
1/10

Fault-Tolerant Reliable Delivery of Messages in Distributed Publish/Subscribe Systems
Shrideep Pallickara, Hasan Bulut and Geoffrey Fox

(spallick, hbulut, gcf)@indiana.edu
Community Grids Lab, Indiana University

Abstract

Reliable delivery of messages is an important problem
that needs to be addressed in distributed systems. In this
paper we present our strategy to enable reliable delivery
of messages in the presence of link and node failures.
This is facilitated by a specialized repository node. We
then present our strategy to make this scheme even more
failure resilient, by incorporating support for repository
redundancy. Each repository functions autonomously.
The scheme enables updates to the redundancy scheme
depending on the failure resiliency requirements. If there
are N available repositories, reliable delivery guarantees
will be met even if N-1 repositories fail.

Keywords: Publish/subscribe middleware, reliable
delivery, fault tolerance, redundancy.

1. Introduction
Increasingly interactions that services, resources and
components have with each other are network-bound. In
several cases these interactions can be encapsulated in
messages. These messages can encapsulate, among other
things, information pertaining to transactions, data
interchange, system conditions and finally the search,
discovery and subsequent sharing of resources.
Messaging is a critical component in distributed systems.
Here, the messaging infrastructure can be based on
several different paradigms viz. publish/subscribe
systems, queuing systems, and peer-to-peer systems
among others. Our work focuses on systems based on the
publish/subscribe paradigm.

In the publish/subscribe paradigm clients have a clear
decoupling of the message publisher and subscriber roles.
The routing of messages from the publisher to the
subscriber is within the purview of the message oriented
middleware (MOM), which is responsible for routing the
right content from the publisher to the right subscribers.
A subscriber registers its interest in messages by
subscribing to topics. In its simplest form these topics are
typically “/” separated Strings; complex forms can be
based on XML. When a publisher issues messages on a
specific topic the middleware substrate – comprising a set
of distributed broker nodes – routes these messages to the
subscribers that have registered an interest in this topic.

In this paper we present a scheme for the reliable
delivery of messages issued over a topic in
publish/subscribe systems. Topics over which authorized
publishers and subscribers can have reliable
communications are referred to as reliable-topics. The

scheme outlined in this paper facilitates the reliable
delivery of messages from the publishers to the
subscribers in the presence of node and link failures. The
communication links within the system could also be
unpredictable, with messages being lost, duplicated or re-
ordered in transit over them, en route to the final
destinations. Finally, subscribers are able to retrieve
messages issued over the reliable-topic during the
subscriber’s absence (either due to failures or intentional
disconnects). We also extend the basic reliable delivery
scheme for greater redundancy and fault-tolerance.
 Preliminary ideas of the basic reliable delivery scheme
were displayed in the poster [1] session of the 2004 IEEE
Autonomic Computing Conference. This basic scheme
has been extended for efficient processing of
acknowledgements and error corrections to better cope
with missed messages. We have also incorporated support
for multiple repositories, which provides greater
redundancy and fault tolerance.

2. NaradaBrokering Overview
We have implemented the scheme described in this paper
in the context of the NaradaBrokering substrate [2],
which is based on the publish/subscribe paradigm. In
NaradaBrokering this MOM is itself a distributed
infrastructure, comprising a set of cooperating router
nodes known as brokers. A broker performs the routing
function by routing content along to other brokers within
the broker network. Entities are connected to one of the
brokers within the broker network, an entity uses this
broker, which it is connected to, to funnel messages to the
broker network and from thereon to other registered
consumers of that message.

2.1 The Topic Discovery Scheme
Interactions between entities in publish/subscribe systems
are predicated on the knowledge of the topic that will be
used for communications; the publisher will publish over
this topic while the subscriber registers a subscription to
this topic. The topic discovery and creation scheme
(details can be found in Ref [3]) in NaradaBrokering
facilitates the creation, advertisement and authorized
discovery of topics by entities within the system. When
an entity creates a topic, that entity is also the topic
owner. This ownership can be cryptographically, and
deterministically, verified based on the contents of the
topic advertisement that is generated as part of the topic
creation process. The discovery process is a distributed
process and is resilient to failures that might take place
within the system. Topic creators can advertise their

2/10

topics and can also enforce constraints related to the
discovery of these topics. Specifically, a topic creator
may require the presentation of appropriate credentials (a
X.501 security certificate) prior to being able to discover
a topic. This scheme provides a solution for issues such as
1. Provenance – The system can verify easily the owner

of a certain topic.
2. Secure discovery –- A topic owner can restrict the

discovery of a topic only to authorized entities or
those that possess the valid credentials.

These capabilities are provided by specialized nodes –
Topic Discovery Nodes (TDNs) – within the system.
Since a given topic advertisement will be stored at
multiple TDN nodes, this scheme sustains the loss of
TDN nodes due to failures or downtimes.

