the points in some number of steps. An increase in the

number of points increases the amount of the computations performed. Since we fixed the

number of steps in which the points are updated, we obtained a constant amount of

communication in all the test cases, resulting in a C/C ratio of O(1/n). In this application also,

the difference in performance between the VMs and the bare-metal version is clearer, and at the

highest grain size the total overhead of 8-VMs per node is about 7 times higher than the

overhead of the bare-metal configuration. The performance differences between the different

VM configurations become smaller with the increase in grain size.

 From the above experimental results, we can see that the applications with lower C/C ratios

experience a slower performance in virtualized resources. When the amount of data transferred

between MPI processes is large, as in the case of the matrix multiplication, the application is

more susceptible to the bandwidth than the latency. From the performance results of the matrix

multiplication, we can see that the virtualization has not affected the bandwidth considerably.

However, all the other results show that the virtualization has caused considerable latencies for

parallel applications, especially with smaller data transfer requirements. The effect on latency

increases as we use more VMs in a bare-metal node.

 According to the Xen para-virtualization architecture [7], domUs (VMs that run on top of

Xen para-virtualization) are not capable of performing I/O operations by themselves. Instead,

they communicate with dom0 (privileged OS) via an event channel (interrupts) and the shared

memory, and then the dom0 performs the I/O operations on behalf of the domUs. Although the

data is not copied between domUs and dom0, the dom0 needs to schedule the I/O operations on

behalf of the domUs. Figure 16(left) and Figure 16 (right) shows this behavior in 1-VM per node

and 8-VMs per node configurations we used.

Figure 16. Communication between dom0 and domU when 1-VM per node is deployed (left). Communication
between dom0 and domUs when 8-VMs per node are deployed (right).

 In all the above parallel applications we tested, the timing figures measured correspond to the

time for computation and communication inside the applications. Therefore, all the I/O

operations performed by the applications are

network-dependent. From Figure 16 (right), it is

clear that Dom0 needs to handle 8 event

channels when there are 8-VM instances

deployed on a single bare-metal node. Although

the 8 MPI processes run on a single bare-metal

node, since they are in different virtualized

resources, each of them can only communicate

via Dom0. This explains the higher overhead in our results for 8-VMs per node configuration.

The architecture reveals another important feature as well - that is, in the case of 1-VM per node

configuration, when multiple processes (MPI or other) that run in the same VM communicate

with each other via the network, all the communications must be scheduled by the dom0 (dom0

needs to service multiple interrupt channels.). This results higher latencies. We could verify this

by running the above tests with LAM MPI (a predecessor of OpenMPI, which does not have

improved support for in-node communications for multi-core nodes). Our results indicate that,

with LAM MPI, the worst performance for all the test occurred when 1-VM per node is used.

For example, Figure 17 shows the performance of Kmeans clustering under bare-metal, 1-VM,

and 8-VMs per node configurations. This observation suggests that, when using VMs with

multiple CPUs allocated to each of them for parallel processing, it is better to utilize parallel

runtimes, which have better support for in-node communication.

Figure 17. LAM vs. OpenMPI (OMPI) under

different VM configurations

0

2

4

6

8

10

A
v
e

rg
a

e
 T

im
e

 (
S

e
c

o
n

d
s

) LAM

OMPI

Bare-metal 1-VM per node 8-VMs per node

7. Conclusions and Future Work

 From all the experiments we have conducted and the results obtained, we can come to the

following conclusions on performing parallel computing using cloud and cloud technologies.

 Cloud technologies work well for most pleasingly-parallel problems. Their support for

handling large data sets, the concept of moving computation to data, and the better quality of

services provided such as fault tolerance and monitoring, simplify the implementation details of

such problems over the traditional systems.

 Applications with complex communication patterns observe higher overheads when

implemented using cloud technologies, and even with large data sets, these overheads limit the

usage of cloud technologies for such applications.

 Enhanced MapReduce runtimes such as CGL-MapReduce allows iterative style applications

to utilize the MapReduce programming model, while incurring minimal overheads compared to

the other runtimes such as Hadoop and Dryad.

 Handling large data sets using cloud technologies on cloud resources is an area that needs

more research. Most cloud technologies support the concept of moving computation to data

where the parallel tasks access data stored in local disks. Currently, it is not clear to us how this

approach would work well with the VM instances that are leased only for the duration of use. A

possible approach is to stage the original data in high performance parallel file systems or

Amazon S3 type storage services, and then move to the VMs each time they are leased to

perform computations.

