
 1

PaperID: 247

Building Desktop Application with Web Services in a Message-based MVC
Paradigm

Xiaohong Qiu1, 2, Geoffrey C. Fox2

1EECS Department, Syracuse University

 2Community Grids Lab, Indiana University
501 Morton N. Street, Suite 224
Bloomington, IN 47404, U.S.A

xqiu@indiana.edu, gcf@indiana.edu

Abstract
Over the past decade, classic client side applications with Model-View-Controller (MVC) architecture
haven’t changed much but become more complex. In this paper, we present an approach of building
desktop applications with Web Services in an explicit message-based MVC paradigm. By integrating with
our publish/subscribe messaging middleware, it makes SVG browser (a Microsoft PowerPoint like client
application) with Web Service style interfaces universally accessible from different client platforms
─Windows, Linux, MacOS, PalmOS and other customized ones. Performance data suggests that this
scheme of building application around messages is a practical architecture for the next generation Web
application client.

Keywords
Message, MVC, Web service, SVG and publish/subscribe

1. Introduction

Web Services are becoming an increasingly important
feature of Internet and Grid systems. They support a
loosely coupled service oriented architecture that builds
on previous distributed object architectures like CORBA,
Java RMI, and COM to provide scalable interoperable
systems. The broad applicability of this approach
includes enterprise software, e-Science and e-Business.
Correspondingly there are a growing number of
powerful tools that are available for building,
maintaining and accessing Web Service-based systems.
These tools include portals that allow user frontends to
Web Services. This model for user interaction has new
standards like portlets with WSRP (Web Services for
Remote Portlets) [1] and the Java Specification Request
JSR168 [2] supporting lightweight interfaces to the
backend resources. This architecture shown in fig.1
implements the Model-View-Controller or MVC [3] [4]
architecture with a clean message based interface
partially specified by the portlet standard. The general
MVC approach of fig. 2a) is a well established paradigm
which has been used for many years. As we describe

later in more detail, traditional MVC applications employ method-based interactions between the
components with this approach giving the needed high performance for interactive applications. In this
paper, we explore “explicit message-based MVC” [5] ─ a different approach with MVC being used

R F I O

ViewView

Portal
Aggregate WS User Facing fragments

desktop handheld phone

Input port Output port

User Facing Port

PortFacing
Resource

Web Service
Application or

Model

Figure1 Portlet Approach to Web Services and
their user interfaces

WSRP
and
JSR168
Portlets

R F I O

ViewView

Portal
Aggregate WS User Facing fragments

desktop handheld phone

Input port Output port

User Facing Port

PortFacing
Resource

Web Service
Application or

Model

R F I O

ViewView

Portal
Aggregate WS User Facing fragments

Portal
Aggregate WS User Facing fragments

desktopdesktop handheldhandheld phonephone

Input port Output port

User Facing Port

PortFacing
Resource

Web Service
Application or

Model
User Facing Port

PortFacing
Resource

Web Service
Application or

Model

Figure1 Portlet Approach to Web Services and
their user interfaces

WSRP
and
JSR168
Portlets

 2

systematically but with message based interactions (shown in fig. 2b), between the model and the view
components. We suggest that modern computers and networks are fast enough that this approach will give
adequate performance for desktop applications such as those in the Microsoft Office Suite. We embody this
idea as the “MVC rule of the Millisecond” [6]. This asserts that message based interactions between
“nearby” components have an intrinsic delay of a few milliseconds and so this linkage approach is possible
whenever such a delay is acceptable. Simple non optimized Java messaging gives such a delay whenever
the components are either on the same computer or on machines with a local area connection.

In this paper, we explore this area and make two contributions. Firstly we look at existing method-based
MVC application – the Batik SVG browser from Apache [7] – and convert it into a message-based
approach as contrasted in figures 2a) and 2b). We discuss some of the issues that came up in this
conversion. Secondly we use this message-based version of SVG to explore the overhead in the message-
based approach. We find it represents about a 20% overhead for “model’ and “view” distributed in different
sites on Indiana University’s Bloomington campus and the user does not distinguish the interactive
experience in switching from method to message-based interactions.

