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Abstract. A Peer-to-Peer (P2P) Grid would comprise services that include 
those of Grids and P2P networks and naturally support environments that have 
features of both limiting cases. Such a P2P grid integrates the evolving ideas of 
computational grids, distributed objects, web services, P2P networks and 
message oriented middleware. In this paper we investigate the architecture, 
comprising a distributed brokering system that will support such a hybrid 
environment. Access to services can then be mediated either by the middleware 
or alternatively by direct P2P interactions between machines. 

1.0 Introduction 

The Grid [1-4] has made dramatic progress recently with impressive technology 
and several large important applications initiated in high-energy physics [5,6], earth 
science [7,8] and other areas [9,10]. At the same time, there have been equally 
impressive advances in broadly deployed Internet technology. We can cite the 
dramatic growth in the use of XML, the “disruptive” impact of peer-to-peer (P2P) 
approaches [11] that have resulted in a slew of powerful applications, and the more 
orderly, but still widespread adoption, of a universal Web Service approach to Web 
based applications [12,13]. There are no crisp definitions of Grids and P2P Networks 
that allow us to unambiguously discuss their differences and similarities and what it 
means to integrate them. However these two concepts conjure up stereotype images 
that can be compared. Taking “extreme” cases, Grids are exemplified by the 
infrastructure used to allow seamless access to supercomputers and their datasets. P2P 
technology facilitates sophisticated resource sharing environments between 
“consenting” peers over the “edges” of the Internet, enabling ad hoc communities of 
low-end clients to advertise and access resources on communal computers. Each of 
these examples offers services but they differ in their functionality and style of 
implementation. The P2P example could involve services to set-up and join peer 
groups, browse and access files on a peer, or possibly to advertise one’s interest in a 
particular file. The “classic” grid could support job submittal and status services and 
access to sophisticated data management systems.  



 

Grids typically have structured robust security services while P2P networks can 
exhibit more intuitive trust mechanisms reminiscent of the “real world”. Grids 
typically offer robust services that scale well in pre-existing hierarchically arranged 
organizations. P2P networks are often used when a best effort service is needed in a 
dynamic poorly structured community. If one needs a particular “hot digital 
recording”, it is not necessary to locate all sources of this, a P2P network needs to 
search enough plausible resources to ensure that success is statistically guaranteed. 
On the other hand, a 3D simulation of the universe might need to be carefully 
scheduled and submitted in a guaranteed fashion to one of the handful of available 
supercomputers that can support it. There are several attractive features in the P2P 
model, which motivate the development of hybrid systems.  Deployment of P2P 
systems is entirely user driven, obviating the need for any dedicated management of 
these systems. Resource discovery and management is an integral part of P2P 
computing with peers exposing the resources that they are willing to share and the 
system (sometimes) replicating these resources based on demand. Grids might host 
different persistent services and they must be able to discover these services and the 
interfaces they support. Peers can form groups with the fluid group memberships and 
are thus very relevant for collaboration [14, 15]. This is an area that has been 
addressed for the Grid in Ref [16] and also in a seminal paper by Foster and 
collaborators [17] addressing broad support for communities.  

A P2P Grid would comprise services that include those of Grids and P2P networks 
while naturally supporting environments that have features of both limiting cases. We 
can discuss two examples where such a model is naturally applied. In the High 
Energy Physics data analysis (e-Science [18]) problem discussed in [19], the initial 
steps are dominated by the systematic analysis of the accelerator data to produce 
summary events roughly at the level of sets of particles. This Grid-like step is 
followed by “physics analysis”, which can involve many different studies and much 
debate between involved physicists regarding the appropriate methods to study the 
data. Here we see some Grid and some P2P features. As a second example, consider 
the way one uses the Internet to access information – either news items or multimedia 
entertainment. Perhaps the large sites like Yahoo, CNN and future digital movie 
distribution centers have Grid like organization. There are well-defined central 
repositories and high performance delivery mechanisms involving caching to support 
access. Security is likely to be strict for premium channels. This structured 
information is augmented by the P2P mechanisms popularized by Napster with 
communities sharing MP3 and other treasures in a less organized and controlled 
fashion. These simple examples suggest that whether for science or commodity 
communities, information systems should support both Grid and P2P capabilities 
[20,21].  

The proposed P2P grid, which integrates the evolving ideas of computational grids, 
distributed objects, web services, P2P networks and message oriented middleware, 
comprises resources such as relatively static clients, high-end resources and a 
dynamic collection of multiple P2P subsystems. We investigate the architecture, 
comprising a distributed brokering system that will support such a hybrid 
environment. Services can be hosted on such a P2P grid with peer groups managed 
locally and arranged into a global system supported by core servers. Access to 
services can then be mediated either by the “broker middleware” or alternatively by 



 

direct P2P interactions between machines “on the edge”. The relative performance of 
each approach (which could reflect computer/network cycles as well as the existence 
of firewalls) would be used in deciding on the implementation to use. Such P2P Grids 
should seamlessly integrate users to themselves and to resources, which are also 
linked to each other. We can abstract such environments as a distributed system of 
“clients” which consist either of “users” or “resources” or proxies thereto. These 
clients must be linked together in a flexible fault tolerant efficient high performance 
fashion. The messaging infrastructure linking clients (both users and resources of 
course) would provide the backbone for the P2P grid. 

