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Abstract 

  Infrastructure services (Infrastructure-as-a-service), provided by cloud venders, allow 

any user to provision a large number of compute instances fairly easily. Whether leased from 

public clouds or allocated from private clouds, utilizing these virtual resources to perform 

data/compute intensive analyses requires employing different parallel runtimes to implement 

such applications. Among many parallelizable problems, most “pleasingly parallel” 

applications can be performed using MapReduce technologies such as Hadoop, CGL-

MapReduce, and Dryad, in a fairly easy manner. However, many scientific applications, which 

require complex communication patterns, still require optimized runtimes such as MPI. We first 

discuss large scale data analysis using different MapReduce implementations and then, we 

present an performance analysis of high performance parallel applications on virtualized 

resources.  

1. Introduction 

The introduction of commercial cloud infrastructure services such as Amazon EC2/S3[1][2], 

GoGrid[3], and ElasticHosts[4] allow users to provision compute clusters fairly easily and 

quickly by paying a monetary value only for the duration of the usage of resources. The 

provisioning of resources happens in minutes as opposed to the hours and days required in the 

case of traditional queue-based job scheduling systems. In addition, the use of such virtualized 

resources allows the user to completely customize the Virtual Machine (VM) images and use 



them with root/administrative privileges, which is another feature that is hard to achieve with 

traditional infrastructures. 

The availability of open source cloud infrastructure software such as Nimbus [5] and 

Eucalyptus [6], and the open source virtualization software stacks such as Xen Hypervisor[7], 

allows organizations to build private clouds to improve the resource utilization of the available 

computation facilities. The possibility of dynamically provisioning additional resources by 

leasing from commercial cloud infrastructures makes the use of private clouds more promising. 

With all the above promising features of cloud, we can assume that the accessibility to 

computation power is no longer a barrier for the users who need to perform large scale 

data/compute intensive applications. However, to perform such computations, two major pre-

conditions need to be satisfied: (i) the application should be parallelizable to utilize the available 

resources; and (ii) there should be an appropriate parallel runtime to implement it. 

We have applied several cloud technologies such as Hadoop[8], Dryad[9], and CGL-

MapReduce[10], to various scientific applications wiz: (i) Cap3[11] data analysis; (ii) High 

Energy Physics(HEP) data analysis; (iii) Word Histogramming; (iv) Distributed Grep; (v) 

Kmeans clustering[12]; and, (vi) Matrix Multiplication. The streaming based MapReduce [13] 

runtime - CGL-MapReduce- developed by us extends the MapReduce model to iterative 

MapReduce domain as well. Our experience suggests that although most “pleasingly parallel” 

applications can be performed using cloud technologies such as Hadoop, CGL-MapReduce, and 

Dryad, in a fairly easy manner, scientific applications, which require complex communication 

patterns, still require more efficient runtimes such as MPI[14].  

In order to understand the performance implications of virtualized resources on MPI 

applications, we performed an extensive analysis using Eucalyptus based private cloud 

infrastructure. The use of a private cloud gives us complete control over both VMs and bare-

metal nodes, a feature that is impossible to achieve in commercial cloud infrastructures. It also 



assures a fixed network topology and bandwidth with the nodes deployed in the same 

geographical location, improving the reliability of our results. For this analysis, we used several 

MPI applications with different communication/computation characteristics, namely Matrix 

Multiplication, Kmeans Clustering, and Concurrent Wave Equation Solver and performed them 

on several VM configurations.  Instead of measuring individual characteristics such as 

bandwidth and latency using micro benchmarks we used real applications to understand the 

effect of virtualized resources for such applications, which makes our results unique.  

In the sections that follow, we first present the work related to our research followed by a 

brief introduction to the data analysis applications we used. Section 4 presents the results of our 

evaluations on cloud technologies and a discussion. In section 5, we discuss an approach with 

which to evaluate the performance implications of using virtualized resources for high 

performance parallel computing. Section 6 presents the results of this evaluation along with a 

discussion of the results. In the final section we give our conclusions and we discuss implications 

for future work. 

2. Related Work 

Traditionally, most parallel applications achieve fine grained parallelism using message 

passing infrastructures such as PVM [15] and MPI. Applications achieve coarse-grained 

parallelism using workflow frameworks such as Kepler [16] and Taverna [17], where the 

individual tasks could themselves be parallel applications written in MPI. Software systems such 

as Falkon [18], SWARM [19], and DAGMan [20] can be used to schedule applications which 

comprise of a collection of a large number of individual sub tasks. 