3. Reliable Delivery of Messages
The scheme for reliable delivery of messages, issued

over a reliable-topic, needs to facilitate error corrections,
retransmissions and recovery from failures. In our system,
a specialized repository node which manages this
reliable-topic plays a crucial role in facilitating this. The
repository facilitates reliable delivery from multiple
publishers to multiple subscribers over its set of managed
reliable-topics. The only requirement for the basic reliable
delivery scheme is that if a repository fails, it should
recover within a finite amount of time. There can be
multiple repositories within the system and a given
repository may manage multiple reliable-topics, however
(for the purposes of discussion in this section) a given
reliable-topic can only be managed by exactly one
repository. Section 4 describes a scheme where there can
be multiple repositories for a given reliable-topic; this
scheme can sustain repository failures.

Management of reliable-topics involves two key
components. First, the repository should facilitate the
registration (and de-registration) of authorized entities for
reliable communications over the reliable-topic.

Second, to support error-corrections, retransmissions,
and recovery from failures (including those of the
repository itself) a repository also needs to provision a
persistent storage (this function is typically provided by a
database. We have also implemented support for flat-
files) so that messages and other information pertinent to
the reliable delivery algorithm can be stored. For a
reliable-topic managed by a repository, this repository
stores messages issued over this reliable-topic by any of
the authorized publishers. This persistent storage of
messages facilitates subsequent retrievals should the need
arise.

Reliable delivery of messages involves two key
components. The first one involves ensuring that
messages published by the publisher, over a reliable-
topic, are stored exactly-once, without gaps and in-order
at the repository managing this reliable-topic. Second, for
every such stored message, the repository also has to

compute the intended destinations and ensure the reliable
delivery of the stored message to the computed
destinations.

3.1 Control-Events
The reliable delivery algorithm involves

communications between various entities through the
exchange of control- events, (summarized in Figure 1 on
page 4) where the term events is used to distinguish it
clearly from messages published over reliable-topics. The
control-events (simply events, for brevity, hereafter)
relate to intermediate steps to facilitate reliable delivery,
acknowledgements, error-corrections, retransmissions and
recovery related operations. Our notation for events
identifies the source, the destination(s) and the type of the
control-event: Source2Destination-ControlType. For
purposes of brevity, we use only the starting alphabets of
the entities involved in the exchange. Thus, an
acknowledgement issued by the repository to the
publisher is represented as R2P-ACK. The destination part
is in bold-face if there are multiple destinations.

3.2 Communications between entities
Entities (repository and the clients) communicate with
each other through exchanges issued over a topic. Entities
may restrict the discovery [2] of the communication-topic
to a set of entities or to those that present valid
credentials: this allows an entity to restrict the list of
entities that can communicate with it.

3.3 Registering a reliable-topic
As mentioned earlier, there can be multiple

repositories within the system, and a given repository
may manage more than one reliable-topic at a time. The
first step to facilitating reliable communications over a
reliable-topic is the registration of the reliable topic at a
repository. To do this the owner of the reliable-topic
locates a repository willing to manage the reliable-topic.
Once a repository has been located, the owner then
proceeds to register clients that are authorized for reliable
delivery over the reliable-topic. Publishers and
subscribers that are not explicitly authorized (and
registered) by the reliable-topic owner cannot avail of
reliable communications over that topic.

Prior to reliable communications over a reliable-topic
a client needs to locate the corresponding reliable-topic
repository by discovering the communication-topic
associated with the repository.

3.4 Publishing Messages
One of the prerequisites for reliable delivery is that

messages published by a publisher be stored reliably, and
in-order, at the corresponding reliable-topic repository.
To ensure this the publisher maintains a local buffer for

3/10

temporarily storing published messages. The publisher
and the repository also exchange events to ensure that
published messages are received correctly at the
repository.

For a given reliable-topic a repository will specify the
weakest subscription constraint for that topic. This
ensures that most, if not all, messages issued by
publishers to the topic will be also received at the
repositories. To ensure that a repository can know about,
and retrieve, missed messages for every published
message the publisher also issues a P2R-Order event to
the reliable-topic repository.

A publisher stores every message that it publishes,
over a reliable-topic, in its local buffer (maintained in
memory), which serves as a temporary storage. The P2R-
Order event issued in tandem with the published message
contains a monotonically increasing catenation number
and the message-identifier of the published message that
it correlates to. The catenation numbers contained within
the P2R-Order event allows the reliable-topic repository
to determine the order in which these messages were
generated and to determine if messages were lost in
transit.

3.5 Repository processing of published
message

Upon receipt of a message (issued over one of its
managed reliable-topics) the repository queues the
message in a temporary buffer, this message is not acted
upon until the corresponding P2R-Order event is received.

When a P2R-Order event is received a check is made
to see if the corresponding published message is received:
this is done by checking the temporary repository buffer
to see if a message with the identifier contained in the
event has been received. If the published message has
been received an acknowledgement – R2P-ACK event – is
issued back to the publisher. The R2P-ACK event
encapsulates two types of acknowledgements: first type
covers specific catenation numbers; the second type
simply includes one catenation number signifying that all
messages up until that catenation number have been
received. If the published message corresponding to the
P2R-Order event is missing, the repository issues a
negative acknowledgement – R2P-NAK event –- to the
publisher to retrieve the missing message.

