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Abstract 

Mobile systems, such as smartphones, are becoming the primary platform of choice for user’s computational needs. 

However, mobile device still suffer with limited resources, such as battery life and process performance. To alleviate 

these limitations, a popular approach used in mobile cloud computing is computation offloading, where resource-

intensive mobile components are offloaded to more resourceful cloud servers. Prior researches in this area have 

focused on form of offloading where only a single server is considered as offloading site. Since we have an 

environment where mobile devices access multiple cloud providers, it is possible for mobiles to save more energy 

by offloading energy-intensive components to multiple cloud servers. This paper differentiates the data and 

computational intensive components of an application and performs a multisite offloading in a data and process-

centric manners. In this paper, we present a novel model to describe the energy consumption of a multisite 

application execution and use the discrete time Markov chain (DTMC) to model the fading wireless channel of 

mobiles. We adopt Markov decision process (MDP) framework to formulate the multisite partitioning problem as a 

delay-constrained least-cost shortest path problem on a state transition graph. Our proposed Energy-efficient 

Multisite Offloading Policy (EMOP) algorithm that built on the value iteration algorithm finds the optimal solution 

to the multisite partitioning problem. The numerical simulations result shows that our algorithm considers the 

different capabilities sites to assign appropriate components among sites such that there is a lower energy cost for 

transferring data from mobile to cloud. A multisite offloading execution using our proposed EMOP algorithm 

achieved a greater reduction on the energy consumption of mobiles when compared to a single site offloading 

execution.  



1 Introduction 

Nowadays, the number of smartphone users is increasing rapidly. According to a Gartner press release from 13 

February 2014 [1], worldwide sales of smartphone to end users totaled 968 million units in 2013, an increase of 42.3 

percent from 2012. These numbers illustrate that smartphone are becoming the primary platform of choice for users 

communication and computation needs. Moreover, there are an enormous number of mobile applications available 

for smartphones. However, smartphones still cannot match their desktop counterparts when performing complex 

multimedia operations such as image and video processing, object or face recognition and augmented reality 

applications [2]. This is because, mobile device systems still suffer with limited resources, such as battery life, 

network bandwidth, storage capacity and process performance [3]. Therefore, augmenting the capabilities and 

prolonging the battery life of mobile devices has become one of the top research domains. 

In recent years, there has been a significant amount of research performed on computation offloading [4-9]. 

Computation offloading has been used as a major approach in mobile cloud computing to augment mobile’s 

capabilities by migrating computation to more resourceful computers (i.e., servers) [10]. The current cloud 

computing infrastructure provides mobiles with the abundance of and easy access to public cloud computing 

resources. Therefore, we have several cloud computing providers which uses the public clouds to solve mobile 

computing problems. For instance, Apple’s iCloud provides a service to its customer by hosting their applications 

and data in public clouds (i.e., Amazon EC2 and Microsoft Azure). However, it is believed that the network latency 

of public clouds can be problematic for offloading the computation of perception and multimedia mobile application 

[27]. Thus, mobiles devices desire to access servers which have low latency for computation offloading. These 

servers include servers at Wi-Fi hotspot and servers at organization’s private cloud [26]. Moreover, there are 

situations where organizations wish to store their private or proprietary data in their own private cloud. In such cases, 

mobile devices which manipulate these data offload computations to private cloud servers, rather than public cloud 

servers, for security reason and faster access of the data. 

Many researchers have proposed computation offloading algorithms that increase performance and extend battery 

life of mobile devices by migrating the energy-intensive part of computation to server. However, most of the 

researches have a limited form of offloading. First, most of the schemes are limited to form of offloading where a 

single server is considered as the offloading site [4, 5, 9]. Since we have an environment where mobile devices 

access multiple cloud providers, it is possible for mobiles to offload computations to multiple servers. This approach 

is desirable because it assigns the appropriate application components among servers to save more energy and 

increase mobile performance [11]. Second, in most cases, the schemes makes offloading decision based on profiling 

information that assumes a stable network environment [7, 8]. However, this assumption is impractical because the 

mobility of users crates a dynamic bandwidth between mobiles and server. As a result, if the network profile 

information doesn’t match the actual post-decision bandwidth, the offloading decision could lead to a critical 

Quality-of-Service (QoS) failure. 

In this paper, we consider a real-world environment, where there are multiple heterogeneous servers for executing 

application components and the network bandwidth between mobiles and servers is considered to be stochastically 

dynamic. In this environment, a multisite offloading is implemented with a desire to perform a data-centric [8] and 

process-centric manner of offloading. Hence, this technique is a suitable for mobile applications consisting of both 

data and computational-intensive module. Real-time demanding multimedia applications, especially augment reality 

applications, are among some of the applications that benefit from this technique. A mobile augment reality 

application, which works by extracting set of features from the scene image, can be a good example for illustrating 

its benefits. It uses the feature descriptors to find similar looking entries in a database [12]. In this case, the feature 

extracting module considered as a computational-intensive module and the feature matching module as a data-

intensive module. It is clear that running these modules on mobile device will consume a great amount of energy 

and bandwidth (Figure 1a). Therefore, it is a good approach to offload both modules to the cloud servers to save 

mobile energy and increase performance. So, in this scenario, multisite offloading is an efficient way of offloading 



because mobiles can offload the feature extracting module to a server which is near to the mobile, and the feature 

matching module to a server which is near to the database [8] (Figure 1b). This approach can be considered to be 

optimal since it has low latency on the network which results in a higher quality of object recognition [2].   

In this paper, we propose an optimal multisite offloading approach that minimizes the energy consumption of 

mobiles while meeting the execution deadline. Our approach differentiates the data and computational intensive 

components of an application and performs a multisite offloading in a data and process-centric manners. To better 

adapt the dynamic network bandwidth of the channels, a finite state discrete time Markov chain (DTMC) is 

presented to model the channel between mobiles and offloading sites [22]. In addition, we introduce a multisite 

partitioning algorithm which incorporates the Markov decision process (MDP) [20] to find the energy-efficient 

offloading decision for mobiles.  

The major contributions of this paper include: 

1. By combining the static analysis and dynamic profiling of an application, we introduce a novel 

mathematical model to describe the energy consumption of a multisite application execution in a 

heterogeneous environment. 

2. Using the Gilbert-Elliott channel model [22] for the communication channels, we present a MDP 

framework to model the multisite offloading decision problem as a delay-constrained least-cost shortest 

path problem on a directed acyclic state transition graph.  

