
NaradaBrokering: A Distributed Middleware
Framework and Architecture for Enabling Durable Peer-

to-Peer Grids.

Shrideep Pallickara and Geoffrey Fox

Community Grid Labs, Indiana University, 501 N. Morton St, Suite 224
Bloomington, IN-47404. USA.
{spallick, gcf}@indiana.edu

Abstract. A Peer-to-Peer (P2P) Grid would comprise services that include
those of Grids and P2P networks and naturally support environments that have
features of both limiting cases. Such a P2P grid integrates the evolving ideas of
computational grids, distributed objects, web services, P2P networks and
message oriented middleware. In this paper we investigate the architecture,
comprising a distributed brokering system that will support such a hybrid
environment. Access to services can then be mediated either by the middleware
or alternatively by direct P2P interactions between machines.

1.0 Introduction

The Grid [1-4] has made dramatic progress recently with impressive technology
and several large important applications initiated in high-energy physics [5,6], earth
science [7,8] and other areas [9,10]. At the same time, there have been equally
impressive advances in broadly deployed Internet technology. We can cite the
dramatic growth in the use of XML, the “disruptive” impact of peer-to-peer (P2P)
approaches [11] that have resulted in a slew of powerful applications, and the more
orderly, but still widespread adoption, of a universal Web Service approach to Web
based applications [12,13]. There are no crisp definitions of Grids and P2P Networks
that allow us to unambiguously discuss their differences and similarities and what it
means to integrate them. However these two concepts conjure up stereotype images
that can be compared. Taking “extreme” cases, Grids are exemplified by the
infrastructure used to allow seamless access to supercomputers and their datasets. P2P
technology facilitates sophisticated resource sharing environments between
“consenting” peers over the “edges” of the Internet, enabling ad hoc communities of
low-end clients to advertise and access resources on communal computers. Each of
these examples offers services but they differ in their functionality and style of
implementation. The P2P example could involve services to set-up and join peer
groups, browse and access files on a peer, or possibly to advertise one’s interest in a
particular file. The “classic” grid could support job submittal and status services and
access to sophisticated data management systems.

Grids typically have structured robust security services while P2P networks can
exhibit more intuitive trust mechanisms reminiscent of the “real world”. Grids
typically offer robust services that scale well in pre-existing hierarchically arranged
organizations. P2P networks are often used when a best effort service is needed in a
dynamic poorly structured community. If one needs a particular “hot digital
recording”, it is not necessary to locate all sources of this, a P2P network needs to
search enough plausible resources to ensure that success is statistically guaranteed.
On the other hand, a 3D simulation of the universe might need to be carefully
scheduled and submitted in a guaranteed fashion to one of the handful of available
supercomputers that can support it. There are several attractive features in the P2P
model, which motivate the development of hybrid systems. Deployment of P2P
systems is entirely user driven, obviating the need for any dedicated management of
these systems. Resource discovery and management is an integral part of P2P
computing with peers exposing the resources that they are willing to share and the
system (sometimes) replicating these resources based on demand. Grids might host
different persistent services and they must be able to discover these services and the
interfaces they support. Peers can form groups with the fluid group memberships and
are thus very relevant for collaboration [14, 15]. This is an area that has been
addressed for the Grid in Ref [16] and also in a seminal paper by Foster and
collaborators [17] addressing broad support for communities.

A P2P Grid would comprise services that include those of Grids and P2P networks
while naturally supporting environments that have features of both limiting cases. We
can discuss two examples where such a model is naturally applied. In the High
Energy Physics data analysis (e-Science [18]) problem discussed in [19], the initial
steps are dominated by the systematic analysis of the accelerator data to produce
summary events roughly at the level of sets of particles. This Grid-like step is
followed by “physics analysis”, which can involve many different studies and much
debate between involved physicists regarding the appropriate methods to study the
data. Here we see some Grid and some P2P features. As a second example, consider
the way one uses the Internet to access information – either news items or multimedia
entertainment. Perhaps the large sites like Yahoo, CNN and future digital movie
distribution centers have Grid like organization. There are well-defined central
repositories and high performance delivery mechanisms involving caching to support
access. Security is likely to be strict for premium channels. This structured
information is augmented by the P2P mechanisms popularized by Napster with
communities sharing MP3 and other treasures in a less organized and controlled
fashion. These simple examples suggest that whether for science or commodity
communities, information systems should support both Grid and P2P capabilities
[20,21].

The proposed P2P grid, which integrates the evolving ideas of computational grids,
distributed objects, web services, P2P networks and message oriented middleware,
comprises resources such as relatively static clients, high-end resources and a
dynamic collection of multiple P2P subsystems. We investigate the architecture,
comprising a distributed brokering system that will support such a hybrid
environment. Services can be hosted on such a P2P grid with peer groups managed
locally and arranged into a global system supported by core servers. Access to
services can then be mediated either by the “broker middleware” or alternatively by

direct P2P interactions between machines “on the edge”. The relative performance of
each approach (which could reflect computer/network cycles as well as the existence
of firewalls) would be used in deciding on the implementation to use. Such P2P Grids
should seamlessly integrate users to themselves and to resources, which are also
linked to each other. We can abstract such environments as a distributed system of
“clients” which consist either of “users” or “resources” or proxies thereto. These
clients must be linked together in a flexible fault tolerant efficient high performance
fashion. The messaging infrastructure linking clients (both users and resources of
course) would provide the backbone for the P2P grid.

The smallest unit of this messaging infrastructure should be able to intelligently
process and route messages while working with multiple underlying communication
protocols. We refer to this unit as a broker, where we avoid the use of the term
servers to distinguish it clearly from the application servers that would be among the
sources/sinks to messages generated within the integrated system. For our purposes
(registering, transporting and discovering information), we use the term
events/messages interchangeably where events are just messages − typically with time
stamps. We may enumerate the following requirements for the messaging
infrastructure −
1. Scaling: This is of paramount importance considering the number of devices,

clients and services that would be aggregated in the P2P grid. The distributed
broker network should scale to support the increase in these aggregated entities.
However the addition of brokers to aid the scaling should not degrade
performance by increasing communication pathlengths or ineffective bandwidth
utilizations between broker nodes within the system. This calls for efficient
organization of the broker network to ensure that the aforementioned
degradations along with concomitant problems such as increased communication
latencies do not take place.

2. Efficient disseminations: The disseminations pertain to routing content, queries,
invocations etc. to the relevant destinations in an efficient manner. The routing
engine at each broker needs to ensure that the paths traversed within the broker
network to reach destinations are along efficient paths that eschew failed broker
nodes.

3. Guaranteed delivery mechanisms: This is to ensure persistent delivery and
reliable transactions within P2P grid realms.

4. Location independence: To eliminate bandwidth degradations and bottlenecks
stemming from entities accessing a certain known broker over and over again to
gain access to services, it must be ensured that any broker within the broker
network is just as good as the other. Services and functionality would then be
accessible from any point within the broker network.

5. Support for P2P interactions: P2P systems tend to be autonomic, obviating the
need for dedicated management. P2P systems incorporate sophisticated search
and subsequent discovery mechanisms. Support for P2P interactions facilitates
access to information resources and services hosted by peers at the “edge” of the
network.

