
On the Matching of Events in Distributed Brokering Systems
Shrideep Pallickara and Geoffrey Fox

{spallick,gcf}@indiana.edu
Community Grid Computing Laboratory, Indiana University

1.0 Introduction
The Internet is currently being used to support increasingly complex interactions. The devices, with which
applications and services need to interact, span a wide spectrum that includes desktops, PDAs, appliances, and other
networked resources. Forrester Research, a technology consultancy, predicts [1] that 14 billion such devices will be
connected to the Internet by 2010. Clients – which abstract users, resources and proxies thereto – within these
systems communicate with each other through the exchange of events, which are essentially messages with
timestamps. These events encapsulate information pertaining to transactions, data interchange, system conditions
and finally the search, discovery and subsequent sharing of resources. Clients have transient connection semantics
and are themselves originators of voluminous content. Scaling, availability and fault tolerance requirements entail
that the messaging infrastructure hosting these clients, and routing their interactions, be based on a distributed
network of cooperating nodes.

The processing and servicing of events is in itself a distributed problem that involves several nodes and the links that
connect them. As the scale of the system increases, effective interactions between clients and services, in these
settings, is dictated not just by the processing power of the nodes hosting a specific service but also by the network
cycles expended during these interactions. Events have internal or external (system computed) destinations
associated with them. In the case of search, discovery and publish/subscribe interactions, the system has to
efficiently calculate destinations from the corresponding events. This computing of destinations is referred to as
matching and is, in itself, a distributed process, which operates on the distributed management of client interests
(advertisements and subscriptions). The distributed nature of the underlying messaging infrastructure also mandates
an efficient routing engine.

We suggest that inefficient approaches to either the calculation of, or routing to, destinations can result in
unacceptable network degradations. Solutions that unintelligently forward all events to all participating nodes of the
underlying infrastructure are said to be flooding the network. Such solutions result in network and CPU cycles being
expended in the processing of events that should not have been routed to a node in the first place. Poor solutions to
network utilizations lead to buffer overflows, queuing delays, network clogging and other related problems that add
up considerably over a period of time. Straitjacketing clients by allowing a fixed set of accesses, preventing certain
types of interactions, limiting the type of content that is routed to them or even restricting accesses to a fixed number
of clients is not the solution. Although multicasting and bandwidth reservation protocols such as RSVP [2] and ST-
II [3] can help in better utilizing the network, they require support at the router level. More conceited effort is
needed at higher levels. There needs to be a conceited effort to ensure the efficient utilization of networks and
networked resources. Inefficient utilizations of the communal resource, in this case the underlying networks,
degrades the value of the resource for other applications/infrastructures that utilize this resource. The onus of
providing an efficient service that takes network conditions into account rests with the middleware.

More importantly, the underlying solution should support sophisticated search/discovery and matching of events
while allowing arbitrarily complex applications to be built upon these solutions. Resident matching engines need to
provide support for increasingly complex and sophisticated qualifiers, for specifying constraints, that events should
satisfy prior to being considered for delivery to applications.

In this paper we explore matching, routing and network utilization issues in the context of our research prototype
NaradaBrokering [4-12], which provides support for centralized, distributed and peer-to-peer (P2P) interactions
[13]. NaradaBrokering has been tested in synchronous and asynchronous applications, including as a media server
for audio-video conferencing. Depending on the type of interactions routed and the corresponding matching engines
supported, the underlying messaging infrastructure could be viewed either as a distributed light-weight relational or
XML database. We discuss the implications, and include results, pertaining to the different matching engines
supported within the NaradaBrokering system.

 1

mailto:gcf}@indiana.edu

2.0 Related Work

Different systems address the problem of event delivery to relevant clients in different ways. In Elvin [14] network
traffic reduction is accomplished through the use of quench expressions, which prevent clients from sending
notifications for which there are no consumers. This, however, entails each producer to be aware of all the
consumers and their subscriptions. [15] outlines a strategy to convert each subscription in Elvin into a deterministic
finite state automaton. This conversion, and the matching solutions, nevertheless can lead to an explosion in the
number of states. In Sienna [16] optimization strategies include assembling patterns of notifications as close as
possible to the publishers, while multicasting notifications as close as possible to the subscribers. In Gryphon [17]
each broker maintains a list of all subscriptions within the system in a parallel search tree (PST). The PST is
annotated with a trit vector encoding link routing information. These annotations are then used at matching time by a
server to determine which of its neighbors should receive that event. Approaches for exploiting group based
multicast for event delivery is discussed in [18].

