
Support for High Performance Real-time Collaboration within the
NaradaBrokering Substrate

Shrideep Pallickara1, Hasan Bulut1, Pete Burnap2, Geoffrey Fox1 , Ahmet Uyar3, David Walker2

spallick@indiana.edu, hbulut@indiana.edu, P.Burnap@cs.cardiff.ac.uk, gcf@indiana.edu , auyar@syr.edu and
David.W.Walker@cs.cardiff.ac.uk

Community Grids Lab, Indiana University1

School of Computer Science, Cardiff, UK2

Department of Electrical Engineering & Computer Science, Syracuse University3

Abstract

The requirements for collaborative services, especially
pertaining to order and delivery, are quite different
compared to traditional distributed applications. The
NaradaBrokering messaging substrate enables scalable,
fault-tolerant, distributed interactions between entities,
and is based on the publish/subscribe paradigm. The
substrate also incorporates support for Grid and Web
Service. More recently, we have incorporated services
within the substrate which enable us to facilitate richer
collaborative interactions. In this paper, we outline our
rationale for incorporating these services and how these
services interact with each other. We have conducted
experiments related to profiling these services, and also on
the performance and scaling of the messaging substrate.
Our experimental results demonstrate that the substrate
can indeed be used in scenarios where performance and
scalability requirements are stringent.

Keywords: distributed messaging, collaborative services,
a/v conferencing, replay services, buffering, scalable
systems

1. Introduction

A collaborative system can be characterized as a system
where a group of users have come together with the intent
to exchange (and share) data, state transitions and actions
initiated by participants. The data shared could be text,
graphics, shared displays or multimedia content.
Applications typically manage the type of data that is
received by using appropriate content handlers. At its very
core the fundamental problem within collaborative systems
is one of disseminating the right content to the right
participants. Furthermore, since the participants in a
collaborative session are distributed over a wide area

network, the underlying infrastructure supporting
collaboration needs to cope with the complexities of
communications, network failures and fluid group
memberships.

Approaches to collaboration have tended to use IP
Multicast to deal with the content distribution problem.
Multicast provides a powerful, elegant and flexible
framework for implementing collaborative systems. Here,
participants agree upon a multicast group and collaborate
by exchanging data over this group; the system relies on
MBONE to manage this data interchange.

In this paper we suggest that a far more powerful
framework for collaboration is the publish/subscribe
paradigm. In publish/subscribe systems the routing of
messages from the publisher to the subscriber is within the
purview of the message oriented middleware (MoM),
which is responsible for routing the right content from the
producer to the right consumers. Subscribers register their
interest in content through subscriptions, publishers are
responsible only for the generation of content.
Publish/Subscribe systems thus provide a clear decoupling
of the message producer and consumer roles that
interacting entities might have. This is especially useful if
there are a large number of potential consumers for a given
message. In such cases a producer need not keep track of
the large number of consumers that a message could
potentially be routed to: the middleware performs this
function for the publisher.

Support for high performance collaboration needs to
address several issues which we enumerate here.
1. Scaling: The underlying infrastructure should cope

with the presence of a large number of entities while
facilitating the management of a large number of
collaborative groups.

2. Support for complex collaborative schemes: Here,
entities may be interested in receiving notifications

 1/12

mailto:spallick@indiana.edu
mailto:hbulut@indiana.edu
mailto:P.Burnap@cs.cardiff.ac.uk
mailto:gcf@indiana.edu
mailto:auyar@syr.edu
mailto:David.W.Walker@cs.cardiff.ac.uk

under very specific scenarios. This would involve
notification of membership changes or the availability
of content that meets a specific constraint set by the
interested entity.

3. Support for timing based services: This includes
support for high resolution timestamps, buffering and
time-based ordering of messages. In the case of time
based ordering the timestamps in individual messages
should also cope with clock skews and
synchronization problems.

4. Recovery and Replay Services: It should be possible
for late (or recovering) participants to retrieve missed
messages. Furthermore, replays should be able to
preserve time spacing between messages; if so
desired.

5. Performance: The infrastructure should be able to
provide consistent throughput and high-performance
while supporting each of the aforementioned
scenarios.

We investigate these issues in the context of our

system: NaradaBrokering. NaradaBrokering is a content-
based publish/subscribe system and has been in the open
source domain for the past 3 years. We have incorporated
several services within NaradaBrokering to allow it to
cope with the stringent requirements intrinsic in high
performance collaborative systems. In this paper we
demonstrate that the NaradaBrokering substrate provides a
powerful, generalized framework for enabling high-
performance collaborative applications.

The remainder of this paper is organized as follows. In
section 2 we provide an overview of the NaradaBrokering
substrate, here we also contrast the advantages of the
publish/subscribe paradigm over hardware Multicast. In
section 3 we discuss the various services available within
the NaradaBrokering substrate which can be leveraged by
high performance collaborative applications. We have
conducted experiments profiling the performance of the
substrate and its constituent services for supporting
collaborative applications with some of these experiments
being performed in trans-Atlantic settings. We include
these results within the relevant subsections. In section 4
we present an overview of the related work. Finally, in
section 6 we outline our conclusions and future work.

