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Abstract 
 
The requirements for collaborative services, especially 
pertaining to order and delivery, are quite different 
compared to traditional distributed applications. The 
NaradaBrokering messaging substrate enables scalable, 
fault-tolerant, distributed interactions between entities, 
and is based on the publish/subscribe paradigm. The 
substrate also incorporates support for Grid and Web 
Service. More recently, we have incorporated services 
within the substrate which enable us to facilitate richer 
collaborative interactions. In this paper, we outline our 
rationale for incorporating these services and how these 
services interact with each other. We have conducted 
experiments related to profiling these services, and also on 
the performance and scaling of the messaging substrate. 
Our experimental results demonstrate that the substrate 
can indeed be used in scenarios where performance and 
scalability requirements are stringent.  
 
Keywords: distributed messaging, collaborative services, 
a/v conferencing, replay services, buffering, scalable 
systems 
 

1. Introduction  
 

A collaborative system can be characterized as a system 
where a group of users have come together with the intent 
to exchange (and share) data, state transitions and actions 
initiated by participants.  The data shared could be text, 
graphics, shared displays or multimedia content. 
Applications typically manage the type of data that is 
received by using appropriate content handlers. At its very 
core the fundamental problem within collaborative systems 
is one of disseminating the right content to the right 
participants. Furthermore, since the participants in a 
collaborative session are distributed over a wide area 

network, the underlying infrastructure supporting 
collaboration needs to cope with the complexities of 
communications, network failures and fluid group 
memberships. 
 

Approaches to collaboration have tended to use IP 
Multicast to deal with the content distribution problem. 
Multicast provides a powerful, elegant and flexible 
framework for implementing collaborative systems. Here, 
participants agree upon a multicast group and collaborate 
by exchanging data over this group; the system relies on 
MBONE to manage this data interchange.  
 

In this paper we suggest that a far more powerful 
framework for collaboration is the publish/subscribe 
paradigm. In publish/subscribe systems the routing of 
messages from the publisher to the subscriber is within the 
purview of the message oriented middleware (MoM), 
which is responsible for routing the right content from the 
producer to the right consumers. Subscribers register their 
interest in content through subscriptions, publishers are 
responsible only for the generation of content. 
Publish/Subscribe systems thus provide a clear decoupling 
of the message producer and consumer roles that 
interacting entities might have. This is especially useful if 
there are a large number of potential consumers for a given 
message. In such cases a producer need not keep track of 
the large number of consumers that a message could 
potentially be routed to: the middleware performs this 
function for the publisher.  
 

Support for high performance collaboration needs to 
address several issues which we enumerate here. 
1. Scaling: The underlying infrastructure should cope 

with the presence of a large number of entities while 
facilitating the management of a large number of 
collaborative groups. 

2. Support for complex collaborative schemes: Here, 
entities may be interested in receiving notifications 
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under very specific scenarios. This would involve 
notification of membership changes or the availability 
of content that meets a specific constraint set by the 
interested entity. 

3. Support for timing based services: This includes 
support for high resolution timestamps, buffering and 
time-based ordering of messages. In the case of time 
based ordering the timestamps in individual messages 
should also cope with clock skews and 
synchronization problems. 

4. Recovery and Replay Services: It should be possible 
for late (or recovering) participants to retrieve missed 
messages. Furthermore, replays should be able to 
preserve time spacing between messages; if so 
desired. 

5. Performance: The infrastructure should be able to 
provide consistent throughput and high-performance 
while supporting each of the aforementioned 
scenarios. 

 
We investigate these issues in the context of our 

system: NaradaBrokering. NaradaBrokering is a content-
based publish/subscribe system and has been in the open 
source domain for the past 3 years. We have incorporated 
several services within NaradaBrokering to allow it to 
cope with the stringent requirements intrinsic in high 
performance collaborative systems. In this paper we 
demonstrate that the NaradaBrokering substrate provides a 
powerful, generalized framework for enabling high-
performance collaborative applications.  
 

The remainder of this paper is organized as follows. In 
section 2 we provide an overview of the NaradaBrokering 
substrate, here we also contrast the advantages of the 
publish/subscribe paradigm over hardware Multicast. In 
section 3 we discuss the various services available within 
the NaradaBrokering substrate which can be leveraged by 
high performance collaborative applications. We have 
conducted experiments profiling the performance of the 
substrate and its constituent services for supporting 
collaborative applications with some of these experiments 
being performed in trans-Atlantic settings. We include 
these results within the relevant subsections. In section 4 
we present an overview of the related work. Finally, in 
section 6 we outline our conclusions and future work. 
 