The Event Service [19] approach adopted by the OMG is one of establishing channels and subsequently registering
suppliers and consumers to the event channels. The approach could entail clients (consumers) to be aware of a large
number of event channels. The Notification Service [20] addresses limitations pertaining to the lack of event
filtering capability and the inability to configure support for different qualities of service. However it attempts to
preserve all the semantics specified in Event Service while allowing for interoperability between clients from the
two services. TAO [21] is a real-time event service that extends the CORBA event service and provides for rate-
based event processing, and efficient filtering and correlation.

In some commercial JMS [22] implementations, events that conform to a certain topic are routed to the interested
clients with refinement in subtopics being made at the receiving client. This approach could thus expend network-
cycles, routing events to clients, where it would ultimately be discarded.

In the case of servers that route static content to clients such as Web pages, software downloads etc., some of these
servers have their content mirrored on servers at different geographic locations. Clients then access one of these
mirrored sites and retrieve information. This can lead to problems pertaining to bandwidth utilization and servicing
of requests, if large concentrations of clients access the wrong mirrored-site. In an approach sometimes referred to as
active-mirroring, websites powered by EdgeSuite [23] from Akamai, redirect their users to specialized Akamized
URLs. Based on the IP address associated with the request the client is then directed to the server farm that is closest
to its network point of origin. As the network load and server loads change clients could be redirected to other
servers.

The JXTA [24] (from juxtaposition) project at Sun Microsystems is a research effort to support large-scale P2P
infrastructures. P2P interactions are propagated by a simple forwarding by peers and specialized routers known as
rendezvous peers. These interactions are attenuated by having TTL (time-to-live) indicators and also by the peer
traces that eliminate the continuous echoing problem caused by traces in peer connectivity. Pastry [25] from
Microsoft incorporates a self-stabilizing infrastructure, which provides an efficient location and routing substrate for
wide-area P2P applications. Each node in Pastry has a 128-bit ID and Pastry routes messages to nodes whose Node-
Id is numerically closest to destination key contained in the message. Squirrel [26] uses this to implement a
distributed cache where resources are cached at the node that is numerically closest to the hash value of the resource.

3.0 Efficient Matching and Routing: Breaking the problem down
Efficient matching and routing of events that builds on solutions to the multiple and sometimes interrelated issues
that comprise it. In this section we proceed to outline these issues with subsequent sections discussing each issue in
more detail. The smallest unit of the underlying messaging infrastructure should be able to intelligently process and
route events, while working with multiple underlying communication protocols. We refer to this unit as a broker,
where we avoid the use of the term servers to distinguish it clearly from the application servers that would be among
the sources/sinks to messages generated within the system.

Efficient organization of brokers is important as it forms an important part of the solution. Routing algorithms, when
they are presented with a set of destinations, need to compute paths to reach those destinations. Efficient solutions

 2

usually operate on broker network maps (BNMs), stored at every broker node, which essentially provide a snapshot
of the underlying infrastructure. Another competing requirement is the ability of the broker network to adapt to
failures that might take place within the system. Inefficient broker organizations can lead to topologies that are
susceptible to network partitions upon node failures.

The problem of matching events comprises the related problems of organizing constraints and efficiently matching
events against these constraints to compute destinations. The specified constraints could be arbitrarily complex, and
depending on the application, content and type of the events (and the interactions they encapsulate) that are
supported there needs to be multiple matching engines residing within the system.

Then, there is the routing of events to their destinations. This should be done without the need to resort to flooding
the broker network, while being able to adapt to the ever changing conditions that exist within a distributed system.
Routing decisions, and the routes that need to be taken, are based on the perceived state of the network. A routing
solution should be able to factor in network conditions such as failed links and nodes, clogged links, slow nodes
while making decisions on routes to be taken to reach destinations. Another important factor is the ability to deploy
the right transports for the most efficient communications for e.g. using UDP while routing video packets.

4.0 Topology
To address the issues [11] of scaling, load balancing and failure resiliency, NaradaBrokering is implemented on a
network of cooperating brokers.