6. Interoperate with other messaging clients: Enterprises have several systems that
are built around messaging. These clients could be based on enterprise vendors
such as IBM’s MQSeries or Microsoft’s MSMQ. Sometimes these would be

clients conforming to mature messaging specifications such as the Java Message
Service (JMS) [22]. JMS clients, existing in disparate enterprise realms, can
utilize the distributed broker network as a JMS provider to communicate with
each other.

7. Communication through proxies and firewalls: It is inevitable that the realms we
try to federate would be protected by firewalls stopping our elegant application
channels dead in their tracks. The messaging infrastructure should thus be able to
communicate across firewall, DHCP and NAT boundaries. Sometimes
communications would also be through authenticating proxies.

8. Extensible transport framework: Here we consider the communication
subsystem, which provides the messaging between the resources and services.
Examining the growing power of optical networks we see the increasing
universal bandwidth that in fact motivates the thin client and server based
application model. However the real world also shows slow networks and
links(such as dial-ups), leading to a high fraction of dropped packets. We also see
some chaos today in the telecom industry which is stunting, somewhat, the rapid
deployment of modern “wired’ (optical) and wireless networks. We suggest that
key to future federating infrastructures will be messaging subsystems that
manage the communication between external resources, services and clients to
achieve the highest possible system performance and reliability. We suggest this
problem is sufficiently hard that we only need solve this problem “once” i.e. that
all communication – whether TCP/IP, UDP, RTP (A Transport Protocol for Real-
Time Applications) [23], RMI, XML/SOAP [24] or you-name-it be handled by a
single messaging or event subsystem.

9. Ability to monitor the performance of P2P grid realms: State of the broker
network fabric provides a very good indicator of the state of the P2P grid realm.
Monitoring the network performance of the connections originating from
individual brokers enables us to identify bottlenecks and performance problems,
if any, which exist within a P2P grid realm.

10. Security Infrastructure: Since it is entirely conceivable that messages (including
queries, invocations and responses) would have to traverse over hops where the
underlying communication mechanisms are not necessarily secure, a security
infrastructure that relies on message level security needs to be in place.
Furthermore, the infrastructure should incorporate an authentication and
authorization scheme to ensure restricted access to certain services. The
infrastructure must also ensure a secure and efficient distribution of keys to
ensure access by authorized clients to content encapsulated in encrypted
messages.

In this paper we base our investigations on our messaging infrastructure,
NaradaBrokering [25-31], which addresses or provides the foundations for the issues
discussed above. The remainder of this paper is organized as follows. In Section 2.0
we present an overview of the NaradaBrokering system. Section 3.0 presents the
rationale, our strategy, to support P2P interactions. Section 4.0 presents an extensible
transport framework that addresses the transport issues alluded to earlier. A
performance aggregation framework for monitoring and responding to changing
network conditions is discussed in Section 5.0. Section 6.0 presents an overview of

the message based security framework in the system. Finally, in section 7.0 we
present our conclusions and outline future work.

2.0 NaradaBrokering

To address the issues [31] of scaling, load balancing and failure resiliency,
NaradaBrokering is implemented on a network of cooperating brokers. Brokers can
run either on separate machines or on clients, whether these clients are associated
with users or resources. This network of brokers will need to be dynamic for we need
to service the needs of dynamic clients. Communication within NaradaBrokering is
asynchronous and the system can be used to support different interactions by
encapsulating them in specialized events. Clients reconnecting after prolonged
disconnects, connect to the local broker instead of the remote broker that it was last
attached to. This eliminates bandwidth degradations caused by heavy concentration of
clients from disparate geographic locations accessing a certain known remote broker
over and over again.

NaradaBrokering goes beyond other operational publish/subscribe systems [32-37]
in many (support for JMS, P2P interactions, audio-video conferencing, integrated
performance monitoring, communication through firewalls among others) ways. The
messaging system must scale over a wide variety of devices − from hand held
computers at one end to high performance computers and sensors at the other
extreme. We have analyzed the requirements of several Grid services that could be
built with this model, including computing and education. Grid Services (including
NaradaBrokering) being deployed in the context of Earthquake Science can be found
in [29]. NaradaBrokering supports both JMS and JXTA [44] (from juxtaposition),
which are publish/subscribe environments with very different interaction models.
NaradaBrokering also provides support for legacy RTP clients.

2.1 Broker Organization

Uncontrolled broker and connection additions result in a broker network
susceptible to network-partitions and devoid of any logical structure thus making the
creation of efficient broker network maps (BNM) an arduous if not impossible task.
The lack of this knowledge hampers the development of efficient routing strategies,
which exploit the broker topology. Such systems then resort to “flooding” the entire
broker network, forcing clients to discard events they are not interested in. To
circumvent this, NaradaBrokering incorporates a broker organization protocol, which
manages the addition of new brokers and also oversees the initiation of connections
between these brokers.

In NaradaBrokering we impose a hierarchical structure on the broker network,
where a broker is part of a cluster that is part of a super-cluster, which in turn is part
of a super-super-cluster and so on. Clusters comprise strongly connected brokers with
multiple links to brokers in other clusters, ensuring alternate communication routes
during failures. This organization scheme results in “small world networks” [38,39]

where the average communication “pathlengths” between brokers increase
logarithmically with geometric increases in network size, as opposed to exponential
increases in uncontrolled settings. This cluster architecture allows NaradaBrokering to
support large heterogeneous client configurations that scale to arbitrary size.

Creation of BNMs and the detection of network partitions are easily achieved in
this topology. We augment the BNM hosted at individual brokers to reflect the cost
associated with traversal over connections, for e.g. intra-cluster communications are
faster than inter-cluster communications. The BNM can now be used not only to
compute valid paths but also for computing shortest paths. Changes to the network
fabric are propagated only to those brokers that have their broker network view
altered. Not all changes alter the BNM at a broker and those that do result in updates
to the routing caches, containing shortest paths, maintained at individual brokers.

2.2 Dissemination of events

Every event has an implicit or explicit destination list, comprising clients,
associated with it. The brokering system as a whole is responsible for computing
broker destinations (targets) and ensuring efficient delivery to these targeted brokers
en route to the intended client(s). Events as they pass through the broker network are
updated to snapshot its dissemination within the network. The event dissemination
traces eliminate continuous echoing and in tandem with the BNM –computes shortest
paths – at each broker, is used to deploy a near optimal routing solution. The routing
is near optimal since for every event the associated targeted brokers are usually the
only ones involved in disseminations. Furthermore, every broker, either targeted or en
route to one, computes the shortest path to reach target destinations while eschewing
links and brokers that have failed or have been failure-suspected.

In NaradaBrokering topics could be based on tag-value pairs, Integer and String
values. Clients can also specify SQL queries on properties contained in a JMS
message. Finally, NaradaBrokering currently incorporates a distributed XML
matching engine, which allows clients to specify subscriptions in XPath queries and
store advertisements in XML encapsulated events. Real-time XML events are
evaluated against the stored XPath subscriptions, while stored XML advertisements
are evaluated against a real-time XPath query for discovery purposes.