2. NaradaBrokering Substrate 
 

NaradaBrokering [1-7] is a distributed messaging 
infrastructure based on the publish/subscribe paradigm, 
and provides two closely related capabilities. First, it 
provides a message oriented middleware (MoM) which 
facilitates communications between entities (which 
includes clients, resources, services and proxies thereto) 

through the exchange of messages. Second, it provides a 
notification framework by efficiently routing messages 
from the originators to only the registered consumers of 
the message in question. This dissemination constraint 
holds true irrespective of the size of the broker network or 
the number of clients within the system. The smallest unit 
of this substrate which intelligently processes and routes 
messages, while working with multiple underlying 
communication protocols is referred to as as a broker. The 
NaradaBrokering software has been in the open source 
domain for the past 3 years. The current code-base 
comprises 1100 classes with approximately a quarter 
million lines of code.  

 
Communication within NaradaBrokering is 

asynchronous and the system can be used to support 
different interactions by encapsulating them in specialized 
messages (also referred to as events). These specialized 
messages can encapsulate information pertaining to 
transactions, data interchange and system conditions. 
NaradaBrokering places no constraints either on the size, 
rate or scope of the interactions encapsulated within these 
messages, or on the number of entities present in the 
system. 
 

NaradaBrokering relies on software multicast for 
communications; this obviates the need for MBONE which 
is required for multicast communications. It should 
however be noted that the substrate can leverage hardware 
multicast if it is available. The NaradaBrokering substrate 
provides support for transport protocols such as TCP, 
Parallel TCP, UDP, Multicast, HTTP and SSL; it also 
facilitates communications across NAT and firewall/proxy 
boundaries. 

All Nodes
Linux OS, 2.4GHz Dual Intel Xeon 
CPU and 2 GB of memory. JVM 1.4

Publisher/Subscriber on same machine to 
eliminate need for clock synchronizations

Broker

Publisher Subscriber

TCP Link

 
Figure 1: Experimental setup for measuring 
communication latencies 
 

To enable the reader to get an idea of the costs involved 
in communications within the substrate, we now report 
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results pertaining to communications within the 
NaradaBrokering substrate. The experimental setup for our 
measurements is depicted in Figure 1. The results are 
depicted in Figure 2, where each point in the delay-curve 
corresponding to the average of 50 messages. The standard 
deviation-curve reports the deviation in these delays. Note 
that the numbers reported here correspond to two-hops, 
from the producer to the broker, and from the broker to the 
producer. The per-hop latency in cases up until 4KB is 
around 1 millisecond (transit delay corresponds to traversal 
from publisher-broker-subscriber). The results reported 
here are for communications using TCP.  
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Figure 2: Average delays and standard deviation for 
message samples 
 

NaradaBrokering allows clients to register their 
subscriptions (interest in the content of messages) using a 
variety of formats. The subscriptions can be in the form of 
String, Integer, Long and <tag, value> based topics, or in 
the form of XPath, SQL and Regular expression queries.  
Support for this variety of subscription formats also 
implies richer collaborative interactions since actions may 
be triggered only under very precise conditions. The 
complexity of managing these subscriptions and routing 
relevant messages is delegated to the middleware 
substrate. Since the individual entities do not need to cope 
with the complexity of constraints, this in turn facilitates 
easier development of collaborative applications which 
enable these complex interactions.  

 
 Typically, the number of managed subscriptions 
increases with the number of collaborative groups and 
entities present within the system. Depending on the 
complexity of interactions the subscription formats may 
vary. To give an idea of the cost involved in managing 
various subscription formats, we include some results from 
our measurements with Integers, Strings and <tag-value> 
pair based topics. To contrast the cost involved in 
managing richer subscription constraints we also include 

results for Regular expressions. For every case the number 
of subscriptions is varied from 20,000 to 100,000; and the 
results depict the time to compute destinations for a given 
message from this set of subscriptions. The results were 
measured on a machine (1GHz, 256MB RAM) running the 
process in a Java-1.4 Sun VM with a high-resolution timer 
for computing delays.  
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Figure 3: Costs involved in different subscription 
constraints 
 