SSC-A
 SC-1

SC-2

SC-3

l
13 14

15

n
20

21

i4 5
6

j
7 8

9

m16 17

18

k10 11
12

h1 2
3

19

k

10 11

12

SP

SP
SP

SP
SP

11a
10a

12a

EC EC

1, 10 Super-super-cluster
controller

5, 9, 10, 16 Super-cluster controller
2,4, 6,8, 12,14,18,20 Cluster controller

Broker Node

Service Provider

End Client

Figure 1:An example of a NaradaBrokering broker network sub-section managing gridlet realms.

In NaradaBrokering we impose a hierarchical structure on the broker network, where a broker is part of a cluster that
is part of a super-cluster, which in turn is part of a super-super-cluster and so on. Figure 1 depicts a sub-system

 3

comprising of a super-super-cluster SSC-A with 3 super-clusters SC-1, SC-2 and SC-3 each of which have
clusters that in turn are comprised of broker nodes. Clusters comprise strongly connected brokers with multiple links
to brokers in other clusters, ensuring alternate communication routes during failures. This organization scheme
results in “small world networks” [27,28] where the average communication pathlengths between brokers increase
logarithmically with geometric increases in network size, as opposed to exponential increases in uncontrolled
settings. This distributed cluster architecture allows NaradaBrokering to support large heterogeneous client
configurations that scale to arbitrary size. Within every unit (cluster, super-cluster and so on), there is at least one
unit-controller, which provides a gateway to nodes in other units. For example in figure 1, cluster controller node 20
provides a gateway to nodes in cluster m. Creation of broker network maps (BNMs) and the detection of network
partitions are easily achieved in this topology.

4.1 The Broker Network Map (BNM)
A broker needs to be aware of the broker network layout to optimize routing to destinations. However, given the
potential size of the broker network, it is impractical for any broker to be aware of the complete broker network
inter-connection scheme. What is required is an abstract view of the broker network, while still being able to ensure
the calculation of optimal paths for communication within the system. This information is encapsulated within the
BNM. The information encapsulated within the BNM provides information regarding the inter-connections between
the brokers in the cluster that it is a part of, the interconnections between the clusters within the super-cluster that it
belongs to and so on. The BNM maintained at each broker node is different, while still providing a consistent view
of the system interconnections.

SSC-A
SC-1

SC-2

SC-3

e

g

c4 5
6

b

f

d

a

SSC-BSC-4

SC-5

SC-6

l

n

i

j

m

k

h

SSC-C

SC-7

SC-8

SC-9

s

u

o

q

t

r

p

SSC-D

SC-11
y

z

SC-10
w

x

v

Figure 2: An example broker network

Changes to the broker network fabric are propagated only to those brokers that have their broker network view
altered. BNMs at each node need to be updated in response to the receipt of information pertaining to the creation

 4

of connections between brokers/units. Dissemination constraints are imposed on the propagation of connection
information outside a given unit. For example information regarding connections within a cluster should not be
propagated outside the cluster. This connection information is also modified as it is being propagated through certain
sections of the broker network. Thus, in figure 2 the connection between SC-2 and SC-1 in SSC-A, is disseminated
as one between node 5 and SC-2. When this information is received at 4, it is sent over as a connection between the
cluster c and SC-2. When the connection between cluster c and SC-2 is sent over the cluster gateway to cluster b,
the information is not updated. Conforming to the dissemination constraints, the super cluster connection (SC-
1,SC-2) information is disseminated only within the super-super-cluster SSC-A and is not sent over the super-
super-cluster gateway available within the cluster a in SC-1 and cluster g in SC-3.

6

SC-2

SSC-B

ba

54

SSC-CSSC-D

SC-3

6 (2)

4

6

5

4
3

2
1

0 0

2

level-0

level-1

level-2

level-3

SSC-A.SC-1.c.6

Figure 3: The Broker Network Map at node 6

Figure 3 depicts the BNM at node 6. We augment the BNM hosted at individual brokers to reflect the cost
associated with traversal over connections, for example intra-cluster communications are faster than inter-cluster
communications. This cost can be dynamically updated to reflect changes in link behavior with the passage of time.
The BNM can now be used not only to compute valid paths but also for computing shortest paths.

5.0 Organization and Propagation of Profiles
Profiles signify an interest in events conforming to a certain template. Profiles also include a constraint that events
need to satisfy, before being considered for routing to a client. This is generally referred to as a subscription.
Constraint complexity can vary from character-string based topic matching to a sophisticated SQL or XPath query.
Individual profiles can also include information pertaining to the device type – processing capability, and security
related information that would sometimes be needed for the matching process. Every profile has a unique ID
associated with it which plays an important role in the management – addition and removal – of profiles.