The smallest unit of this messaging infrastructure should be able to intelligently 
process and route messages while working with multiple underlying communication 
protocols. We refer to this unit as a broker, where we avoid the use of the term 
servers to distinguish it clearly from the application servers that would be among the 
sources/sinks to messages generated within the integrated system. For our purposes 
(registering, transporting and discovering information), we use the term 
events/messages interchangeably where events are just messages − typically with time 
stamps. We may enumerate the following requirements for the messaging 
infrastructure −  
1. Scaling: This is of paramount importance considering the number of devices, 

clients and services that would be aggregated in the P2P grid. The distributed 
broker network should scale to support the increase in these aggregated entities. 
However the addition of brokers to aid the scaling should not degrade 
performance by increasing communication pathlengths or ineffective bandwidth 
utilizations between broker nodes within the system. This calls for efficient 
organization of the broker network to ensure that the aforementioned 
degradations along with concomitant problems such as increased communication 
latencies do not take place. 

2. Efficient disseminations: The disseminations pertain to routing content, queries, 
invocations etc. to the relevant destinations in an efficient manner. The routing 
engine at each broker needs to ensure that the paths traversed within the broker 
network to reach destinations are along efficient paths that eschew failed broker 
nodes.  

3. Guaranteed delivery mechanisms: This is to ensure persistent delivery and 
reliable transactions within P2P grid realms. 

4. Location independence: To eliminate bandwidth degradations and bottlenecks 
stemming from entities accessing a certain known broker over and over again to 
gain access to services, it must be ensured that any broker within the broker 
network is just as good as the other. Services and functionality would then be 
accessible from any point within the broker network. 

5. Support for P2P interactions:  P2P systems tend to be autonomic, obviating the 
need for dedicated management.  P2P systems incorporate sophisticated search 
and subsequent discovery mechanisms. Support for P2P interactions facilitates 
access to information resources and services hosted by peers at the “edge” of the 
network.  

6. Interoperate with other messaging clients:  Enterprises have several systems that 
are built around messaging. These clients could be based on enterprise vendors 
such as IBM’s MQSeries or Microsoft’s MSMQ. Sometimes these would be 



 

clients conforming to mature messaging specifications such as the Java Message 
Service (JMS) [22]. JMS clients, existing in disparate enterprise realms, can 
utilize the distributed broker network as a JMS provider to communicate with 
each other. 

7. Communication through proxies and firewalls: It is inevitable that the realms we 
try to federate would be protected by firewalls stopping our elegant application 
channels dead in their tracks. The messaging infrastructure should thus be able to 
communicate across firewall, DHCP and NAT boundaries. Sometimes 
communications would also be through authenticating proxies.  

8. Extensible transport framework:  Here we consider the communication 
subsystem, which provides the messaging between the resources and services. 
Examining the growing power of optical networks we see the increasing 
universal bandwidth that in fact motivates the thin client and server based 
application model. However the real world also shows slow networks and 
links(such as dial-ups), leading to a high fraction of dropped packets. We also see 
some chaos today in the telecom industry which is stunting, somewhat, the rapid 
deployment of modern “wired’ (optical) and wireless networks. We suggest that 
key to future federating infrastructures will be messaging subsystems that 
manage the communication between external resources, services and clients to 
achieve the highest possible system performance and reliability. We suggest this 
problem is sufficiently hard that we only need solve this problem “once” i.e. that 
all communication – whether TCP/IP, UDP, RTP (A Transport Protocol for Real-
Time Applications) [23], RMI, XML/SOAP [24] or you-name-it be handled by a 
single messaging or event subsystem.  

9. Ability to monitor the performance of P2P grid realms: State of the broker 
network fabric provides a very good indicator of the state of the P2P grid realm. 
Monitoring the network performance of the connections originating from 
individual brokers enables us to identify bottlenecks and performance problems, 
if any, which exist within a P2P grid realm.   

10. Security Infrastructure: Since it is entirely conceivable that messages (including 
queries, invocations and responses) would have to traverse over hops where the 
underlying communication mechanisms are not necessarily secure, a security 
infrastructure that relies on message level security needs to be in place. 
Furthermore, the infrastructure should incorporate an authentication and 
authorization scheme to ensure restricted access to certain services.  The 
infrastructure must also ensure a secure and efficient distribution of keys to 
ensure access by authorized clients to content encapsulated in encrypted 
messages.  

In this paper we base our investigations on our messaging infrastructure, 
NaradaBrokering [25-31], which addresses or provides the foundations for the issues 
discussed above. The remainder of this paper is organized as follows. In Section 2.0 
we present an overview of the NaradaBrokering system. Section 3.0 presents the 
rationale, our strategy, to support P2P interactions. Section 4.0 presents an extensible 
transport framework that addresses the transport issues alluded to earlier. A 
performance aggregation framework for monitoring and responding to changing 
network conditions is discussed in Section 5.0. Section 6.0 presents an overview of 



 

the message based security framework in the system. Finally, in section 7.0 we 
present our conclusions and outline future work. 

2.0 NaradaBrokering 

To address the issues [31] of scaling, load balancing and failure resiliency, 
NaradaBrokering is implemented on a network of cooperating brokers. Brokers can 
run either on separate machines or on clients, whether these clients are associated 
with users or resources. This network of brokers will need to be dynamic for we need 
to service the needs of dynamic clients. Communication within NaradaBrokering is 
asynchronous and the system can be used to support different interactions by 
encapsulating them in specialized events. Clients reconnecting after prolonged 
disconnects, connect to the local broker instead of the remote broker that it was last 
attached to. This eliminates bandwidth degradations caused by heavy concentration of 
clients from disparate geographic locations accessing a certain known remote broker 
over and over again.  