The repository then checks to see if this event has been
previously received at the repository: this is done by
checking the publisher/catenation number pair within the
P2R-Order event. If a message correlated with this
duplicate event is in the repository’s temporary buffer,
that message is also discarded as a duplicate.

Finally, the repository also checks to see if there are
any gaps in the P2R-Order events received from the
publisher. Since every P2R-Order event contains a
monotonically increasing catenation number this is easy
to do.

Once a message has is identified as not being a
duplicate message, the repository is ready to remove this
message from its temporary buffer, and store it onto the
underlying persistent storage. The repository assigns a
monotonically increasing sequence number for every
message that it stores to persistent storage. When a
repository receives an event identifying missing messages
the repository sets aside sequence numbers for these
missing messages and issues a R2P-NAK event to retrieve
them. Messages other than these missed messages are
stored onto the persistent storage based on the advanced
sequence number.

3.6 Processing repository acknowledgements
A positive acknowledgement R2P-ACK event signifies

successful receipt of the message and the corresponding
P2R-Order event at the repository. The local buffer entry
corresponding to this message can then be removed. A
negative acknowledgement R2P-NAK event signifies that
the message corresponding to a specific catenation
number was lost in transit to the repository. This lost
message should be retransmitted from the repository.

Upon receipt of a positive acknowledgement R2P-ACK
event from the repository the publisher processes the
event to delete appropriate entries from its local buffer. If
the acknowledgement is a stand-alone acknowledgement,
entries corresponding to the acknowledgement catenation
numbers are removed from the local buffer. If the R2P-
ACK event encapsulates an encompassing
acknowledgement, all entries up until that catenation
number included in the event are erased from the local
buffer.

Upon receipt of the negative acknowledgement R2P-
NAK event the message(s) corresponding to the specified
catenation number(s) are retrieved and prepared for
retransmission. The retransmission occurs in the P2R-
Retransmit event which contains both the original
published message along with the catenation number for
the message. Similar, to the P2R-Order event, the P2R-
Retransmit event is received only by the repository.

3.7 Persistence notifications
Upon successful receipt of a published message at the

repository, in addition to the operations (which includes
storing the message to persistent storage) outlined in
section 3.5 the repository performs three additional
functions. First, depending on the topic type contained in
the original published message the repository loads the
appropriate matching engine to compute destinations for
the published message based on the registered
subscriptions.

Second, the repository adds an entry to the
dissemination table that it maintains. For a given
sequence number, the dissemination table enables a
repository to keep track of destinations that have not
explicitly acknowledged the receipt of the corresponding

4/10

published message. The dissemination table is continually
updated to reflect the successful delivery of the published
message to the intended destinations. The dissemination
table thus allows us to determine holes in sequences for
messages that should have been delivered to a client.

Finally, the repository issues an event signifying the
persistence of the published message. If S is the set of
registered subscribers to a given reliable-topic, and if S*
is the subset of subscribers whose subscription constraints
are satisfied by the published message, then the R2S*-
Persistent event signifies that it would be received only
by that subset of subscribers. To ensure this, the
repository ensures that the topic information for the
R2S*-Persistent event is the same as that of the original
published message.

The R2S*-Persistent event contains the sequence
number assigned to the published message and also the
identifier associated with the published message. A
subscriber can then correlate a published message and its
persistence event.

3.8 Processing persistence events at the
subscriber

A subscriber to a reliable-topic receives published
messages from the publishers, and events from the
repository. Upon receipt of a message from a publisher, a
subscriber stores this message in its temporary local
buffer. In our reliable delivery scheme we rely on the all-
or-none model: here, a message is either delivered to all
the subscribers or it is not delivered to any of the
subscribers. To enforce this, a subscriber releases a
message only after it has been confirmed to be stable. A
message is considered stable, only if both the message
and the corresponding R2S*-Persistent event have been
received.

If the subscriber has received both the message and the
corresponding R2S*-Persistent event, this subscriber
proceeds to issue an acknowledgement to the repository.
This acknowledgment is issued in a S2R-ACK event which
can contain either one, an array or a range of
acknowledgements: an S2R-ACK event is issued once
every few (configurable) seconds or after a certain
number of messages have been received.

If the subscriber encounters a R2S*-Persistent event
without the corresponding published message it
concludes that the message was lost in transit. The
subscriber waits for a pre-configured duration of time
before it issues a S2R-NAK event with the missing
sequence number(s) for a given reliable-topic to retrieve
the corresponding messages.

3.9 Processing subscriber acknowledgements
Upon receipt of an acknowledgement from the

subscriber, the repository checks the dissemination table
to see if there are any un-acknowledged messages within

the range of sequence numbers contained in the S2R-ACK
event.

On receipt of the S2R-ACK event from a subscriber, the
repository updates the dissemination table entries
corresponding to the sequence(s) contained in the event to
reflect the fact that the subscriber received messages
corresponding to those persistence sequences.

The repository maintains a sync for every subscriber to
the reliable-topics that it manages. The subscriber sync
corresponds to the sequence number up until which the
repository is sure that this subscriber has received all
preceding messages. A subscriber maintains a local copy
of this sync. The sync at a subscriber is advanced by the
corresponding reliable-topic repository through the R2S-
Sync event. To account for the fact that the S2R-ACK
event may be lost in transit to the repository, the
subscriber should continue to maintain information about
the persistence sequences till such time that it receives a
R2S-Sync event.