2. NaradaBrokering Substrate

NaradaBrokering [1-7] is a distributed messaging
infrastructure based on the publish/subscribe paradigm,
and provides two closely related capabilities. First, it
provides a message oriented middleware (MoM) which
facilitates communications between entities (which
includes clients, resources, services and proxies thereto)

through the exchange of messages. Second, it provides a
notification framework by efficiently routing messages
from the originators to only the registered consumers of
the message in question. This dissemination constraint
holds true irrespective of the size of the broker network or
the number of clients within the system. The smallest unit
of this substrate which intelligently processes and routes
messages, while working with multiple underlying
communication protocols is referred to as as a broker. The
NaradaBrokering software has been in the open source
domain for the past 3 years. The current code-base
comprises 1100 classes with approximately a quarter
million lines of code.

Communication within NaradaBrokering is

asynchronous and the system can be used to support
different interactions by encapsulating them in specialized
messages (also referred to as events). These specialized
messages can encapsulate information pertaining to
transactions, data interchange and system conditions.
NaradaBrokering places no constraints either on the size,
rate or scope of the interactions encapsulated within these
messages, or on the number of entities present in the
system.

NaradaBrokering relies on software multicast for
communications; this obviates the need for MBONE which
is required for multicast communications. It should
however be noted that the substrate can leverage hardware
multicast if it is available. The NaradaBrokering substrate
provides support for transport protocols such as TCP,
Parallel TCP, UDP, Multicast, HTTP and SSL; it also
facilitates communications across NAT and firewall/proxy
boundaries.

All Nodes
Linux OS, 2.4GHz Dual Intel Xeon
CPU and 2 GB of memory. JVM 1.4

Publisher/Subscriber on same machine to
eliminate need for clock synchronizations

Broker

Publisher Subscriber

TCP Link

Figure 1: Experimental setup for measuring
communication latencies

To enable the reader to get an idea of the costs involved
in communications within the substrate, we now report

 2/12

results pertaining to communications within the
NaradaBrokering substrate. The experimental setup for our
measurements is depicted in Figure 1. The results are
depicted in Figure 2, where each point in the delay-curve
corresponding to the average of 50 messages. The standard
deviation-curve reports the deviation in these delays. Note
that the numbers reported here correspond to two-hops,
from the producer to the broker, and from the broker to the
producer. The per-hop latency in cases up until 4KB is
around 1 millisecond (transit delay corresponds to traversal
from publisher-broker-subscriber). The results reported
here are for communications using TCP.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

100 1000 10000M
ea

n
tra

ns
it

de
la

y
 (M

illi
se

co
nd

s)

Content Payload Size in Bytes

Transit delays and Standard Deviation
for different Payload sizes

 Delay
 Standard Deviation

Figure 2: Average delays and standard deviation for
message samples

NaradaBrokering allows clients to register their
subscriptions (interest in the content of messages) using a
variety of formats. The subscriptions can be in the form of
String, Integer, Long and <tag, value> based topics, or in
the form of XPath, SQL and Regular expression queries.
Support for this variety of subscription formats also
implies richer collaborative interactions since actions may
be triggered only under very precise conditions. The
complexity of managing these subscriptions and routing
relevant messages is delegated to the middleware
substrate. Since the individual entities do not need to cope
with the complexity of constraints, this in turn facilitates
easier development of collaborative applications which
enable these complex interactions.

 Typically, the number of managed subscriptions
increases with the number of collaborative groups and
entities present within the system. Depending on the
complexity of interactions the subscription formats may
vary. To give an idea of the cost involved in managing
various subscription formats, we include some results from
our measurements with Integers, Strings and <tag-value>
pair based topics. To contrast the cost involved in
managing richer subscription constraints we also include

results for Regular expressions. For every case the number
of subscriptions is varied from 20,000 to 100,000; and the
results depict the time to compute destinations for a given
message from this set of subscriptions. The results were
measured on a machine (1GHz, 256MB RAM) running the
process in a Java-1.4 Sun VM with a high-resolution timer
for computing delays.

1

10

100

1000

10000

100000

1e+06

1e+07

20 30 40 50 60 70 80 90 100
D

el
ay

 (
M

ic
ro

se
co

nd
s)

Number of subscriptions (in thousands) being matched

 Integer
String size=32

 <tag, value> Pairs=25
 Regular Expressions

Figure 3: Costs involved in different subscription
constraints

The richer the constraints, the greater the CPU-cost
associated with the matching process, which computes
destinations for a message. As can be seen, in Figure 3, the
average cost for matching increases progressively (Integer
to String to Tag-Value to Regular Expressions in that
order) as the complexity of the matching increases. For
Integer matching the average cost was around 6
microseconds, while for String based matching it was 7
microseconds. The costs associated with <tag,value> based
matching when there are approximately 25 <tag,value>
pairs was around 18 microseconds. Finally, in the case of
Regular expressions the cost varied from 242 milliseconds
for 20,000 subscriptions to 1.178 seconds for 100000
subscriptions. The results also demonstrate the feasibility
of using software multicast for communications.

2.1 Support for scaling within the

NaradaBrokering substrate

In this section we investigate the limits of the brokering
substrate in supporting a large number of multi-media
clients. For the purposes of our experiment we have
recorded an audio and a video stream for 2 minutes. The
audio stream is based on the 64 kbps ULAW codec; the
size of each package is 252 bytes and is issued once every
30 milliseconds. For the duration of the experiment there
were 4100 packages without any silence period within the
stream. Note that this is telephone-quality audio and is

 3/12

quite widely used in videoconferencing sessions over the
Internet.