Once these applications are developed, in the traditional approach, they are executed on 

compute clusters, super computers, or Grid infrastructures [21].  In this approach, the focus on 

allocating resources is heavily biased by the availability of computational power. The application 



and the data both need to be moved to the available computational power in order for them to be 

executed. Although these infrastructure are highly efficient in performing compute intensive 

parallel applications, when the volumes of data accessed by an application increases, the overall 

efficiency decreases due to the inevitable data movement.  

Cloud technologies such as Google MapReduce, Google File System (GFS) [22], Hadoop 

and Hadoop Distributed File System (HDFS) [8], Microsoft Dryad, and CGL-MapReduce adopt 

a more data-centered approach to parallel runtimes. In these frameworks, the data is staged in 

data/compute nodes of clusters or large-scale data centers, such as in the case of Google. The 

computations move to the data in order to perform data processing.  Distributed file systems such 

as GFS and HDFS allow Google MapReduce and Hadoop to access data via distributed storage 

systems built on heterogeneous compute nodes, while Dryad and CGL-MapReduce support 

reading data from local disks.  The simplicity in the programming model enables better support 

for quality of services such as fault tolerance and monitoring. Table 1 highlights the features of 

three cloud technologies that we used.  

Table 1. Comparison of features supported by different cloud technologies 

Feature Hadoop Dryad CGL-MapReduce 

Programming 

Model 

MapReduce DAG based execution flows MapReduce with  

Combine phase 

Data Handling HDFS Shared directories/ Local 

disks 

Shared file system / Local 

disks 

Intermediate 

Data 

Communication 

HDFS/ 

Point-to-point via HTTP 

Files/TCP pipes/ Shared 

memory FIFO 

Content Distribution Network 

(NaradaBrokering [23]) 

Scheduling Data locality/ 

Rack aware  

Data locality/ Network 

topology based 

run time graph optimizations 

Data locality 

Failure Handling Persistence via HDFS 

Re-execution of map and 

reduce tasks 

Re-execution of vertices Currently not implemented 

(Re-executing map tasks, 

redundant reduce tasks) 

Monitoring Monitoring support of 

HDFS Monitoring 

MapReduce computations 

Monitoring  support for 

execution graphs 

Programming interface to 

monitor the progress of  jobs 

Language 

Support 

Implemented using Java 

Other languages are 

supported via Hadoop 

Streaming 

Programmable via C#  

DryadLINQ [24] provides 

LINQ programming API for 

Dryad 

Implemented using Java 

Other languages are 

supported via Java wrappers 

 



Y. Gu, et al., present Sphere [25] architecture, a framework which can be used to execute 

user-defined functions on data stored in a storage framework named Sector, in parallel. Sphere 

can also perform MapReduce style programs and the authors compare the performance with 

Hadoop for tera-sort application. Sphere stores intermediate data on files, and hence is 

susceptible to higher overheads for iterative applications. 

All-Paris [26]  is an abstraction that can be used to solve a common problem of comparing all 

the elements in a data set with all the elements in another data set by applying a given function. 

This problem can be implemented using typical MapReduce frameworks such as Hadoop, but the 

implementation will not be efficient, because all map tasks need to access all the elements of one 

of the data sets. We can develop an efficient iterative MapReduce implementation using CGL-

MapReduce to solve this problem. The algorithm is similar to the matrix multiplication algorithm 

we will explain in section 3.  

Lamia Youseff, et al., presents an evaluation on the performance impact of Xen on MPI [27]. 

According to their evaluations, the Xen does not impose considerable overheads for HPC 

applications.  However, our results indicate that the applications that are more sensitive to 

latencies (smaller messages, lower communication to computation ratios) experience higher 

overheads under virtualized resources, and this overhead increases as more and more VMs are 

deployed per hardware node. From their evaluations it is not clear how many VMs they deployed 

on the hardware nodes, or how many MPI processes were used in each VM. According to our 

results, these factors cause significant changes in results. Running 1-VM per hardware node 

produces a VM instance with a similar number of CPU cores as in a bare-metal node. However, 

our results indicate that, even in this approach, if the communication processes inside the node 

communicate via the network, the virtualization may produce higher overheads under the current 

VM architectures. 