In section 2, we describe some background on the World Wide Web Consortium (W3C) standard of
document object model (DOM) [8] [9] [10] and Scalable Vector Graphics (SVG) [11]. One advantage of
testing our approach with SVG is that it is fully compatible with the W3C DOM and we can expect the
latter to be used in future desktop applications. Thus experience with SVG should extrapolate to “next
generation desktop applications”. The next section describes in detail our work while section 4 briefly
discusses an application to collaboration described in more detail in earlier papers [5] [12]. Performance
and conclusions are in section 5 and 6.

2. Technology Background: W3C DOM and SVG

Due to the difference of document object models that implemented by earlier versions of major browsers,
web developers access HTML document using JavaScript had to write wrapper code to reconcile the
incompability between Netscape and Internet Explorer. In 1998, W3C proposed Document Object Model
(DOM) level 1 specification that defines “a platform- and language-neutral interface that allows programs
and scripts to dynamically access and update the content, structure and style of documents.” [8] DOM
level 2 standard further specifies a generic event model [10]. Version 5 browsers (Mozilla NGLayout
engine (Gecko) [13] and Microsoft Internet Explorer 5 [14]) implemented the DOM specification.

The impact generated by the new standard goes beyond scripting community who build cross-browser
dynamic pages. DOM carefully defines “just” the logical structure of “document” and an API (application
programming interface). Such a standard can effectively specify any XML describable information, which
means it can reflect structure of Meta data abstracted by XML schema. DOM also allows any language
bindings; therefore it can be used by variety of applications. SVG is an example of DOM application.

SVG, as defined by W3C, is “a language for describing two-dimensional graphics and graphical
applications in XML” [11]. Compared with HTML content, SVG has richer web graphics flavor. It has the
following features (including those inherited from XML and DOM) and makes it a unique technology:

Model

Subscribe UI event

View

Control

Subscribe renderingPublish UI event

Publish rendering

2b) Explicit message-based Publish/Subscribe MVC modelFigure 2a) Conventional MVC paradigm

Control

ModelView
Display

ModelModel

Subscribe UI event

View

ControlControl

Subscribe renderingPublish UI event

Publish rendering

2b) Explicit message-based Publish/Subscribe MVC modelFigure 2a) Conventional MVC paradigm

ControlControl

ModelView
DisplayDisplay

 3

• Vector graphics feature ─ as a rich graphical content, SVG includes three types of graphical
objects (vector shape, text and image) that can be nested, grouped, transformed and styled, in
addition to graphical processing (clipping, masking and filtering). SVG content can be
dynamically updated (zoom, rotate and translate) without loss of rendering resolution.

• Interactivity and scripting ─ Java and JavaScript binding with SVG, enriches its capability of
interactivity, hyper linking, scripting and animation as a rendering content.

• XML feature ─ SVG is an open standard that defines graphical objects with XML, which makes it
an attractive portable intermediate format for exporting (e.g. from Illustrator and PowerPoint);
transcoding between vector graphics (e.g. pdf and PowerPoint) and from vector to rasterized
graphics (e.g. PNG); third party application (e.g. JDBC). Through supporting of XLINK [15],
SVG provides strong capability for URI referencing of both internal document fragment and
remote external document object.

• DOM feature ─ SVG DOM has a tree like structure with nodes of parsed graphics objects. It
allows complete access and manipulate of the objects and their properties.

A growing number of SVG viewers are developed for rendering SVG format content. Among them, Adobe
[16] and Corel [17] implemented SVG as a plug-in of a conventional browser; Apache Batik SVG browser
is a stand-alone client application, which is written in Java apart from a few native classes; there are also
customized SVG implementations for handheld devices.

3 Message-based MVC and SVG

3.1 Introduction

We choose an existing system ─ Batik SVG browser [7], and modify its architecture from a method-based
desktop application to a message-based one. This has several implications.