If the subscriber has received all the messages that it
was supposed to receive, and if there were no missed
messages between the subscriber’s current sync and the
highest sequence number contained in the S2R-ACK event,
the repository advances the sync point associated with
this subscriber and issues a R2S-Sync event which
notifies the subscriber about this sync advancement. Only
upon receipt of this event is the subscriber allowed to
advance its sync.

It is possible that the repository, based on the S2R-ACK
event, detects that there are some persistence sequences
(between the subscriber’s sync and highest sequence
number in the S2R-ACK event) which were not explicitly
acknowledged by the subscriber. The repository assumes
that these un-acknowledged messages were lost in transit
to the subscriber. The repository also checks to see if,
based on the sequences acknowledged, the subscriber’s
sync can be advanced up until the point at which the
sequencing information contained in the S2R-ACK
acknowledgement is lower than that of the detected
“missed” message.

After the detection of missed sequences the repository
issues an R2S-Rectify event, which contains information
pertaining to the client’s sync advancement (if it is
possible) and also the sequencing information and
message-identifiers of the missed messages. The
repository does not pro-actively retransmit the messages
based on the detection of missed messages. This is
because it is possible that these missed message(s) are in
transit or that just the R2S*-Persistent event was lost.

3.10 Processing errors & syncs advances
Upon receipt of the R2S-Rectify event a subscriber

performs three steps. First, the subscriber checks to see if
any of the messages that it maintains in its temporary
buffer has the identifier(s) corresponding to those listed in
the R2S-Rectify; this accounts for the case where the

5/10

R2S*-Persistent event was lost in transit to the
subscriber, but the original published message was not. If
the message exists in the temporary buffer, the message is
delivered.

Second, the subscriber then proceeds to issue a S2R-
NAK negative-acknowledgement event to the repository
while excluding messages that were reliably delivered in
the previous step. The S2R-NAK issued by the subscriber
corresponds to the case where messages corresponding to
the listed sequence numbers were lost in transit.

Finally, the subscriber advances it sync based on the
advancement contained in the R2S-Rectify event. Note
that this is also done in response to the R2S-Sync event.

The events between the repository and the subscriber
might themselves be lost in transit due to process failures
at various components or at the intermediate links. The
only way a subscriber will not be routed a published
message that it was supposed to receive is if the sync is
advanced incorrectly at the repository. However, syncs
corresponding to a subscriber (for a specific managed
reliable-topic) are never advanced at the repository until
the subscriber has explicitly acknowledged every prior
message.

3.11 Subscriber and Publisher Recovery
When a subscriber reconnects to the broker network

after failures or a prolonged disconnect it needs to
retrieve the missed messages published over the reliable-
topic. The recovering entity issues a recovery request
S2R-Recovery for every reliable-topic that it had
previously subscribed to.

Upon receipt of the recovery request, the repository
scans the dissemination table starting at the sync
associated with the client. The repository then generates
an R2S-Rectify event, which is processed by the
subscriber to advance its local sync and also to initiate
retransmissions as described earlier in section 3.10.
Subscription constraints for this subscriber are also
retrieved from the repository.

In the case of publisher recovery, the repository’s
recovery response includes the last known catenation
number for a given reliable-topic to which the publisher
publishes. Subsequent messages from this publisher
results in monotonically increments to this catenation
number in the corresponding P2R-Order events.

In our scheme the subscriber is not required to
maintain any information pertaining to its sync or the
persistence sequences that it had previously received on a
given reliable-topic. Similarly, a publisher is not expected
to store its catenation number. Publishers and subscribers
are automatically notified of their last catenation and
sync-advances on the specified reliable-topic. Failures
can take place even during this recovery process and the
scheme can sustain the loss of both the recovery
requests/responses. Figure 1 summarizes interactions
outlined in section 3.0.

Figure 1: Summary of interactions between entities

4. Repository redundancy & Fault-
tolerance

In the previous sections we outlined our strategy to
ensure reliable delivery. In this scheme if there is a failure
at the repository, the clients interested in reliable
communications, over any of the managed reliable-topics,
need to wait for this repository to recover prior to the
reliable delivery guarantees being met. We now extend
this scheme to ensure that reliable delivery guarantees are
satisfied in the presence of repository failures. To achieve
this we include support for multiple repositories –-
constituting a repository-bundle –-for a given reliable-
topic; it is not necessary that the topics managed by these
repositories be identical. A repository may thus be part of
multiple repository-bundles at the same time.

We support a flexible redundancy scheme with easy
addition and removal of repositories that manage a given
reliable-topic. There are no limits on the number of
repositories for a given reliable-topic. This scheme can
sustain the loss of multiple repositories: in a system with
N repositories for a given reliable-topic N-1 of these
repositories can fail, and reliable delivery guarantees are
met so long as at least one repository is available.