C. Evangelinos and C. Hill discuss [28] the details of their analysis on the performance of 

HPC benchmarks on EC2 cloud infrastructure. One of the key observations noted in their paper 

is that both the OpenMPI and the MPICH2-nemsis show extremely large latencies, while the 

LAM MPI, the GridMPI, and the MPICH2-scok show smaller smoother latencies. However, they 

did not explain the reason for this behavior in the paper. We also observed similar characteristics 

and a detailed explanation of this behavior and related issues are given in section 5. 

Edward Walker presents benchmark results of performing HPC applications using “high 

CPU extra large” instances provided by EC2 and on a similar set of local hardware nodes [29]. 

The local nodes are connected using infiniband switches while Amazon EC2 network technology 

is unknown. The results indicate about 40%-1000% performance degradation on EC2 resources 

compared to the local cluster. Since the differences in operating systems and the compiler 

versions between VMs and bare-metal nodes may cause variations in results, for our analysis we 

used a cloud infrastructure that we have complete control. In addition we used exactly similar 

software environments in both VMs and bare-metal nodes. In our results, we noticed that 

applications that are more susceptible to latencies experience higher performance degradation 

(around 40%) under virtualized resources. The bandwidth does not seem to be a consideration in 

private cloud infrastructures. 

Ada Gavrilvska, et al., discuss several improvements over the current virtualization 

architectures to support HPC applications such as HPC hypervisors (sidecore) and self-

virtualized I/O devices [30] .  We notice the importance of such improvements and research. In 

our experimental results, we used hardware nodes with 8 cores and we deployed and tested up to 

8VMs per node in these systems. Our results show that the virtualization overhead increases with 

the number of VMs deployed on a hardware node. These characteristics will have a larger impact 

on systems having more CPU cores per node. A node with 32 cores running 32 VM instances 

may produce very large overheads under the current VM architectures. 



3. Data Analysis Applications 

The applications we implemented using cloud technologies can be categorized into three 

classes, depending on the communication topologies wiz: (i) Task parallel; (ii) MapReduce style; 

and (iii) Iterative/Complex Style. In our previous papers [10][31], we have presented details of 

MapReduce style applications and a Kmeans clustering application that we developed using 

cloud technologies, and the challenges we faced in developing these applications. Therefore, in 

this paper, we simply highlight the characteristics of these applications in table 2 and present the 

results. The two new applications that we developed, Cap3 and matrix multiplication, are 

explained in more detail in this section. 

Table 2. Task parallel and MapReduce style applications 

Application Class Task Parallel MapReduce style 

Program/data flow 
 

 
Cap3 Analysis application implemented as a 

map-only operation. Each map task 

processed a single input data file and 

produces a set of output data files. 

 

 
HEP data analysis application implemented 

using MapReduce programming model 

(ROOT is an object-oriented data analysis 

framework). 

More Examples Converting a collection of documents to 

different formats, processing a collection of 

medical images, and 

Brute force searches in cryptography 

Histogramming operations, 

distributed search, and distributed sorting. 

Applications used 

for the analysis 

Cap3 - a sequence assembly program that 

operates on a collection of gene sequence 

files 

HEP data analysis, Histogramming of words, 

and Distributed “grep” 

More information about these applications can 

be found in references [10][31].  

3.1. Cap3 

 Cap3 is a sequence assembly program that operates on a collection of gene sequence files 

which produce several output files. In parallel implementations, the input files are processed 

concurrently and the outputs are saved in a predefined location. For our analysis, we have 

implemented this application using Hadoop, CGL-MapReduce and Dryad.  



3.2. Iterative/Complex Style applications 

 Parallel applications implemented using message passing runtimes can utilize various 

communication constructs to build diverse communication topologies. For example, a matrix 

multiplication application that implements Cannon’s Algorithm [32] assumes parallel processes 

to be in a rectangular grid. Each parallel process in the gird communicates with its left and top 

neighbors as shown in Figure 1(left). The current cloud runtimes, which are based on data flow 

models such as MapReduce and Dryad, do not support this behavior, where the peer nodes 

communicate with each other. Therefore, implementing the above type of parallel applications 

using MapReduce or Dryad models requires adopting different algorithms.  