We also recorded the video stream of a speaking
participant in a video conferencing session setting. This is
an H.263 stream with 15 frames per second. The video
encoder encoded a frame every 66ms. Although the
average bandwidth was 280 kbps; the bandwidth fluctuated
mostly between 250 kbps and 310 kbps. For the duration
of the experiment there were 1800 video frames which
were transmitted during 2 minutes, and a total of 5610
packages. Note that the video encoder was dividing the
frames that have more than 1 KB of data into multiple
packages. The average length of individual video packages
was 740 bytes. The transmitter sent one full picture update
frame every 60 frames or every 4 seconds.

We first conducted tests to evaluate the performance
and the limits of a single NaradaBrokering broker. These
experiments were performed on an 8 node Linux cluster
with a gigabit network switch. All nodes had dual-CPUs
(Intel Xeon 2.4GHz) and 2GB of memory. The runtime
environment for all components involved in the
experiment is JDK 1.4. Please note that in these
experiments each meeting is designed as a single speaker
meeting with one speaker and many listeners. Furthermore,
when calculating the latencies and accompanying jitters,
we ignored the first 100 packages to compensate for start
up costs. The Jitter J is computed based on the formula
outlined in the RTP [8] specification − J = J + (|D(i-1, i)| -
J)/16, where D(i-1, i) corresponds to the difference
between the delay for ith RTP packet and the delay for the
(i-1)th RTP packet.

0.1

1

10

100

0 200 400 600 800 1000 1200 1400 1600

Ti
m

e
(M

illi
se

co
nd

s)

Number of Users

Average Latencies and Jitters for Audio Conferencing Clients.
 Single Broker, Single Meeting

Average Latency
Average Jitter

Figure 4: Average latency and jitter for audio
conferencing clients

Figure 4 depicts the average latency and jitter for audio
conferencing clients. The average latency value is less than
20 milliseconds (with jitter being very acceptable too) until
the broker is overloaded. This overload takes place at 1600
users when the average latency jumps to 2.2 seconds. This

was not depicted in the graph to ensure that the pattern up
until 1500 clients was clearly visualized.

Figure 5 depicts the latency and jitter for video
conferencing clients. Though the average latency for 900
clients is acceptable, the broker is actually overloaded
when there are 500 participants. This is because the
number of late arrivals which correspond to packets whose
delay exceeds 100 ms is around 3% for 500 clients; a
number at which we deem the broker to be overloaded.

0.1

1

10

100

1000

0 100 200 300 400 500 600 700 800 900
Ti

m
e

(M
illi

se
co

nd
s)

Number of Users

Average Latencies and Jitters for Video Conferencing Clients.
 Single Broker, Single Meeting

Average Latency
Average Jitter

Figure 5: Average latency and jitter for video
conferencing clients - Single Broker Single Meeting

Next, we evaluate the performance of the broker

network with four brokers for a single video meeting.

Figure 6: Experimental Setup for Multi-broker
measurements

For the distributed broker tests, we used two Linux
clusters, each having 8 nodes with the four brokers
connected as depicted in Figure 6. The configuration of

 4/12

nodes in the first cluster is 2.4GHz Dual Intel Xeon CPU
and 2 GB of memory, while that of the nodes in the second
cluster is 2.8 GHz Dual Intel Xeon CPU and 2GB of
memory. The clusters had a gigabit network bandwidth
among its nodes.

10

100

1000

200 300 400 500 600 700 800 900

La
te

nc
y

(M
illi

se
co

nd
s)

Number of Users per broker

Average Latencies for Video Conferencing Clients at different Brokers
 4 Brokers, Single Meeting

Latency at B1
Latency at B2
Latency at B3
Latency at B4

Figure 7: Average latencies for Video conferencing
clients - 4 Brokers, Single Meeting

The receivers were evenly distributed among the
brokers and across meetings. The latency values of brokers
B1 and B2 are quite similar. Similarly, the latency values
of B3 and B4 are very similar. Brokers B3 and B4 perform
better than the first two brokers, because the machines in
the second Linux cluster have superior CPU power. As the
latency values show (Figure 7), adding new brokers
increases the capacity of the broker network. In this case,
since all brokers have quite similar computing power, each
broker increases the capacity of the broker network almost
linearly. For the first two brokers, the percentage of late
arriving packages is 1.9% when there are 400 participants.
Therefore, they can support up to 400 users. For the last
two brokers, the packages arriving late are less than 1.0%
for the same number of participants, thus supporting 400
users comfortably. In total, four brokers support close to
1600 participants in a single video meeting. Figure 8 and
Figure 9 depict the average latency and jitter values
respectively in multiple meeting settings involving the
same broker network.

In summary, these experiments demonstrate that the

NaradaBrokering broker network scales well in distributed
settings when delivering streams to a high number of
participants. The scalability of the broker network
increases almost linearly with the number of brokers.