The repositories that constitute the repository-bundle
for a given reliable-topic function autonomously. At any
given time, for a given reliable-topic, a client
communicates with exactly one repository within the
corresponding repository-bundle. This entity is also
allowed to replace this repository with any other
repository within the bundle at anytime.

Besides additional redundancy, and the accompanying
fault-tolerance, a highly-available, distributed repository
scheme enables clients to exploit geographical and
network proximities. Using repositories that are “closer”
ensures reduced latencies in the receipt of events from the
repository. Packet loss-rates typically increase with the
number of intermediate hops (for UDP and Multicast).

6/10

Besides the selection of the repository from a
repository-bundle, as part of the bootstrap, operations at
the clients are identical to those in place for a single
repository.

4.1 Steering repository
A publisher or subscriber to a reliable-topic can interact
with exactly one repository within the repository-bundle
for that reliable-topic; this repository is referred to as the
steering repository for that publisher/subscriber. At any
time a client is allowed to replace its steering repository
with any other repository from the repository bundle.

Every repository within the bundle keeps track of a
client’s delivery sequences passively and actively. For a
given entity, at any given time, there will be one steering
repository operating in the active mode by initiating
error-corrections and retransmissions. Other repositories
operating in passive mode do not initiate these actions.

At every repository, within the repository-bundle for a
given reliable-topic, the list of registered clients is divided
into two sets –- those that the repository steers and those
that it does not. The repository operates in the active
mode for steered clients and in the passive mode for
clients that it does not steer. In the active mode, a
repository performs all functions outlined in section 3. In
the passive mode, a repository listens to all events
initiated by the publishers and subscriber; however, the
repository will not issue events – related to reliable
communications – to clients that it does not steer.
Operating in the passive mode, allows a repository to take
over as the steering repository for clients that it does not
presently steer.

When a client is ready to initiate reliable
communications, it has to designate a steering repository
from the set of repositories within the repository-bundle
associated with the reliable-topic. Selection of the
steering repository is done based on network proximity
using probes to compute network round-trip delays to the
repositories. The client then issues a event over the
repository’s communications-topic designating it as the
steering repository. Upon receipt of this event, the
repository adds that client to its list of steered clients.

4.2 Ordered storage of published messages
For every published message, the publisher issues a

P2R-Order event (where R is the repository-bundle),
which is received by all repositories within the
repository-bundle. This allows all repositories within the
repository-bundle to keep track of published messages.
However, only the steering repository (operating in active
mode) for this publisher is allowed to issue the R2P-ACK
and R2P-NAK events to acknowledge receipt of messages
and to initiate retransmissions respectively.

Retransmissions issued in response to the R2P-NAK
event are sent to all repositories using the P2R-Retransmit
event. The rationale for this is that if a message was lost

in transit to the publisher’s steering-repository, there is a
good chance that the message (or the corresponding P2R-
Order) event was also lost in transit to the other
repositories.

4.3 Generation of Persistence Notification
Once a published message is ready for persistent

storage at the repository, the message is assigned a
sequence number and is stored onto persistent storage
along with the published message. In this scheme each
repository is autonomous, and thus maintains its own
sequencing information. This implies that a message
published by a publisher, MAY have different sequence
numbers at different repositories. It follows naturally that
the sync associated with a given subscriber can be
different at different repositories. However, the catenation
number associated with a publisher is identical at every
repository within the repository-bundle.

A repository computes destinations associated with
every published message. These destinations are
computed based on the subscriptions registered by
subscribers to this reliable-topic irrespective of whether
they are steered by the repository or not. The repository
then proceeds to issue a persistence notification. The
topic associated with the R2S*-Persistent event is such
that it is routed only to the subset S* of its steered
subscribers with subscriptions that are satisfied by the
topic contained in the original message.

4.4 Acknowledgements, Errors and Syncs
Upon receipt of R2S*-Persistent events from its

steering repository, a subscriber proceeds to issue
acknowledgements. This acknowledgement, the S2R-ACK
is issued over the repository-bundle communications
topic. Since, the message is received by the repository-
bundle, all repositories are aware of delivery sequences at
different subscribers. The S2R-ACK event contains
sequence numbers corresponding to its steering repository
and also includes the identifier associated with the
steering repository.

Error correction, and sync advancements, for a given
subscriber is initiated by its steering repository through
the R2S-Rectify event. Retransmission requests by a
subscriber are targeted to its steering repository in the
S2R-NAK event.

4.5 Gossips between repositories
Repositories within a repository-bundle gossip with

each other. Repositories within a repository-bundle need
to exchange about the registration/de-registration of
clients to the managed reliable-topic. Additional, and
removal, of subscription to this reliable-topic are also
exchanged between all repositories within the bundle. A
given repository stores each of these actions and assigns
each action the next available sequence number.

7/10

4.5.1 Processing stored messages
A repository assigns monotonically increasing sequence
numbers to each message that it stores. At regular
intervals or after the persistent storage of a certain
number of messages, the repository issues a Gossip-ACK
event, which contains an array of entries corresponding to
its persistent storage of published messages. Each entry
contains the publisher identifier, the catenation number
assigned by the publisher, the message identifier and the
sequence number assigned by the repository. This gossip
message plays a big role in allowing repositories to be
aware of the sequence numbers associated with a specific
message at different repositories.