 We have implemented matrix multiplication applications using Hadoop and CGL-

MapReduce by adopting a row/column decomposition approach to split the matrices. To clarify 

our algorithm, let’s consider an example where two input matrices A and B produce matrix C, as 

the result of the multiplication process. We split the matrix B into a set of column blocks and the 

matrix A is split to a set of row blocks. In each iteration, all the map tasks consume two inputs: 

(i) a column block of matrix B, and (ii) a row block of matrix A; collectively, they produce a row 

block of the resultant matrix C. The column block associated with a particular map task is fixed 

throughout the computation while the row blocks are changed in each iteration. However, in 

Hadoop’s programming model (typical MapReduce model), there is no way to specify this 

behavior and hence, it loads both the column block and the row block in each iteration of the 

computation. CGL-MapReduce supports the notion of long running map/reduce tasks where 

these tasks are allowed to retain static data in memory across invocations, yielding better 

performance for iterative MapReduce computations. The communication pattern of this 

application is shown in Figure 1(right). 



 
 

 
 

Figure 1. Communication topology of matrix multiplication applications implemented using Cannon’s 
algorithm (left) and MapReduce programming model (right). 

4. Evaluations and Analysis 

 For our evaluations, we used two different compute clusters (details are shown in Table 3). 

Dryad applications are run on the Barcelona cluster while Hadoop, CGL-MapReduce, and MPI 

applications are run on the Gridfarm cluster. We measured the performance of these applications 

and then we calculated the overhead induced by different parallel runtimes using the following 

formula, in which P denotes the number of parallel processes (map tasks) used and T denotes 

time as a function of the number of parallel processes used. T(1) is the time it takes when the task 

is executed using a single process. The results of these analyses are shown in Figures 2 –7. 

    Overhead = [P * T(P) –T(1)]/T(1)    (1) 

Table 3. Different computation clusters used for the analyses 

Cluster Name # Nodes used CPU Memory Operating System 

Barcelona 4 2 x AMD Quad Core 

Opteron 8356,   2.3GHz 

16GB Windows Server 

HPC Edition  (Service Pack 1) 

Gridfarm 4 - 8 2 x Quad core Intel  

Xeon E5345, 2.3GHz 

8GB Red Hat Enterprise 

Linux 4 

 
Figure 2. Performance of the Cap3 application 

 
Figure 3. Performance of HEP data analysis 

applications 



 
Figure 4. Performance of the Word Histogramming 

applications 

 
Figure 5. Performance of the Distributed Grep 

applications 

 
Figure 6. Overhead induced by different parallel 

programming runtimes for the Kmeans Clustering 
application (Note: Both axes are in log scale) 

 
Figure 7. Overhead induced by different parallel 

programming runtimes for the matrix multiplication 
application (8 nodes are used) 

 

 From these results, it is clearly evident that the cloud runtimes perform competitively well 

for both the task parallel and the MapReduce style applications. However, for iterative and 

complex classes of applications, cloud runtimes show considerably high overheads compared to 

the MPI versions of the same applications, implying that, for these types of applications, we still 

need to use high performance parallel runtimes or use alternative approaches. (Note: The 

negative overheads observed in the matrix multiplication application are due to the better 

utilization of a cache by the parallel application than the single process version). CGL-

MapReduce shows a close performance to the MPI for large data sets in the case of Kmeans 

clustering and matrix multiplication applications, highlighting the benefits of supporting iterative 

computations and the faster data communication mechanism in the CGL-MapReduce. These 

observations lead us to the next phase of our research. 



5. Performance of MPI on Clouds 

 After the previous observations, we analyzed the performance implications of cloud for 

parallel applications implemented using MPI. Specifically, we were trying to find the overhead 

of virtualized resources, and understand how applications with different communication-to-

computation (C/C) ratios perform on cloud resources. We also evaluated different CPU core 

assignment strategies for VMs in order to understand the performance of VMs on multi-core 

nodes.  

Table 4. Computation and communication complexities of the different MPI applications used.  

Application Matrix multiplication Kmeans Clustering Concurrent Wave Equation 

Description Implements Cannon’s 

Algorithm  

 

Assume a rectangular 

process grid (Figure 1- 

left) 

Implements Kmeans Clustering 

Algorithm 

 

Fixed number of iterations are 

performed for each test 

A vibrating string is 

decomposed (split) into 

points, and each MPI 

process is responsible for 

updating the amplitude of a 

number of points over time. 

Grain size (n) Number of points in a 

matrix block handled by 

each MPI process 

Number of data points handled 

by a single MPI process 

Number of points handled 

by each MPI process 

Communication 

Pattern 

Each MPI process 

communicates with its 

neighbors in both row 

wise and column wise.  