3. In order to obtain the optimal solution for our problem, we proposes an Energy-efficient Multisite 

Offloading Policy (EMOP) algorithm which adopts the MDP value iteration algorithm (VIA) [20] to find 

the optimal offloading decision for an energy-efficient multisite application execution.  

We also conduct a numerical simulation to verify the effectiveness of the multisite offloading decision. The 

remainder of the paper is organized as follows: In Section 2, related works is reviewed followed by system model 

and problem formulation in Section 3. Section 4 describes our energy-efficient multisite offloading decision under 

the Markovian stochastic channel. Section 5 provides the numerical simulation and evaluation of our approach. 

Finally, we draw our conclusions and future works in the Section 6. 

 

Figure 1 (a) A native way of mobile application execution. (b) A mobile application execution in multisite 

offloading environment.  

2 Related work 



The idea of transferring computation from mobiles to servers in order to augment mobiles capability and save 

energy has been well studied. Several methods, such as MAUI [4] and CloneCloud [5], have been proposed to 

support the use of augmented computation to a mobile device. MAUI uses extensive profiling to make a method 

level code offloading decision in Microsoft.Net runtime environment. An Integer Linear Programming (ILP) [24] 

approach is used to find the energy efficient deployment. Similarly, CloneCloud uses a process-based offloading 

methodology where the binary of the application is partitioned and are migrated to the cloud. It shows up a 

significant energy saving with applications such as virus scanning, image search, and behavioral profiling. But, both 

MAUI and CloneCloud consider a two-way partitioning algorithm that needs a continuous and extensive profiling. 

Our approach makes an optimal multi-way partitioning which considers multiple cloud servers. Moreover, rather 

than making a continuous and extensive profiling, we model the channel behavior as a stochastic process to predict 

the channel states.  

Multisite offloading is used as a best approach for saving more energy on mobiles [11]. To the best of our 

knowledge, the only prior works that consider multisite partitioning is presented in [6], [7] and [8]. Niu et al. [6] 

present a multi-way partition algorithm, EMSO, which formulate the partitioning problem as 0-1 ILP problem. The 

algorithm models the program as a weighted directed acyclic graph and performs a depth-first search that traverses 

the search tree. Then, it computes the energy consumption of nodes under the current and critical bandwidth. The 

algorithm succeeds in finding the energy-efficient multisite partitioning decision, but, it doesn’t provide a guarantee 

for completion time. Hence, it cannot adopt well for real-time demanding multimedia application. Ou et al. [7] 

proposed a       -way partitioning algorithm to keep the component interaction as small as possible. They 

develop a light-weight, n-way partitioning algorithm, Heavy Edge and Light Vertex Matching Algorithm (HELVM), 

which splits application graph to multiple servers satisfying some pre-defined constraints. Unfortunately, HELVM 

assumes all servers alike (i.e., homogenous capacities). Thus, Sinha and Kulkarni [8] developed a multisite 

offloading algorithm which treats every cloud with different capacities to adapt more practical environment where 

the servers have a different computational capacities and network bandwidths. In their model, they use different 

weights of nodes, or different network bandwidth that requires different edge weights for communication. Their 

work is motivated by a data-centric approach of offloading for applications that manage multiple sources of data. 

However, their work considers a stable channel state for making the offloading decision. In this paper, we consider 

heterogeneous capabilities of servers like [8] and we also consider process-centric application offloading 

additionally to make our target condition more practical. We analyze and predict channel states to make the 

offloading decision more energy efficient. 

Our research is different from previous works in heterogeneity; the applications that we investigate have both data 

and computation-intensive components which can be offloaded over a group of distributed heterogeneous servers. 

Moreover, our proposed EMOP algorithm considers the heterogeneity of network access to optimize the overall 

offloading decision. Instead of performing a continuous extensive profiling of the channel rate, change in bandwidth 

rate is predicted using a Markov chain model for fading channels. Zhang et al. [9] studied the scheduling policy for 

collaborative execution in a stochastic channel and used LARAC algorithm to obtain the minimum energy 

offloading policy between a mobile device and an offloading site. However, their work is limited to a single 

offloading site where a steady network topology is considered. Our approach considers a multiple site application 

execution where change in network topology might exist. We use the MDP value iteration algorithm, which 

considers the multiple stochastic channels between mobile and offloading sites to obtain the energy-efficient 

multisite offloading decision. 

3 Model Formulation 

In the example we made in Section 1, we considered an augment reality application which consist several 

components that could be offloaded to cloud sites. The components represent the granularity of the partition which 

could be a method-level [4], thread-level [5] or a module [2]. The augment reality application can be formed by 



several offloadable and unoffloadable components [2]. The unofflaodable components include those that handle user 

interaction or access local I/O devices, such as the object tracking bundles. On the other hand, the detector and 

recognizer/decoder bundles are considered as offloadable components. These components can migrate to multiple 

cloud sites without affecting the application execution.  

We assume that a mobile application is represented as a sequence of components in a linear topology. This 

assumption is made based on that offloaded components are likely to be executed sequentially [13]. Thus, we use a 

weighted directed acyclic graph         to represent the relationship among the components in mobile 

application. Each vertex       denotes a component and the edge        denotes the communication channel 

between the component   and  . Figure 2 is an illustration of a weighted directed execution graph of a mobile 

application. The unshaded vertices are offloadable components while the shaded vertices are unoffloadable 

components due to I/O, hardware or externals constraints. The weight on the vertices, denoted by    for vertex  , is a 

vector weight representing the cost of executing the components on each site. The weight on edges, denoted by 

     for edge       , is also a vector weight to represents the cost of transmitting data between components in 

different sites. The cost metrics can either be time or energy consumption. The EMOP algorithm adopts both cost 

metrics to find the energy-efficient delay constrained offloading decision. These weights are constructed using both 

static analysis and dynamic profiling methods for an application [5].   

 

 

Figure 2 A mobile application represented as a weighted directed graph 

3.1 Problem Formulation 

In this sub-section, we present a mathematical model to describe the energy consumption models for multisite 

application execution, including the computational energy model for mobile execution and a transmission energy 

model for cloud execution. Unlike our model, some models [6, 8] formulate the energy consumption for the whole 

execution site rather than focusing on the energy consumption of mobiles. Since cloud servers have abundant energy 

compared to mobiles, our problem formulation is focused on saving the energy consumption of only mobiles.  