NaradaBrokering goes beyond other operational publish/subscribe systems [32-37] 
in many (support for JMS, P2P interactions, audio-video conferencing, integrated 
performance monitoring, communication through firewalls among others) ways. The 
messaging system must scale over a wide variety of devices − from hand held 
computers at one end to high performance computers and sensors at the other 
extreme. We have analyzed the requirements of several Grid services that could be 
built with this model, including computing and education. Grid Services (including 
NaradaBrokering) being deployed in the context of Earthquake Science can be found 
in [29]. NaradaBrokering supports both JMS and JXTA [44] (from juxtaposition), 
which are publish/subscribe environments with very different interaction models. 
NaradaBrokering also provides support for legacy RTP clients.  

2.1 Broker Organization 

Uncontrolled broker and connection additions result in a broker network 
susceptible to network-partitions and devoid of any logical structure thus making the 
creation of efficient broker network maps (BNM) an arduous if not impossible task. 
The lack of this knowledge hampers the development of efficient routing strategies, 
which exploit the broker topology. Such systems then resort to “flooding” the entire 
broker network, forcing clients to discard events they are not interested in. To 
circumvent this, NaradaBrokering incorporates a broker organization protocol, which 
manages the addition of new brokers and also oversees the initiation of connections 
between these brokers.  

In NaradaBrokering we impose a hierarchical structure on the broker network, 
where a broker is part of a cluster that is part of a super-cluster, which in turn is part 
of a super-super-cluster and so on. Clusters comprise strongly connected brokers with 
multiple links to brokers in other clusters, ensuring alternate communication routes 
during failures. This organization scheme results in “small world networks” [38,39] 



 

where the average communication “pathlengths” between brokers increase 
logarithmically with geometric increases in network size, as opposed to exponential 
increases in uncontrolled settings. This cluster architecture allows NaradaBrokering to 
support large heterogeneous client configurations that scale to arbitrary size. 

Creation of BNMs and the detection of network partitions are easily achieved in 
this topology. We augment the BNM hosted at individual brokers to reflect the cost 
associated with traversal over connections, for e.g. intra-cluster communications are 
faster than inter-cluster communications. The BNM can now be used not only to 
compute valid paths but also for computing shortest paths. Changes to the network 
fabric are propagated only to those brokers that have their broker network view 
altered. Not all changes alter the BNM at a broker and those that do result in updates 
to the routing caches, containing shortest paths, maintained at individual brokers. 

2.2 Dissemination of events 

Every event has an implicit or explicit destination list, comprising clients, 
associated with it. The brokering system as a whole is responsible for computing 
broker destinations (targets) and ensuring efficient delivery to these targeted brokers 
en route to the intended client(s). Events as they pass through the broker network are 
updated to snapshot its dissemination within the network. The event dissemination 
traces eliminate continuous echoing and in tandem with the BNM –computes shortest 
paths – at each broker, is used to deploy a near optimal routing solution. The routing 
is near optimal since for every event the associated targeted brokers are usually the 
only ones involved in disseminations. Furthermore, every broker, either targeted or en 
route to one, computes the shortest path to reach target destinations while eschewing 
links and brokers that have failed or have been failure-suspected.  

In NaradaBrokering topics could be based on tag-value pairs, Integer and String 
values. Clients can also specify SQL queries on properties contained in a JMS 
message. Finally, NaradaBrokering currently incorporates a distributed XML 
matching engine, which allows clients to specify subscriptions in XPath queries and 
store advertisements in XML encapsulated events. Real-time XML events are 
evaluated against the stored XPath subscriptions, while stored XML advertisements 
are evaluated against a real-time XPath query for discovery purposes. 

Figures 2 and 3 illustrate some results [14] from our initial research where we 
studied the message delivery time as a function of load. The results are from a system 
comprising 22 broker processes and 102 clients in the topology outlined in Figure 1. 
Each broker node process is hosted on 1 physical Sun SPARC Ultra-5 machine (128 
MB RAM, 333 MHz), with no SPARC Ultra-5 machine hosting more than one broker 
node process. The publisher and the measuring subscriber reside on the same SPARC 
Ultra-5 machine. In addition to this there are 100 subscribing client processes, with 5 
client processes attached to every other broker node (broker nodes 22 and 21 do not 
have any other clients besides the publisher and measuring subscriber respectively) 
within the system. The 100 client node processes all reside on a SPARC Ultra-60 (512 
MB RAM, 360 MHz) machine. The run-time environment for all the broker node and 
client processes is Solaris JVM (JDK 1.2.1, native threads, JIT). The machines 
involved in the experiment reside on a 100 Mbps network. 



 

We measure the latencies at the client under varying conditions of publish rates, 
event sizes and matching rates. 
In most systems where events 
are continually generated a 
“typical” client is generally 
interested in only a small subset 
of these events. This behavior is 
captured in the matching rate for 
a given client. Varying the 
matching rates allows us to 
perform measurements under 
conditions of varying 
selectivity. The 100% case 
corresponds to systems that 
would flood the broker network. 
In systems that resort to 
flooding (routing a message to 
every router node) the system 
performance does not vary with 
changes in the match rate. 
Furthermore, in most cases a 
given message would only be route
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are responsible for ensuring the most efficient routing. Since the brokers are stateless, 
they can fail and remain failed forever. The guaranteed delivery scheme within 
NaradaBrokering does not require every broker to have access to a stable store or 
DBMS. The replication scheme is flexible and easily extensible. Stable storages can 
be added/removed and the replication scheme can be updated. Stable stores can fail 
but they do need to recover within a finite amount of time. During these failures the 
clients that are affected are those that were being serviced by the failed storage. 