Figures 2 and 3 illustrate some results [14] from our initial research where we
studied the message delivery time as a function of load. The results are from a system
comprising 22 broker processes and 102 clients in the topology outlined in Figure 1.
Each broker node process is hosted on 1 physical Sun SPARC Ultra-5 machine (128
MB RAM, 333 MHz), with no SPARC Ultra-5 machine hosting more than one broker
node process. The publisher and the measuring subscriber reside on the same SPARC
Ultra-5 machine. In addition to this there are 100 subscribing client processes, with 5
client processes attached to every other broker node (broker nodes 22 and 21 do not
have any other clients besides the publisher and measuring subscriber respectively)
within the system. The 100 client node processes all reside on a SPARC Ultra-60 (512
MB RAM, 360 MHz) machine. The run-time environment for all the broker node and
client processes is Solaris JVM (JDK 1.2.1, native threads, JIT). The machines
involved in the experiment reside on a 100 Mbps network.

We measure the latencies at the client under varying conditions of publish rates,
event sizes and matching rates.
In most systems where events
are continually generated a
“typical” client is generally
interested in only a small subset
of these events. This behavior is
captured in the matching rate for
a given client. Varying the
matching rates allows us to
perform measurements under
conditions of varying
selectivity. The 100% case
corresponds to systems that
would flood the broker network.
In systems that resort to
flooding (routing a message to
every router node) the system
performance does not vary with
changes in the match rate.
Furthermore, in most cases a
given message would only be route

i4 5
6 l

13 14
15

j7 8
9

h
1 2

3

k10 11

12

m
16 17

18

n
20

21
19

22

Measuring
Subscriber

Publisher

Transit Delays under different matching ra
22 Brokers 102 ClientsMatch Ra

Match Ra
Match Ra

0100200300400500600700
Publish Rate
 (Events/sec) 0 501001502002503003504

Event Size (By

050100150200250300350400450

Transit Delay
 (MilliSeconds)

Fig. 2. NaradaBrokering Performa
match rates of 100%, 50% and 15%

As the results demonstrate, the
increasing selectivity from subscri
with adequate latency, unless the sy

2.3 Failures and Recovery

In NaradaBrokering, stable stora
for introducing state into the events
associated with the corresponding
Fig. 1. The NaradaBrokering Test Topology
d to a small set of targeted client nodes.

tes:
te=100%
te=50%
te=15%

00450500

tes)

Transit Delays under different matching rates:
22 Brokers 102 ClientsMatch Rate=50%

Match Rate=33%
Match Rate=4%

0 100 200 300 400 500 600 700Publish Rate
 (Events/sec)

0 50100150200250300350400450500

Event Size (Bytes)

0
20
40
60
80

100
120
140
160

Transit Delay
 (MilliSeconds)

nce at Fig. 3. NaradaBrokering Performance at
match rates of 50%, 33% and 4%

 system performance improves significantly with
bers. The distributed broker network scaled well,
stem became saturated at very high publish rates.

ges existing in parts of the system are responsible
. The arrival of events at clients advances the state
clients. Brokers do not keep track of this state and

are responsible for ensuring the most efficient routing. Since the brokers are stateless,
they can fail and remain failed forever. The guaranteed delivery scheme within
NaradaBrokering does not require every broker to have access to a stable store or
DBMS. The replication scheme is flexible and easily extensible. Stable storages can
be added/removed and the replication scheme can be updated. Stable stores can fail
but they do need to recover within a finite amount of time. During these failures the
clients that are affected are those that were being serviced by the failed storage.

2.4 JMS Compliance

NaradaBrokering is JMS compliant and provides support not only for JMS clients, but
also for replacing single/limited server JMS systems transparently [28] with a
distributed NaradaBrokering broker network. Since JMS clients are vendor agnostic,
this JMS integration has provided NaradaBrokering with access to a plethora of
applications built around JMS, while the integrated JMS solution provides these
applications with scaling, availability and dynamic real time load balancing. Among
the applications ported to this solution are the Anabas distance education
conferencing system [40] and the Online Knowledge Center (OKC) portal [41].

2.4.1 JMS Performance Data
To gather performance data, we run an instance of the SonicMQ (version 3.0) [42]

broker and NaradaBrokering broker on the same dual CPU (Pentium-3, 1 GHz,
256MB) machine. We then setup 100 subscribers over 10 different JMS
TopicConnections on another dual CPU (Pentium-3, 866MHz, 256MB) machine.
There is also a measuring subscriber and a publisher that are set up on a third dual
CPU (Pentium 3, 866MHz, 256MB RAM) machine. The three machines have Linux
(version 2.2.16) as their operating system. The runtime environment for all the
processes is Java 2 JRE (Java-1.3.1, Blackdown-FCS).

Transit Delays for Message Samples in
 NaradaBrokering & SonicMQ NaradaBr

SonicMQ

0 50 100150200250300350400450Publish Rate
 (Messages/sec) 50100150200250300350400450500550

Payload Size
 (Bytes)

0
5

10
15
20
25
30

Mean
 Transit Delay
 (MilliSeconds)

Fig. 4. Transit Delays for messages

Standard Deviation in the Message Samples
 NaradaBrokering and SonicMQ NaradaBr

SonicMQ

0 50 100150200250300350400450Publish Rate
 (Messages/sec) 50100150200250300350400450500550

Payload Size
 (Bytes)

0
2
4
6
8

10
12
14

Standard
 Deviation

 (MilliSeconds)

Fig. 5. Standard Deviation for messages

The topic, which the subscribers subscribe to and the publisher publishes to, is the
same. We vary the rates at which the publisher publishes messages while varying the
payload sizes associated with these messages. We compute the transit delays

associated with individual messages and also the standard deviation in the delays
(used to compute the mean transit delay) associated with messages in a given test
case. Figure 4 depicts the mean transit delays for the measuring subscriber under
NaradaBrokering and SonicMQ for high publish rates and smaller payload sizes.
Figure 5 depicts the standard deviation associated with message samples under the
same conditions.

As can be seen NaradaBrokering compares very well with SonicMQ. Also, the
standard deviation associated with message samples in NaradaBrokering were for the
most part lower than in SonicMQ. Additional results can be found in [28].

3.0 Support for P2P interactions in NaradaBrokering

Issues in P2P systems pertaining to the discovery of services and intelligent routing
can be addressed very well in the NaradaBrokering system. The broker network
would be used primarily as a delivery engine, and a pretty efficient one at that, while
locating peers and propagating interactions to relevant peers. The most important
aspect in P2P systems is the satisfaction of peer requests and discovery of peers and
associated resources that could handle these requests. The broker network forwards
these requests only to those peers that it believes can handle the requests. Peer
interactions in most P2P systems are achieved through XML-based data interchange.
XML’s data description and encapsulation properties provide easy access to specific
elements of data. Individual brokers routing interactions could access relevant
elements, cache this information and use it subsequently to achieve the best possible
routing characteristics. The brokering system, since it is aware of advertisements, can
also act as a hub for search and discovery operations. These advertisements when
organized into “queryspaces” allow the integrated system to respond to search
operations more efficiently.