1

10

100

20 30 40 50 60 70 80 90 100

La
te

nc
y

(M
illi

se
co

nd
s)

Number of Meetings

Average Latencies for Video Conferencing Clients at different Brokers.
 4 Brokers, Multiple Meetings (20 Users per Meeting)

Latency at B1
Latency at B2
Latency at B3
Latency at B4

Figure 8: Average Latencies for Video Conferencing
clients - 4 Brokers, Multiple meetings

1

10

20 30 40 50 60 70 80 90 100

Ji
tte

r (
M

illi
se

co
nd

s)

Number of Meetings

Average Jitters for Video Conferencing Clients at different Brokers.
 4 Brokers, Multiple Meetings (20 Users per Meeting)

Jitter at B1
Jitter at B2
Jitter at B3
Jitter at B4

Figure 9: Average Jitters for Video conferencing clients
-- 4 Brokers, Multiple meetings

Next, we investigate the delivery of audio/video
streams to geographically distant clients. We had access to
machines at three more locations, in addition to the two
Linux clusters (in Bloomington, IN) that we used for the
previous distributed broker tests. The other three sites were
Syracuse University at Syracuse, NY, Florida State
University (FSU) at Tallahassee, FL and Cardiff
University in Cardiff, United Kingdom. These three sites
had 90-100Mbps download bandwidths.

 5/12

1

10

100

0 20 40 60 80 100 120 140 160

La
te

nc
y

(M
illi

se
co

nd
s)

Number of Users per Site

Average Latencies for Video Conferencing Clients at different locations
 Sites in Indiana, Florida, New York and Cardiff

Indiana
New York

Florida
Cardiff UK

Figure 10: Average Latencies for Video Conferencing
Clients - WAN

The broker was running at Indiana and an equal

numbers of participants were running at the four other
sites. A client running in the same site as the broker
published the video stream on the broker. We measured
the latencies and jitters at the clients. Please note that there
can be a few millisecond discrepancies in latency values
because of the difficulties in determining the exact clock
differences between the transmitter and receiver. This test
demonstrates that 150 video streams can be transferred
between these four sites with acceptable transmission
delays (Figure 10) and jitter (Figure 11).

0.1

1

10

100

0 20 40 60 80 100 120 140 160

Ji
tte

r (
M

illi
se

co
nd

s)

Number of Users per Site

Average Jitters for Video Conferencing Clients at different locations.
 Sites in Indiana, Florida, New York and Cardiff

Indiana
New York

Florida
Cardiff UK

Figure 11: Average Jitters for Video Conferencing
Clients - WAN

3. Services enriching collaboration within
the NaradaBrokering substrate

In this section we outline services that we have

incorporated into the NaradaBrokering substrate to
facilitate richer collaborative interactions. The section
elaborates on issues related to time ordering, spacing and
the reduction of jitters during collaboration.

3.1 Ensuring consistent timestamps

Entities within a distributed system generate messages
with timestamps based on their local clocks. Since the
clocks on individual machines are out-of-sync with each
other, these timestamps are not useful in time ordering
these messages. Furthermore, on a given machine, clocks
may run slower or faster than they should. What is needed
is a scheme which accounts for these skews and provides
consistent timestamps. To this end, we have implemented
and incorporated the Network Time Protocol (NTP) [9]
within the substrate.

NTP is one of the most widely used algorithms for
ensuring consistent timestamps in distributed settings, and
can achieve an accuracy of 1-30 milliseconds; this implies
that timestamps generated at any point within a distributed
system will be within 30 milliseconds of each other.
However, this accuracy also depends on the roundtrip
delay between the machine and the time service server.
This difference in the communication delays between the
host machine and the time server also contributes to the
accuracy of the offset (which identifies how much the
clock needs to be adjusted) that is computed. NTP
achieves this accuracy by using filtering, selection and
clustering, and combining algorithms to adjust the local
time. In the NTP algorithm the rectifying-machine receives
time from several time servers. The filtering algorithm
selects the best samples obtained from a given time server.
The selection and clustering algorithms then pick the best
truechimers and discard the falsetickers. Finally, the
combining algorithm computes a weighted average of the
time offset of the best truechimers.

 Consistent timestamps allow us to time order events
since the timestamps generated at any entity within the
system can now be assumed to be accurate within a certain
range (1-30 msecs for NTP). Such precise timestamps can
in turn enable time-ordering of events that have been
issued by entities at disparate geographic locations. A
problem that existed within a distributed publish/subscribe
systems was the precise determination of when a
subscription is to be considered active. This can be
assuaged a great deal with the use of precise UTC
timestamps available through the use of the NTP protocol.
In the aforementioned scenario subscriptions will maintain
a timestamp indicating when they were created, any events
published after this timestamp should be considered for
matching with (and delivery to) this subscription. Finally,
we are currently investigating the use of these timestamps
to ensure consistency within replicated shared contexts of
distributed computations.

 6/12

Figure 12 depicts the results from our measurements
that were done with a machine in Cardiff, UK. The time
servers that we used for this particular experiment
involved stratum-1 and stratum-2 time-servers from
Europe (specifically UK, France, Italy and Germany). The
initial offset value computed by our NTP algorithm is
19235 milliseconds, which means that the system clock
trails the real time by that amount. Changes in offset
indicate the corrections that are taking place due to clock
drifts. Note that we ensure consistency of timestamps
returned by the service previously: negative offsets are not
applied if they result in time traversing into the past.
Machine based in Cardiff UK
OS: Red Hat Linux 7.1 2.96-79
CPU: Pentium III, 1 GHz
Memory: 1.5 GB
JVM Version: 1.4.1_01

initialization offset
value 19235 msec
min 0 msec
max 5 msec
total change 527 msec

-3
-2
-1
0
1
2
3
4
5

0 20 40 60 80 100 120 140 160

O
ffs

et
 c

ha
ng

e
(M

illi
se

co
nd

s)

Elapsed time in 100s of seconds

NTP Offset variations over a period of 4 hours
UK machine without a native NTP daemon process

Offset Variation

Figure 12: Change of Offset with Time (UK machine no
NTP daemon)

Figure 13 depicts results from measurements performed on
a machine in Indiana. In this test we used stratum-1 time
servers that were based in US. The offsets computed vary
between -1 and 3 milliseconds.