The message-based architecture allows one to build desktop applications as web services and so unify
traditional desktop and web service plus portal approaches. This unification makes collaborative
applications straightforward to build as described in section 4. Further the separation of model and view
makes it easier to support diverse client devices and operating systems. This could be significant with the
growing interest in PDA and Linux clients. Note our strategy allows “long distance” linkage between the
“model” (business logic of application) and view as well as their cooperation on local networks as within a
campus. However transcontinental latencies are hundreds to thousands of milliseconds and so this cannot
be used for interactive experience. As we describe later, we will use the same messaging infrastructure –
NaradaBrokering [18] operating in Java Message Service emulation – as has been used to support large
Grid applications. This unification of Grid and client applications into a single message-based architecture
is key to our paper. We can use our approach for interactive applications when model and view are nearby
and allow collaboration and traditional Web portal use for remote access.

Our first goal is a complete analysis of the structure and interaction between components of a real client
application. Batik SVG browser is an Apache open source project that implements Scalable Vector
Graphics (SVG) specification version 1.0 [11], a recommendation of W3C. Such experience has general
significance as it helps us in understanding of similar commercial tools such as Microsoft PowerPoint,
Adobe Illustrator and PhotoShop, Corel Draw, and Macromedia Flash which have proprietary
implementations.

Secondly, our approach allows building collaborative SVG as a special case of our general Collaboration as
a Web Service architecture [19]. This work has been discussed in our earlier papers in Internet Computing
2003 [5] and SVG Open 2003 [12]. We presented a multiplayer chess game as a test case of our
collaborative SVG infrastructure without decomposition of the client application. Note in collaboration,
one user is typically in charge and this case requires interactive delays of a few milliseconds. As shown in
section 4 and fig. 7, the other users receive change events multicast by the messaging system. These events

 4

can be delayed as all applications in a session are similarly treated and the pipelined events give a
satisfactory real-time experience.

Thirdly, we demonstrate a way of modification in architecture level which enables the conversion of a
client application into a distributed system and identify the difference in design principles. MVC is a
frequently used paradigm in modern architecture design (e.g. Microsoft Windows). In a “conventional”
MVC, “controller” executes its tasks through method calls since messages are hidden in system level. We
make a critical observation, namely “conventional” MVC has to be replaced by an “explicit message-
based” MVC in order to enable components of the application to be distributed. In our approach, we use
“explicit control messages” to abstract the semantic meanings of “controller” so that messages of the
original system are exposed and pulled into application level. Such abstraction generates structural changes
as the following:

a) Original client application is physically split into client user interface (“view”) and core functional
component (“model”). The latter naturally becomes a Web Service on server side.

b) Method calls, which play the role as “controller” in a client application, are taken over by
“explicit control messages” that communicate between client interface and Web Service server
through network.

c) Our approach requires us to support our model view linkage with a high performance messaging
middleware infrastructure. We use NaradaBrokering [18] which has been separately developed
and provides a variety of publish/subscribe models including peer-to-peer and Java Message
Service (JMS) [20] emulation. Our results are not sensitive to the details of NaradaBrokering and
do not currently exploit its ability to traverse firewalls and support multiple protocols. Our use for
collaborative SVG would exploit these latter Grid messaging capabilities of NaradaBrokering.

The changes bring up issues that cause a challenge to the system:

o timing becomes a compelling issue with the separation of client and Web Service server, original
assumption and design principle break since time scope drastically increases from tens of
microsecond level (e.g. a Java method call) to a few milliseconds level (network latency plus
system overhead).

o Object serialization is a must have toolkit ─ messages, as a linkage vehicle, contains component
information from both sides and keep context same. Synchronization is a factor to consider for
context consistency.

3.2 Message-based Event model

The basic idea is very simple and illustrated in fig. 3. Traditional event-based programming is used
extensively in the Batik SVG browser and most modern applications. Different parts of a program are
linked asynchronously with one part producing events that are passed to listeners whose call-back method
has been passed to the producer. As shown in fig. 3b) this can also be implemented with explicit messages
where listeners subscribe to an event class (topic) and events producers publish them to this topic. Our
strategy is to replace the listener model of fig. 3a) by the publish/subscribe broker model of fig. 3b). Note

Figure 3 Message or method based Publish/Subscribe

B

Subscribe to event class

A

Broker

Set up an event class (t
opic)

publish an event class Send event

b) message based

A B
register call back method

invoke call back method
with event

a) method based

Figure 3 Message or method based Publish/Subscribe

B

Subscribe to event class

A

Broker

Set up an event class (t
opic)

publish an event class Send event

b) message based

A B
register call back method

invoke call back method
with event

a) method based

 5

that either approach can use explicit queues (maintained on a broker in the message case) or alternatively
integrate the broker into the producer as in most simple method-based event models.