2.4 JMS Compliance 

NaradaBrokering is JMS compliant and provides support not only for JMS clients, but 
also for replacing single/limited server JMS systems transparently [28] with a 
distributed NaradaBrokering broker network. Since JMS clients are vendor agnostic, 
this JMS integration has provided NaradaBrokering with access to a plethora of 
applications built around JMS, while the integrated JMS solution provides these 
applications with scaling, availability and dynamic real time load balancing. Among 
the applications ported to this solution are the Anabas distance education 
conferencing system [40] and the Online Knowledge Center (OKC) portal [41]. 

2.4.1 JMS Performance Data 
To gather performance data, we run an instance of the SonicMQ (version 3.0) [42] 

broker and NaradaBrokering broker on the same dual CPU (Pentium-3, 1 GHz, 
256MB) machine. We then setup 100 subscribers over 10 different JMS 
TopicConnections on another dual CPU (Pentium-3, 866MHz, 256MB) machine. 
There is also a measuring subscriber and a publisher that are set up on a third dual 
CPU (Pentium 3, 866MHz, 256MB RAM) machine. The three machines have Linux 
(version 2.2.16) as their operating system. The runtime environment for all the 
processes is Java 2 JRE (Java-1.3.1, Blackdown-FCS).  
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The topic, which the subscribers subscribe to and the publisher publishes to, is the 
same. We vary the rates at which the publisher publishes messages while varying the 
payload sizes associated with these messages. We compute the transit delays 



 

associated with individual messages and also the standard deviation in the delays 
(used to compute the mean transit delay) associated with messages in a given test 
case. Figure 4 depicts the mean transit delays for the measuring subscriber under 
NaradaBrokering and SonicMQ for high publish rates and smaller payload sizes. 
Figure 5 depicts the standard deviation associated with message samples under the 
same conditions.  

As can be seen NaradaBrokering compares very well with SonicMQ. Also, the 
standard deviation associated with message samples in NaradaBrokering were for the 
most part lower than in SonicMQ. Additional results can be found in [28]. 

3.0 Support for P2P interactions in NaradaBrokering 

Issues in P2P systems pertaining to the discovery of services and intelligent routing 
can be addressed very well in the NaradaBrokering system. The broker network 
would be used primarily as a delivery engine, and a pretty efficient one at that, while 
locating peers and propagating interactions to relevant peers. The most important 
aspect in P2P systems is the satisfaction of peer requests and discovery of peers and 
associated resources that could handle these requests. The broker network forwards 
these requests only to those peers that it believes can handle the requests. Peer 
interactions in most P2P systems are achieved through XML-based data interchange. 
XML’s data description and encapsulation properties provide easy access to specific 
elements of data. Individual brokers routing interactions could access relevant 
elements, cache this information and use it subsequently to achieve the best possible 
routing characteristics. The brokering system, since it is aware of advertisements, can 
also act as a hub for search and discovery operations. These advertisements when 
organized into “queryspaces” allow the integrated system to respond to search 
operations more efficiently.  

Resources in NaradaBrokering are generally within the purview of the broker 
network. P2P systems replicate resources in an ad hoc fashion, the availability of 
which is dependent on the peer’s active digital presence. Some resources, however, 
are best managed by the brokering system rather than being left to the discretion of 
peers who may or may not be present at any given time. An understanding of the 
network topology and an ability to pin point the existence of peers interested in that 
resource are paramount for managing the efficient replications of a resource.  The 
distributed broker network, possessing this knowledge, best handles this management 
of resources while ensuring that these replicated resources are “closer” and 
“available” at locations with a high interest in that resource. Furthermore, the broker 
network is also better suited, than a collection of peers, to eliminate race conditions 
and deadlocks that could exist due to a resource being accessed simultaneously by 
multiple peers. The broker network can also be responsive to changes in peer 
concentrations, volumes of peer requests, and resource availability.  

There are also some issues that need to be addressed while incorporating support 
for P2P interactions. P2P interactions are self-attenuating with interactions dying out 
after a certain number of hops. These attenuations in tandem with traces of the peers, 
which the interactions have passed through, eliminate the continuous echoing problem 



 

that result from loops in peer connectivity. However, attenuation of interactions 
sometimes prevents peers from discovering certain services that are being offered. 
This results in P2P interactions being very “localized”. These attenuations thus mean 
that the P2P world is inevitably fragmented into many small subnets that are not 
connected. Furthermore, sophisticated routing schemes are seldom in place and 
interactions are primarily through simple forwarding of requests with the propagation 
range determined by the attenuation indicated in the message. NaradaBrokering could 
also be used to connect islands of peers together. Peers that are not directly connected 
through the peer network could be indirectly connected through the broker network. 
Peer interactions and resources in the P2P model are traditionally unreliable, with 
interactions being lost or discarded due to peer failures or absences, overloading of 
peers and queuing thresholds being reached.  