The notations used for our models are listed in Table 1. We assume a mobile application which 

consist   components in a linear topology that could migrate to   offloading sites. We define the     execution 

sites as                       , where    denotes the     offloading site and    represents the mobile device 

itself. Here, we consider every offloading site with different computational capacity and network bandwidth, thus, 

the energy cost on each node and edge is represented as a set of energy cost of each site. As shown in Figure 2, each 

component       has an associated cost which can either be an energy cost or time cost. We define the energy cost 

as        
    

    
        

    
 , where    

 denotes the energy cost of   if it is executed on offloading site   . 

Similarly, we define         
    

    
        

    
  to represent the time cost to execute component   on each 

offloading sites.  

Table 1. Notation of multisite partitioning model  

Symbols Meaning 

    The     offloading site and    represents the mobile device itself 

   
  The energy cost of component   if it is executed on offloading site    

   
  The total time cost of component   if it is executed on offloading site    



   
𝑐   The computational time of executing component   on site     

   
𝑠   The time spent for sending data to the database by a component   on site    

   
𝑟   The time spent for receiving data from the database by a component   on site    

𝑓   The CPU clock speed (cycles/second) of an offloading site    

𝑤    The total CPU cycles needed by the instructions of component   

𝑑 𝑠
  The data (byte) sent by a component   to the database 

𝑑 𝑟
  The data (byte) received by a component   from the database 

𝑟    The data rate (byte/second) between site    and the database server 

𝑝𝑠  The power consumption of mobiles for sending data  

𝑝𝑟  The power consumption of mobiles for receiving data 

𝑝𝑐   The power consumption of mobiles for computing 

𝑝 𝑑𝑙𝑒   The power consumption of mobiles for being idle 

 𝑢  𝑗
  The energy cost for transferring data from component   on site    to component   on site    

 𝑢  𝑗
  The time spent for transferring data from component   on site    to component   on site    

𝑑𝑢    The data transferred from component   to   

𝑟     The transmission rate between site    and    

𝑟𝑔 The data is transmission rate in a good channel state 

𝑟𝑏  The data is transmission rate in a bad channel state 

 

If we represent 𝑓  as CPU clock speed (cycles/second) of an offloading site    and 𝑤  as the total CPU cycles needed 

by the instructions of component   , then, the computational time of executing component    on site     can be 

formulated as: 

    
𝑐  

  

  
         𝑑           (1) 

Our model also considers the time cost incurred due to database or other remote data access by component. We 

denote the data (byte) sent and received by a component   as 𝑑 𝑠
 and 𝑑 𝑟

, respectively. Without loss of generality, 

we assume that components access data from a single database server. Thus, if we represent  𝑟  as the data rate 

(byte/second) between site    and the database server, the communication time spent for sending and receiving data 

from the database by a component   on site    is given as: 

    
𝑠  

𝑑 𝑠

𝑟 
   𝑑    

𝑟  
𝑑 𝑟

𝑟 
         𝑑          (2) 

Note that the size of data for data-intensive component is considered to be large. Thus, the data-intensive 

components have a higher data access time compared to the computational-intensive components. On the other hand, 

computational-intensive components have large number of instruction, hence, higher computational time. We 

summarize the total time cost of a component   on site    as: 

    
    

𝑐     
𝑠     

𝑟  (3) 

Likewise, the energy consumption    of a component is calculated as the amount of energy a mobile spends while 

executing the component or while waiting for the component to be executed on offloading sites. So, if we assume 

the transmission power of mobile devices is fixed, the energy cost of a component is formulated as: 

    
 {

   
𝑐  𝑝𝑐     

𝑠  𝑝𝑠     
𝑟  𝑝𝑟                                 𝑑    

   
 𝑝 𝑑𝑙𝑒                                                          𝑑         

 (4) 



where 𝑝𝑠  and 𝑝𝑟 represent the power consumption of mobiles for sending and receiving data, respectively. 𝑝𝑐 is the 

power consumption of mobiles for computing and 𝑝 𝑑𝑙𝑒  for idle. Note that, for unoffloadable components, the 

energy cost,    
, is assigned infinity for all offloading sites except the mobile.  

In addition to the vertex costs, the communication energy cost on edge         is represented 

as   𝑢     𝑢   
  𝑢   

    𝑢   
  𝑢   

    𝑢   
 , where  𝑢  𝑗

 denotes the cost of edge         if component   is 

executed on site     and component   on site    . In the same way, we define 

  𝑢     𝑢   
  𝑢   

    𝑢   
  𝑢   

    𝑢   
  to represent the communication time spent on edge        for 

transferring data from   to    where  𝑢  𝑗
 represents the time spent during transferring data from component   on 

site    to component   on site   . The communication time of edge        depends on the byte of data transferred 

and the network bandwidth used between the sites [11]; hence, it is given as: 

  𝑢  𝑗
 

𝑑   

𝑟  𝑗
              𝑑            (5) 

where 𝑑𝑢   denotes the transferred data from component   to  , and 𝑟    denotes the transmission rate between site    

and   . Here, we assume that the components of the application are already replicated on each site; therefore, there 

is no need of transferring the component itself. In addition, we assume that, there is no transmission power for 

components in the same execution site. Thus, the communication energy cost is given as: 

  𝑢  𝑗
 

{
 
 

 
 

 𝑢  𝑗
 𝑝𝑠                        𝑑               

 𝑢  𝑗
 𝑝𝑟                        𝑑               

 𝑢  𝑗
 𝑝 𝑑𝑙𝑒                     𝑑              

                                         𝑟𝑤                       

 (6) 

The first and second formulas represents the communication energy spent on edge for sending data from mobile to 

offloading site and receiving data from offloading site to mobile, respectively. The third formula represents the 

energy a mobile spent while waiting data transfer between components on different offloading sites. Based on the 

measurement results found in [11], we made an assumption that 𝑝𝑠  𝑝𝑟  𝑝𝑐  𝑝 𝑑𝑙𝑒 .   