As shown in figure 4, one can use this strategy in several parts of the SVG browser and in doing so produce
multiple web services coordinated in a single application; there are natural event linkages between the
client user interface and the GVT (or Graphic Vector Toolkit, an internal module to represent graphical
view of DOM) tree used in Batik; another between GVT and the DOM tree and finally that between the
DOM and the Java or JavaScript application. After substantial experimentation, we chose to split the SVG
browser between the DOM and GVT tree. The resultant Web Service architecture is shown in figure 5. This
choice has the advantage that it naturally generalizes to other DOM applications. However we made for
more pragmatic reasons as other choices appeared to require major restructuring of the existing software.
Our search for appropriate places to split applications into message separated services illustrated two
important principles.

• Firstly one should split at points where the original method based linkage involved serializable
Java objects. Serialization is needed before the method arguments can be transported and this is
familiar from Java RMI.

• More seriously we found that the Batik often involved
large classes that implemented many different
interfaces. These interfaces often came from different
parts of the program and crossed the possible stages
mentioned above. Such “spaghetti” classes as in fig. 6a)
implied that additional state information would need to
be transmitted if we split at points where classes
spanned interfaces from different modules. Of course
the message-based paradigm (fig. 6b) tends to force a
more restrictive programming model where all data is
shared explicitly and not implicitly via interfaces
crossing splitting lines.

4 Collaborative SVG Applications

We have explained how one can make message-based network applications collaborative in two modes –
shared input port and shared output port [21] [5]. In each case one multicasts the messages – either those
arriving at a Web Service (shared input port) or those produced by the Web service (shared output port).

NaradaBrokering was explicitly designed to support this model and has been used for a variety of cases
from audio-video conferencing, text chats, white boards, and shared display as part of the Anabas [22]
collaboration environment.

Figure 4 Decomposition of SVG browser into stages of pipeline

SVG parser
Output (Renderer)

(update image buffer)

Input (UI events)
(e.g. Mouse and

key events)

JavaScript
(access and

manipulate DOM
element)DOM tree

(before mutation)
(DOM events)

DOM tree’
(after mutation)

GVT tree’
(GraphicsNode changes)

GVT tree
(GraphicsNode events)

Decomposition
Point ModelView

Figure 4 Decomposition of SVG browser into stages of pipeline

SVG parserSVG parser
Output (Renderer)

(update image buffer)

Output (Renderer)
(update image buffer)

Input (UI events)
(e.g. Mouse and

key events)

Input (UI events)
(e.g. Mouse and

key events)

JavaScript
(access and

manipulate DOM
element)

JavaScript
(access and

manipulate DOM
element)DOM tree

(before mutation)
(DOM events)

DOM tree’
(after mutation)

GVT tree’
(GraphicsNode changes)

GVT tree
(GraphicsNode events)

Decomposition
Point ModelView

Figure 5 SVG browser derived from message-based MVC

Model

Application
(JavaScript)
Application
(JavaScript)

SVG DOMSVG DOM

GVTGVT

RendererRenderer

Rendering as messagesEvents as messages

Messages embody control

View

Figure 5 SVG browser derived from message-based MVC

Model

Application
(JavaScript)
Application
(JavaScript)

SVG DOMSVG DOM

GVTGVT

RendererRenderer

Rendering as messagesEvents as messages

Messages embody control

View

 6

We have already described this idea for SVG [5] although at the time we did not explicitly break up SVG
into a separate model and view component as required by the Web service architecture. Rather as shown in
figure 7, we intercepted the events on a master application and allowed NaradaBrokering to multicast them
to the collaborating clients. This corresponds to the shared input port model in our architecture. We will
rebuild the collaboration environment with explicit web service models and demonstrate both shared input
and shared output port models in the next two months.