OS: Red Hat 3.4.2-6.fc3
CPU: Intel(R) Pentium(R) 4 CPU 1500MHz
Memory: 1 GB,
JVM Version: 1.4.

initialization offset value 544461 msec
min 0 msec

max 3 msec
total change 381 msec

-1
-0.5

0
0.5

1
1.5

2
2.5

3

0 20 40 60 80 100 120 140

O
ffs

et
 c

ha
ng

e
(M

illi
se

co
nd

s)

Elapsed time in 100s of seconds

NTP Offset variations over a period of 4 hou
Indiana Linux machine without
 a native NTP daemon process

Offset Variation

Figure 13: Change of Offset with Time (Indiana
machine no NTP daemon)

OS: Red Hat Linux 7.3 2.96-110
CPU: AMD Athlon(tm) MP 1800+ 1. GHz
Memory: 1034756 kB
JVM Version: 1.4.1_03

initialization offset value 1 msec
min 0 msec
max 1 msec

-1

-0.5

0

0.5

1

0 20 40 60 80 100 120 140 160

O
ffs

et
 c

ha
ng

e
(M

illi
se

co
nd

s)

Elapsed time in 100s of seconds

NTP Offset variations over a period of 4 hours
Indiana Linux machine with

 a native NTP daemon process

Offset Variation

Figure 14: Change of Offset with Time (Indiana
machine with NTP daemon)

Figure 14 depicts results from measurements performed
on a machine with a native NTP daemon running on the
machine; this ntpd daemon synchronizes its time with
“time.nist.gov” time server. Note that the previous two

 7/12

machines did not have this process running. Only 2
samples in this experiment are reported to be non-zero (-1
msec and 1msec) and all other values are reported to be
consistent with the ntpd daemon. The initial offset
computed is also 1 msec. This shows that ntpd daemon
running on the machine and our time service are very
consistent with each other.

3.2 High resolution timing services

To ensure that messages are time-stamped as accurately
as possible we have also incorporated a high resolution
timer service into the substrate. This high resolution timer
works on the Windows, Linux and Solaris operating
systems; here we have leveraged native libraries available
on these systems along with the Java Native Interface to
enable high resolution timers. On Solaris and Linux the
gettimeofday() function is used to retrieve the current time
in microseconds. It returns time since 1/1/1970; the
resolution is hardware dependent and is usually around 1
microsecond. The QueryPerformanceCounter on
Windows is used to get number of ticks; the number of
ticks in one second is 3759545, which is around one per
279 nanoseconds. This returns ticks from the start of the
machine, but does not have limitations as in the
getTickCount() function, which rolls-over every 49 days.
Note that this gives us better results than relying only on
the Java call. The resolution of the
System.currentTimeMillis() on Windows is around 15
milliseconds and 1 millisecond on Linux. We have
measured the resolution of the high resolution timer to be
around 3~4 microsecond.

3.3 Time buffering service

Jitter is considered to be one of the most important
Quality of Service (QoS) measurements within A/V
collaborative systems. In the case of audio streams, high
jitter values can cause voice breaks while in the case of
video streams high jitters may cause degenerations in the
image quality. In order to overcome the negative effects of
high jitter, real-time audio/video clients typically have a
buffer which buffers events up to 200 milliseconds and
then proceeds to release them. In order to reduce the effect
of high jitters in large distributed networked environment
we provide a buffer whose size can be customized based
on an entity’s needs.

The Buffering Service within NaradaBrokering stores

messages and releases them after sorting them according to
their timestamps. The design of the buffering service has
incorporated four configurable parameters pertaining to the
release of time-stamped messages. The first criterion is the
number of messages in the buffer maintained by the
buffering service. If the number of messages reaches the

maximum number of entries, it starts to release the time-
ordered messages. The second criterion is the total size of
the messages in the buffer. This along with the first
criterion enables us to circumvent buffer overflows. The
third criterion corresponds to the time spent by messages
within the buffer. In some cases, the rate of messages
arriving at an entity may be too slow and this may cause
longer and unwanted delays within the buffer. The time-
duration factor makes sure that the messages are released
after a maximum specified duration if the first two criteria
are not met. The final criterion is the release factor of the
buffer. This typically has a value between 0.5 and 1.0.
When any of the release criteria is met, it releases at least
release_factor X total_bufer_size messages.

3.4 Time differential service

In collaborative systems simply receiving messages in
time-order may not be enough. An entity may also place
constraints on the maximum jitter that it is willing to
tolerate. The Time Differential Service (TDS) provides
two very important functions. First, it reduces the jitter in
messages caused by the network. Second, it releases
messages while preserving the time spacing between
consecutive messages. Preserving time spacing between
messages is not an easy task primarily because most
operating systems do not provide strict real-time
capabilities. Depending on the operating system, the
scheduling of processes and threads does not necessarily
guarantee the CPU for that process or thread after a
specified interval. For example, using Java on the
Windows operating system, user-level threads can obtain
the CPU back only after 10 milliseconds. Based on the
scheduling configuration of Linux operating system this
duration can vary from 1 millisecond to 10 milliseconds or
more.