Our objective is to find an offloading decision that assigns n components to     sites such that the whole 

execution of the graph has minimum energy consumption at mobile with acceptable execution delay. This problem 

can be modeled as an energy optimization problem with a constraint in completion time. A standard integer linear 

programming (ILP) solver has been successful to solve such kind of optimization problem [5, 24], therefore we 

formulate 0-1 ILP optimization problem that adopts the context of multisite offloading. The formulated 

minimization problem is given as follows:  

              𝑟      ∑ ∑     
    

  
       ∑ ∑ ∑   𝑢  𝑗

  𝑢 
   𝑗

  
   

 
    𝑢       (7) 

        ∑ ∑     
    

  
       ∑ ∑ ∑   𝑢  𝑗

  𝑢 
   𝑗

  
   

 
    𝑢       𝑑𝑒𝑙   (1) 

     ∑    
   

     (2) 

Here, we define    
 to be the decision variable that is equal to   if component   is executed on offloading site    and 

  otherwise. The optimization solver solves for the optimal assignment of    
 which minimizes the total energy 

consumption of mobiles. The first constraint stipulates that the total execution time of the application must be below 

the acceptable delay  𝑑𝑒𝑙  . The second constraint is introduced to enforce that each component is assigned to 

exactly one offloading sites. Note that the optimization problem is solved under some expectation of the channel 

state. As a result, it is challenging to solve an optimal offloading decision for unstable channels. 



The optimization problem is similar to that of partitioning a finite element graph into a certain number of disjoint 

subsets of vertices while fulfilling some given objective [7]. However, this type of graph partitioning problem is 

known to be NP-complete [15, 16], more specifically NP-hard in case of multisite partitioning. Thus, we are not able 

to solve the optimal offloading decision for any application except small applications with small graphs [8]. A 

general approach to deal with NP-complete problem is to look for a polynomial-time algorithm that guarantees 

finding an approximate solution to the optimal one [17]. In this paper, we use a novel approach to transform the 

optimization problem to stochastic shortest path problem on a directed acyclic graph, then, we present an efficient 

algorithm which finds an approximate solution to optimization problem in polynomial time. Before describing our 

algorithm, we first show how we can model the dynamic characteristics of the channels as a finite-state Markovian 

model. 

3.2 Finite-state Markov Channel Model 

For the purpose of computation offloading, mobile devices create a wireless connection with several sites through a 

number of access points as shown in Figure 1b. As a result, the transmission rate of the connection varies depending 

on user’s location and time. Because, in computation offloading, the execution time heavily depends on the cost of 

transfer input/output data over the wireless link, the data transmission rate will have significant impact on offloading 

decisions [13].  

The Markovian chain model has proved to be a very effective mathematical tool to describe a wireless channels 

where transmission rates varies stochastically over time. We consider a finite-state Markov model for each wireless 

communication between mobile and offloading sites. This model is a simple and effective approach which is suited 

to approximate fading channel models [18]. Although there are a lots of Markovian chain based models, we consider 

the Gilbert-Elliott channel to model the communication link since it is used to refer to wide class of finite-state 

fading channels. This channel model is a Markov chain with two states: good (denoted by  ) or bad (denoted by  ). 

If the channel is good, data is transmitted with a high rate (𝑟𝑔), otherwise if the channel is bad, it sends data with a 

low rate (𝑟𝑏) [19]. The transition between the two channel states occurs in discrete time instants, so that the channel 

is assumed to stay in a given state for some time unit. Let      if the channel is good during the     time unit, and 

     otherwise. Hence, the state transition matrix of the channels, P, is given by: 

  [ 
𝑝             𝑝             

𝑝             𝑝             
 ]  [ 

𝑝𝑔𝑔  𝑝𝑔𝑏

𝑝𝑏𝑔  𝑝𝑏𝑏
 ] 

The steady-state distribution is denoted as     𝑔  𝑏  , where  𝑔 and  𝑏 denotes the steady-state probability of the 

channel being in good state and bad state, respectively. The steady-state probability of both states is given as: 

 𝑔  
𝑝𝑏𝑔

𝑝𝑏𝑔  𝑝𝑔𝑏

         𝑏  
𝑝𝑔𝑏

𝑝𝑏𝑔  𝑝𝑔𝑏

   

Accordingly, if we assume the transmission power of mobiles is static, the expected steady-state transmission rate   

can be calculated as    𝑔𝑟𝑔   𝑏𝑟𝑏. 

3.3 Markov Decision Process formulation 

Under the stochastic channel model, we now describe how to formulate the multisite offloading decision problem as 

a Markov decision process. The MDP model consists of the following five elements: decision epochs, states, actions, 

transition probabilities, and costs [20].  

We consider a finite horizon discrete time problem, where decisions are made at the beginning of a period or stage. 

The decision epochs represent a point of time for decision. In our formulation, we formed each stage based on the 

number of components in the application. We introduce two new nodes in the execution graph to represent the 



starting and ending of the execution. As a result, we have     components in the application execution graph 

forming      decision epochs. We represent the decision epoch as                   where decision 

epoch     indicates that component   has already executed. 

The decision maker chooses an action based on the system state information, denoted by  . Each state     is 

characterized by the combination of the channel states and the execution location of a component. We define the 

system state at a decision epoch   as              , where     denotes the channel state for the next epoch between 

mobile and offloading sites (i.e., either   or   ), and         denotes the location of the executed component   . 

Figure 3 illustrates the state transition of the system under the Markovian stochastic channel. Because, we assume 

the initial channel state to be good, and executions start and end at the mobile, the initial and final system state is 

given as                  and                    , respectively.   

 

Figure 3 State transition of the system 

Given the current state, the decision maker can choose among two major actions: migrate execution or continue 

execution. Migrate execution action executes the next component in a different execution site whereas continue 

execution action keeps executing the next component locally. Here, because we assume that the components of the 

application are already replicated on each site, migrate execution action performs only the action of sending the 

input data to a component in another site. Thus, at each stage, for     sites we have     number of action 

choices. We define the action set for state   as  𝑠, and the action taken at stage   is represented by     𝑠. Based on 

the chosen action   in the state  , the state transition probability function for the next state    is given by          . 

This function applies the Markov property since the next state of a system is predicted from the current state only. 

Note that the transitional probabilities of the channels is not affected by the action, therefore, we consider the 

transition probability in the system equals to the transition probability of the channel state [9]. 

The decision rule prescribes a procedure for action selection in each state at a specified decision epoch. This paper 

considers a stochastic Markovian decision rule because the state channel between mobile and offloading sites are 

considered to be stochastic. A decision rule        is a mapping from states to action at decision epoch  . It 

indicates which action to choose when system is at a specific state at a given time. A policy   

             represents a sequence of decision rule to be used at all decision epoch. A policy is said to be 

stationary if it forms            or      for all   . For convenience, we let                 , where 

     denotes the action to take at decision epoch   under policy  . It follows that if a stationary policy is employed, 

then the sequence of states                  forms a Markov chain with transition probability     
         . 