5. Performance

We have started an extensive series of performance measurements to demonstrate the viability of our
approach. There are many variables including position of Model, View, and Event Broker
(NaradaBrokering) and the choice of type of host computer and network connection. One can also vary the
application running in the Model Web service. One can investigate either the single Model and View or the
collaborative models. We expect the main impact to be the algorithmic effect of breaking the code into two
and the network and broker overhead.

Here we present some initial investigation with Brokers, Model and View in the single Model and View
case. In each of the five tests, the Model and View were run on middle aged Dell Windows 2000 PC’s with
1.5 GHz Pentium 4 processors.

In the first test the two PC’s are in the same office with Broker on an aged Sun Solaris UltraSparc 2
laboratory server. In the next two tests, the Broker and View are on one PC and the Web service on the
second one. In test 2, the PC’s are directly connected by Ethernet and in test 3 they use a 802.11 low-end
wireless link. In test 4, Broker runs on a Linux supercomputer node located in a different organization
within Bloomington campus. The last test has a longer distance settings ─ with both View and Web Service
on desktops from home and Broker on the lab server, network routes via wireless, cable modem, several
commercial hubs (insight and ATT), Chicago and Indiana University campus subnet.

Figure 7 Shared Input port of collaborative SVG

GVTGVT

RendererRenderer

JavaScriptJavaScript

SVG DOMSVG DOM

Application as a Web service

Participating Client

Rendering as
messages

GVTGVT

RendererRenderer

JavaScriptJavaScript

SVG DOMSVG DOM

Application as a Web service

Master Client

Rendering as
messages

Events as
messages

BrokerBroker

To Collaborative Clients

Fr
om

 M
as

te
r

Subscribe

Figure 7 Shared Input port of collaborative SVG

GVTGVT

RendererRenderer

JavaScriptJavaScript

SVG DOMSVG DOM

Application as a Web service

Participating Client

Rendering as
messages

GVTGVT

RendererRenderer

JavaScriptJavaScript

SVG DOMSVG DOM

Application as a Web service

Master Client

Rendering as
messages

Events as
messages

BrokerBroker

To Collaborative Clients

Fr
om

 M
as

te
r

Subscribe

Figure 6 Implicit and explicit state

b) Separated component/service modela) Conventional shared state model

Shared stateShared state

subscribe
BrokerBroker

publish

send event

A
View
A A

View
B

subscribe
BrokerBroker

publish

send event

A
View
A A

View
B

Figure 6 Implicit and explicit state

b) Separated component/service modela) Conventional shared state model

Shared stateShared state

subscribe
BrokerBroker

publish

send event

A
View
AA

View
A A

View
BA

View
B

subscribe
BrokerBroker

publish

send event

A
View
AA

View
A A

View
BA

View
B

 7

We present here four timings for each of the test scenarios with the timing positions shown in fig. 8 which
is a simplified version of the pipeline shown in fig. 4. The results in table 1 give mean, the error in its
determination, and the standard deviation. The times T0 T1 T2 T3 T4 and T5 are all measured in the View
and defined as follows
• T1: A given user event such as a mouse click can generate multiple associated DOM change events

transmitted from the Model to the View. T1 is the arrival time at the View of the first of these.
• T2: This is the arrival of the last of these events from the Model and the start of the processing of the

set of events in the GVT tree
• T3: This is the start of the rendering stage
• T4: This is the end of the rendering stage

Table 1 gives all times with reference to T0. Each timing is an average of several hundred non-trivial mouse
events with the SVG application running the JavaScript chess game presented in ref. 5. In later publications
we will present a more refined analysis which studies the structure of the different types of mouse events
and compares with the unmodified program. We note that we were careful not to flood the system with
irrelevant mouse-over and mouse-move events; the latter are generated each time there is a one pixel
change in the mouse position. Processing of mouse event messages is dominated by “start-up time” or
latency. Thus we can buffer multiple mouse-move events into one “vector” event and get the modest
overheads reported here.