Every repository also maintains a repository-table. In
this table for every publisher-catenation number pair, the
repository maintains the sequence number assigned to it
by every repository (including itself) within the bundle.
For every message that it stores, a repository adds an
entry in the repository-table. Upon receipt of the Gossip-
ACK event from a repository, this entry (corresponding to
the publisher/catenation pair) is modified to reflect the
sequence numbers assigned at different repositories.

The repository table thus allows a repository to
correlate sequence numbers assigned to a given message
at every other repository. The table also tracks messages
not received by other repository. This allows a repository
to recover from any other repository after a failure. This
repository table also plays an important role in processing
acknowledgements from subscribers that it does not steer.

4.6 Processing subscriber acknowledgements
When a repository receives a S2R-ACK event from a

subscriber, it checks to see if it steers the subscriber. If it
does, the repository simply proceeds to update its
dissemination table to reflect receipt of the message at the
repository. If the repository does not steer the subscriber
that issued the acknowledgement, the repository retrieves
the sequence number corresponding to the original
message from the repository-table. It then proceeds to
update the dissemination-table for that sequence number
to confirm receipt from the subscriber in question. This
scheme allows all repositories are aware of delivery
sequences at the various subscribers irrespective of
whether they are steered or not. Furthermore, based on
the S2R-ACK acknowledgements from a subscriber, every
repository computes its sync for that subscriber.
Additionally, at regular intervals, a repository gossips
about sync advancements for its steered subscribers.

Since all repositories process acknowledgements from
all the subscribers any one of these repositories can take
over as the steering repository for a given subscriber.
Furthermore, since all messages issued by all publishers
are stored at all repositories, and since the catenation
numbers are identical on all repositories, a repository can

take over as the steering repository for a given publisher
at any time.

4.7 Dealing with repository failures
A publisher detects a failure in its steering repository,

if it does not receive R2P-ACK events for published
messages within a certain duration. A subscriber detects a
steering-repository failure if it receives published
messages to reliable-topics, but no corresponding
persistence notifications from its steering repository.
These clients then proceed to discover a new steering
repository. The publisher then exchanges information
about its catenation number with the replacement steering
repository. If there is a mismatch wherein the steering
repository’s catenation is lower than that at the publisher,
the repository proceeds to retrieve this message from a
repository within the bundle.

4.8 Recovery of a repository
Upon recovery from a failure, it needs to discover an

assisting-repository: this is a repository within the
repository bundle that is willing to assist the repository in
the recovery process. The recovering replica first checks
to see if the list of registered clients and subscriptions
have changed, and proceeds to retrieve updates to this list.

Next, the repository proceeds to retrieve the list of
catenation numbers associated with the publishers. Based
on these catenation numbers, the repository computes the
number of missed messages and proceeds to set aside the
corresponding number of sequences. For messages
(missed and real-time) that it stores, a recovering-
repository issues Gossip-ACK acknowledgements at
regular intervals.

The recovering-repository proceeds to do two things in
parallel. First, it proceeds to retrieve missed messages
from the assisting repository. For every missed message
the recovering-repository also retrieves the dissemination
list associated with it. This allows a repository to keep
track of the subscribers that have not acknowledged these
messages. Additionally, the repository-table entries
corresponding to each message are also retrieved. A
repository cannot be the steering repository for any entity
till such time that all the missed messages have been
retrieved.

Second, it subscribes to the various communications
topics so that it can start receiving messages published in
real-time. The first time a repository receives a message
from a publisher, it checks to see if the catenation number
associated with the message indicates missed messages.
This could happen because the missed message(s) would
have been in transit to the assisting repository. Thus,
during recovery if the assisting repository reported a
catenation number of 2000, and if the catenation number
associated with the first real-time message received from
the publisher is 2010 it implies that thee were 9

8/10

additional missed messages from this publisher. The
repository sets aide 9 sequence numbers, and issues a
request to retrieve these messages. The repository also
proceeds to store the published message based on the
newly advanced sequence number.

4.9 Addition of a repository
When a repository is added to the repository-bundle

associated with a reliable-topic, the newly added
repository takes the following steps. First, it needs to
discover an assisting-repository: this is a repository which
is present in the repository bundle and one which is
willing to assist the repository in the addition process.

Second, the repository retrieves the list of registered
clients, and the subscriptions registered by the registered
subscribers. As described in section 4.8 the repository
then proceeds to retrieve missed messages along with the
corresponding dissemination lists and repository-table
entries in addition to processing real-time messages.

4.10 Graceful removal of a repository
When a repository is ready to leave a repository

bundle, it proceeds to issue an event to its active steered
clients, requesting them to migrate to another repository.
The departing-repository then operates in silent mode as
far as the clients are concerned. The departing-repository
also gossips with other repositories within the repository-
bundle to check if the catenation numbers associated with
previously steered publishers is greater than or equal to its
last known value at the departing-repository.