Guaranteed delivery properties existing in NaradaBrokering can augment peer 
behavior to provide a notion of reliable peers, interactions and resources. Such an 
integrated brokering solution would also allow for hybrid interaction schemes to exist 
alongside each other. Applications could be built around hybrid-clients that would 
exhibit part peer behavior and part traditional client behavior (e.g. JMS). P2P 
communications could be then used for traffic where loss of information can be 
sustained. Similarly, hybrid-clients needing to communicate with each other in a 
“reliable” fashion could utilize the brokering system’s capabilities to achieve that. 
Sometimes, hybrid-clients satisfy each other’s requests, obviating the need for 
funneling interactions through the broker network. Systems tuned towards large-scale 
P2P systems include Pastry [43] from Microsoft, which provides an efficient location 
and routing substrate for wide-area P2P applications. Pastry provides a self-stabilizing 
infrastructure that adapts to the arrival, departure and failure of nodes. The JXTA [44] 
project at Sun Microsystems is another effort to provide such large-scale P2P 
infrastructures. 

3.1 JXTA 

 JXTA is a set of open, generalized protocols [45] to support P2P interactions and 
core P2P capabilities such as indexing, file sharing, searching, peer grouping and 
security.  The JXTA peers, and rendezvous peers (specialized routers), rely on a 
simple forwarding of interactions for dissemination. Time-to-live (TTL) indicators 
and peer traces attenuate interaction propagations. JXTA interactions are unreliable 
and tend to be localized. It is expected that existing P2P systems would either support 
JXTA or have bridges initiated to it from JXTA. Support for JXTA would thus enable 
us to leverage other P2P systems along with applications built around those systems.  

3.2 JXTA & NaradaBrokering  

In our strategy for providing support for P2P interactions within NaradaBrokering, 
we impose two constraints. First, we make no changes to the JXTA core and the 
associated protocols. We make additions to the rendezvous layer for integration 
purposes. Second, this integration should entail neither any changes to the peers nor a 



 

straitjacketing of the interactions that these peers could have had prior to the 
integration. 

The integration is based on the proxy model, which essentially acts as the bridge 
between the NaradaBrokering system and JXTA. The Narada-JXTA proxy, operating 
inside the JXTA rendezvous layer, serves in a dual role as both a rendezvous peer and 
as a NaradaBrokering client providing a bridge between NaradaBrokering and JXTA. 
NaradaBrokering could be viewed as a service by JXTA. The discovery of this 
service is automatic and instantaneous due to the Narada-JXTA proxy’s integration 
inside the rendezvous layer. Any peer can utilize NaradaBrokering as a service so 
long as it is connected to a Narada-JXTA proxy. Nevertheless, peers do not know that 
the broker network is routing some of their interactions. Furthermore, these Narada-
JXTA proxies, since they are configured as clients within the NaradaBrokering 
system, inherit all the guarantees that are provided to NaradaBrokering clients.  

3.2.1 The interaction model 
Different JXTA interactions are queued at the queues associated with the relevant 

layers comprising the JXTA protocol suite. Each layer performs some operations 
including the addition of additional information. The rendezvous layer processes 
information arriving at its input queues from the peer-resolving layer and the pipe-
binding layer. Since the payload structure associated with different interactions is 
different we can easily identify the interaction types associated with the payloads. 
Interactions pertaining to discovery/search or communications within a peer group 
would be serviced both by JXTA rendezvous peers and also by Narada-JXTA proxies.  

Interactions that peers have with the Narada-JXTA proxies are what are routed 
through the NaradaBrokering system. JXTA peers can continue to interact with each 
other and of course some of these peers can be connected to pure JXTA rendezvous 
peers. Peers have multiple routes to reach each other and some of these could include 
the NaradaBrokering system and some of them need not. Such peers can interact 
directly with each other during the request/response interactions.  

3.2.2 Interaction Disseminations 
Peers can create a peer group; request to be part of a peer group; perform 

search/request/discovery all with respect to a specific targeted peer group. Peers 
always issue requests/responses to a specific peer group and sometimes to a specific 
peer. Peers and peer groups are identified by UUID [46] (IETF specification 
guarantees uniqueness until 3040 A.D.) based identifiers. Every peer generates its 
own peer id while the peer that created the peer group generates the associated peer 
group id.  Each rendezvous peer keeps track of multiple peer groups through peer 
group advertisements that it receives and is responsible for forwarding interactions.  

Narada-JXTA proxies are initialized both as rendezvous peers and also as 
NaradaBrokering clients. During its initialization as a NaradaBrokering client every 
proxy is assigned a unique connection ID by the NaradaBrokering system, after which 
the proxy subscribes to a topic identifying itself as a Narada-JXTA proxy. This 
enables NaradaBrokering to be aware of all the Narada-JXTA proxies that are present 
in the system. The Narada-JXTA proxy in its role as a rendezvous peer to peers 
receives –  



 

1) Peer group advertisements 
2) Requests from peers to be part of a certain peer group and responses to these 

requests 
3) Messages sent to a certain peer group or a targeted peer 
4) Queries and responses to these queries 
To ensure the efficient dissemination of interactions, it is important to ensure that 

JXTA interactions that are routed by NaradaBrokering are delivered only to those 
Narada-JXTA proxies that should receive them. This entails that the Narada-JXTA 
proxy perform a sequence of operations, based on the interactions that it receives, to 
ensure selective delivery. The set of operations that the Narada-JXTA proxy performs 
comprise gleaning relevant information from JXTA’s XML encapsulated interactions, 
constructing an event based on the information gleaned and finally in its role as a 
NaradaBrokering client subscribing (if it chooses to do so) to a topic to facilitate 
selective delivery. By subscribing to relevant topics, and creating events targeted to 
specific topics each proxy ensures that the broker network is not flooded with 
interactions routed by them. The events constructed by the Narada-JXTA proxies 
include the entire interaction as the event’s payload. Upon receipt at a proxy, this 
payload is de-serialized and the interaction is propagated as outlined in the proxy’s 
dual role as a rendezvous peer. Additional details pertaining to this integration can be 
found in [27]. 