Profile organizations and propagations are inter-related issues, which need to exploit the topology, and the
organization of units and controllers within the system. The organization of profiles needs to be such that it reduces
the number of matching steps that need to be performed. Propagations need to be sophisticated enough to ensure that
profiles are propagated only to relevant nodes within the system.

Another factor that is equally important is the removal of profiles from propagation trees. This is done sometimes
based on a explicit removal propagation initiated by a client and also depending on the loss of connection to a
certain client. In either case the issue is an important one to ensure that network and CPU cycles are not expended
while trying to reach destinations that are not truly interested in the event in the first place. While dealing with
clients with transient connection semantics, a loss in connection could be detected and the profiles associated with
the client need to be scheduled for removal. In the case of TCP, a loss in socket connection can be easily detected. In
the case of UDP communications, a ping/reply scheme can be incorporated to detect the client’s digital presence.

 5

Every profile has an associated destination, which is updated depending on its propagation within the system. A
profile is propagated to unit controllers, and the destination associated with the profile during its storage at the unit
controller is that of the sub-unit controller that propagated it. Thus, when a profile is propagated by a client to the
broker it is connected to, the broker propagates the profile to its cluster controller with the broker as the destination.
The cluster controller in turn propagates the profile to the super-cluster controller with itself as the destination. By
controlling the propagations of profiles, a client can control how localized its matched events would be.

The hierarchical propagation of profiles – resulting in a broker maintaining profiles of all attached clients, cluster-
controllers maintaining profiles of all brokers within that cluster and so on – ensures that when an event is routed to
a unit, there is at least one final destination within that unit. The scheme also ensures that a matching event is routed
to every valid destination without exception.

6.0 Routing Events to Destinations
Event routing is the process of disseminating events to relevant clients. This includes matching the content,
computing the destinations and routing the content along to its relevant destinations by determining the next broker
node that the event must be relayed to. As an event flows through the system, via unit controllers, the associated
trace is modified to snapshot the event’s dissemination within the broker network. These routing traces indicate –
and can be used to verify – an event’s dissemination within various parts of the broker network. Routing decisions
are made on the basis of this trace information and the computed destinations.

Computed Destinations

Event Headers and Payload Computed
Destinations

Distribution
Traces

Super
Cluster Clusters Brokers

Figure 4: Event destinations and traces

The matching process at a unit-controller computes sub-unit destinations, which are valid only within that unit.
Figure 4 shows the destinations associated with an event in a system comprising of super-super-clusters. From the
stored BNMs at each node, individual unit-controllers compute the best routes to reach units contained in the
destinations. When an event arrives at a unit-controller, prior to being sent over the link to another unit, the sub-unit
destinations associated with the event is invalidated. Thus, broker destinations computed by a cluster controller are
valid only within that cluster and are cleared prior to routing the event to another cluster.

Before an event is sent over a link to another unit, unit-controllers analyze the trace information to ensure that the
event is not routed to a unit, where the event has already been routed. At every node the best hops to reach the
destinations are computed. Nodes and links that have not been failure suspected are the only entities that can be part
of the shortest path. Thus, at every node the best decision is taken based on the current state of the network fabric.

7.0 Experimental Results
Figures 6 and 7 illustrate some results from our initial research where we studied the message delivery time as a
function of load. The results are from a system comprising 22 broker processes and 102 clients in the topology
outlined in Figure 5. Each broker node process is hosted on 1 physical Sun SPARC Ultra-5 machine (128 MB RAM,
333 MHz), with no SPARC Ultra-5 machine hosting two or more broker node processes. The publisher and the
measuring subscriber reside on the same SPARC Ultra-5 machine. In addition to this there are 100 subscribing
client processes, with 5 client processes attached to every other broker node (broker nodes 22 and 21 do not have