Once a repository has confirmed that all messages
published by its previously steered publisher have been
received at one of the repositories within the bundle, it is
ready to leave the repository-bundle. The departing
repository then simply issues a Gossip-LEAVE event.
Repository table entries corresponding to this repository
will no longer be maintained at other repositories.

5. Experimental Results
We have measured several aspects of the reliable delivery
framework (implemented within NaradaBrokering) to
determine costs involved in reliable communications. All
processes executed within Sun’s Hotspot™ JVM 1.4.2
with Linux (2.4.22) as the OS, and were hosted on a 100
Mbps LAN. In our benchmarks we have used the
topologies depicted in Figure 2, the repositories, brokers
and sets of clients are all hosted on different machines. In
all test cases, to obviate the need for clock
synchronizations, the publisher and the measuring
subscriber (which reports the results) were hosted on the
same machine. Note that the publisher and measuring
subscriber are connected to different brokers in topologies
B and C. Machines involved in the benchmark have the
following profile: 4 CPU (Xeon, 2.4GHz), 2GB RAM. The
persistent storage used by the repositories is MySQL 5.0.

Figure 2: Benchmark Topologies

For each topology we also measured the costs involved in
best effort delivery. This allows us to see the overheads
introduced by the reliable delivery scheme. Each reported
delay value (for a given payload size) in the graphs is the
mean of repeating the test 50 times. We also report the
standard deviation (SD) for the delay samples in the test.

 0

 2

 4

 6

 8

 10

 12

 14

 100 1000 10000

T
im

e
 (

M
ill

is
ec

o
n
ds

)

Payload Size (Bytes)

Costs for reliable delivery in Topology A
for different payload sizes

 Delay: Reliable delivery
 Delay: Best effort

 SD: Reliable Delivery
 SD: Best effort

Figure 3: Costs for reliable delivery: Topology A

9/10

Figure 3 depicts the cost involved in reliable delivery
for topology A, while Figure 4 depicts the costs for
reliable delivery in Topology B and Figure 5 depicts the
costs for reliable delivery in Topology C. In general the
costs for reliable delivery are higher than the
corresponding costs for best-effort delivery. The
overheads for reliable delivery are caused by the costs for
storing the events to persistent storage, and waiting for
the message to be stable (i.e. waiting for a message to be
persistent) prior to delivery. It should be noted that the
best effort delivery will provide none of the guarantees
provided by the fault-tolerant delivery scheme outlined in
this paper.

 0

 2

 4

 6

 8

 10

 12

 14

 100 1000 10000

T
im

e
 (

M
ill

is
ec

o
n
ds

)

Payload Size (Bytes)

Costs for reliable delivery in Topology B
for different payload sizes

 Delay: Reliable delivery
 Delay: Best effort

 SD: Reliable Delivery
 SD: Best effort

Figure 4: Costs for reliable delivery: Topology B

 0

 2

 4

 6

 8

 10

 12

 14

 16

 100 1000 10000

T
im

e
 (

M
ill

is
e
co

n
d
s)

Payload Size (Bytes)

Costs for reliable delivery in Topology C
for different payload sizes

 Delay: Reliable delivery
 Delay: Best effort

 SD: Reliable Delivery
 SD: Best effort

Figure 5: Costs for reliable delivery: Topology C

Figure 6 depicts the costs involved in reliable delivery in
different topologies for different payload sizes. In general
the costs increase as the number of brokers, and the
number of repositories, for a given reliable-topic increase.
The results also demonstrate that the costs for reliable
delivery are acceptable. There is a slight (and acceptable)
increase in the costs for reliable delivery when there are 3
repositories for the reliable-topic in Topology C
compared to just one repository in Topology B.

 7

 8

 9

 10

 11

 12

 13

 14

 15

 100 1000 10000

T
im

e
 (

M
ill

is
ec

o
n
ds

)

Payload Size (Bytes)

Reliable delivery Delays in different Topologies
for different message payload sizes

 Topology A
 Topology B
 Topology C

Figure 6: Overheads for reliable delivery in
different Topologies

Costs associated with various aspects of the framework
are summarized in Table 1. Some of these costs are
reported in milliseconds (mS) and some in microseconds
(µS). The values that we report are for messages with a
payload size of 8KB.

Table 1: Reliable delivery costs within the framework.
Values reported for a message size of 8KB.

Operation Mean Std
Deviation

Std
Error

End-To-End Delivery
 1 Broker, 1 RDS, 20

clients
8.88 mS 0.81 mS 0.11

mS
 3 Brokers, 1 RDS, 20

clients
10.60 mS 0.83 mS 0.12

mS
 3 Brokers, 3 RDS

nodes and 20 clients
10.48 mS 0.93 mS 0.13

mS
Storage Overheads
 Message Storage 1408 µS 141.71

µS
31.7 µS

 Message Retrieval 669 µS 77.93 µS 17.4 µS
RDS recovery in a single repository system
 Recovery time after a

failure or scheduled
downtime

85.7mS 4.3mS 958 µS

Client Recovery
 Time to generate

Recovery response for
a publisher

825 µS 215 µS 48 µS

 Time to generate
Recovery response for
a subscriber

1613 µS 588 µS 131 µS

Repository Recovery (1000 missed messages and 20 clients)
 Recovery Response

generation for
Repository

59.28 mS 5.54 mS 2.77
mS

 Recovery Time at
repository

11172mS 1733 mS 867 mS

Repository Gossips
 Generation of gossip 243 µS 50 µS 11 µS
 Processing a gossip 241 µS 16 µS 3 µS