3.3 Performance Measurements  

For comparing JXTA performance in NaradaBrokering we setup the topologies 
depicted in Figure 6. We then 
compare the performance of the 
pure JXTA environment, the 
integrated Narada-JXTA system 
and the native NaradaBrokering 
system. The rendezvous peers 
connected to brokers in topology 
6.(b) are Narada-JXTA proxies. To 
compute communication delays 
while obviating the need for clock 
synchronizations and the need to 
account for clock drifts, the 
receiver/sender pair is setup on the 
same machine (Pentium-3, 1 GHz, 
256 MB RAM). In all the test 
cases, a message published by the 
sender is received at the receiver 
and the delay is computed. For a 
given message payload this is 
done for a sample of messages 
and we compute the mean delay 
samples. This is repeated for differe
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(broker or rendezvous peer) involved in the experimental setup is hosted on a 
different machine (Pentium-3, 1 GHz, 256MB RAM). The run-time environment for 
all the processes is (JDK-1.3 build Blackdown-1.3.1, Red Hat Linux 7.3).  The 
machines involved in the experimental setup reside on a 100 Mbps LAN. Figures 7 
and 8 depict the mean transit delay and standard deviation for the message samples 
under the different test topologies. These results indicate the superior performance of 
the integrated Narada-JXTA system compared to that of the pure JXTA system. The 
results [27] follow the same general pattern for measurements under other test 
topologies.  
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4.0 NaradaBrokering’s Transport Framework 

In the distributed NaradaBrokering setting it is expected that when an event 
traverses an end-to-end channel across multiple broker hops or links the underlying 
transport protocols deployed for communications would vary. The NaradaBrokering 
Transport framework aims to abstract the operations that need to be supported for 
enabling efficient communications between nodes. These include support for − 
1) Easy addition of transport protocols within the framework. 
2) Deployments of specialized links to deal with specific data types. 
3) Negotiation of the best available communication protocol between two nodes 
4) Adaptability in communications by responding to changing network conditions. 
5) Accumulating performance data measured by different underlying protocol 

implementations. 
TCP, UDP, Multicast, SSL, HTTP and RTP based implementations of the transport 

framework are currently available in NaradaBrokering. It is also entirely conceivable 
that there could be a JXTA link, which will defer communications to the underlying 
JXTA pipe mechanism. NaradaBrokering can also tunnel through firewalls such as 
Microsoft’s ISA [47] and Checkpoint [48] and proxies such as iPlanet [49]. The user 
authentication modes supported include Basic, Digest and NTLM. Operations that 
need to be supported between two communication endpoints are encapsulated within 
the “link” primitive in the transport framework. The adaptability in communications 
is achieved by specifying network constraints and conditions under which to migrate 



 

to another underlying protocol. For e.g. a UDP link may specify that when the loss 
rates increase substantially communication should revert to TCP. Though there is 
support for this adaptability in the transport framework, this feature is not yet 
implemented in the current release. Figure 9 provides an overview of the 
NaradaBrokering transport framework. 
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Fig. 9. Transport Framework Overview 
A Link is an abstraction that hides details pertaining to communications. A Link has 

features, which allow it to specify a change in the underlying communications and the 
conditions under which to do so. An implementation of the Link interface can 
incorporate its own handshaking protocols for setting up communications. The Link 
also contains methods, which allow for checking the status of the underlying 
communication mechanism at specified intervals while reporting communication 
losses to the relevant error handlers within the transport framework. Each 
implementation of the Link interface can expose and measure a set of performance 
factors. Measurement of performance factors over a link requires cooperation from 
the other end-point of the communication link; this particular detail should be handled 
within the Link implementation itself. How the Link implementation computes round 
trip delays, jitter factors, bandwidth, loss rates etc. should be within the domain of the 
implementer. The Link also has methods which enable/disable the measurement of 
these performance factors. Links expose the performance related information in the 
LinkPerformanceData construct using which it is possible to retrieve information 
(type, value, description) pertaining to the performance factors being measured. 

In the distributed NaradaBrokering setting it is expected that when an event 
traverses across multiple broker hops it could be sent over multiple communication 
links. In places where links optimized to deal with the specialized communication 
needs of the event exist (or can exist) they will be used for communications. While 
routing events between two NaradaBrokering brokers (that already have a link 



 

established between them) it should be possible for the event routing protocol to 
specify the creation of alternate communication links for disseminations. Support for 
this feature arises when routing handlers request the deployment of specific transport 
protocols for routing content, for e.g. a NaradaRTP event router could request that 
RTP links be used for communication. Sometimes such links will be needed for short 
durations of time. In such cases one should be able to specify the time for which the 
link should be kept alive. Expiry of this timer should cause the garbage collection of 
all resources associated with the link. The keepalive time corresponds to the period of 
inactivity after which the associated link resources must be garbage collected. 