The richer the constraints, the greater the CPU-cost 
associated with the matching process, which computes 
destinations for a message. As can be seen, in Figure 3, the 
average cost for matching increases progressively (Integer 
to String to Tag-Value to Regular Expressions in that 
order) as the complexity of the matching increases. For 
Integer matching the average cost was around 6 
microseconds, while for String based matching it was 7 
microseconds. The costs associated with <tag,value> based 
matching when there are approximately 25 <tag,value> 
pairs was around 18 microseconds. Finally, in the case of 
Regular expressions the cost varied from 242 milliseconds 
for 20,000 subscriptions to 1.178 seconds for 100000 
subscriptions.  The results also demonstrate the feasibility 
of using software multicast for communications. 
 
2.1 Support for scaling within the 

NaradaBrokering substrate 
 

In this section we investigate the limits of the brokering 
substrate in supporting a large number of multi-media 
clients.  For the purposes of our experiment we have 
recorded an audio and a video stream for 2 minutes. The 
audio stream is based on the 64 kbps ULAW codec; the 
size of each package is 252 bytes and is issued once every 
30 milliseconds. For the duration of the experiment there 
were 4100 packages without any silence period within the 
stream. Note that this is telephone-quality audio and is 
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quite widely used in videoconferencing sessions over the 
Internet.  
 

We also recorded the video stream of a speaking 
participant in a video conferencing session setting. This is 
an H.263 stream with 15 frames per second. The video 
encoder encoded a frame every 66ms. Although the 
average bandwidth was 280 kbps; the bandwidth fluctuated 
mostly between 250 kbps and 310 kbps. For the duration 
of the experiment there were 1800 video frames which 
were transmitted during 2 minutes, and a total of 5610 
packages. Note that the video encoder was dividing the 
frames that have more than 1 KB of data into multiple 
packages. The average length of individual video packages 
was 740 bytes. The transmitter sent one full picture update 
frame every 60 frames or every 4 seconds. 
 

We first conducted tests to evaluate the performance 
and the limits of a single NaradaBrokering broker. These 
experiments were performed on an 8 node Linux cluster 
with a gigabit network switch. All nodes had dual-CPUs 
(Intel Xeon 2.4GHz) and 2GB of memory. The runtime 
environment for all components involved in the 
experiment is JDK 1.4. Please note that in these 
experiments each meeting is designed as a single speaker 
meeting with one speaker and many listeners. Furthermore, 
when calculating the latencies and accompanying jitters, 
we ignored the first 100 packages to compensate for start 
up costs. The Jitter J is computed based on the formula 
outlined in the RTP [8] specification − J = J + (|D(i-1, i)| - 
J)/16, where D(i-1, i) corresponds to the difference 
between the delay for ith RTP packet and the delay for the 
(i-1)th RTP packet.  
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Figure 4: Average latency and jitter for audio 
conferencing clients 

Figure 4 depicts the average latency and jitter for audio 
conferencing clients. The average latency value is less than 
20 milliseconds (with jitter being very acceptable too) until 
the broker is overloaded. This overload takes place at 1600 
users when the average latency jumps to 2.2 seconds. This 

was not depicted in the graph to ensure that the pattern up 
until 1500 clients was clearly visualized.   
 

Figure 5 depicts the latency and jitter for video 
conferencing clients. Though the average latency for 900 
clients is acceptable, the broker is actually overloaded 
when there are 500 participants. This is because the 
number of late arrivals which correspond to packets whose 
delay exceeds 100 ms is around 3% for 500 clients; a 
number at which we deem the broker to be overloaded. 
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Figure 5: Average latency and jitter for video 
conferencing clients - Single Broker Single Meeting 

 
Next, we evaluate the performance of the broker 

network with four brokers for a single video meeting.  