 MPI applications that are sensitive to latencies experience moderate-to-higher overheads

when performed on cloud resources, and these overheads increase as the number of VMs per

bare-hardware node increases. For example, in Kmeans clustering, 1-VM per node shows a

minimum of 8% total overhead, while 8-VMs per node shows at least 22% overhead. In the case

of the Concurrent Wave Equation Solver, both these overheads are around 50%. Therefore, we

expect the CPU core assignment strategies such as ½ of a core per VM to produce very high

overheads for applications that are sensitive to latencies.

 Applications those are not susceptible to latencies, such as applications that perform large

data transfers and/or lower Communication/Computation ratios, show minimal total overheads in

both bare-metal and VM configurations. Therefore, we expect that the applications developed

using cloud technologies will work fine with cloud resources, because the milliseconds-to-

seconds latencies that they already have under the MapReduce model will not be affected by the

additional overheads introduced by the virtualization. This is also an area we are currently

investigating. We are also building applications (biological DNA sequencing) whose end to end

implementation from data processing to filtering (data-mioning) involves an integration of

MapReduce and MPI.

Acknowledgements

We would like to thank Joe Rinkovsky and Jenett Tillotson from IU UITS for their dedicated

support in setting up a private cloud infrastructure and helping us with various configurations

associated with our evaluations.

References

[1] Amazon Elastic Compute Cloud (EC2), http://aws.amazon.com/ec2/

[2] Amazon Simple Storage Service (S3), http://aws.amazon.com/s3/

[3] GoGrid Cloud Hosting, http://www.gogrid.com/

[4] ElasticHosts, http://www.elastichosts.com/

[5] K. Keahey, I. Foster, T. Freeman, and X. Zhang, “Virtual Workspaces: Achieving Quality of Service and

Quality of Life in the Grid,” Scientific Programming Journal, vol 13, No. 4, 2005, Special Issue: Dynamic Grids

and Worldwide Computing, pp. 265-276.

[6] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and D. Zagorodnov, “The

Eucalyptus Open-source Cloud-computing System,” CCGrid'09: the 9th IEEE International Symposium on

Cluster Computing and the Grid, Shanghai, China, 2009.

[7] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and A.Warfield, “Xen

and the art of virtualization,” In Proceedings of the Nineteenth ACM Symposium on Operating Systems

Principles (Bolton Landing, NY, USA, October 19 - 22, 2003). SOSP '03. ACM, New York, NY, 164-177.

DOI= http://doi.acm.org/10.1145/945445.945462

[8] Apache Hadoop, http://hadoop.apache.org/core/

[9] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: Distributed data-parallel programs from

sequential building blocks,” European Conference on Computer Systems, March 2007.

http://aws.amazon.com/ec2/
http://aws.amazon.com/s3/
http://www.gogrid.com/
http://www.elastichosts.com/
http://doi.acm.org/10.1145/945445.945462
http://hadoop.apache.org/core/

[10] J. Ekanayake and S. Pallickara, “MapReduce for Data Intensive Scientific Analysis,” Fourth IEEE International

Conference on eScience, 2008, pp.277-284.

[11] X. Huang and A. Madan, “CAP3: A DNA Sequence Assembly Program,” Genome Research, vol. 9, no. 9, pp.

868-877, 1999.

[12] J. B. MacQueen , “Some Methods for classification and Analysis of Multivariate Observations,” Proceedings

of 5-th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, University of California

Press, vol. 1, pp. 281-297.

[13] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large clusters,” ACM Commun., vol. 51,

Jan. 2008, pp. 107-113.

[14] MPI (Message Passing Interface), http://www-unix.mcs.anl.gov/mpi/

[15] J. Dongarra, A. Geist, R. Manchek, and V. Sunderam. “Integrated PVM framework supports heterogeneous

network computing,” Computers in Physics, 7(2):166–75, April 1993. 1.2.

[16] B. Lud¨ascher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger-Frank,M. Jones, E. Lee, J. Tao, and Y. Zhao,

“Scientific Workflow Management and the Kepler System,” Concurrency and Computation: Practice &

Experience, 2005.

[17] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M.R. Pocock, P. Li, and T. Oinn, “Taverna: a tool for building

and running workflows of services.” Nucleic Acids Research, 34(Web Server issue):W729, 2006.