All broker locations need not have support for all types of communication links. 
Information regarding the availability of a specific link type could be encapsulated in 
an URI. This information could be exchanged along with the information regarding 
supported link types (at a given node) exchanged over the AdministrativeLink, which 
is different from that of a link in the methods that can be invoked on it. This URI 
could then possibly be used to dynamically load services. The AdministrativeLink 
exchanges information regarding the various communication protocols (along with 
information pertaining to them such as server, port, multicast group etc) that are 
available at a broker/client node. This is then used to determine the best link to use to 
communicate with the broker. Communication over the AdministrativeLink will be 
HTTP based to ensure the best possibility for communications between two nodes. 
All link implementations need to have an implementation of the LinkNegotiator 
interface. Based on the information returned on the AdministrativeLink, the 
LinkNegotiators are initialized for the common subset of communications and then 
deployed to negotiate the transport protocol for communications. The LinkNegotiator 
determines whether communication is possible over a specified link and also returns 
metrics that would enable the AdministrativeLink in arriving at a decision regarding the 
deployment of the best possible link.  

All links of a specific communications type are managed by a LinkFactory 
instance. The LinkFactory for a particular communications protocol enables 
communications to and from other nodes over a specific link type. The LinkFactory 
also controls the intervals at which all its managed links check their communication 
status.  Links also allow the specification of constraints (usually on the set of 
performance factors that it measures) and the link type that the communication must 
migrate to when those conditions are satisfied. This feature allows a link to revert to 
an alternate underlying transport protocol when communication degrades or is 
impossible to achieve. For example, it is conceivable that while communicating using 
TCP, bandwidth and latency constraints force a switch to UDP communications. The 
LinkFactory is also used to manage the migration of communication protocols from 
links of different types. Based on the set of supported communication protocol 
migrations, which a LinkFactory exposes, adaptive communications between nodes is 
enabled.  

Protocol layers use the TransportHandler interface to invoke methods for 
communications with other NaradaBrokering nodes. LinkFactories are loaded at run-
time by the TransportHandler implementation and it is then that TransportHandler 
interface is passed to the LinkFactory implementation. The reference to the transport 
handler is passed to every link created by the link factory. This is the reference that is 
used by individual links to report the availability of data on a link. Individual links 



 

use this interface to report data streams that are received over the link, loss of 
communications and requests to migrate transport protocols if the migration 
constraint is satisfied. Based on the LinkFactories that are loaded at run-time the 
transport handler can expose the set of link types (generally corresponding to 
transport types) that it supports. Transport Handler manages all Link factories and 
Links. LinkFactories are responsible for the creation of links. Links have methods for 
sending data (while also indicating the data type). Data received on a communication 
link is reported to the TransportHandler by invoking the appropriate methods within 
the interface. 

4.1 Some performance measurements 

Figures 10 and 11 depict results for the TCP implementation of the framework. 
The graphs depict the mean transit delays, and the accompanying standard deviations, 
for native NaradaBrokering messages traversing through multiple (2, 3, 5 and 7) hops 
with multiple brokers (1, 2, 4 and 6 respectively) in the path from the sender of the 
message to the receiver. For each test case the message payload was varied. The 
transit delay plotted is the average of the 50 messages that were published for each 
payload. The sender/receiver pair along with every broker involved in the test cases 
were hosted on different physical machines (Pentium-3, 1 GHz, 256 MB RAM). The 
machines reside on a 100 Mbps LAN. The run-time environment for all the processes 
is JRE-1.3 build Blackdown-1.3.1, Red Hat Linux 7.3  

 
Fig. 10. Transit Delay for message samples Fig. 11. Standard deviation for samples 
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The average delay per inter-node (broker-broker, broker-client) hop was around 
500-700 microseconds. The standard deviation varies from 0 microseconds for 50 
byte messages traversing a hop to 800 microseconds over 7 hops. 

5.0 Performance Monitoring and Aggregation 

The performance monitoring scheme within the distributed broker network needs 
to have two important characteristics. First, it should be able to work with different 
transport protocols with no straitjacketing of the performance factors being measured. 



 

The Link and LinkPerformanceData primitives that abstract transport details and 
performance data respectively, as outlined in the preceding section, ensure the ability 
to work with unlimited 
performance factors 
over different transport 
protocols. Different 
nodes, with different 
types of links 
originating from them, 
can end up measuring a 
different set of 
performance factors. 
Second, the scheme 
should be to federate 
with other network 
measurement services 
such as the network 
weather service (NWS) 
[50]. An added feature wo
domains. 
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uld be to allow administrators to monitor specific realms or 

Brokering incorporates a monitoring service (as shown in 
the state of the links originating from the broker node. 

orted over individual links, originating from a broker node, 
transit delays, loss rates and system throughputs. Factors 

trusive way so as to ensure that the measurements do not 
ics being measured in the first place.  Factors such as 
, which can pollute other metrics being measured, are 
ncies. Furthermore, once a link is deemed to be at the 
formance spectrum (either very good or very bad) the 
ctors are turned off while others are measured at a far lower 
an measure different set of parameters. So the set of 
d would be extensible and flexible. The monitoring service 
capsulates performance data gathered from each link in an 
itoring service then reports this data to a performance 

ggregates information from monitoring services running at 

rs monitor the state of the network fabric at certain realms; 
s may exchange information with each other to provide a 
network realm. The performance aggregators exchange 
toring services pertaining to the measurement and reporting 
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d within the aggregators is accessible to administrators via 
rtal such as Apache Jetspeed [51]. Note that, since the 