 
Figure 6: Experimental Setup for Multi-broker 
measurements 

For the distributed broker tests, we used two Linux 
clusters, each having 8 nodes with the four brokers 
connected as depicted in Figure 6. The configuration of 
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nodes in the first cluster is 2.4GHz Dual Intel Xeon CPU 
and 2 GB of memory, while that of the nodes in the second 
cluster is 2.8 GHz Dual Intel Xeon CPU and 2GB of 
memory. The clusters had a gigabit network bandwidth 
among its nodes. 
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Figure 7: Average latencies for Video conferencing 
clients - 4 Brokers, Single Meeting 
 

The receivers were evenly distributed among the 
brokers and across meetings. The latency values of brokers 
B1 and B2 are quite similar. Similarly, the latency values 
of B3 and B4 are very similar. Brokers B3 and B4 perform 
better than the first two brokers, because the machines in 
the second Linux cluster have superior CPU power.  As the 
latency values show (Figure 7), adding new brokers 
increases the capacity of the broker network. In this case, 
since all brokers have quite similar computing power, each 
broker increases the capacity of the broker network almost 
linearly. For the first two brokers, the percentage of late 
arriving packages is 1.9% when there are 400 participants. 
Therefore, they can support up to 400 users. For the last 
two brokers, the packages arriving late are less than 1.0% 
for the same number of participants, thus supporting 400 
users comfortably. In total, four brokers support close to 
1600 participants in a single video meeting. Figure 8 and 
Figure 9 depict the average latency and jitter values 
respectively in multiple meeting settings involving the 
same broker network. 

 
In summary, these experiments demonstrate that the 

NaradaBrokering broker network scales well in distributed 
settings when delivering streams to a high number of 
participants. The scalability of the broker network 
increases almost linearly with the number of brokers. 
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Figure 8: Average Latencies for Video Conferencing 
clients - 4 Brokers, Multiple meetings 
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Figure 9: Average Jitters for Video conferencing clients 
-- 4 Brokers, Multiple meetings 
 
 

Next, we investigate the delivery of audio/video 
streams to geographically distant clients. We had access to 
machines at three more locations, in addition to the two 
Linux clusters (in Bloomington, IN) that we used for the 
previous distributed broker tests. The other three sites were 
Syracuse University at Syracuse, NY, Florida State 
University (FSU) at Tallahassee, FL and Cardiff 
University in Cardiff, United Kingdom. These three sites 
had 90-100Mbps download bandwidths.  
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Figure 10: Average Latencies for Video Conferencing 
Clients - WAN 

 
The broker was running at Indiana and an equal 

numbers of participants were running at the four other 
sites. A client running in the same site as the broker 
published the video stream on the broker. We measured 
the latencies and jitters at the clients. Please note that there 
can be a few millisecond discrepancies in latency values 
because of the difficulties in determining the exact clock 
differences between the transmitter and receiver. This test 
demonstrates that 150 video streams can be transferred 
between these four sites with acceptable transmission 
delays (Figure 10) and jitter (Figure 11).  
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Figure 11: Average Jitters for Video Conferencing 
Clients - WAN 
 

3. Services enriching collaboration within 
the NaradaBrokering substrate 

 
In this section we outline services that we have 

incorporated into the NaradaBrokering substrate to 
facilitate richer collaborative interactions. The section 
elaborates on issues related to time ordering, spacing and 
the reduction of jitters during collaboration. 

 
3.1 Ensuring consistent timestamps 
 

Entities within a distributed system generate messages 
with timestamps based on their local clocks. Since the 
clocks on individual machines are out-of-sync with each 
other, these timestamps are not useful in time ordering 
these messages. Furthermore, on a given machine, clocks 
may run slower or faster than they should. What is needed 
is a scheme which accounts for these skews and provides 
consistent timestamps. To this end, we have implemented 
and incorporated the Network Time Protocol (NTP) [9] 
within the substrate.  
 

NTP is one of the most widely used algorithms for 
ensuring consistent timestamps in distributed settings, and 
can achieve an accuracy of 1-30 milliseconds; this implies 
that timestamps generated at any point within a distributed 
system will be within 30 milliseconds of each other. 
However, this accuracy also depends on the roundtrip 
delay between the machine and the time service server. 
This difference in the communication delays between the 
host machine and the time server also contributes to the 
accuracy of the offset (which identifies how much the 
clock needs to be adjusted) that is computed. NTP 
achieves this accuracy by using filtering, selection and 
clustering, and combining algorithms to adjust the local 
time. In the NTP algorithm the rectifying-machine receives 
time from several time servers. The filtering algorithm 
selects the best samples obtained from a given time server. 
The selection and clustering algorithms then pick the best 
truechimers and discard the falsetickers. Finally, the 
combining algorithm computes a weighted average of the 
time offset of the best truechimers.  
 