Resources in NaradaBrokering are generally within the purview of the broker
network. P2P systems replicate resources in an ad hoc fashion, the availability of
which is dependent on the peer’s active digital presence. Some resources, however,
are best managed by the brokering system rather than being left to the discretion of
peers who may or may not be present at any given time. An understanding of the
network topology and an ability to pin point the existence of peers interested in that
resource are paramount for managing the efficient replications of a resource. The
distributed broker network, possessing this knowledge, best handles this management
of resources while ensuring that these replicated resources are “closer” and
“available” at locations with a high interest in that resource. Furthermore, the broker
network is also better suited, than a collection of peers, to eliminate race conditions
and deadlocks that could exist due to a resource being accessed simultaneously by
multiple peers. The broker network can also be responsive to changes in peer
concentrations, volumes of peer requests, and resource availability.

There are also some issues that need to be addressed while incorporating support
for P2P interactions. P2P interactions are self-attenuating with interactions dying out
after a certain number of hops. These attenuations in tandem with traces of the peers,
which the interactions have passed through, eliminate the continuous echoing problem

that result from loops in peer connectivity. However, attenuation of interactions
sometimes prevents peers from discovering certain services that are being offered.
This results in P2P interactions being very “localized”. These attenuations thus mean
that the P2P world is inevitably fragmented into many small subnets that are not
connected. Furthermore, sophisticated routing schemes are seldom in place and
interactions are primarily through simple forwarding of requests with the propagation
range determined by the attenuation indicated in the message. NaradaBrokering could
also be used to connect islands of peers together. Peers that are not directly connected
through the peer network could be indirectly connected through the broker network.
Peer interactions and resources in the P2P model are traditionally unreliable, with
interactions being lost or discarded due to peer failures or absences, overloading of
peers and queuing thresholds being reached.

Guaranteed delivery properties existing in NaradaBrokering can augment peer
behavior to provide a notion of reliable peers, interactions and resources. Such an
integrated brokering solution would also allow for hybrid interaction schemes to exist
alongside each other. Applications could be built around hybrid-clients that would
exhibit part peer behavior and part traditional client behavior (e.g. JMS). P2P
communications could be then used for traffic where loss of information can be
sustained. Similarly, hybrid-clients needing to communicate with each other in a
“reliable” fashion could utilize the brokering system’s capabilities to achieve that.
Sometimes, hybrid-clients satisfy each other’s requests, obviating the need for
funneling interactions through the broker network. Systems tuned towards large-scale
P2P systems include Pastry [43] from Microsoft, which provides an efficient location
and routing substrate for wide-area P2P applications. Pastry provides a self-stabilizing
infrastructure that adapts to the arrival, departure and failure of nodes. The JXTA [44]
project at Sun Microsystems is another effort to provide such large-scale P2P
infrastructures.

3.1 JXTA

 JXTA is a set of open, generalized protocols [45] to support P2P interactions and
core P2P capabilities such as indexing, file sharing, searching, peer grouping and
security. The JXTA peers, and rendezvous peers (specialized routers), rely on a
simple forwarding of interactions for dissemination. Time-to-live (TTL) indicators
and peer traces attenuate interaction propagations. JXTA interactions are unreliable
and tend to be localized. It is expected that existing P2P systems would either support
JXTA or have bridges initiated to it from JXTA. Support for JXTA would thus enable
us to leverage other P2P systems along with applications built around those systems.

3.2 JXTA & NaradaBrokering

In our strategy for providing support for P2P interactions within NaradaBrokering,
we impose two constraints. First, we make no changes to the JXTA core and the
associated protocols. We make additions to the rendezvous layer for integration
purposes. Second, this integration should entail neither any changes to the peers nor a

straitjacketing of the interactions that these peers could have had prior to the
integration.

The integration is based on the proxy model, which essentially acts as the bridge
between the NaradaBrokering system and JXTA. The Narada-JXTA proxy, operating
inside the JXTA rendezvous layer, serves in a dual role as both a rendezvous peer and
as a NaradaBrokering client providing a bridge between NaradaBrokering and JXTA.
NaradaBrokering could be viewed as a service by JXTA. The discovery of this
service is automatic and instantaneous due to the Narada-JXTA proxy’s integration
inside the rendezvous layer. Any peer can utilize NaradaBrokering as a service so
long as it is connected to a Narada-JXTA proxy. Nevertheless, peers do not know that
the broker network is routing some of their interactions. Furthermore, these Narada-
JXTA proxies, since they are configured as clients within the NaradaBrokering
system, inherit all the guarantees that are provided to NaradaBrokering clients.

3.2.1 The interaction model
Different JXTA interactions are queued at the queues associated with the relevant

layers comprising the JXTA protocol suite. Each layer performs some operations
including the addition of additional information. The rendezvous layer processes
information arriving at its input queues from the peer-resolving layer and the pipe-
binding layer. Since the payload structure associated with different interactions is
different we can easily identify the interaction types associated with the payloads.
Interactions pertaining to discovery/search or communications within a peer group
would be serviced both by JXTA rendezvous peers and also by Narada-JXTA proxies.

Interactions that peers have with the Narada-JXTA proxies are what are routed
through the NaradaBrokering system. JXTA peers can continue to interact with each
other and of course some of these peers can be connected to pure JXTA rendezvous
peers. Peers have multiple routes to reach each other and some of these could include
the NaradaBrokering system and some of them need not. Such peers can interact
directly with each other during the request/response interactions.

3.2.2 Interaction Disseminations
Peers can create a peer group; request to be part of a peer group; perform

search/request/discovery all with respect to a specific targeted peer group. Peers
always issue requests/responses to a specific peer group and sometimes to a specific
peer. Peers and peer groups are identified by UUID [46] (IETF specification
guarantees uniqueness until 3040 A.D.) based identifiers. Every peer generates its
own peer id while the peer that created the peer group generates the associated peer
group id. Each rendezvous peer keeps track of multiple peer groups through peer
group advertisements that it receives and is responsible for forwarding interactions.

Narada-JXTA proxies are initialized both as rendezvous peers and also as
NaradaBrokering clients. During its initialization as a NaradaBrokering client every
proxy is assigned a unique connection ID by the NaradaBrokering system, after which
the proxy subscribes to a topic identifying itself as a Narada-JXTA proxy. This
enables NaradaBrokering to be aware of all the Narada-JXTA proxies that are present
in the system. The Narada-JXTA proxy in its role as a rendezvous peer to peers
receives –

1) Peer group advertisements
2) Requests from peers to be part of a certain peer group and responses to these

requests
3) Messages sent to a certain peer group or a targeted peer
4) Queries and responses to these queries
To ensure the efficient dissemination of interactions, it is important to ensure that

JXTA interactions that are routed by NaradaBrokering are delivered only to those
Narada-JXTA proxies that should receive them. This entails that the Narada-JXTA
proxy perform a sequence of operations, based on the interactions that it receives, to
ensure selective delivery. The set of operations that the Narada-JXTA proxy performs
comprise gleaning relevant information from JXTA’s XML encapsulated interactions,
constructing an event based on the information gleaned and finally in its role as a
NaradaBrokering client subscribing (if it chooses to do so) to a topic to facilitate
selective delivery. By subscribing to relevant topics, and creating events targeted to
specific topics each proxy ensures that the broker network is not flooded with
interactions routed by them. The events constructed by the Narada-JXTA proxies
include the entire interaction as the event’s payload. Upon receipt at a proxy, this
payload is de-serialized and the interaction is propagated as outlined in the proxy’s
dual role as a rendezvous peer. Additional details pertaining to this integration can be
found in [27].