One of the main reasons that TDS uses threads rather

than traditional polling to release events in the queue is to
avoid high CPU utilizations. In the case of polling, in order
to release events in the queue their timestamps should be
checked very frequently. This can lead to very high CPU
utilizations. Furthermore, since rate at which events are
generated is not constant: the time spacing between
consecutive events vary. Using threads ensures that CPU
utilizations are significantly lower. The reason that we
have multiple threads instead of one thread to release the
events in the queue is due to issues related to the
underlying programming language (Java) and the
operating system. For e.g. on Linux (Fedora 2), in order to
check the timestamps every millisecond, we need to use at
least three inter-leaving threads since each thread wakes up
after a minimum of 3 milliseconds. On Windows, this
value is 10 milliseconds; this high value may not be able to
address jitter reduction adequately. .

 8/12

TDS spawns five threads to process messages released

by the buffering service. Note that TDS itself maintains
another buffer for processing. Each thread is initiated one
after another with a specified time difference between
consecutive initiations. Each thread sleeps for a specified
time-slice. By interleaving the durations at which these
threads wake-up TDS can operate on the buffer at finer
intervals while ensuring that CPU utilizations are low. The
time-slice interval for individual threads impacts CPU
utilization. We have observed that if the time interval
between threads is 1 millisecond the CPU utilization stays
around 5~6%, when this interval is decreased to 10
microseconds, it can reach about 20~25% on a Linux
machine (1.5 GHz CPU 512 MB RAM). When a thread
wakes up it checks to see if any messages need to be
released, and does so if needed. It does so by comparing
the message’s timestamp, the local clock obtained from the
high resolution timer and the time at which the last
message was released. By preserving the time-spacing
between messages TDS reduces jitter significantly.

Figure 15: Experimental setup for TDS measurements

Figure 15 depicts the experimental setup for our TDS
related measurements. The transmitter (publisher) captures
the input-video stream from a camera and publishes them
using NaradaBrokering messages, which are time-stamped
appropriately. In the reported results, we ignored the first

few messages that resulted in spikes due to media-player
initializations.

Figure 16 contrasts the jitters resulting from the
experimental setup (1) involving machines at Cardiff and
Indiana; the graph compares the jitters in the Input to the
buffering service and the Output of the TDS. Please note
that in the absence of the buffering service and TDS at a
client, the jitters experienced at that node would be similar
to that corresponding to the input of the buffering service.

-2

0

2

4

6

8

10

12

0 100 200 300 400 500 600 700 800 900 1000

Ji
tte

r (
M

illi
se

co
nd

s)

Sample Number

Jitter values comparing the Input to the Buffering
Service and the Output of the TDS

Buffering Input
TDS Output

Figure 16: Jitter values comparing Buffering Service
Input and TDS Output (Trans-Atlantic)

Figure 17 depicts only the jitters as a result of TDS for
this experimental setup. The results demonstrate the
significant reduction in jitter as a result of deploying the
TDS.

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 100 200 300 400 500 600 700 800 9001000

Ji
tte

r (
M

illi
se

co
nd

s)

Sample Number

Jitter values from the output of the TDS

TDS Output

Figure 17: Jitter values from the TDS Output (Trans-
Atlantic)

We also performed measurements in the same
experimental setup by varying the time-slice intervals
associated with the threads spawned by the TDS. Here we

 9/12

report results (Figure 18) from our measurements for
intervals of 1 millisecond and 100 microseconds. The
results demonstrate that reducing the time intervals also
reduces the jitter in the messages that are output by the
TDS.

-0.05
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0 100 200 300 400 500 600 700 800 9001000

Ji
tte

r (
M

illi
se

co
nd

s)

Sample Number

Jitter values from the Output of the TDS
Different Thread Intervals

1 millisecond
100 microseconds

Figure 18: Jitter values from the TDS output for
different thread intervals (Trans-Atlantic)

We have also performed measurements within a local
area network to profile the performance of TDS, the results
reported here correspond to the experimental setup (2)
depicted in Figure 15. Figure 19 contrasts the jitters in the
input to the buffering service and the output of TDS. Once
again, the results demonstrate jitter reduction even in
cluster settings.

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600 700 800 9001000

Ji
tte

r (
M

illi
se

co
nd

s)

Sample Number

Jitter values comparing the Input to the Buffering
Service and the Output of the TDS

Buffering Input
TDS Output

Figure 19: Jitter values comparing Buffering Service
Input and TDS Output (Cluster setting)

In our last experiment we investigated if TDS would be
able to space messages accurately if they were time
stamped a few hundred microseconds apart. Here we
generated messages that were spaced at intervals of 500

microseconds. Figure 20 depicts these results; the results
demonstrate that TDS can be deployed in settings where
messages are spaced a few hundred microseconds apart.

0
20
40
60
80

100
120
140
160
180
200

0 100 200 300 400 500 600 700 800 900 1000

Ji
tte

r (
M

ic
ro

se
co

nd
s)

Sample Number

Jitter values for 500 microsecond spacing between
events. TDS Thread interval = 100 microseconds

Jitter

Figure 20: Jitter values for spacing messages with a
fixed 500 microsecond spacing between them

3.5 Other NaradaBrokering services

NaradaBrokering also provides services to ensure
reliable delivery of messages. This reliable scheme extends
naturally to support replay services, ordered delivery and
exactly-once delivery of messages. Additional information
regarding these services can be found in Ref [4].
NaradaBrokering also includes services for monitoring the
performance of individual links. It is also our contention
that the NaradaBrokering security scheme [7] can be
naturally extended to support secure interactions between
entities.