 Consistent timestamps allow us to time order events 
since the timestamps generated at any entity within the 
system can now be assumed to be accurate within a certain 
range (1-30 msecs for NTP). Such precise timestamps can 
in turn enable time-ordering of events that have been 
issued by entities at disparate geographic locations. A 
problem that existed within a distributed publish/subscribe 
systems was the precise determination of when a 
subscription is to be considered active. This can be 
assuaged a great deal with the use of precise UTC 
timestamps available through the use of the NTP protocol. 
In the aforementioned scenario subscriptions will maintain 
a timestamp indicating when they were created, any events 
published after this timestamp should be considered for 
matching with (and delivery to) this subscription. Finally, 
we are currently investigating the use of these timestamps 
to ensure consistency within replicated shared contexts of 
distributed computations. 
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Figure 12 depicts the results from our measurements 
that were done with a machine in Cardiff, UK. The time 
servers that we used for this particular experiment 
involved stratum-1 and stratum-2 time-servers from 
Europe (specifically UK, France, Italy and Germany). The 
initial offset value computed by our NTP algorithm is 
19235 milliseconds, which means that the system clock 
trails the real time by that amount. Changes in offset 
indicate the corrections that are taking place due to clock 
drifts. Note that we ensure consistency of timestamps 
returned by the service previously: negative offsets are not 
applied if they result in time traversing into the past.  
Machine based in Cardiff UK 
OS: Red Hat Linux 7.1 2.96-79  
CPU: Pentium III, 1 GHz 
Memory: 1.5 GB 
JVM Version: 1.4.1_01 

initialization offset 
value  19235 msec 
min 0 msec 
max 5 msec 
total change 527 msec 
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Figure 12: Change of Offset with Time (UK machine no 
NTP daemon) 
 
 
Figure 13 depicts results from measurements performed on 
a machine in Indiana. In this test we used stratum-1 time 
servers that were based in US. The offsets computed vary 
between -1 and 3 milliseconds.  
 
OS: Red Hat 3.4.2-6.fc3  
CPU: Intel(R) Pentium(R) 4 CPU 1500MHz 
Memory: 1 GB,  
JVM Version:  1.4. 
 

initialization offset value  544461 msec 
min 0 msec 

max 3 msec 
total change 381 msec 
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Figure 13: Change of Offset with Time (Indiana 
machine no NTP daemon) 
 
 
OS: Red Hat Linux 7.3 2.96-110  
CPU: AMD Athlon(tm) MP 1800+ 1. GHz  
Memory: 1034756 kB 
JVM Version: 1.4.1_03 
 

initialization offset value  1 msec 
min 0 msec 
max 1 msec 
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Figure 14: Change of Offset with Time (Indiana 
machine with NTP daemon) 

Figure 14 depicts results from measurements performed 
on a machine with a native NTP daemon running on the 
machine; this ntpd daemon synchronizes its time with 
“time.nist.gov” time server. Note that the previous two 
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machines did not have this process running. Only 2 
samples in this experiment are reported to be non-zero (-1 
msec and 1msec) and all other values are reported to be 
consistent with the ntpd daemon. The initial offset 
computed is also 1 msec. This shows that ntpd daemon 
running on the machine and our time service are very 
consistent with each other.  
 
3.2 High resolution timing services 
 

To ensure that messages are time-stamped as accurately 
as possible we have also incorporated a high resolution 
timer service into the substrate. This high resolution timer 
works on the Windows, Linux and Solaris operating 
systems; here we have leveraged native libraries available 
on these systems along with the Java Native Interface to 
enable high resolution timers. On Solaris and Linux the 
gettimeofday() function is used to retrieve the current time 
in microseconds. It returns time since 1/1/1970; the 
resolution is hardware dependent and is usually around 1 
microsecond. The QueryPerformanceCounter on 
Windows is used to get number of ticks; the number of 
ticks in one second is 3759545, which is around one per 
279 nanoseconds. This returns ticks from the start of the 
machine, but does not have limitations as in the 
getTickCount() function, which rolls-over every 49 days. 
Note that this gives us better results than relying only on 
the Java call. The resolution of the 
System.currentTimeMillis()  on Windows is around 15 
milliseconds and 1 millisecond on Linux.  We have 
measured the resolution of the high resolution timer to be 
around 3~4 microsecond.  
 