 6

any other clients besides the publisher and measuring subscriber
respectively) within the system. The 100 client node processes
all reside on a SPARC Ultra-60 (512 MB RAM, 360 MHz)
machine. The run-time environment for all the broker node and
client processes is Solaris JVM (JDK 1.2.1, native threads, JIT).
We measure the latencies at the client under varying conditions
of publish rates, event sizes and matching rates. In most systems
where events are continually generated, a “typical” client is
generally interested in only a small subset of these events. This
behavior is captured in the matching rate for a given client.
Varying the matching rates allows us to perform measurements
under conditions of varying selectivity. The 100% case
corresponds to systems that would flood the broker network. In
systems that resort to flooding (routing a message to every router
node) the system performance does not vary with changes in the
match rate. Furthermore, in most cases a given message would
only be routed to a small set of targeted client nodes. In
NaradaBrokering, as the results clearly demonstrate, the system
performance improves significantly with increasing selectivity
from subscribers. We also found that the distributed network
scaled well with adequate latency unless the system became saturate

i4 5
6 l

13 14
15

j7 8
9

h
1 2

3

k10 11
12

m
16 17

18

n
20

21
19

22

Measuring
Subscriber

Publisher

Transit Delays under different matching rates:22 Brokers 102 Clients
Match Rate=100%
Match Rate=50%
Match Rate=25%

0 100 200 300 400 500 600 700Publish Rate
 (Events/sec) 0 50100150200250300350400450500

Event Size
 (Bytes)

0
50

100
150
200
250
300
350
400
450

Transit Delay
 (MilliSeconds)

Figure 6: NaradaBrokering Performance at match rates of

100%, 50% and 25%

Transit De

0

0
20
40
60
80

100
120
140
160

Transit
 (MilliSe

Figure 7

8.0 The Matching Engine
The matching engine is responsible for computing destinations a
available at a node. Depending on the type of applications, stand
supported there would be multiple matching engines residing within

For several reasons we limit the number of sub-units within a un
position in a 32-bit vector, in a system comprising of super
32x32x32x32=1,048,576 nodes) can be uniquely represented by 1
compact representation for distribution traces and computed destinat

The implications of the representation, and the upper-bound on sub
computing destinations efficiently. Individual profiles have destin
maintains profiles with sub-unit destinations. The number of
progressively increases depending on whether the controller in ques

Figure 5: The NaradaBrokering Test Topology
d at very high publish rates.

lays under different matching rates:22 Brokers 102 Clients
Match Rate=50%
Match Rate=33%
Match Rate=10%

100 200 300 400 500 600 700Publish Rate
 (Events/sec) 0 50100150200250300350400450500

Event Size
 (Bytes)

Delay
conds)

: NaradaBrokering Performance at match rates of

50%, 33% and 10%

ssociated with an event based on the profiles
ards, events and subscriptions that need to be

 every processing broker node.

it to 32. By assigning each sub-unit a unique
-super-clusters, any node (out of a possible
28-bits (4 integers). This also provides a rather
ions associated with various interactions.

-units, are even more powerful in the context of
ations associated with them. A unit-controller
profiles that are maintained at a controller
tion is a broker, cluster-controller, super-cluster

7

controller and so on. A unit-controller computes sub-unit destinations, and the destinations that are associated with
the stored profiles are also sub-unit destinations.

Once a profile is successfully matched to an event, the destination associated with the profile is added to the
computed destination. When other profiles are being matched against the event, a check is made to see if the
destination associated with the profile is already in the list of computed destinations (a bit-wise AND operation
yields a non-zero value if it is). If it is, the matching process is suspended for this profile, since it would yield a
destination that already exists in the computed destinations. If the destination contained in the profile is a different
one, the profile is matched with the event. If there is a match the associated destination is added (a bitwise OR
operation) to the computed destination list. This scheme substantially reduces the number of matching operations
that need to be performed.

A similar strategy is employed by brokers matching events to attached clients. Of course in this case there is no limit
on the number of clients that can be attached to a broker and the number of matching operations that need to be
performed is not reduced as substantially as in the controller cases.

8.1 The Assortment of matching engines
In this section we go discuss the various matching engines residing in NaradaBrokering.

8.1.1 String based matching
This matching is based upon the generalized topic-based publish/subscribe paradigm. Events issued provide
information regarding the topic that they were issued to. Client profiles include a subscription to a topic. If the topic
contained in the event is the same as the topic contained in the profile, the event is said to match the profile. This is a
powerful model and several sophisticated applications can be built using this generalized publish/subscribe model.

Some systems incorporate a hierarchical approach to topic matching where a subscription to a topic, say Sports,
translates into subscriptions to all sub-topics, say Sports/NBA, Sports/Soccer/UEFA. This approach is not
supported in NaradaBrokering where the message-based security scheme [29] would have resulted in overheads
pertaining to topic-key distributions when a new sub-topic is created. Compromise of topic keys at one user would
then have resulted in key invalidations of all sub-topic keys that were routed to the user.