10/10

6. Related Work
The virtual synchrony model, adopted in Isis [4],

works well for problems such as propagating updates to
replicated sites. This approach does not work well in
situations where the client connectivity is intermittent,
and where the clients can roam around the network.
Systems such as Horus [5] and Transis [6] manage
minority partitions and can handle concurrent views in
different partitions. The overheads to guarantee
consistency are however too strong for our case.
Spinglass [7] employs gossip-style algorithms, where
recipients periodically compare the message digest of the
received message with one of the group members.
Deviations in the digest result in solicitation requests (or
unsolicited responses) for missing messages between
these recipients. This approach is however unsuitable
when memberships are very fluid.

DACE [8] introduces a failure model that tolerates
crash failures and partitioning, while not relying on
consistent views being shared by the members through a
self-stabilizing exchange of views. This however may
prove to be very expensive if the number and rate at
which the members change their membership is high. The
Gryphon [9] system uses knowledge and curiosity
streams to determine gaps in intended delivery sequences.
This scheme requires a persistent storage at every
publishing site and meets the delivery guarantees as long
as the intended recipient stays connected in the presence
of failures.

Since message queuing products (MQSeries) [10] are
statically pre-configured to forward messages from one
queue to another they generally do not handle network
changes (node/link failures) very well. The WS-
ReliableMessaging [11] specification provides a scheme
to ensure reliable delivery of messages between the
source and the sink for a given message.

The Data Replication Service (DRS) [12], within the
Globus Toolkit, leverages the Replica Location Service
which is a distributed registry that keeps track of replicas
on storage systems, and facilitates queries to locate
replicated files. The Storage Resource Broker (SRB) [13]
is a middleware that provides applications a uniform
interface to access heterogeneous distributed storage
systems. It utilizes a metadata catalog called MCAT
which manages descriptive and system metadata
associated with data collections and system resources.
Both DRS and SRB transfer and replicate files and rely
on a separate service to locate replicated files. In our
system, we replicate messages. Messages are stored at
repositories where the underlying persistent storage could
be based on databases or flat-files with no need to
maintain a separate registry or metadata service to
manage the replications.

7. Conclusions & Future Work
In this paper we presented our scheme for fault-tolerant,
reliable delivery of messages in publish/subscribe
systems. The experimental results demonstrate the
feasibility of this scheme and the acceptability of the
costs introduced therein. As part of our future work we
will research issues related to repository placement
schemes. Specifically, the replica placement algorithm
needs to ensure that average latencies for reliable
communications are reduced as a result of its placement.

References

[1] S. Pallickara and G. Fox. A Scheme for Reliable Delivery

of Events in Distributed Middleware Systems. POSTER.
Proceedings of the IEEE International Conference on
Autonomic Computing.NY. pp 328-329

[2] S. Pallickara and G. Fox. NaradaBrokering: A Middleware
Framework and Architecture for Enabling Durable Peer-to-
Peer Grids. Proceedings of the ACM/IFIP/USENIX
Middleware Conference Middleware-2003. pp 41-61.

[3] S. Pallickara, G. Fox and H. Gadgil. On the Creation &
Discovery of Topics in Distributed Publish/Subscribe
systems. Proc of the IEEE/ACM GRID 2005, pp 25-32.

[4] Kenneth Birman. Replication and Fault tolerance in the
ISIS system. In Proceedings of the10th ACM Symposium
on Operating Systems Principles, pages 79–86, 1985.

[5] R Renesse, K Birman, and S Maffeis. Horus: A flexible
group communication system. In Communications of the
ACM, volume 39(4). April 1996.

[6] D Dolev and D Malki. The Transis approach to high-
availability cluster communication. In Communications of
the ACM, volume 39(4). April 1996.

[7] K. Birman, R van Renesse and W Vogels. Spinglass:
Secure and Scalable Communications Tools for Mission-
Critical Computing. International Survivability Conference
and Exposition. DARPA DISCEX-2001, CA, June 2001.

[8] R. Boichat, et al. Effective Multicast programming in
Large Scale Distributed Systems. CCPE, 2000.

[9] S. Bhola, et al: Exactly-once Delivery in a Content-based
Publish-Subscribe System. DSN 2002: 7-16

[10] The IBM WebSphere MQ Family. http://www-
3.ibm.com/software/integration/mqfamily/

[11] Web Services Reliable Messaging Protocol (WS-
ReliableMessaging) March, 2006. From IBM, Microsoft

[12] Chervenak et al. Giggle: A Framework for Constructing
Scalable Replica Location Services, Proceedings of
ACM/IEEE Supercomputing 2002 (SC2002).

[13] C. Baru et al. The SDSC Storage Resource Broker.
In:Procs. of CASCON’98,Toronto, Canada (1998)