3.3 Time buffering service 
 

Jitter is considered to be one of the most important 
Quality of Service (QoS) measurements within A/V 
collaborative systems. In the case of audio streams, high 
jitter values can cause voice breaks while in the case of 
video streams high jitters may cause degenerations in the 
image quality. In order to overcome the negative effects of 
high jitter, real-time audio/video clients typically have a 
buffer which buffers events up to 200 milliseconds and 
then proceeds to release them. In order to reduce the effect 
of high jitters in large distributed networked environment 
we provide a buffer whose size can be customized based 
on an entity’s needs. 

 
The Buffering Service within NaradaBrokering stores 

messages and releases them after sorting them according to 
their timestamps. The design of the buffering service has 
incorporated four configurable parameters pertaining to the 
release of time-stamped messages. The first criterion is the 
number of messages in the buffer maintained by the 
buffering service. If the number of messages reaches the 

maximum number of entries, it starts to release the time-
ordered messages. The second criterion is the total size of 
the messages in the buffer. This along with the first 
criterion enables us to circumvent buffer overflows. The 
third criterion corresponds to the time spent by messages 
within the buffer. In some cases, the rate of messages 
arriving at an entity may be too slow and this may cause 
longer and unwanted delays within the buffer. The time-
duration factor makes sure that the messages are released 
after a maximum specified duration if the first two criteria 
are not met. The final criterion is the release factor of the 
buffer. This typically has a value between 0.5 and 1.0. 
When any of the release criteria is met, it releases at least 
release_factor X total_bufer_size messages.  
 
3.4 Time differential service 
 

In collaborative systems simply receiving messages in 
time-order may not be enough. An entity may also place 
constraints on the maximum jitter that it is willing to 
tolerate. The Time Differential Service (TDS) provides 
two very important functions. First, it reduces the jitter in 
messages caused by the network. Second, it releases 
messages while preserving the time spacing between 
consecutive messages. Preserving time spacing between 
messages is not an easy task primarily because most 
operating systems do not provide strict real-time 
capabilities. Depending on the operating system, the 
scheduling of processes and threads does not necessarily 
guarantee the CPU for that process or thread after a 
specified interval. For example, using Java on the 
Windows operating system, user-level threads can obtain 
the CPU back only after 10 milliseconds. Based on the 
scheduling configuration of Linux operating system this 
duration can vary from 1 millisecond to 10 milliseconds or 
more.  

 
One of the main reasons that TDS uses threads rather 

than traditional polling to release events in the queue is to 
avoid high CPU utilizations. In the case of polling, in order 
to release events in the queue their timestamps should be 
checked very frequently. This can lead to very high CPU 
utilizations. Furthermore, since rate at which events are 
generated is not constant: the time spacing between 
consecutive events vary. Using threads ensures that CPU 
utilizations are significantly lower. The reason that we 
have multiple threads instead of one thread to release the 
events in the queue is due to issues related to the 
underlying programming language (Java) and the 
operating system. For e.g. on Linux (Fedora 2), in order to 
check the timestamps every millisecond, we need to use at 
least three inter-leaving threads since each thread wakes up 
after a minimum of 3 milliseconds. On Windows, this 
value is 10 milliseconds; this high value may not be able to 
address jitter reduction adequately. . 

 8/12 



 
TDS spawns five threads to process messages released 

by the buffering service. Note that TDS itself maintains 
another buffer for processing. Each thread is initiated one 
after another with a specified time difference between 
consecutive initiations. Each thread sleeps for a specified 
time-slice. By interleaving the durations at which these 
threads wake-up TDS can operate on the buffer at finer 
intervals while ensuring that CPU utilizations are low. The 
time-slice interval for individual threads impacts CPU 
utilization. We have observed that if the time interval 
between threads is 1 millisecond the CPU utilization stays 
around 5~6%, when this interval is decreased to 10 
microseconds, it can reach about 20~25% on a Linux 
machine (1.5 GHz CPU 512 MB RAM). When a thread 
wakes up it checks to see if any messages need to be 
released, and does so if needed. It does so by comparing 
the message’s timestamp, the local clock obtained from the 
high resolution timer and the time at which the last 
message was released. By preserving the time-spacing 
between messages TDS reduces jitter significantly.  