8.1.2 String based matched coupled with SQL-like queries on properties
Events (or messages) may also include properties, which are used to further describe the content contained in the
event’s payload. Clients can thus also incorporate a second level of refinement for the events they are interested in.
This two layer refinement scheme has the advantage that the first constraint, which is identical to the string-based
topic matching scenario that we outlined earlier, substantially reduces the number of events on which the second
refinement needs to be applied. This is important since the second level of refinement is far more complex and CPU-
intensive than the first one.

The JMS specification incorporates this strategy, with the refinement syntax being based on a subset of the SQL92
conditional expression syntax. If the value of a refinement is an empty string, it indicates that there no refinement is
specified and the case reduces to the topic based publish/subscribe outlined above.

8.1.3 Topics that are based on tag=value pairs
This matching engine incorporated into NaradaBrokering, is based on the equality-based generalized matching
algorithm presented in [30]. Topics in this case comprise of equality constraints imposed on a set of successive
attributes as a sequence of “,” separated <tag, value> pairs. The constraint in this case is the specification of a value
that a particular attribute (tag) can take. Also allowed is the weakest constraint, denoted *, which encompasses all
values. In this case subscribing to a topic Make=Ford,Model=*,Color=Red matches events with topic
Make=Ford,Model=Taurus,Color=Red and also Make=Ford,Model=Mustang,Color=Red. Depending on the
number of <tag,values> specified and the tag (and number of tags) at which the constraint * is specified the
complexity of the matching process increases.

8.1.4 Integer based matching
In one of our earliest attempts [10] we provided support for audio/video conferencing by encapsulating RTP packets
in events, with the topic identifier being a String based meeting-ID. This had a couple of drawbacks. First, String

 8

based representations added a byte-per-character of the meeting-ID in the serialized representation of the event.
Second, we sought to reduce the overhead associated with string based matching. The solutions to these issues was
to have a unique integer as the meeting-ID, the serialized representation of which was always 4 bytes while
significantly reducing the corresponding matching times. The time saving based on this approach accumulate over a
period of time resulting in substantial gains in response times as well as network utilizations.

8.1.5 XML based matching with XPath queries
NaradaBrokering also incorporates support for XPath based specification of constraints on XML events. XPath [31]
is a query language that searches for, locates, and identifies parts of an XML document. In this case there is no hint
such as “topic” contained in the XML event and the query needs to be matched with the entire XML event.

8.2 Profiling the Matching Engines
We now provide some results pertaining to the matching engines that were outlined in the earlier section. These
results (Figures 8 through 12) are for stand-alone processes, where we computed the matching times as a function of
the number of subscriptions maintained. In each case, an event is matched to retrieve every matching subscription.
For every matching engine, the number of subscriptions is varied from 10,000 to 100,000. The results were
measured on a machine (1GHz,256MB RAM) running the process in a Java-1.4 Sun VM with a high-resolution
timer for computing delays. The richer the constraints, the greater the CPU-cost associated with the matching
process.

Figure 8: Plots for Integer matching

Figure 9: Plot for String based topic matching

6

7

8

9

10

11

12

10 20 30 40 50 60 70 80 90 100

D
el

ay
 (

M
ic

ro
se

co
nd

s)

Number of subscriptions (in thousands) being matched

 Average delay to match event to subscriptions with
 Integer-based Matching

 Delay

6

7

8

9

10

11

12

13

10 20 30 40 50 60 70 80 90 100

D
el

ay
 (

M
ic

ro
se

co
nd

s)

Number of subscriptions (in thousands) being matched

Average delay to match event with String-based Matching
for subscriptions with different sizes

String size=16
String size=24
String size=32

Figure 10: Plots for tag=value based Matching

Figure 11: Plots for SQL-query based matching

17

18

19

20

21

22

23

10 20 30 40 50 60 70 80 90 100

D
el

ay
 (

M
ic

ro
se

co
nd

s)

Number of subscriptions (in thousands) being matched

Average delay to match event with <tag,value> Matching
 for subscriptions with varying number of <tag,value> pairs

Pairs=5
Pairs=10
Pairs=25

0

2

4

6

8

10

12

14

10 20 30 40 50 60 70 80 90 100

D
el

ay
 (

Se
co

nd
s)