3.3 Performance Measurements

For comparing JXTA performance in NaradaBrokering we setup the topologies
depicted in Figure 6. We then
compare the performance of the
pure JXTA environment, the
integrated Narada-JXTA system
and the native NaradaBrokering
system. The rendezvous peers
connected to brokers in topology
6.(b) are Narada-JXTA proxies. To
compute communication delays
while obviating the need for clock
synchronizations and the need to
account for clock drifts, the
receiver/sender pair is setup on the
same machine (Pentium-3, 1 GHz,
256 MB RAM). In all the test
cases, a message published by the
sender is received at the receiver
and the delay is computed. For a
given message payload this is
done for a sample of messages
and we compute the mean delay
samples. This is repeated for differe

(a)

R

RR

R

R R

(b)

R

RR

R

R R

N N

N

NN

N

N N
(c)

R

N NaradaBrokering broker

JXTA Rendezvous

JXTA Peer

NaradaBrokering client
Fig. 6. The JXTA Test Topologies
and the standard deviation associated with the
nt payload sizes. For every topology every node

(broker or rendezvous peer) involved in the experimental setup is hosted on a
different machine (Pentium-3, 1 GHz, 256MB RAM). The run-time environment for
all the processes is (JDK-1.3 build Blackdown-1.3.1, Red Hat Linux 7.3). The
machines involved in the experimental setup reside on a 100 Mbps LAN. Figures 7
and 8 depict the mean transit delay and standard deviation for the message samples
under the different test topologies. These results indicate the superior performance of
the integrated Narada-JXTA system compared to that of the pure JXTA system. The
results [27] follow the same general pattern for measurements under other test
topologies.

0

5

10

15

20

25

100 1000St
an

da
rd

 D
ev

ia
tio

n
 (M

illi
se

co
nd

s)

Message Payload Size (Bytes)

Standard Deviation for message samples in
NaradaBrokering, Pure JXTA & NaradaBr-JXTA

Pure JXTA
 NaradaBr-JXTA

NaradaBrokering

0
20
40
60
80

100
120
140
160
180

100 1000Tr
an

si
t D

el
ay

 (
M

illi
se

co
nd

s)

Message Payload Size (Bytes)

Mean transit delay for message samples in
NaradaBrokering, Pure JXTA & NaradaBr-JXTA

Pure JXTA
 NaradaBr-JXTA

NaradaBrokering

Fig. 7. Mean Transit Delay for samples Fig. 8. Standard Deviation for samples

4.0 NaradaBrokering’s Transport Framework

In the distributed NaradaBrokering setting it is expected that when an event
traverses an end-to-end channel across multiple broker hops or links the underlying
transport protocols deployed for communications would vary. The NaradaBrokering
Transport framework aims to abstract the operations that need to be supported for
enabling efficient communications between nodes. These include support for −
1) Easy addition of transport protocols within the framework.
2) Deployments of specialized links to deal with specific data types.
3) Negotiation of the best available communication protocol between two nodes
4) Adaptability in communications by responding to changing network conditions.
5) Accumulating performance data measured by different underlying protocol

implementations.
TCP, UDP, Multicast, SSL, HTTP and RTP based implementations of the transport

framework are currently available in NaradaBrokering. It is also entirely conceivable
that there could be a JXTA link, which will defer communications to the underlying
JXTA pipe mechanism. NaradaBrokering can also tunnel through firewalls such as
Microsoft’s ISA [47] and Checkpoint [48] and proxies such as iPlanet [49]. The user
authentication modes supported include Basic, Digest and NTLM. Operations that
need to be supported between two communication endpoints are encapsulated within
the “link” primitive in the transport framework. The adaptability in communications
is achieved by specifying network constraints and conditions under which to migrate

to another underlying protocol. For e.g. a UDP link may specify that when the loss
rates increase substantially communication should revert to TCP. Though there is
support for this adaptability in the transport framework, this feature is not yet
implemented in the current release. Figure 9 provides an overview of the
NaradaBrokering transport framework.

Transport Interfaces Link
Performance

Data

Transport
Handler Link

Factory

Link
Factory

LinksSpecific to a transport

Link Monitors

Data accumulated by
Monitoring Service

Broker
node Administrative Link (HTTP)

Optimal Transport

Alternate Link

Transport
Interfaces

(Application and
Content Dependent)

Negotiated with info
exchanged over

Administrative Link

Broker
node

Monitoring
Service

Fig. 9. Transport Framework Overview
A Link is an abstraction that hides details pertaining to communications. A Link has

features, which allow it to specify a change in the underlying communications and the
conditions under which to do so. An implementation of the Link interface can
incorporate its own handshaking protocols for setting up communications. The Link
also contains methods, which allow for checking the status of the underlying
communication mechanism at specified intervals while reporting communication
losses to the relevant error handlers within the transport framework. Each
implementation of the Link interface can expose and measure a set of performance
factors. Measurement of performance factors over a link requires cooperation from
the other end-point of the communication link; this particular detail should be handled
within the Link implementation itself. How the Link implementation computes round
trip delays, jitter factors, bandwidth, loss rates etc. should be within the domain of the
implementer. The Link also has methods which enable/disable the measurement of
these performance factors. Links expose the performance related information in the
LinkPerformanceData construct using which it is possible to retrieve information
(type, value, description) pertaining to the performance factors being measured.

In the distributed NaradaBrokering setting it is expected that when an event
traverses across multiple broker hops it could be sent over multiple communication
links. In places where links optimized to deal with the specialized communication
needs of the event exist (or can exist) they will be used for communications. While
routing events between two NaradaBrokering brokers (that already have a link

established between them) it should be possible for the event routing protocol to
specify the creation of alternate communication links for disseminations. Support for
this feature arises when routing handlers request the deployment of specific transport
protocols for routing content, for e.g. a NaradaRTP event router could request that
RTP links be used for communication. Sometimes such links will be needed for short
durations of time. In such cases one should be able to specify the time for which the
link should be kept alive. Expiry of this timer should cause the garbage collection of
all resources associated with the link. The keepalive time corresponds to the period of
inactivity after which the associated link resources must be garbage collected.

All broker locations need not have support for all types of communication links.
Information regarding the availability of a specific link type could be encapsulated in
an URI. This information could be exchanged along with the information regarding
supported link types (at a given node) exchanged over the AdministrativeLink, which
is different from that of a link in the methods that can be invoked on it. This URI
could then possibly be used to dynamically load services. The AdministrativeLink
exchanges information regarding the various communication protocols (along with
information pertaining to them such as server, port, multicast group etc) that are
available at a broker/client node. This is then used to determine the best link to use to
communicate with the broker. Communication over the AdministrativeLink will be
HTTP based to ensure the best possibility for communications between two nodes.
All link implementations need to have an implementation of the LinkNegotiator
interface. Based on the information returned on the AdministrativeLink, the
LinkNegotiators are initialized for the common subset of communications and then
deployed to negotiate the transport protocol for communications. The LinkNegotiator
determines whether communication is possible over a specified link and also returns
metrics that would enable the AdministrativeLink in arriving at a decision regarding the
deployment of the best possible link.