 
Figure 15: Experimental setup for TDS measurements 
 

Figure 15 depicts the experimental setup for our TDS 
related measurements. The transmitter (publisher) captures 
the input-video stream from a camera and publishes them 
using NaradaBrokering messages, which are time-stamped 
appropriately. In the reported results, we ignored the first 

few messages that resulted in spikes due to media-player 
initializations. 
 

Figure 16 contrasts the jitters resulting from the 
experimental setup (1) involving machines at Cardiff and 
Indiana; the graph compares the jitters in the Input to the 
buffering service and the Output of the TDS. Please note 
that in the absence of the buffering service and TDS at a 
client, the jitters experienced at that node would be similar 
to that corresponding to the input of the buffering service.  
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Figure 16: Jitter values comparing Buffering Service 
Input and TDS Output (Trans-Atlantic) 
 

Figure 17 depicts only the jitters as a result of TDS for 
this experimental setup. The results demonstrate the 
significant reduction in jitter as a result of deploying the 
TDS. 
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Figure 17: Jitter values from the TDS Output (Trans-
Atlantic) 
 

We also performed measurements in the same 
experimental setup by varying the time-slice intervals 
associated with the threads spawned by the TDS. Here we 

 9/12 



report results (Figure 18) from our measurements for 
intervals of 1 millisecond and 100 microseconds. The 
results demonstrate that reducing the time intervals also 
reduces the jitter in the messages that are output by the 
TDS.  
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Figure 18: Jitter values from the TDS output for 
different thread intervals (Trans-Atlantic) 
 

We have also performed measurements within a local 
area network to profile the performance of TDS, the results 
reported here correspond to the experimental setup (2) 
depicted in Figure 15. Figure 19 contrasts the jitters in the 
input to the buffering service and the output of TDS. Once 
again, the results demonstrate jitter reduction even in 
cluster settings.  
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Figure 19: Jitter values comparing Buffering Service 
Input and TDS Output (Cluster setting) 
 

In our last experiment we investigated if TDS would be 
able to space messages accurately if they were time 
stamped a few hundred microseconds apart. Here we 
generated messages that were spaced at intervals of 500 

microseconds. Figure 20 depicts these results; the results 
demonstrate that TDS can be deployed in settings where 
messages are spaced a few hundred microseconds apart. 
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Figure 20: Jitter values for spacing messages with a 
fixed 500 microsecond spacing between them 
 
3.5 Other NaradaBrokering services 
 

NaradaBrokering also provides services to ensure 
reliable delivery of messages. This reliable scheme extends 
naturally to support replay services, ordered delivery and 
exactly-once delivery of messages. Additional information 
regarding these services can be found in Ref [4]. 
NaradaBrokering also includes services for monitoring the 
performance of individual links. It is also our contention 
that the NaradaBrokering security scheme [7] can be 
naturally extended to support secure interactions between 
entities. 
 

To deal with messages with large payloads, 
NaradaBrokering provides services for compressing and 
decompressing these payloads. Additionally there is also a 
fragmentation service which fragments large file-based 
payloads into smaller ones. A coalescing service then 
merges these fragments into the large file at the receiver 
side. This capability in tandem with the reliable delivery 
service was used to augment GridFTP to provide reliable 
delivery of large files across failures and prolonged 
disconnects. The recoveries and retransmissions involved 
in this application are very precise. Additional details can 
be found in Ref [5].  Here, we had a proxy collocated with 
the GridFTP client and the GridFTP server. This proxy, a 
NaradaBrokering entity, utilizes NaradaBrokering’s 
fragmentation service to fragment large payloads (> 1 GB) 
into smaller fragments and publish fragmented messages. 
Upon reliable delivery at the server-proxy, 
NaradaBrokering reconstructs the original payload from 
the fragments and delivers it to the GridFTP server. 
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4. Related Work 
 

Examples of systems based on the generalized 
publish/subscribe paradigm include Elvin [10], Sienna [11] 
and Gryphon [12]. Elvin utilizes quench expressions to 
suppress producers from sending notifications while there 
are no consumers. This, however, entails each producer to 
be aware of all the consumers and their subscriptions. 
Sienna assembles patterns of notifications as close as 
possible to the publishers, while multicasting notifications 
as close as possible to the subscribers. Sienna however 
does not include support for ordering of notifications and 
expects the application to resolve it. In Gryphon each 
broker maintains a list of all subscriptions within the 
system in a parallel search tree (PST). The PST is 
annotated with a trit vector encoding link routing 
information. These annotations are then used at matching 
time by a server to determine which of its neighbors 
should receive that event. The Event Service [13] approach 
adopted by the OMG is one of establishing channels and 
subsequently registering suppliers and consumers to the 
event channels. The approach can entail clients 
(consumers) to be aware of a large number of event 
channels.  