All MPI processes send partial 

clusters to one MPI process 

(rank 0). Rank 0 distribute the 

new cluster centers to all the 

nodes 

In each iteration, each MPI 

process exchanges boundary 

points with its nearest 

neighbors. 

Computation per 

MPI process 
O(  𝑛 

3
) 𝑂 𝑛  𝑂 𝑛  

Communication 

per MPI process 
O(  𝑛 

2
) 𝑂 1  𝑂 1  

C/C 
O  

1

 𝑛
  𝑂  

1

𝑛
  𝑂  

1

𝑛
  

Message Size   𝑛 
2
= n 𝐷 – Where D is the number of 

cluster centers. 

𝐷 ≪ 𝑛 

Each message contains a 

double value 

Communication  

routines used 

MPI_Sendrecv_replace() MPI_Reduce() 

MPI_Bcast() 

MPI_Sendrecv() 

 Commercial cloud infrastructures do not allow users to access the bare hardware nodes, in 

which the VMs are deployed, a must-have requirement for our analysis. Therefore, we used a 

Eucalyptus-based cloud infrastructure deployed at our university for this analysis. With this 

cloud infrastructure, we have complete access to both virtual machine instances and the 

underlying bare-metal nodes, as well as the help of the administrators; as a result, we can deploy 



different VM configurations allocating different CPU cores to each VM. Therefore, we selected 

the above cloud infrastructure as our main test bed. 

 For our evaluations, we selected three MPI applications with different communication and 

computation requirements, namely, (i) the Matrix multiplication, (ii) Kmeans clustering, and (iii) 

the Concurrent Wave Equation solver. Table 4 highlights the key characteristics of the programs 

that we used for benchmarking. 

6. Benchmarks and Results 

 The Eucalyptus (version 1.4) infrastructure we used is deployed on 16 nodes of an iDataplex 

cluster, each of which has 2 Quad Core Intel Xeon processors (for a total of 8 CPU cores) and 32 

GB of memory. In the bare-metal version, each node runs a Red Hat Enterprise Linux Server 

release 5.2 (Tikanga) operating system. We used OpenMPI version 1.3.2 with gcc version 4.1.2. 

We then created a VM image from this hardware configuration, so that we have a similar 

software environment on the VMs once they are deployed. The virtualization is based on Xen 

hypervisor (version 3.0.3). Both bare-metal and virtualized resources utilize giga-bit Ethernet 

connections.  

Table 5. Different hardware/virtual machine configurations used for performance evaluations. 

Ref Description Number of CPU cores 

accessible to the virtual 

or bare-metal node 

Amount of memory (GB) 

accessible to the virtual or 

bare-metal node 

Number of virtual 

or bare-metal 

nodes deployed 

BM Bare-metal node 8 32 16 

1-VM-8-core 1 VM instance per 

bare-metal node 

8 30 (2GB is reserved for 

Dom0) 

16 

2-VM-4- core 2  VM instances per 

bare-metal node 

4 15 32 

4-VM-2-core 4 VM instances per 

bare-metal node 

2 7.5 64 

8-VM-1-core 8 VM instances per 

bare-metal node 

1 3.75 128 

 

 When VMs are deployed using Eucalyptus, it allows configuring the number of CPU cores 

assigned to each VM image. For example, with 8 core systems, the CPU core allocation per VM 

can range from 8 cores to 1 core per VM, resulting in several different CPU core assignment 



strategies. In Amazon EC2 infrastructure, the standard instance type has ½ a CPU per VM 

instance [28]. In the current version of Eucalyptus, the minimum number of cores that we can 

assign for a particular VM instance is 1; hence, we selected five CPU core assignment strategies 

(including the bare-metal test) listed in Table 5. 

 We ran all the MPI tests, on all 5 hardware/VM configurations, and measured the 

performance and calculated speed-ups and overheads. We calculated two types of overheads for 

each application using formula (1). The total overhead induced by the virtualization and the 

parallel processing is calculated using the bare-metal single process time as T(1) in the formula 

(1). The parallel overhead is calculated using the single process time from a corresponding VM 

as T(1) in formula (1). 

  In all the MPI tests we performed, we used the following invariant to select the number of 

parallel processes (MPI processes) for a given application. 