All links of a specific communications type are managed by a LinkFactory
instance. The LinkFactory for a particular communications protocol enables
communications to and from other nodes over a specific link type. The LinkFactory
also controls the intervals at which all its managed links check their communication
status. Links also allow the specification of constraints (usually on the set of
performance factors that it measures) and the link type that the communication must
migrate to when those conditions are satisfied. This feature allows a link to revert to
an alternate underlying transport protocol when communication degrades or is
impossible to achieve. For example, it is conceivable that while communicating using
TCP, bandwidth and latency constraints force a switch to UDP communications. The
LinkFactory is also used to manage the migration of communication protocols from
links of different types. Based on the set of supported communication protocol
migrations, which a LinkFactory exposes, adaptive communications between nodes is
enabled.

Protocol layers use the TransportHandler interface to invoke methods for
communications with other NaradaBrokering nodes. LinkFactories are loaded at run-
time by the TransportHandler implementation and it is then that TransportHandler
interface is passed to the LinkFactory implementation. The reference to the transport
handler is passed to every link created by the link factory. This is the reference that is
used by individual links to report the availability of data on a link. Individual links

use this interface to report data streams that are received over the link, loss of
communications and requests to migrate transport protocols if the migration
constraint is satisfied. Based on the LinkFactories that are loaded at run-time the
transport handler can expose the set of link types (generally corresponding to
transport types) that it supports. Transport Handler manages all Link factories and
Links. LinkFactories are responsible for the creation of links. Links have methods for
sending data (while also indicating the data type). Data received on a communication
link is reported to the TransportHandler by invoking the appropriate methods within
the interface.

4.1 Some performance measurements

Figures 10 and 11 depict results for the TCP implementation of the framework.
The graphs depict the mean transit delays, and the accompanying standard deviations,
for native NaradaBrokering messages traversing through multiple (2, 3, 5 and 7) hops
with multiple brokers (1, 2, 4 and 6 respectively) in the path from the sender of the
message to the receiver. For each test case the message payload was varied. The
transit delay plotted is the average of the 50 messages that were published for each
payload. The sender/receiver pair along with every broker involved in the test cases
were hosted on different physical machines (Pentium-3, 1 GHz, 256 MB RAM). The
machines reside on a 100 Mbps LAN. The run-time environment for all the processes
is JRE-1.3 build Blackdown-1.3.1, Red Hat Linux 7.3

Fig. 10. Transit Delay for message samples Fig. 11. Standard deviation for samples

0
1
2
3
4
5
6
7
8
9

100 1000

Tr
an

si
t D

el
ay

 (
M

illi
se

co
nd

s)

Message Payload Size (Bytes)

Mean transit delay for message samples in
NaradaBrokering: Different communication hops

 hop-2
 hop-3
 hop-5
 hop-7

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

100 1000St
an

da
rd

 D
ev

ia
tio

n
 (M

illi
se

co
nd

s)

Message Payload Size (Bytes)

Standard deviation for message samples in
NaradaBrokering: Different communication hops
 hop-2
 hop-3
 hop-5
 hop-7

The average delay per inter-node (broker-broker, broker-client) hop was around
500-700 microseconds. The standard deviation varies from 0 microseconds for 50
byte messages traversing a hop to 800 microseconds over 7 hops.

5.0 Performance Monitoring and Aggregation

The performance monitoring scheme within the distributed broker network needs
to have two important characteristics. First, it should be able to work with different
transport protocols with no straitjacketing of the performance factors being measured.

The Link and LinkPerformanceData primitives that abstract transport details and
performance data respectively, as outlined in the preceding section, ensure the ability
to work with unlimited
performance factors
over different transport
protocols. Different
nodes, with different
types of links
originating from them,
can end up measuring a
different set of
performance factors.
Second, the scheme
should be to federate
with other network
measurement services
such as the network
weather service (NWS)
[50]. An added feature wo
domains.

Broker
Node

Link
Data

Broker
Node

Link
Data

Performance Aggregation
Service

Control Message
Exchange

Aggregates info
from nodes in a
certain domain

Monitoring
Service

Every broker in Narada
Figure 12) that monitors
Metrics computed and rep
include bandwidth, jitter,
are measured in a non-in
further degrade the metr
bandwidth measurements
measured at lesser freque
extreme ends of the per
measurement of certain fa
frequency. Each link c
parameters being measure
that runs at every node en
XML structure. The mon
aggregator node, which a
other nodes.

Performance aggregato
the aggregators themselve
state of the integrated
information with the moni
of performance factors. F
service running at a bro
measurement of certain fa
service to report only certa
varied by the amount (abso

Information accumulate
a portlet residing in a po
Fig. 12. Performance Aggregation Overview
uld be to allow administrators to monitor specific realms or

Brokering incorporates a monitoring service (as shown in
the state of the links originating from the broker node.

orted over individual links, originating from a broker node,
transit delays, loss rates and system throughputs. Factors

trusive way so as to ensure that the measurements do not
ics being measured in the first place. Factors such as
, which can pollute other metrics being measured, are
ncies. Furthermore, once a link is deemed to be at the
formance spectrum (either very good or very bad) the
ctors are turned off while others are measured at a far lower
an measure different set of parameters. So the set of
d would be extensible and flexible. The monitoring service
capsulates performance data gathered from each link in an
itoring service then reports this data to a performance

ggregates information from monitoring services running at

rs monitor the state of the network fabric at certain realms;
s may exchange information with each other to provide a
network realm. The performance aggregators exchange
toring services pertaining to the measurement and reporting
or example, the aggregator can instruct the monitoring

ker node to stop (or modify the intervals between) the
ctors. Similarly, an aggregator may instruct the monitoring
in performance factors and that too, only if the factors have
lute value or a percentage) specified in it’s request.
d within the aggregators is accessible to administrators via
rtal such as Apache Jetspeed [51]. Note that, since the

information returned to the aggregators in encapsulated in an XML structure, it is
very easy to incorporate results gathered from another network monitoring service
such as NWS. All that needs to be done is to have a proxy, residing at a NWS node
that encapsulates the monitored data into an XML structure. The aggregated XML
performance data (from the monitoring service at each node and other third-party
services) would be mined to generate information, which would then be used to
achieve to certain objectives.
(a) The ability to identify, circumvent, project and prevent system bottlenecks:
Different transports would reveal this in different ways. As system performance
degrades UDP loss rates may increase, TCP latencies increase. Similarly as available
bandwidths decrease the overheads associated with TCP error correction and in order
delivery may become unacceptable for certain applications.
(b) To aid routing algorithms: Costs associated with link traversals in BNM's would
be updated to reflect the state of the fabric and the traversal times associated with
links in certain realms. Routes computed based on this information would then reveal
"true" faster routes.
(c) To be used for Dynamic topologies to address both (a) and (b): The aggregated
performance information would be used to identify locations to upgrade the network
fabric of the messaging infrastructure. This upgrade would involve
brokers/connections be instantiated/purged dynamically to assuage system bottlenecks
and to facilitate better routing characteristics. Although multicasting and bandwidth
reservation protocols such as RSVP [52] and ST-II [53] can help in better utilizing the
network they require support at the router level, more conceited effort is need at
higher levels, and dynamic topologies coupled with efficient routing protocols can
help in the efficient utilization of network resources.
(d) To determine the best available broker to connect to: Based on the aggregated
information it should be possible to determine the best broker that a client can connect
to within a certain realm. Scaling algorithms, such as the one derived from item (c),
would benefit greatly from this strategy by incorporating newly added broker nodes
(which would be the best available ones) into the routing solution.
(e) Threshold notifications: Administrators can specify thresholds, which when
reached by specific monitored factors, results in notifications being sent to them.