According to [21, Thm 2.2], there exist a stationary policy    which is optimal for all policy. Therefore, in this paper, 

our goal is to find an optimal stationary policy that suggests the best action which minimizes the sum of the cost 

incurred at the current stage and the least total expected cost that can be incurred from all subsequent stages. We 



denote       to be the expected total cost of executing the application given the initial state    and a policy    

      is calculated as  

           ∑               
     (8) 

where    represents the conditional expectation with respect to policy   and           is the cost incurred at 

stage   by taking action   . In this paper, the cost function is considered to be either the amount of energy consumed 

or time spent at the mobile by taking the specific action. In the remainder of the paper, we will see how we can 

calculate and find the optimal policy which minimizes the total expected cost.  

4 Energy-efficient Multisite Offloading Decision 

In this section, we propose a novel algorithm that considers the stochastic behavior of the channels to solve the 

approximate multisite offloading decision. Under the Markovian stochastic channel, we adopt the MDP framework 

to predict the future channel states and make the energy-efficient offloading decision. This section introduces the 

optimality equations and the VIA then shows how we can use the algorithms to find the energy-efficient multisite 

offloading decision. 

We target to find an optimal multisite decision which minimize the energy consumption of mobiles and satisfy the 

required execution deadline. Therefore, we represent the cost function in Section 3 for both time and energy 

consumptions. If we assume the transition of state occurs from             to                  , then, the 

energy cost function,   , and time cost function,   , is given as follows:  

           ∑                      𝑗
         𝑗

         
  (9) 

           ∑                      𝑗
         𝑗

         
   (10) 

Here,         𝑗
     and         𝑗

     are calculated using the bandwidth rate between site    and    under the channel 

state of   . These cost functions are important parameters for calculating the optimality equation of both energy and 

time of the multisite application execution. We describe the generalized optimality equation in the following sub 

section. 

4.1 Optimality Equations and Value Iteration Algorithm   

Under the established MDP model, we use the Bellman’s equation [21] to express the optimality condition. We 

consider the function        to be the expected cost of taking an action   on state   and, thereafter, act optimally. 

Then, the Bellman equation for our context takes the form: 

        {
                                                                𝑓       

       ∑               𝑠                𝑟𝑤   
  (11) 

Here, we consider      to be the goal state, thus, the cost of taking any action on the goal state is zero. Moreover, 

we denote      to be the minimum expected total cost given initial state   , i.e.,              . Thus, we 

represent the optimality equation      as:  

                    (12) 

The solution of the optimality equation represents the minimum expected total cost and the MDP optimal policy   . 

Note that the MDP optimal policy indicates the decision as to which site to migrate the execution, given the current 

state. Algorithms; such as value iteration algorithm (VIA), policy iteration algorithm (PIA), and linear programming, 

can be applied to solve the Bellman’s optimality equation [21]. We used VIA in our work due to its theoretical 



simplicity and easiness in coding and implementation [20]. The VIA which yields the optimal stationary policy and 

the corresponding expected total cost to our optimization problem is given as follows:  

Value iteration algorithm (VIA) 

1. Initialize         for all     

2. For     to     

3.  For each state   S: 

4.   For each action   A𝑠 

5.                   ∑                ′ 𝑠    

6.     
      𝑟                

7.           (    
    ) 

8. Return <               
    

 

Note that the algorithm reaches the goal state with a maximum of     steps. This indicates that the value function 

doesn’t improve after     iterations. Therefore, the algorithm terminates after the     iteration by returning the 

optimal stationary policy and value function. The value function at the last iteration,       , is considered as     . 

Once the optimal policy is returned, it can be stored in a matrix format, where each entry identifies the optimal 

action which represents the offloading decision for the given state.   

4.2 The Energy-efficient Multisite Offloading Policy Algorithm   

In this section, we describe an energy-efficient multisite offloading policy (EMOP) algorithm which minimizes the 

energy consumption of mobile and satisfies the execution deadline constraint. We show how we can use the policy 

generated from the VIA to find the optimal decision for an energy-efficient multisite execution. The EMOP 

algorithm takes the current state as an input and generates the optimal offloading decision for every possible future 

state. 

Our optimization problem can be considered to be similar to delay-constrained least-cost path problem on state 

transition graph from      to       . Such type of restricted shortest path (RSP) problems can be solved using several 

optimization algorithms, such as Back-Forward heuristic algorithm [17] and Lagrangian-based linear composition 

algorithm [25]. These algorithms work first by determining the least cost path and the least delay path from every 

node to destination on the graph. Then, the Back-Forward algorithm searches the graph in two segments and finds 

the optimal path. The Lagrangian-based algorithm combines the delay and cost of each path, and finds the 

approximate optimal path for the composite value. Similarly, the EMOP algorithm starts by calculating the least 

energy and time cost of every state node using the VIA. However, the EMOP algorithm, then, uses a novel approach 

to explore every state to find the optimal offloading decision which is energy-efficient. The energy-efficient 

offloading decision indicates the best action that minimizes the expected energy cost and meets the deadline. Rather 

than setting the offloading decision of every component at the beginning of an application execution as shown in [6, 

8], the EMOP algorithm provides the optimal decision for each component execution under all the possible system 

states. Thus, the optimal offloading decision of a component is made during application execution based on the 

observed channel state and the current execution location. This decision is represented by the energy-efficient 

offloading policy function which maps the possible states to the optimal offloading decision. 

 

Algorithm 1: EMOP algorithm  

Input:            ,  𝑑𝑒𝑙  ,    

Output: optimal offloading policy     



1. <         
  ←  𝐼               //finds the optimal energy and time cost for each state 

2. <         
  ←  𝐼               //at the same time finds the optimal policy 

3. if         𝑑𝑒𝑙   

4.  then return “no feasible solution” 

5. For each state       : 

6.  do   ←   
     

7.   if      
     or           𝑑𝑒𝑙   

8.    then   ←            //consider the action    as optimal 

9.      continue 

10.   do   ←   −          

11.    if    ∅ 

12.     then   ←   
     

13.      break 

14.    else 

15.       ←  𝑟                //find the next energy optimal action 

16.   Until           𝑑𝑒𝑙    

17.    ←            

18. return   

 

Algorithm 1 shows the EMOP algorithm for constructing the energy-efficient offloading policy of multisite 

execution. We use a subscript of   and   on the MDP policies and cost functions to represent the energy and time, 

respectively. The algorithm explores every state node and selects the action with the lowest energy and acceptable 

delay to be the optimal action. If the action with lowest energy doesn’t satisfy the delay constraint, the algorithm 

checks the next lowest energy action. It performs this operation until it finds an action which satisfies the delay 

constraint. After traversing the whole states, the EMOP algorithm gets the optimal multisite offloading policy which 

is used to make the optimal decision for every future state the system encounters.  