Table 1 Timing of Stages in milliseconds
First arrival from
Model: T1-T0

Start Process DOM
T2-T0

Start Rendering
T3-T0

End Rendering
T4-T0

mean ±
error

stddev mean ±
error

stddev mean ±
error

stddev mean ±
error

stddev

Test 1 Solaris
server

110 ±
5.0

95.0 180 ±
10.0

184.0 243 ±
11.0

204.0 478 ±
13.0

238.0

Test 2 direct
connect.
Desktop
server

108 ±
5.0

132.0 180 ±
7.0

170.0 234 ±
8.0

194.0 485 ±
12.0

272.0

Test 3 wireless
connect.
Desktop
server

113 ±
3.0

54.0 212 ±
5.0

77.0 225 ±
5.0

78.0 510 ±
5.0

78.0

Test 4 IBM Linux
cluster node

76 ±
2.0

76.0 120±
2.0

136.0 190 ±
3.0

174.0 476 ±
3.0

194.0

Test 5 Solaris
server

1490 ±
48.0

519.0 2213 ±
57.0

614.0 2275 ±
56.0

597.0 2556 ±
56.0

596.0

The overhead of the Web service decomposition is not directly measured in this table although the changes
in T1-T0 in each row reflect the different network transit times as we move the server from local to
organization locations. This client to server and back transit time is only 20% of the total processing time in
the local examples. We separately measured the overhead in NaradaBrokering itself which consisting of
forming message objects, serialization and network transit time with four hops (client to broker, broker to
server, server to broker, broker to client). This overhead is 5-15 milliseconds depending on the operating

Figure 8 Timing points

Decomposition
Point ModelView

T0

T4 T1T3 T2
Output (Renderer)Output (Renderer)

Input (UI events)Input (UI events)

GVT tree’GVT tree’

DOM tree
(before mutation)

DOM tree
(before mutation)

DOM tree’
(after mutation)

DOM tree’
(after mutation)

GVT treeGVT tree

JavaScriptJavaScript

Figure 8 Timing points

Decomposition
Point Model

Decomposition
Point ModelView

T0T0

T4T4 T1T1T3T3 T2T2
Output (Renderer)Output (Renderer)

Input (UI events)Input (UI events)

GVT tree’GVT tree’

DOM tree
(before mutation)

DOM tree
(before mutation)

DOM tree’
(after mutation)

DOM tree’
(after mutation)

GVT treeGVT tree

JavaScriptJavaScript

 8

mode of the Broker in simple stand-alone measurements. The contribution of NaradaBrokering to T1-T0 is
larger than this (about 30 milliseconds in preliminary measurements) due to the extra thread context
switches inside the complex SVG application. We will discuss this and optimizations to the system
performance in future papers.

6. Conclusions

We believe our prototype shows how a message-based MVC (three-stage pipelines) model can generate a
powerful application paradigm suitable for SVG and other presentation style applications. As SVG is an
application of the W3C DOM, we can generalize the approach for other W3C or similar DOM based
applications. Our approach suggests that one need not develop special “collaborative” applications. Rather
any application developed as a Web service can be made collaborative using the tools and architectural
principles discussed in this paper. Note that Moore’s law implies that computer performance will continue
to improve while networks will also continue to increase in bandwidth with however latency for long
distance linkage remaining higher than that needed for interactive use. Thus inevitable infrastructure
improvements will tend to make our approach more attractive in the future.

These ideas can also suggest a uniform approach to user interface design with desktop and web applications
sharing a common portlet (WSRP, JSR168)-based architecture. This could motivate the development of
new desktop applications with many capabilities not present in today’s systems such as Openoffice and
Microsoft Office. We are currently looking at extending our ideas to Openoffice while a limited
implementation is possible using the rather crude event interface exposed for PowerPoint [23]. These ideas
can unify PDA and desktop, as well as Linux, MacOS, Windows and PalmOS applications.

In our final paper we will present the unified architecture from desktop to internet collaboration with much
more extensive performance measurements.