6.0 Security Framework

Since it is entirely conceivable that messages (including queries, invocations and
responses) would have to traverse over hops where the underlying communication
mechanisms are not necessarily secure, a security infrastructure that relies on message
level security needs to be in place. The security framework in NaradaBrokering tries
to address the following issues
1. Authentication: Confirm whether a user is really who he says he is.
2. Authorization: Identify if the user is authorized to receive certain events
3. Key distribution: Based on the authentication and authorization, distribute keys,

which ensure that only the valid clients are able to decrypt encrypted data.

4. Digital Signing: Have the ability to verify the source of the event and whether
the source is authorized to publish events conforming to the specified template.

5. Communication Protocol Independence: Have the ability to work over normal
communication channels. Communications need not to be over unencrypted
links.

6. End-to-End integrity: Ensure that the only place where the unencrypted event is
seen at the authorized publisher of the event and the authenticated (and
authorized) subscribers to the event.

7. Detection of security compromise: Check whether the publisher’s signature is a
valid one. This approach would be similar to the Certificate Revocation Lists
(CRL) scheme.

8. Qualities of Service detecting compromise: Clients may be asked to answer
questions to verify its authenticity at regular intervals to facilitate detection of
compromise.

9. Response to security compromise: This would involve invalidating certain
signatures and discarding the use of certain keys for encrypted communications.

In our approach we secure messages independently of any transport level security.
This provides a fine-grained security structure suitable for distributed systems and
multiple security roles. For example, parts of the message may be encrypted
differently, allowing users with different access privileges to access different parts of
the message. Basic security operations such as authentication should be performed in
a mechanism-independent way, with specific mechanisms (Kerberos [54], PKI)
plugged into specific applications. The message level security framework allows us
to deploy communication links where data is not encrypted. Furthermore, this scheme
also ensures that no node/unauthorized-entity ever sees the unencrypted message. In
our strategy we incorporate schemes to detect and respond to security compromises
while also dealing with various attack scenarios.

Security specifications for Web Services [55, 56] are just starting to emerge, but
generally follow the same approach: the message creator adds a signed XML message
containing security statements to the SOAP envelope. The message consumer must
be able to check these statements and the associated signature before deciding if it can
execute the request. Legion (http://www.cs.virginia.edu/ ~legion/) is a long-standing
research project for building a “virtual computer” out of distributed objects running
on various computing resources. Legion objects communicate within a secure
messaging framework [57] with an abstract authentication/identity system that may
use either PKI or Kerberos. Legion also defines an access control policy on objects.
Additional details pertaining to the NaradaBrokering security infrastructure can be
found in [58].

7.0 Conclusions and Future Work

This paper outlined an extensible messaging framework that, we propose, would be
appropriate to host P2P grids. Our results demonstrate that the framework can indeed
be deployed for both synchronous and asynchronous applications while incorporating
performance-functionality trade-offs for different scenarios (centralized, distributed

http://www.cs.virginia.edu/ ~legion/

and peer-to-peer mode). We believe we are now well positioned to incorporate
support, within the messaging infrastructure, for Web/Grid Services.

We have recently incorporated an XML matching engine within the distributed
brokering framework. This allows us to facilitate richer discovery mechanisms.
Trade-offs in performance versus functionality inherent in such matching engines is a
critical area that needs to be researched further. Another area that we intend to
investigate is the model of dynamic resource management. A good example of a
dynamic peer group is the set of Grid/Web Services [59, 60] generated dynamically
when a complex task runs – here existing registration/discovery mechanisms are
unsuitable. A P2P like discovery strategy within such a dynamic group combined with
NaradaBrokering’s JMS mode between groups seems attractive. We have also begun
investigations into the management of distributed lightweight XML databases using
P2P search and discovery mechanisms. Another area amenable to immediate
investigation and research is the federation of services in multiple grid realms.

Bibliography

[1] The Grid Forum http://www.gridforum.org
[2] GridForum Grid Computing Environment working

group(http://www.computingportals.org) and survey of existing grid portal projects.
http:www.computingportals.org/cbp.html

[3] “The Grid: Blueprint for a New Computing Infrastructure”, Ian Foster and Carl Kesselman
(Eds.), Morgan-Kaufman, 1998. See especially D. Gannon, and A. Grimshaw, “Object-
Based Approaches”, pp. 205-236, of this book.

[4] Globus Grid Project http://www.globus.org
[5] GriPhyN Particle Physics Grid Project Site, http://www.griphyn.org/
[6] International Virtual Data Grid Laboratory at http://www.ivdgl.org/
[7] NEES Earthquake Engineering Grid, http://www.neesgrid.org/
[8] SCEC Earthquake Science Grid, http://www.scec.org
[9] W. Johnston, D. Gannon, B. Nitzberg, A. Woo, B. Thigpen, L. Tanner, “Computing and

Data Grids for Science and Engineering,” Proceedings of Super Computing 2000.
[10] DoE Fusion Grid at http://www.fusiongrid.org
[11] Oram, A. (eds) 2001. Peer-To-Peer: Harnessing the Power of Disruptive Technologies.

O’Reilly, CA 95472.
[12] Web Services Description Language (WSDL) 1.1 http://www.w3c.org/TR/wsdl
[13] Definition of Web Services and Components

http://www.stencilgroup.com/ideas_scope_200106wsdefined.html#whatare
[14] Geoffrey Fox and Shrideep Pallickara, An Event Service to Support Grid Computational

Environments. Concurrency and Computation: Practice and Experience. Volume 14(13-
15) pp 1097-1129.

[15] Fox, G. Report on Architecture and Implementation of a Collaborative Computing and
Education Portal. http://aspen.csit.fsu.edu/collabtools/updatejuly01/erdcgarnet.pdf. 2001.

[16] V. Mann and M. Parashar, Middleware Support for Global Access to Integrated
Computational Collaboratories, Proc. of the 10th IEEE symposium on High Performance
Distributed Computing (HPDC-10), CA, August 2001.

[17] Ian Foster, Carl Kesselman, Steven Tuecke, The Anatomy of the Grid: Enabling Scalable
Virtual Organizations http://www.globus.org/research/papers/anatomy.pdf

[18] Kingdom e-Science Activity http://www.escience-grid.org.uk/

http://www.scec.org/
http://www.stencilgroup.com/ideas_scope_200106wsdefined.html
http://www.globus.org/research/papers/anatomy.pdf

[19] Julian Bunn and Harvey Newman. Chapter on Data Intensive Grids for High Energy
Physics in Grid Computing: Making the Global Infrastructure a Reality. Editors Berman,
Fox and Hey. John Wiley. April 2003.