 
Another area of interest is peer-to-peer (P2P) systems, 

these include systems that are based on unstructured 
overlay networks (e.g. the old JXTA [14] model) and those 
that are based on structured overlay networks that employ 
Distributed Hash Tables (DHTs). DHTs have been quite 
popular in several P2P systems. Here each data object is 
associated with a key. A lookup service to locate this 
object returns the IP-address of the node hosting this 
object. Similar to a traditional hashtable data structure, 
other operations supported in the DHT include put and get. 
In DHT-based P2P overlay networks the nodes are 
organized based on the content that they possess. Here 
DHTs are used to locate, distribute, retrieve and manage 
data in these settings. This scheme provides bounded 
lookup times. Here examples of such systems include the 
current JXTA [14] system, Pastry [15]. FLAPPS [16, 17] 
provides a generalized infrastructure for peer network 
design. Here peers are organized into a peer network 
comprised of overlapping peer groups with transit peers 
efficient routing requests. It should be noted that though 
FLAPPS is not DHT based it can indeed be used to support 
DHT-style systems, Resilient Overlay Networks (RON) 
style networks and traditional peer networks. Unlike DHT 
systems with consistent hashing schemes data elements in 
Squid attempts to preserve locality and use the dimension-
reducing mapping called Space Filling Curves (SFC). By 
preserving locality in the DHT index space Squid supports 

complex queries using partial keywords, wildcards and 
ranges. 

A comprehensive discussion of the architectural 
similarities, differences, strengths and weaknesses of these 
systems vis-à-vis capabilities available within the 
NaradaBrokering substrate can be found in Ref [3].  
Examples of collaborative infrastructures include JSDT 
[18] from Sun Microsystems. JSDT provides the basic 
abstractions of a session and also supports full-duplex 
multi-point connections between entities. Additionally, 
JSDT provides a token-based distributed synchronization 
mechanism to facilitate access to shared resources.  

 
Approaches to synchronizing clocks in distributed 

systems include efforts such as Lamport’s logical clocks 
[19], vector clocks [20] and Cristian’s algorithm [21]. 
Lamport’s logical clocks guarantees the order of events 
among themselves. They do not need to run at a constant 
rate, but they must increase monotonically. Using Lamport 
timestamps, Lamport synchronizes logical clocks by 
defining a relation called “happens-before”. Vector clocks 
have been introduced because Lamport timestamps cannot 
capture causality. But a major drawback is that vector 
clocks add a vector timestamp, whose size is linear with 
the number of processes, onto each message in order to 
capture causality. Vector clocks thus do not scale well in 
large settings. In Cristian’s algorithm, all of the machines 
in the system synchronize their clocks with a time server. 
Here each machine issues a request to the time server to 
retrieve the current time. The time server then responds to 
this message including its current time as fast as it can. 
Time server in Cristian’s algorithm is passive. In the 
Berkeley algorithm [22], time server is active and polls 
every machine periodically. It then computes the average 
time based on the times received from the other machines 
and notifies them that they should adjust their time to the 
recently computed time. 
 

5. Conclusions & Future Work 
 

In this paper we have outlined the support for 
collaboration within the NaradaBrokering substrate which 
in turn provides for a richer collaborative experience. The 
various services related to ordering and delivery within the 
system can be leveraged by systems that mandate high-
performance collaboration. Our experimental results 
demonstrate that the substrate can indeed be used in 
scenarios where performance and scalability requirements 
are stringent.  
 

More recently we have included support for WS 
specification related to notifications and reliable delivery 
viz. WS-Eventing [23] and WS-ReliableMessaging [24]. 
This in turn will enable the development of collaborative 
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systems that are based on the emerging Web Services 
stack.  The final version of this paper, if accepted, will 
incorporate performance measurements for the 
specifications. 
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