To deal with messages with large payloads,
NaradaBrokering provides services for compressing and
decompressing these payloads. Additionally there is also a
fragmentation service which fragments large file-based
payloads into smaller ones. A coalescing service then
merges these fragments into the large file at the receiver
side. This capability in tandem with the reliable delivery
service was used to augment GridFTP to provide reliable
delivery of large files across failures and prolonged
disconnects. The recoveries and retransmissions involved
in this application are very precise. Additional details can
be found in Ref [5]. Here, we had a proxy collocated with
the GridFTP client and the GridFTP server. This proxy, a
NaradaBrokering entity, utilizes NaradaBrokering’s
fragmentation service to fragment large payloads (> 1 GB)
into smaller fragments and publish fragmented messages.
Upon reliable delivery at the server-proxy,
NaradaBrokering reconstructs the original payload from
the fragments and delivers it to the GridFTP server.

 10/12

4. Related Work

Examples of systems based on the generalized
publish/subscribe paradigm include Elvin [10], Sienna [11]
and Gryphon [12]. Elvin utilizes quench expressions to
suppress producers from sending notifications while there
are no consumers. This, however, entails each producer to
be aware of all the consumers and their subscriptions.
Sienna assembles patterns of notifications as close as
possible to the publishers, while multicasting notifications
as close as possible to the subscribers. Sienna however
does not include support for ordering of notifications and
expects the application to resolve it. In Gryphon each
broker maintains a list of all subscriptions within the
system in a parallel search tree (PST). The PST is
annotated with a trit vector encoding link routing
information. These annotations are then used at matching
time by a server to determine which of its neighbors
should receive that event. The Event Service [13] approach
adopted by the OMG is one of establishing channels and
subsequently registering suppliers and consumers to the
event channels. The approach can entail clients
(consumers) to be aware of a large number of event
channels.

Another area of interest is peer-to-peer (P2P) systems,

these include systems that are based on unstructured
overlay networks (e.g. the old JXTA [14] model) and those
that are based on structured overlay networks that employ
Distributed Hash Tables (DHTs). DHTs have been quite
popular in several P2P systems. Here each data object is
associated with a key. A lookup service to locate this
object returns the IP-address of the node hosting this
object. Similar to a traditional hashtable data structure,
other operations supported in the DHT include put and get.
In DHT-based P2P overlay networks the nodes are
organized based on the content that they possess. Here
DHTs are used to locate, distribute, retrieve and manage
data in these settings. This scheme provides bounded
lookup times. Here examples of such systems include the
current JXTA [14] system, Pastry [15]. FLAPPS [16, 17]
provides a generalized infrastructure for peer network
design. Here peers are organized into a peer network
comprised of overlapping peer groups with transit peers
efficient routing requests. It should be noted that though
FLAPPS is not DHT based it can indeed be used to support
DHT-style systems, Resilient Overlay Networks (RON)
style networks and traditional peer networks. Unlike DHT
systems with consistent hashing schemes data elements in
Squid attempts to preserve locality and use the dimension-
reducing mapping called Space Filling Curves (SFC). By
preserving locality in the DHT index space Squid supports

complex queries using partial keywords, wildcards and
ranges.

A comprehensive discussion of the architectural
similarities, differences, strengths and weaknesses of these
systems vis-à-vis capabilities available within the
NaradaBrokering substrate can be found in Ref [3].
Examples of collaborative infrastructures include JSDT
[18] from Sun Microsystems. JSDT provides the basic
abstractions of a session and also supports full-duplex
multi-point connections between entities. Additionally,
JSDT provides a token-based distributed synchronization
mechanism to facilitate access to shared resources.

Approaches to synchronizing clocks in distributed

systems include efforts such as Lamport’s logical clocks
[19], vector clocks [20] and Cristian’s algorithm [21].
Lamport’s logical clocks guarantees the order of events
among themselves. They do not need to run at a constant
rate, but they must increase monotonically. Using Lamport
timestamps, Lamport synchronizes logical clocks by
defining a relation called “happens-before”. Vector clocks
have been introduced because Lamport timestamps cannot
capture causality. But a major drawback is that vector
clocks add a vector timestamp, whose size is linear with
the number of processes, onto each message in order to
capture causality. Vector clocks thus do not scale well in
large settings. In Cristian’s algorithm, all of the machines
in the system synchronize their clocks with a time server.
Here each machine issues a request to the time server to
retrieve the current time. The time server then responds to
this message including its current time as fast as it can.
Time server in Cristian’s algorithm is passive. In the
Berkeley algorithm [22], time server is active and polls
every machine periodically. It then computes the average
time based on the times received from the other machines
and notifies them that they should adjust their time to the
recently computed time.

5. Conclusions & Future Work

In this paper we have outlined the support for
collaboration within the NaradaBrokering substrate which
in turn provides for a richer collaborative experience. The
various services related to ordering and delivery within the
system can be leveraged by systems that mandate high-
performance collaboration. Our experimental results
demonstrate that the substrate can indeed be used in
scenarios where performance and scalability requirements
are stringent.