[20] Hasan Bulut et al. An Architecture for e-Science and its Implications. Proceedings of the
International Symposium on Performance Evaluation of Computer and
Telecommunication Systems (SPECTS 2002) July 17 2002.

[21] Geoffrey Fox, Ozgur Balsoy, Shrideep Pallickara, Ahmet Uyar, Dennis Gannon, and
Aleksander Slominski, "Community Grids" invited talk at International Conference on
Computational Science, April, 2002, Netherlands.

[22] Java Message Service Specification”. Mark Happner, Rich Burridge and Rahul Sharma.
Sun Microsystems. 2000. http://java.sun.com/products/jms.

[23] RTP: A Transport Protocol for Real-Time Applications (IETF RFC 1889)
http://www.ietf.org/rfc/rfc1889.txt.

[24] XML based messaging and protocol specifications SOAP. http://www.w3.org/2000/xp/.
[25] The NaradaBrokering System http://www.naradabrokering.org
[26] Geoffrey Fox and Shrideep Pallickara. “The Narada Event Brokering System: Overview

and Extensions”. Proceedings of the International Conference on Parallel and Distributed
Processing Techniques and Applications, June 2002. pp 353-359.

[27] Geoffrey Fox, Shrideep Pallickara and Xi Rao. “A Scaleable Event Infrastructure for Peer
to Peer Grids”. Proceedings of ACM Java Grande ISCOPE Conference 2002. Seattle,
Washington. November 2002.

[28] Geoffrey Fox and Shrideep Pallickara. “JMS Compliance in the Narada Event Brokering
System”. Proceedings of the International Conference on Internet Computing. June 2002.
pp 391-402.

[29] “Grid Services For Earthquake Science”. Geoffrey Fox et al. Concurrency &
Computation: Practice and Experience. 14(6-7): 371-393 (2002).

[30] Hasan Bulut, Geoffrey Fox, Shrideep Pallickara, Ahmet Uyar and Wenjun Wu.
“Integration of NaradaBrokering and Audio/Video Conferencing as a Web Service”.
Proceedings of the IASTED International Conference on Communications, Internet, and
Information Technology, November, 2002, in St.Thomas, US Virgin Islands.

[31] Geoffrey Fox and Shrideep Pallickara “An Approach to High Performance Distributed
Web Brokering”, ACM Ubiquity Volume2 Issue 38. November 2001.

[32] Gurudutt Banavar, et al. An Efficient Multicast Protocol for Content-Based Publish-
Subscribe Systems.In Proceedings of the IEEE International Conference on Distributed
Computing Systems, Austin, Texas, May 1999.

[33] Bill Segall and David Arnold. Elvin has left the building: A publish/subscribe notification
service with quenching. In Proceedings AUUG97, pages 243–255, Australia, 1997.

[34] Fiorano Corporation. A Guide to Understanding the Pluggable, Scalable Connection
Management (SCM) Architecture - White Paper. Technical report,
http://www.fiorano.com/ products/fmq5 scm wp.htm, 2000.

[35] Talarian Corporation. Smartsockets: Everything you need to know about middleware:
Mission critical interprocess communication. Technical report, URL:
http://www.talarian.com/products/smartsockets, 2000.

[36] TIBCO Corporation. TIB/Rendezvous White Paper. Technical report, URL:
http://www.rv.tibco.com/whitepaper.html, 1999.

[37] The Object Management Group (OMG). OMG’s CORBA Event Service. URL:
http://www.omg.org/.

[38] D.J. Watts and S.H. Strogatz. “Collective Dynamics of Small-World Networks”. Nature.
393:440. 1998.

[39] R. Albert, H. Jeong and A. Barabasi. “Diameter of the World Wide Web”. Nature
401:130. 1999.

[40] The Anabas Conferencing System. http://www.anabas.com

http://java.sun.com/products/jms
http://www.ietf.org/rfc/rfc1889.txt
http://www.w3.org/2000/xp/
http://www.naradabrokering.org/
http://www.anabas.com/

[41] The Online Knowledge Center (OKC) Web Portal http://ptlportal.ucs.indiana.edu
[42] SonicMQ JMS Server http://www.sonicsoftware.com/
[43] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object location and

routing for large-scale peer-to-peer systems. Proceedings of Middleware 2001.
[44] Sun Microsystems. The JXTA Project and Peer-to-Peer Technology http://www.jxta.org
[45] The JXTA Protocol Specifications. http://spec.jxta.org/v1.0/docbook/JXTAProtocols.html
[46] Paul J. Leach and Rich Salz. Network Working Group. UUIDs and GUIDs. February,

1998.
[47] Microsoft Internet Security and Acceleration (ISA) Server.

http://www.microsoft.com/isaserver/
[48] Checkpoint Technologies. http://www.checkpoint.com/
[49] iPlanet. http://www.iplanet.com/
[50] The Network Weather Service: A Distributed Resource Performance Forecasting Service

for Metacomputing Rich Wolski, Neil Spring, and Jim Hayes, Journal of Future
Generation Computing Systems,Volume 15, Numbers 5-6, pp. 757-768, October, 1999

[51] Apache Jetspeed. http://jakarta.apache.org/jetspeed/site/index.html
[52] Zhang, L. et al. “ReSource ReserVation Protocol (RSVP) – Functional Specification”,

Internet Draft, March 1994.
[53] Topolcic, C., “Experimental Internet Stream Protocol: Version 2 (ST-II)”, Internet RFC

1190, October 1990.
[54] J. Steiner, C. Neuman, and J. Schiller. “Kerberos: An Authentication Service For Open

Networked Systems”. In Proceedings of the Winter 1988 USENIX Conference.
[55] B.Atkinson, et al. “Web Services Security (WS-Security) Version 1.0 05 April 2002,”

Available from http://www-106.ibm.com/developerworks/webservices/library/ws-secure/.
[56] “Assertions and Protocol for the OASIS Security Assertion Markup Language,” P.

Hallam-Baker and E. Maler, eds. Available from http://www.oasis-open.org/
committees/security/docs/ cs-sstc-core-01.pdf.

[57] Adam Ferrari et al. "A Flexible Security System for Metacomputing Environments".
(HPCN Europe 99), pp 370-380. April 1999

[58] Pallickara et. al. A Security Framework for Distributed Brokering Systems available at
http://www.naradabrokering.org

[59] Semantic Web from W3C to describe self organizing Intelligence from enhanced web
resources. http://www. w3c.org/2001/sw/

[60] Berners-Lee, T., Hendler, J., and Lassila, O., "The Semantic Web," Scientific American,
May2001.

http://ptlportal.ucs.indiana.edu/
http://www.sonicsoftware.com/
http://www.jxta.org/
http://spec.jxta.org/v1.0/docbook/JXTAProtocols.html
http://www.microsoft.com/isaserver/
http://www.checkpoint.com/
http://www.iplanet.com/
http://jakarta.apache.org/jetspeed/site/index.html
http://www. w3c.org/2001/sw/