References

1) OASIS Web Services for Remote Portlets Specification, http://www.oasis-

open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf
2) Java Specification Request JSR168 Specification

http://www.jcp.org/aboutJava/communityprocess/final/jsr168/
3) A Goldberg. Smalltalk-80: The Interactive Programming Environmen. Addison Wesley, 1984.
4) G. Lee, Object oriented GUI application development. Prentice Hall, 1994. ISBN: 0-13-363086-2.
5) Xiaohong Qiu, Bryan Carpenter and Geoffrey C. Fox Collaborative SVG as A Web Service in

Proceedings of SVG Open, Vancouver, Canada, July 2003
http://www.svgopen.org/2003/papers/CollaborativeSVGasAWebService/#S.Bibliography (requires
SVG viewer plug-in http://www.adobe.com/svg/viewer/install/main.html for displaying figures)

6) Geoffrey C. Fox, Software Development around a Millisecond.
http://grids.ucs.indiana.edu/ptliupages/publications/cisejano4.pdf in CISE Magazine

7) Apache Batik SVG Toolkit http://xml.apache.org/batik/
8) W3C Document Object Model (DOM) level 1 specification http://www.w3.org/TR/1998/REC-DOM-

Level-1-19981001/
9) W3C Document Object Model (DOM) Level 2 Core Specification http://www.w3.org/TR/DOM-

Level-2-Core/.
10) W3C Document Object Model (DOM) Level 2 Events Specification at http://www.w3.org/TR/DOM-

Level-2-Events/.
11) W3C Scalable Vector Graphics (SVG) version 1.0 Specification http://www.w3.org/TR/SVG/.
12) Xiaohong Qiu, Bryan Carpenter and Geoffrey C. Fox Internet Collaboration using the W3C Document

Object Model in Proceedings of the 2003 International Conference on Internet Computing, Las Vegas
June 2003
http://grids.ucs.indiana.edu/ptliupages/publications/collaborative_dom_conference_2003_Int_IC_font1
0_without_title_page.pdf

13) Mozilla Layout Engine http://www.mozilla.org/newlayout/

 9

14) Microsoft Internet Explorer http://www.microsoft.com/windows/ie/default.asp
15) W3C XML Linking Language (XLINK) version 1.0 http://www.w3.org/TR/xlink/
16) Adobe SVG Zone http://www.adobe.com/svg/main.html
17) Corel SVG viewer http://www.smartgraphics.com/Viewer_prod_info.shtml
18) Community Grids Lab NaradaBrokering system at http://www.naradabrokering.org
19) Geoffrey C. Fox, Hasan Bulut, Kangseok Kim, Sung-Hoon Ko, Sangmi Lee, Sangyoon Oh, Shrideep

Pallickara, Xiaohong Qiu, Ahmet Uyar, Minjun Wang, Wenjun Wu Collaborative Web Services and
Peer-to-Peer Grids presented at 2003 Collaborative Technologies Symposium Orlando January 20
2003 http://grids.ucs.indiana.edu/ptliupages/publications/foxwmc03keynote.pdf

20) Sun Microsystems Java Message Service at http://www.hostj2ee.com/specs/jms1_0_2-spec.pdf
21) Geoffrey Fox, Dennis Gannon, Sung-Hoon Ko, Sangmi Lee, Shrideep Pallickara, Marlon Pierce,

Xiaohong Qiu, Xi Rao, Ahmet Uyar, Minjun Wang, Wenjun Wu, Peer-to-Peer Grids, Chapter 18 of
[Grid Computing: Making the Global Infrastructure a Reality edited by Fran Berman, Geoffrey Fox
and Tony Hey, John Wiley & Sons, Chichester, England, ISBN 0-470-85319-0, March 2003.
http://www.grid2002.org]

22) Anabas Conferencing system http://www.anabas.com
23) Minjun Wang, Geoffrey Fox and Shrideep Pallickara A Demonstration of Collaborative Web Services

and Peer-to-Peer Grids to appear in proceedings of IEEE ITCC2004 International, Las Vegas April 5-
7 2004. http://grids.ucs.indiana.edu/ptliupages/publications/wangm_collaborative.pdf