The EMOP algorithm finds the optimal offloading decision with a computational complexity of      , where   is 

the state space, and   is the action set. This computation complexity didn’t reflect the complexity of VIA. Although, 

the EMOP algorithm can be considered as a computational expensive operation for resource constrained mobiles, an 

assumption could be made so that the calculation for the optimal decision is performed by the remote server before 

the beginning of an application execution [2]. Therefore, the mobile devices only store the matrix form of the 

returned optimal function. The offloading decision will stay valid for the whole execution of the application under 

the current network environment.    

5 Numerical Simulation and Evaluation 

To evaluate the performance of our proposed EMOP algorithm in terms of energy saving, we conduct numerical 

simulation. We compare the results with a single site offloading execution. We also discuss the decision 

characteristics of the EMOP algorithm in different scenario, since the algorithm decision relies on the different 

component types. 

5.1 Simulation Setup 

For our simulation, we consider a scenario where there are three offloading sites (i.e., K=3), as in the heterogeneous 

system shown in Figure 1b. Site 1 simulates a server which is near to the mobile. Site 2 and Site 3 simulates cloud 

servers with different characteristics. Site 2 is considered to be the database server and Site 3 is a cloud server with 

higher computational capacity. We assume a two-state stochastic channel between mobile and offloading sites with 



a small threshold on the state transition probability. Therefore, we consider the state transition probabilities of the 

channel to be 𝑝𝑔𝑔        and 𝑝𝑏𝑏       [9]. For simplicity, the channel between the three offloading sites is 

assumed to be a deterministic channel with bandwidth rate which is ten times faster than the bandwidth of the 

mobile. Since, the database exists at Site 2, data intensive components on mobile devices and other offloading sites 

have to access the database with the same bandwidth rate of Site 2. We make additional assumptions on the power 

consumption rates of mobiles from the power readings of HP iPAQ PDA in [11]. The summarized system 

parameters used for our simulations are listed in Table 2 as follows. 

Table 2. Simulation parameters of testing machines 

Machine Parameters 

Mobile 𝑓     𝑀𝐻𝑍 

𝑝𝑠    3𝑊 𝑝𝑟     𝑊  

𝑝𝑐     𝑊 𝑝 𝑑𝑙𝑒    3𝑊 

Site 1 𝑓    𝐻𝑍 

𝑟𝑔       /  𝑟𝑏      /s 

Site 2 𝑓  3 𝐻𝑍 

𝑟𝑔      /  𝑟𝑏      /s 

Site 3 𝑓3    𝐻𝑍 

𝑟𝑔      /  𝑟𝑏      /s 

 

To represent real-world scenarios, we generate three types of application graphs using a certain schemes. The graphs 

are generated randomly by a combination of data-intensive (DI) and computational-intensive (CI) components. The 

first application we build for the simulation is a CI application, similar to N-queens puzzle and Sudoku solver 

application [23]. Since these types of applications are computationally intensive, we make CI components occupy 80% 

of the application graph and the rest is randomly selected from others. Similarly, to simulate the DI mobile 

application, like virus scanning application [23], DI components are used to fill 80% of the second application graph. 

Finally, we build a third application graph using a random distribution of DI & CI components. The parameters used 

to generate the graph components are presented in Table 3. Note that the weight on each node and edge is chosen 

from the given range.   

Table 3. Configuration for generating application graph 

Configuration Parameter Value 

Computational-Intensive (CI) Node weight 𝑤   
 (M cycles) 550-650 

𝑑 𝑠
/𝑑 𝑟

 (KB) 4-8 

Data-Intensive (DI) Node weight 𝑤   (M cycles) 100-200 

𝑑 𝑠
 (KB) 25-30 

𝑑 𝑟
 (KB) 15-20 

 Edge weight 𝑑𝑢   (KB) 100-120 

 

5.2 Simulation Results 



First, we measured the energy consumption of a multisite execution using EMOP algorithm, and a single site 

execution. Then, we compared them and discuss the decision characteristics of the EMOP algorithm for different 

scenarios. 

5.2.1 Energy consumption evaluation 

The energy consumption of application for single site execution, and multiple sites execution using the decision of 

EMOP algorithm are presented in Table 4. In this simulation, we assumed every node to be an offloadable 

component even though application execution starts and ends at mobile device. We consider the steady-state 

transmission rate for the channel between mobiles and sites. Thus, the energy cost (i.e., consumption) of a single site 

execution is calculated by totaling the weights on the edges and nodes of the graph corresponding to a specific site. 

Similarly, for multisite execution, the energy cost is calculated by totaling the weights on the edges and nodes of the 

graph based on the offloading decision of the EMOP algorithm.  

From the simulation result in Table 4, we make two observations. First, when the number of nodes in the application 

graph are small, the energy consumption of executing an application on server which is near to the mobile (i.e., Site 

1) results in larger energy saving compared with the cloud server execution (i.e., Site 2 and Site 3). However, as the 

number of nodes increases, the energy consumption of executing on server, near to the mobile, increases and finally 

outweighs the cloud server execution. This occurs because the energy wasted by application input/output data 

transfer becomes insignificant in the overall energy cost. Thus, since cloud servers have a higher computation 

capacity, they can save more energy than the servers which are near to the mobile.  

Our second observation is about the multisite execution. The multisite execution, using the EMOP algorithm, seeks 

the energy-efficient execution of components on each site. The algorithm decides to offloads most of the 

components to the cloud servers where there is a higher computational speed and faster access to a database. Hence, 

the multisite execution consumes the least energy and achieves more energy saving as much as 30.8% compared to 

single site executions. When the number of nodes in the application graph are small, the multisite execution results 

in larger energy saving compared to single site execution, particularly cloud server executions (i.e., Site 2 and Site 

3). The reason is that the EMOP algorithm makes the initial offloading decision to the higher bandwidth server, thus, 

eliminating the energy cost incurred due to data transfer on lower bandwidth of cloud servers. However, as the 

number of nodes increase, the difference between the amounts of energy saved by the multisite execution and cloud 

server execution gradually decreases. This occurs because the EMOP algorithm decides to offloads most of the 

application components to a single cloud server, hence, creating a smaller difference with a single site execution. 

Nevertheless, as the number of nodes increase, the energy saved by the multisite execution still increases when 

compared to a single site execution on server which is near to the mobile.  