[18] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, and M. Wilde, “Falkon: a Fast and Light-weight tasK executiON

framework,” In Proceedings of the 2007 ACM/IEEE Conference on Supercomputing (Reno, Nevada,

November 10 - 16, 2007). SC '07. ACM, New York, NY, 1-12. DOI=

http://doi.acm.org/10.1145/1362622.1362680

[19] S.Pallickara and M. Pierce, “SWARM: Scheduling Large-Scale Jobs over the Loosely-Coupled HPC Clusters,”

Fourth IEEE International Conference on eScience, pp.285-292, 2008.

[20] J. Frey, “Condor DAGMan: Handling Inter-Job Dependencies,” http://www.bo.infn.it/calcolo/condor/dagman/

[21] I. Foster, “The Anatomy of the Grid: Enabling Scalable Virtual Organizations,” In Proceedings of the 7th

international Euro-Par Conference Manchester on Parallel Processing (August 28 - 31, 2001).

[22] S. Ghemawat, H. Gobioff, and S. Leung, “The Google file system,” SIGOPS Oper. Syst. Rev. 37, 5 (Dec.

2003), 29-43. DOI= http://doi.acm.org/10.1145/1165389.945450

[23] S. Pallickara and G. Fox, “NaradaBrokering: A Distributed Middleware Framework and Architecture for

Enabling Durable Peer-to-Peer Grids,” Middleware 2003, pp. 41-61.

[24] Y.Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P. Gunda, and J. Currey, “DryadLINQ: A System for

General-Purpose Distributed Data-Parallel Computing Using a High-Level Language,” Symposium on

Operating System Design and Implementation (OSDI), San Diego, CA, December 8-10, 2008.

[25] Y. Gu and R. Grossman, “Sector and Sphere: The Design and Implementation of a High Performance Data

Cloud,” Philosophical Transactions A Special Issue associated with the 2008 UK e-Science All Hands Meeting

[26] C. Moretti, H. Bui, K. Hollingsworth, B. Rich, P. Flynn, D. Thain, “All-Pairs: An Abstraction for Data

Intensive Computing on Campus Grids,” IEEE Transactions on Parallel and Distributed Systems, 13 Mar. 2009.

[27] L. Youseff, R. Wolski, B. Gorda, and C. Krintz, “Evaluating the Performance Impact of Xen on MPI and

Process Execution For HPC Systems,” In Proceedings of the 2nd international Workshop on Virtualization

Technology in Distributed Computing (November 17 - 17, 2006). Virtualization Technology in Distributed

Computing. IEEE Computer Society, Washington, DC, 1. DOI= http://dx.doi.org/10.1109/VTDC.2006.4

[28] E. Constantinos and N. Hill, “Cloud Computing for parallel Scientific HPC Applications: Feasibility of

Running Coupled Atmosphere-Ocean Climate Models on Amazon's EC2,” Cloud Computing and Its

Applications, Chicago, IL,2008

[29] E. Walker, benchmarking Amazon EC2 for high-performance scientific computing,

http://www.usenix.org/publications/login/2008-10/openpdfs/walker.pdf

[30] A. Gavrilovska, S. Kumar, K. Raj, V. Gupta, R. Nathuji, A. Niranjan, and P. Saraiya, “High-Performance

Hypervisor Architectures: Virtualization in HPC Systems,” In 1st Workshop on System-level Virtualization for

High Performance Computing (HPCVirt 2007).

[31] G. Fox, S. Bae, J. Ekanayake, X. Qiu, and H. Yuan, “Parallel Data Mining from Multicore to Cloudy Grids,”

High Performance Computing and Grids workshop, 2008.

[32] S. Johnsson, T. Harris, and K. Mathur, “Matrix multiplication on the connection machine,” In Proceedings of

the 1989 ACM/IEEE Conference on Supercomputing (Reno, Nevada, United States, November 12 - 17, 1989).

Supercomputing '89. ACM, New York, NY, 326-332. DOI= http://doi.acm.org/10.1145/76263.76298

http://www-unix.mcs.anl.gov/mpi/
http://doi.acm.org/10.1145/1362622.1362680
http://www.bo.infn.it/calcolo/condor/dagman/
http://doi.acm.org/10.1145/1165389.945450
http://dx.doi.org/10.1109/VTDC.2006.4
http://www.usenix.org/publications/login/2008-10/openpdfs/walker.pdf
http://doi.acm.org/10.1145/76263.76298