Number of MPI processes = Number of CPU cores used 

For example, for the matrix multiplication application, we used only half the number of nodes 

(bare-metal or VMs) available to us, so that we have 64 MPI processes = 64 CPU cores. (This is 

mainly because the matrix multiplication application expects the MPI processes to be in a square 

grid, in contrast to a rectangular grid). For Kmeans clustering, we used all the nodes, resulting in 

a total of 128 MPI processes utilizing all 128 CPU cores. Some of the results of our analysis 

highlighting different characterizes we observe are shown in Figures 8 through 15. 

For the matrix multiplication, the graphs show very close performance characteristics in 

all the different hardware/VM configurations. As we expected, the bare-metal has the best 

performance and the speedup values, compared to the VM configurations (apart from the region 

close to the matrix size of 4096x4096 where the VM perform better than the bare-metal. We 

have performed multiple tests at this point, and found that it is a due to cache performances of 

the bare-metal node). After the bare-metal, the next best performance and speed-ups are recorded 



in the case of 1-VM per bare-metal node configuration, in which the performance difference is 

mainly due to the overhead induced by the virtualization. However, as we increase the number of 

VMs per bare-metal node, the overhead increases. At the 81 processes, 8-VMs per node 

configuration shows about a 34% decrease in speed-up compared to the bare-metal results. 

 In Kmeans clustering, the effect of virtualized resources is much clearer than in the case of 

the matrix multiplication. All VM configurations show a lower performance compared to the 

bare-metal configuration. In this application, the amount of data transferred between MPI 

processes is extremely low compared to the amount of data processed by each MPI process, and 

also, in relation to the amount of computations performed. Figure 11 and Figure 13 show the 

total overhead and the parallel overhead for Kmeans clustering under different VM 

configurations. From these two calculations, we found that, for VM configurations, the 

overheads are extremely  

 
Figure 8. Performance of the matrix multiplication 

application (Number of MPI processes = 64) 

 
Figure 9. Speed-up of the matrix multiplication 

application (Matrix size = 5184x5184) 

 
Figure 10. Performance of Kmeans clustering 

(Number of MPI Processes = 128 ) 

 
Figure 11. Total overhead of the Kmeans clustering 

(Number of MPI Processes = 128 ) 



 
Figure 12. Speed-up of the Kmeans clustering 

(Number of data points  = 860160 ) 

 
Figure 13. Parallel overhead of the Kmeans 

clustering (Number of MPI Processes = 128 ) 

 
Figure 14. Performance of the Concurrent Wave 

Solver (Number of MPI Processes = 128 ) 

 
Figure 15. Total overhead of the Concurrent Wave 

Solver (Number of MPI Processes = 128 ) 

 

large for data set sizes of less than 10 million points, for which the bare-metal overhead remains 

less than 1 (<1 for all the cases).  For larger data sets such as 40 million points, all overheads 

reached less than 0.5. The slower speed-up of the VM configurations (shown in Figure 12) is due 

to the use of a smaller data set (~800K points) to calculate the speed-ups. The overheads are 

extremely large for this region of the data sizes, and hence, it resulted in lower speed-ups for the 

VMs.    

 Concurrent wave equation splits a number of points into a set of parallel processes, and each 

parallel process updates its portion of the points in some number of steps. An increase in the 

number of points increases the amount of the computations performed. Since we fixed the 

number of steps in which the points are updated, we obtained a constant amount of 

communication in all the test cases, resulting in a C/C ratio of O(1/n).  In this application also, 

the difference in performance between the VMs and the bare-metal version is clearer, and at the 

highest grain size the total overhead of 8-VMs per node is about 7 times higher than the 



overhead of the bare-metal configuration. The performance differences between the different 

VM configurations become smaller with the increase in grain size. 

 From the above experimental results, we can see that the applications with lower C/C ratios 

experience a slower performance in virtualized resources. When the amount of data transferred 

between MPI processes is large, as in the case of the matrix multiplication, the application is 

more susceptible to the bandwidth than the latency. From the performance results of the matrix 

multiplication, we can see that the virtualization has not affected the bandwidth considerably. 

However, all the other results show that the virtualization has caused considerable latencies for 

parallel applications, especially with smaller data transfer requirements. The effect on latency 

increases as we use more VMs in a bare-metal node.   