Table 4. Energy consumption comparison for different application graph executing on different sites 

Node Graph 
Energy(j) 

Site 1 Site 2 Site 3 Multisite 

10 CI 6.39 8.56 7.93 5.49 

DI 4.77 7.55 7.74 4.10 

Random 5.48 7.75 7.64 4.93 

30 CI 12.02 12.24 10.64 7.65 

DI 7.31 8.47 8.93 5.52 

Random 8.87 9.51 9.27 6.59 

60 CI 20.25 17.21 13.97 11.32 

DI 11.21 10.22 11.28 7.29 



Random 15.19 12.99 12.62 9.57 

100 CI 33.53 25.54 19.45 16.84 

DI 16.99 13.21 14.93 9.75 

Random 24.64 18.07 17.14 14.40 

150 CI 47.00 34.01 25.40 22.93 

DI 22.77 15.41 18.23 12.36 

Random 35.24 24.30 22.44 19.31 

 

The execution with the EMOP algorithm can be performed with a small delay. Table 5 shows the energy 

consumption against time delay for application execution in different execution locations. The results are from the 

execution of a random application graph with 100 nodes. We observe that the multisite execution, using the EMOP 

algorithm, maintains the optimal energy under all delay constraints. In addition, we observe that only the multisite 

execution is possible for the delays which are smaller than ten seconds. The reason is that the multisite execution 

tends to make the first offloading to the higher bandwidth server which is near to the mobile. Then, the multisite 

executes the remaining components on the cloud servers where there is a higher computational speed and faster 

access to database. However, the energy cost gradually increase for lower delay constraints because sometimes the 

algorithm is forced to selects the least delay decision rather than the least energy decision. 

Table 5. Energy consumption against time delay for different execution sites 

 𝑑𝑒𝑙   

(sec) 

Energy (j) 

Multisite Site 1 Site 2 Site 3 

18 14.40 24.64 18.07 17.14 

16 14.40 24.64 18.07 17.14 

14 14.40  18.07 17.14 

12 14.40  18.07  

10 14.40    

9 18.63    

8 23.25    

 

5.2.2 Evaluation of the multisite offloading decision 

To evaluate the decision of the EMOP algorithm, we perform two simulations in different scenarios. In the first 

simulation, our objective is to examine the decision of the algorithm for different component types. Thus, we 

consider an application graph with a light edge weight so that the decision of the algorithm mainly depends on the 

weight of the nodes (i.e., the type of the components). In this case, we can have an energy efficient multisite 

execution if we execute DI components on database server and CI components on higher computational speed server. 

This approach is considered to be optimal since it has low energy cost for computation and accessing the database. 

The simulation result in Figure 4 shows that the EMOP algorithm considers this approach for making the energy 

efficient offloading decision. We observe that DI application execute most of its components on cloud server where 

the database exists (Figure 4a) and CI application executes most of its components on higher computational speed 

cloud server (Figure 4b). However, in both cases, we observe that the algorithm does not make a direct migration 

from mobile to cloud servers. Instead, it makes the initial and final migration to a server which is near to mobile. 

This occurs because the server has a low latency on bandwidth which results in low energy cost for migration. 



     

 (a) (b) 

 Figure 4 Multisite offloading decision under light edge weight  

Minimizing the energy cost on data access and data transfer of components is an important factor for saving energy. 

Therefore, we perform another simulation in order to examine the decision characteristics of the EMOP algorithm 

for different size on data access and data transfer of components. The simulation is performed using a DI application 

graph having a variable data size on its edges. Thus, we modify the simulation parameter of the edge data weight to 

be in a range of 30-350KB. Figure 5 shows the decision of the algorithm for different ratio on data weight of edge 

and nodes of a graph. We make two observations from the results. First, when there is high ratio of data transfer 

between components, the algorithm decides to keep the computation at the mobile (Figure 5a). It is because the 

energy cost of transferring input and output data is expensive compared to the total cost of local execution. Second, 

for some threshold on the ratio, the algorithm decides to offloads the execution to a server which is near to the 

mobile (Figure 5b). This occurs when the energy cost of input and output data transfer is small compared to the data 

access cost of the nodes on mobile. Furthermore, it is also observe that the EMOP algorithm selects the optimal 

point to make the transition from the server back to the mobile. 

Based on our simulation results, we can observe that there is at most one migration between sites, and between 

mobile and site. This observation supports the one time offloading property in [9, 13], where at most one migration 

from mobile device to the cloud occurs. Our observation, additionally, suggests the existence of one time offloading 

property between sites. 

        

 (a) (b) 

Figure 5 Multisite offloading decision under different edge and node weights 

6 Conclusion and Future work 

Since mobile devices access multiple cloud providers, multisite computation offloading is practicable. However, 

most of the current offloading schemes doesn’t consider the different capabilities the multiple sites and make 



computation offloading to a single server. Thus, they can only save a limited amount of mobile energy. In this paper, 

we proposed a multisite offloading policy for mobile devices which considers the heterogeneity of offloading sites 

to save more energy. The offloading policy assigns the appropriate components between mobile and sites to have 

minimized energy consumption at mobile. We built a mathematical model to describe the energy consumption of 

multisite application execution which considers the data-intensive and computational-intensive components of an 

application. Because the dynamic bandwidth of the wireless channel of mobiles is a critical factor on the offloading 

decision, we adopted discrete time Markov chain to model the fading channel. We applied the Markov decision 

process framework to formulate the multisite decision problem as a delay-constrained least-cost shortest path 

problem on acyclic state transition graph. A Markov cost model is presented in this paper to appropriately formulate 

the energy and time consumption of offloading decisions. Finally, we proposed an efficient algorithm that considers 

the dynamic characteristics of the channels, and finds an approximate solution to optimization problem. The 

proposed EMOP algorithm incorporates the value iteration algorithm to find the energy-efficient multisite offloading 

policy for Markov chain model. Therefore, mobile applications which consists a data-intensive and computational-

intensive components can save more energy by considering a multisite execution using the EMOP algorithm. 

Moreover, the multisite offloading policy is used to have the energy-efficient offloading decision in all channel 

states. We performed several simulations to verify the performance the algorithm. The results show that the EMOP 

algorithm is an efficient multisite computation offloading approach for mobile devices and outperforms the mobile 

and single site executions with respect to both energy consumption and execution time. In addition, our observation 

suggests the existence of one time offloading property between sites. 