Number of subscriptions (in thousands) being matched

Average delay to match event to SQL-based subscriptions

 Delay

 9

Figure 12: Plots for XPath query based matching

0

10

20

30

40

50

60

70

10 20 30 40 50 60 70 80 90 100

D
el

ay
 (

Se
co

nd
s)

Number of subscriptions (in thousands) being matched

Average delay to match event to XPath-based subscriptions

 Delay

8.3 Implications of query based matching engines
The Query-based engines are suitable for discovery based services. While providing support for profiles with SQL-
like query based refinements and XPath query based profiles, the system can be viewed as a lightweight, distributed
relational and XML database respectively. This is the case, since as far as the end-user is concerned, the matched
event might as well have been stored in a database (relational or XML, as the case might be) and the results returned
(matching events) would not have been different.

Clients in the system can advertise their services in an XML schema or schema that can be queried by an SQL
query. These advertisements would be stored in the same way that the profiles are stored within the system. Events
propagated by interested clients would essentially be either XPath or SQL-like queries. These events would then be
matched against the stored advertisements with the matching ones being routed back to the initiating client. The
query events can specify the realms within which the query’s propagation might take place, thus allowing individual
entities to control how localized their services can be.

9.0 Future work
P2P search mechanisms employ strategies different from those discussed above. NaradaBrokering’s support for P2P
interactions can be found in [7]. Combining P2P search mechanisms initiated by peers on the edge of the network
with the schemes outlined in earlier sections, could manage the transient nature of dynamic services rather well.
Research in this area and resource management would be of considerable interest. Managing interactions between
Web/Grid services generated dynamically when complex tasks are initiated is another area of research.

Incorporating some of the security related information (SAML [32] style authorizations) into the profiles themselves
would allow us to be even more selective of the events being routed to entities.

10.0 Conclusion
The matching problem is a sufficiently difficult and important problem, which needs to be addressed within the
messaging infrastructure that supports the applications, and accompanying interactions, between entities. The
problem will continue to evolve as entities continue to interact in increasingly complex ways. In this paper we
discussed issues, and strategies, to support efficient matching of events. Based on the kind of applications that the
system is trying to support, optimized engines that employ optimistic delivery techniques (based on routing behavior
of past events) could also be deployed.

 10

References
1. The X Internet TechStrategy Report, May 2001 by Carl D. Howe with George F. Colony, Bill Doyle, Christopher Voce,

Rebecca Shuman.
2. Zhang, L. et al. “ReSource ReserVation Protocol (RSVP) – Functional Specification”, Internet Draft, March 1994.
3. Topolcic, C., “Experimental Internet Stream Protocol: Version 2 (ST-II)”, Internet RFC 1190, October 1990.
4. The NaradaBrokering System http://www.naradabrokering.org
5. NaradaBrokering: An Event Based Infrastructure for Building Scaleable Durable Peer-to-Peer Grids. Geoffrey Fox and

Shrideep Pallickara. Chapter 22 of "Grid Computing: Making the Global Infrastructure a Reality". John Wiley April’03.
6. The Narada Event Brokering System: Overview and Extensions. Geoffrey Fox and Shrideep Pallickara. Proceedings of the

International Conference on Parallel and Distributed Processing Techniques and Applications, June 2002. pp 353-359.
7. A Scaleable Event Infrastructure for Peer to Peer Grids. Geoffrey Fox, Shrideep Pallickara and Xi Rao. Proceedings of

ACM Java Grande ISCOPE Conference 2002. Seattle, Washington. November 2002.
8. “JMS Compliance in the Narada Event Brokering System.” Geoffrey Fox and Shrideep Pallickara. Proceedings of the

International Conference on Internet Computing (IC-02). June 2002. pp 391-402.
9. Grid Services for Earthquake Science. Fox et al. Concurrency & Computation: Practice & Experience.14(6-7):371-393.
10. “Integration of NaradaBrokering and Audio/Video Conferencing as a Web Service”. Hasan Bulut, Geoffrey Fox, Shrideep

Pallickara, Ahmet Uyar and Wenjun Wu. Proceedings of the IASTED International Conference on Communications,
Internet, and Information Technology, November, 2002, in St.Thomas, US Virgin Islands.