More recently we have included support for WS
specification related to notifications and reliable delivery
viz. WS-Eventing [23] and WS-ReliableMessaging [24].
This in turn will enable the development of collaborative

 11/12

systems that are based on the emerging Web Services
stack. The final version of this paper, if accepted, will
incorporate performance measurements for the
specifications.

References

[1] The NaradaBrokering Project at the Community Grids Lab:

http://www.naradabrokering.org
[2] Shrideep Pallickara and Geoffrey Fox. NaradaBrokering: A

Middleware Framework and Architecture for Enabling
Durable Peer-to-Peer Grids. Proceedings of
ACM/IFIP/USENIX International Middleware Conference
Middleware-2003.

[3] Shrideep Pallickara and Geoffrey Fox. On the Matching Of
Events in Distributed Brokering Systems. Proceedings of
IEEE ITCC Conference on Information Technology. April
2004. Volume II pp 68-76.

[4] Shrideep Pallickara and Geoffrey Fox. A Scheme for
Reliable Delivery of Events in Distributed Middleware
Systems. Proceedings of the IEEE International Conference
on Autonomic Computing. pp 328-329. 2004.

[5] G. Fox, S. Lim, S. Pallickara and M. Pierce. Message-Based
Cellular Peer-to-Peer Grids: Foundations for Secure
Federation and Autonomic Services. Journal of Future
Generation Computer Systems. Volume 21, Issue 3, pp 401-
415 (1 March 2005). Published by Elseiver.

[6] Geoffrey Fox, Shrideep Pallickara and Savas Parastatidis.
Towards Flexible Messaging for SOAP Based Services.
Proceedings of the IEEE/ACM Supercomputing Conference
2004. Pittsburgh, PA.

[7] Shrideep Pallickara et al. A Security Framework for
Distributed Brokering Systems. Available from
http://www.naradabrokering.org

[8] RTP: A Transport Protocol for Real-Time Applications
(IETF RFC 1889) http://www.ietf.org/rfc/rfc1889.txt.

[9] D.L. Mills. Network Time Protocol (Version 3).
Specification, Implementation and Analysis. Internet RFC
1305. (March 1992)

[10] Bill Segall and David Arnold. Elvin has left the building: A
publish/subscribe noti.cation service with quenching. In

Proceedings AUUG97, pages 243–255, Canberra, Australia,
September 1997.

[11] Antonio Carzaniga, et al Achieving scalability and
expressiveness in an internet-scale event notification
service. In Proceedings of the 19th ACM Symposium on
Principles of Distributed Computing, pages 219–227 2000.

[12] G. Banavar et al. An Efficient Multicast Protocol for
Content-Based Publish-Subscribe Systems. In Proceedings
of the IEEE International Conference on Distributed
Computing Systems, Austin, Texas, May 1999.

[13] The Object Management Group (OMG). OMG’s CORBA
Event Service. Available from http://www.omg.org/

[14] Sun Microsystems. The JXTA Project and Peer-to-Peer
Technology http://www.jxta.org

[15] Antony Rowstron and Peter Druschel. Pastry: Scalable,
decentralized object location and routing for large-scale
peer-to-peer systems. Proceedings of Middleware 2001.

[16] B. Scott Michel, Peter L. Reiher: Peer-through-Peer
Communication for Information Logistics. GI Jahrestagung
(1) 2001: 248-256

[17] B. Michel and P. Reiher. Peer-to-Peer Internetworking. In
OPENSIG, September 2001.

[18] Java Shared Data Toolkit (JSDT).
http://java.sun.com/products/java-media/jsdt/index.jsp

[19] L. Lamport. Time, clocks, and the ordering of events in a
distributed system. Communications of the ACM, vol. 21,
no. 7 pp. 558-565, July 1978

[20] C.J. Fidge. Logical Time in Distributed Computing Systems.
IEEE Computer. vol.24, no.8, pp.28–33, 1991.

[21] F. Cristian. Probabilistic clock synchronization. Distributed
Computing. 3:146–158, 1989.

[22] R. Gusella, S. Zatti. The accuracy of clock
synchronization achieved by TEMPO in Berkeley
Unix 4.3BSD. In IEEE Transactions on Software
Engineering. Vol. 15, pp. 847-853

[23] Web Services Eventing. Microsoft, IBM.. http:
//ftpna2.bea.com/pub/downloads/WS-Eventing.pdf

[24] Web Services Reliable Messaging Protocol (WS-
ReliableMessaging)
ftp://www6.software.ibm.com/software/developer/library/ws
-reliablemessaging200403.pdf

 12/12

http://www.naradabrokering.org/
http://www.naradabrokering.org/
http://www.ietf.org/rfc/rfc1889.txt
http://www.omg.org/
http://www.jxta.org/
http://java.sun.com/products/java-media/jsdt/index.jsp
http://ftpna2.bea.com/pub/downloads/WS-Eventing.pdf
http://ftpna2.bea.com/pub/downloads/WS-Eventing.pdf
ftp://www6.software.ibm.com/software/developer/library/ws-reliablemessaging200403.pdf
ftp://www6.software.ibm.com/software/developer/library/ws-reliablemessaging200403.pdf

	Abstract
	Introduction
	NaradaBrokering Substrate
	Support for scaling within the NaradaBrokering substrate

	Services enriching collaboration within the NaradaBrokering
	Ensuring consistent timestamps
	High resolution timing services
	Time buffering service
	Time differential service
	Other NaradaBrokering services

	Related Work
	Conclusions & Future Work