 According to the Xen para-virtualization architecture [7], domUs (VMs that run on top of 

Xen para-virtualization) are not capable of performing I/O operations by themselves. Instead, 

they communicate with dom0 (privileged OS) via an event channel (interrupts) and the shared 

memory, and then the dom0 performs the I/O operations on behalf of the domUs. Although the 

data is not copied between domUs and dom0, the dom0 needs to schedule the I/O operations on 

behalf of the domUs. Figure 16(left) and Figure 16 (right) shows this behavior in 1-VM per node 

and 8-VMs per node configurations we used. 

 
 

 

Figure 16. Communication between dom0 and domU when 1-VM per node is deployed (left). Communication 
between dom0 and domUs when 8-VMs per node are deployed (right). 

 



 In all the above parallel applications we tested, the timing figures measured correspond to the 

time for computation and communication inside the applications. Therefore, all the I/O 

operations performed by the applications are 

network-dependent. From Figure 16 (right), it is 

clear that Dom0 needs to handle 8 event 

channels when there are 8-VM instances 

deployed on a single bare-metal node. Although 

the 8 MPI processes run on a single bare-metal 

node, since they are in different virtualized 

resources, each of them can only communicate 

via Dom0. This explains the higher overhead in our results for 8-VMs per node configuration. 

The architecture reveals another important feature as well -  that is, in the case of 1-VM per node 

configuration, when multiple processes (MPI or other) that run in the same VM communicate 

with each other via the network, all the communications must be scheduled by the dom0 (dom0 

needs to service multiple interrupt channels.). This results higher latencies. We could verify this 

by running the above tests with LAM MPI (a predecessor of  OpenMPI, which does not have 

improved support for in-node communications for multi-core nodes). Our results indicate that, 

with LAM MPI, the worst performance for all the test occurred when 1-VM per node is used.  

For example, Figure 17 shows the performance of Kmeans clustering under bare-metal, 1-VM, 

and 8-VMs per node configurations. This observation suggests that, when using VMs with 

multiple CPUs allocated to each of them for parallel processing, it is better to utilize parallel 

runtimes, which have better support for in-node communication. 

 

Figure 17. LAM vs. OpenMPI (OMPI) under 

different VM configurations 
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7. Conclusions and Future Work 

 From all the experiments we have conducted and the results obtained, we can come to the 

following conclusions on performing parallel computing using cloud and cloud technologies. 

 Cloud technologies work well for most pleasingly-parallel problems. Their support for 

handling large data sets, the concept of moving computation to data, and the better quality of 

services provided such as fault tolerance and monitoring, simplify the implementation details of 

such problems over the traditional systems. 

 Applications with complex communication patterns observe higher overheads when 

implemented using cloud technologies, and even with large data sets, these overheads limit the 

usage of cloud technologies for such applications. 

 Enhanced MapReduce runtimes such as CGL-MapReduce allows iterative style applications 

to utilize the MapReduce programming model, while incurring minimal overheads compared to 

the other runtimes such as Hadoop and Dryad. 

 Handling large data sets using cloud technologies on cloud resources is an area that needs 

more research. Most cloud technologies support the concept of moving computation to data 

where the parallel tasks access data stored in local disks. Currently, it is not clear to us how this 

approach would work well with the VM instances that are leased only for the duration of use. A 

possible approach is to stage the original data in high performance parallel file systems or 

Amazon S3 type storage services, and then move to the VMs each time they are leased to 

perform computations.  

 MPI applications that are sensitive to latencies experience moderate-to-higher overheads 

when performed on cloud resources, and these overheads increase as the number of VMs per 

bare-hardware node increases. For example, in Kmeans clustering, 1-VM per node shows a 

minimum of 8% total overhead, while 8-VMs per node shows at least 22% overhead. In the case 

of the Concurrent Wave Equation Solver, both these overheads are around 50%. Therefore, we 



expect the CPU core assignment strategies such as ½ of a core per VM to produce very high 

overheads for applications that are sensitive to latencies.  

  Applications those are not susceptible to latencies, such as applications that perform large 

data transfers and/or lower Communication/Computation ratios, show minimal total overheads in 

both bare-metal and VM configurations. Therefore, we expect that the applications developed 

using cloud technologies will work fine with cloud resources, because the milliseconds-to-

seconds latencies that they already have under the MapReduce model will not be affected by the 

additional overheads introduced by the virtualization. This is also an area we are currently 

investigating. We are also building applications (biological DNA sequencing) whose end to end 

implementation from data processing to filtering (data-mioning) involves an integration of 

MapReduce and MPI. 
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