11. “An Approach to High Performance Distributed Web Brokering”. Fox and Pallickara, ACM Ubiquity 2:38. Nov 2001.
12. An Event Service to Support Grid Computational Environments Geoffrey Fox and Shrideep Pallickara. Journal of

Concurrency and Computation: Practice & Experience. Volume 14(13-15) pp 1097-1129.
13. Peer-to-Peer: Harnessing the Benefits of a Disruptive Technology. Edited by Andy Oram. O’Rielly Press, CA. March 2001.
14. Bill Segall and David Arnold. Elvin has left the building: A publish/subscribe noti.cation service with quenching. In

Proceedings AUUG97, pages 243–255, Canberra, Australia, September 1997.
15. Bill Segall, David Arnold, Julian Boot, Michael Henderson, and Ted Phelps. Content based routing with elvin4. In

Proceedings AUUG2K, Canberra, Australia, June 2000.
16. Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Achieving scalability and expressiveness in an internet-

scale event notification service. In Proceedings of the 19th ACM Symposium on Principles of Distributed Computing, pages
219–227, Portland OR, USA, 2000.

17. Gurudutt Banavar, Tushar Chandra, Bodhi Mukherjee, Jay Nagarajarao, Rob Strom, and Daniel Sturman. An Efficient
Multicast Protocol for Content-Based Publish-Subscribe Systems. In Proceedings of the IEEE International Conference on
Distributed Computing Systems, Austin, Texas, May 1999.

18. Lukasz Opyrchal et. al. Exploiting IP Multicast in Content-Based Publish-Subscribe Systems. Middleware 2000: 185-207
19. The Object Management Group (OMG). OMG’s CORBA Event Service. Available from http://www.omg.org/
20. The Object Management Group (OMG). OMG’s CORBA Notification Service. Available from http://www.omg.org/
21. T.H. Harrison, D.L. Levine and D.C. Schmidt. The design and performance of a real-time CORBA object event service.

Proceedings of the OOPSLA'97. Atlanta, GA.
22. Java Message Service Specification”. Mark Happner, Rich Burridge and Rahul Sharma. Sun Microsystems. 2000.

http://java.sun.com/products/jms.
23. Akamai Corporation. EdgeSuite: Content Delivery Services . Technical report, URL: http://www.akamai.com/.
24. Sun Microsystems. The JXTA Project and Peer-to-Peer Technology http://www.jxta.org
25. Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object location and routing for large-scale peer-to-peer

systems. Proceedings of Middleware 2001.
26. Squirrel: A decentralized peer-to-peer web cache. ACM PODC 2002.
27. “Collective Dynamics of Small-World Networks”. D.J. Watts and S.H. Strogatz. Nature. 393:440. 1998.
28. “Diameter of the World Wide Web”. R. Albert, H. Jeong and A. Barabasi. Nature 401:130. 1999.
29. A Security Framework for Distributed Brokering Systems. Shrideep Pallickara, Marlon Pierce, Geoffrey Fox, Yan Yan, Yi

Huang. Available from Project URL.
30. Marcos Aguilera, Rob Strom, Daniel Sturman, Mark Astley, and Tushar Chandra. Matching events in a content-based

subscription system. In Proceedings of the 18th ACM Symposium on Principles of Distributed Computing, May 1999.
31. XML Path Language (XPath). Version 1.0. W3C Recommendation. Available from http://www.w3.org/TR/xpath .
32. “Assertions and Protocol for the OASIS Security Assertion Markup Language,” P. Hallam-Baker and E. Maler, eds.

Available from http://www.oasis-open.org/ committees/security/docs/ cs-sstc-core-01.pdf.

 11

http://www.naradabrokering.org/
http://www.omg.org/
http://www.omg.org/
http://java.sun.com/products/jms
http://www.jxta.org/
http://www.w3.org/TR/xpath

	1.0 Introduction
	2.0 Related Work
	3.0 Efficient Matching and Routing: Breaking the problem down
	4.0 Topology
	4.1 The Broker Network Map (BNM)

	5.0 Organization and Propagation of Profiles
	6.0 Routing Events to Destinations
	7.0 Experimental Results

	8.0 The Matching Engine
	8.1 The Assortment of matching engines
	8.1.1 String based matching
	8.1.2 String based matched coupled with SQL-like queries on properties
	8.1.3 Topics that are based on tag=value pairs
	8.1.4 Integer based matching
	8.1.5 XML based matching with XPath queries

	8.2 Profiling the Matching Engines
	8.3 Implications of query based matching engines

	9.0 Future work
	10.0 Conclusion
	References