For future researches, we intend to improve the algorithm to allow more precise offloading by considering many 

structures of components. For instance, our current work doesn’t differentiate the data structure of component which 

may force different data structure components to be offloaded at the same site. In addition, we will characterize the 

ratio of data access and data transfer by components to incorporate it in EMOP algorithm. This will give us a better 

perspective for making an optimal offloading decision. Furthermore, we need to implement the algorithm in real-life 

scenarios to evaluate the efficiency and performance of the algorithm.  



References 

[1] http://www.gartner.com/newsroom/id/2665715  

[2]Tim Verbelen, Tim Stevens, Pieter Simoens, Filip De Turck, and Bart Dhoedt. "Dynamic deployment and quality 

adaptation for mobile augmented reality applications." Journal of Systems and Software 84, no. 11: 1871-1882 

(2011). 

[3]Karthik Kumar, Jibang Liu, Yung-Hsiang Lu, and Bharat Bhargava. "A survey of computation offloading for 

mobile systems." Mobile Networks and Applications 18, no. 1: 129-140 (2013). 

[4]Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Stefan Saroiu, Ranveer Chandra, and 

Paramvir Bahl. "MAUI: making smartphones last longer with code offload." In Proceedings of the 8th international 

conference on Mobile systems, applications, and services, pp. 49-62. ACM, (2010). 

[5]Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and Ashwin Patti. "Clonecloud: elastic 

execution between mobile device and cloud." In Proceedings of the sixth conference on Computer systems, pp. 301-

314. ACM, (2011). 

[6] Ruifang Niu, Wenfang Song, and Yong Liu. "An Energy-Efficient Multisite Offloading Algorithm for Mobile 

Devices." International Journal of Distributed Sensor Networks 2013 (2013). 

[7]Shumao Ou, Kun Yang, and Jie Zhang. "An effective offloading middleware for pervasive services on mobile 

devices." Pervasive and Mobile Computing 3, no. 4: 362-385 (2007). 

[8]Kanad Sinha, and Milind Kulkarni. "Techniques for fine-grained, multi-site computation offloading." In 

Proceedings of the 2011 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pp. 184-

194. IEEE Computer Society, (2011). 

[9]Weiwen Zhang, Yonggang Wen, and Dapeng Oliver Wu. "Energy-efficient scheduling policy for collaborative 

execution in mobile cloud computing." In INFOCOM, 2013 Proceedings IEEE, pp. 190-194. IEEE, (2013). 

[10]Zhiyuan Li, Cheng Wang, and Rong Xu. "Computation offloading to save energy on handheld devices: a 

partition scheme." In Proceedings of the 2001 international conference on Compilers, architecture, and synthesis for 

embedded systems, pp. 238-246. ACM, (2001). 

[11]Karthik Kumar, and Yung-Hsiang Lu. "Cloud computing for mobile users: Can offloading computation save 

energy?" Computer 43, no. 4: 51-56 (2010). 

[12] Kiryong Ha, Padmanabhan Pillai, Grace Lewis, Soumya Simanta, Sarah Clinch, Nigel Davies, and Mahadev 

Satyanarayanan. "The impact of mobile multimedia applications on data center consolidation." In Cloud 

Engineering (IC2E), 2013 IEEE International Conference on, pp. 166-176. IEEE, 2013. 

[13] Yuan Zhang, Hao Liu, Lei Jiao, and Xiaoming Fu. "To offload or not to offload: an efficient code partition 

algorithm for mobile cloud computing." In Cloud Networking (CLOUDNET), 2012 IEEE 1st International 

Conference on, pp. 80-86. IEEE (2012). 

[14] Paolo Di Lorenzo, Sergio Barbarossa, and Stefania Sardellitti. "Joint Optimization of Radio Resources and 

Code Partitioning in Mobile Cloud Computing." arXiv preprint arXiv: 1307.3835 (2013). 

[15] Xiaohui Gu, Klara Nahrstedt, Alan Messer, Ira Greenberg, and Dejan Milojicic. "Adaptive offloading for 

pervasive computing." Pervasive Computing, IEEE 3, no. 3: 66-73(2004). 

[16] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. 

W.H. Freeman, (1979). 

http://www.gartner.com/newsroom/id/2665715


  

[17] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to algorithms. Vol. 

2. Cambridge: MIT press, (2001). 

[18] Fulvio Babich, and Giancarlo Lombardi. "A Markov model for the mobile propagation channel." Vehicular 

Technology, IEEE Transactions on 49, no. 1: 63-73(2000). 

[19]Yanting Wu, and Bhaskar Krishnamachari. "Online learning to optimize transmission over an unknown gilbert-

elliott channel." In Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt), IEEE (2012). 

[20] Puterman, Martin L. "Markov Decision Processes: Discrete Stochastic Dynamic Programming (Wiley Series in 

Probability and Statistics)." (2005). 

[21] Ross, Sheldon M. “Introduction to stochastic dynamic programming: Probability and mathematical.” Academic 

Press, Inc., (1983). 

[22] Gilbert, Edgar N. "Capacity of a Burst‐Noise Channel." Bell system technical journal 39, no. 5: 1253-1265., 

(1960) 

[23] Sokol Kosta, Andrius Aucinas, Pan Hui, Richard Mortier, and Xinwen Zhang. "Thinkair: Dynamic resource 

allocation and parallel execution in the cloud for mobile code offloading." In INFOCOM, 2012 Proceedings IEEE, 

pp. 945-953. IEEE, (2012). 

[24] Alexander Schrijver. Theory of linear and integer programming. John Wiley & Sons, (1998). 

[25] Alpar Juttner, Balazs Szviatovski, Ildikó Mécs, and Zsolt Rajkó. "Lagrange relaxation based method for the 

QoS routing problem." In INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE Computer and 

Communications Societies. Proceedings. IEEE, vol. 2, pp. 859-868. IEEE, (2001). 

[26] Mahadev Satyanarayanan, Paramvir Bahl, Ramón Caceres, and Nigel Davies. "The case for vm-based cloudlets 

in mobile computing." Pervasive Computing, IEEE 8, no. 4: 14-23 (2009). 

[27] Paramvir Bahl, Richard Y. Han, Li Erran Li, and Mahadev Satyanarayanan. "Advancing the state of mobile 

cloud computing." In Proceedings of the third ACM workshop on Mobile cloud computing and services, pp. 21-28. 

ACM, (2012). 

[28] Qi Zhang, Lu Cheng, and Raouf Boutaba. "Cloud computing: state-of-the-art and research challenges." Journal 

of internet services and applications 1, no. 1 : 7-18 (2010). 

 