 

information returned to the aggregators in encapsulated in an XML structure, it is 
very easy to incorporate results gathered from another network monitoring service 
such as NWS. All that needs to be done is to have a proxy, residing at a NWS node 
that encapsulates the monitored data into an XML structure.  The aggregated XML 
performance data (from the monitoring service at each node and other third-party 
services) would be mined to generate information, which would then be used to 
achieve to certain objectives.  
(a) The ability to identify, circumvent, project and prevent system bottlenecks: 
Different transports would reveal this in different ways. As system performance 
degrades UDP loss rates may increase, TCP latencies increase. Similarly as available 
bandwidths decrease the overheads associated with TCP error correction and in order 
delivery may become unacceptable for certain applications. 
(b) To aid routing algorithms: Costs associated with link traversals in BNM's would 
be updated to reflect the state of the fabric and the traversal times associated with 
links in certain realms. Routes computed based on this information would then reveal 
"true" faster routes. 
(c) To be used for Dynamic topologies to address both (a) and (b):  The aggregated 
performance information would be used to identify locations to upgrade the network 
fabric of the messaging infrastructure. This upgrade would involve 
brokers/connections be instantiated/purged dynamically to assuage system bottlenecks 
and to facilitate better routing characteristics. Although multicasting and bandwidth 
reservation protocols such as RSVP [52] and ST-II [53] can help in better utilizing the 
network they require support at the router level, more conceited effort is need at 
higher levels, and dynamic topologies coupled with efficient routing protocols can 
help in the efficient utilization of network resources. 
(d) To determine the best available broker to connect to: Based on the aggregated 
information it should be possible to determine the best broker that a client can connect 
to within a certain realm. Scaling algorithms, such as the one derived from item (c), 
would benefit greatly from this strategy by incorporating newly added broker nodes 
(which would be the best available ones) into the routing solution. 
(e) Threshold notifications: Administrators can specify thresholds, which when 
reached by specific monitored factors, results in notifications being sent to them. 

6.0 Security Framework 

Since it is entirely conceivable that messages (including queries, invocations and 
responses) would have to traverse over hops where the underlying communication 
mechanisms are not necessarily secure, a security infrastructure that relies on message 
level security needs to be in place. The security framework in NaradaBrokering tries 
to address the following issues 
1. Authentication: Confirm whether a user is really who he says he is. 
2. Authorization: Identify if the user is authorized to receive certain events 
3. Key distribution: Based on the authentication and authorization, distribute keys, 

which ensure that only the valid clients are able to decrypt encrypted data. 



 

4. Digital Signing:  Have the ability to verify the source of the event and whether 
the source is authorized to publish events conforming to the specified template.  

5. Communication Protocol Independence: Have the ability to work over normal 
communication channels. Communications need not to be over unencrypted 
links. 

6. End-to-End integrity: Ensure that the only place where the unencrypted event is 
seen at the authorized publisher of the event and the authenticated (and 
authorized) subscribers to the event. 

7. Detection of security compromise: Check whether the publisher’s signature is a 
valid one. This approach would be similar to the Certificate Revocation Lists 
(CRL) scheme. 

8. Qualities of Service detecting compromise: Clients may be asked to answer 
questions to verify its authenticity at regular intervals to facilitate detection of 
compromise. 

9. Response to security compromise: This would involve invalidating certain 
signatures and discarding the use of certain keys for encrypted communications. 

In our approach we secure messages independently of any transport level security. 
This provides a fine-grained security structure suitable for distributed systems and 
multiple security roles. For example, parts of the message may be encrypted 
differently, allowing users with different access privileges to access different parts of 
the message. Basic security operations such as authentication should be performed in 
a mechanism-independent way, with specific mechanisms (Kerberos [54], PKI) 
plugged into specific applications.  The message level security framework allows us 
to deploy communication links where data is not encrypted. Furthermore, this scheme 
also ensures that no node/unauthorized-entity ever sees the unencrypted message. In 
our strategy we incorporate schemes to detect and respond to security compromises 
while also dealing with various attack scenarios. 

Security specifications for Web Services [55, 56] are just starting to emerge, but 
generally follow the same approach: the message creator adds a signed XML message 
containing security statements to the SOAP envelope.  The message consumer must 
be able to check these statements and the associated signature before deciding if it can 
execute the request. Legion (http://www.cs.virginia.edu/ ~legion/) is a long-standing 
research project for building a “virtual computer” out of distributed objects running 
on various computing resources.  Legion objects communicate within a secure 
messaging framework [57] with an abstract authentication/identity system that may 
use either PKI or Kerberos.  Legion also defines an access control policy on objects. 
Additional details pertaining to the NaradaBrokering security infrastructure can be 
found in [58]. 

7.0 Conclusions and Future Work  

This paper outlined an extensible messaging framework that, we propose, would be 
appropriate to host P2P grids. Our results demonstrate that the framework can indeed 
be deployed for both synchronous and asynchronous applications while incorporating 
performance-functionality trade-offs for different scenarios (centralized, distributed 

http://www.cs.virginia.edu/ ~legion/


 

and peer-to-peer mode). We believe we are now well positioned to incorporate 
support, within the messaging infrastructure, for Web/Grid Services. 

We have recently incorporated an XML matching engine within the distributed 
brokering framework. This allows us to facilitate richer discovery mechanisms. 
Trade-offs in performance versus functionality inherent in such matching engines is a 
critical area that needs to be researched further. Another area that we intend to 
investigate is the model of dynamic resource management. A good example of a 
dynamic peer group is the set of Grid/Web Services [59, 60] generated dynamically 
when a complex task runs – here existing registration/discovery mechanisms are 
unsuitable. A P2P like discovery strategy within such a dynamic group combined with 
NaradaBrokering’s JMS mode between groups seems attractive. We have also begun 
investigations into the management of distributed lightweight XML databases using 
P2P search and discovery mechanisms. Another area amenable to immediate 
investigation and research is the federation of services in multiple grid realms. 
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