
A Scheme for Reliable Delivery of Events in Distributed Middleware Systems
Shrideep Pallickara and Geoffrey Fox

(spallick,gcf)@indiana.edu
Community Grids Lab, Indiana University

1 Introduction

Increasingly interactions that services and entities have
with each other, and among themselves, are network
bound. In several cases these interactions can be
encapsulated in events. These events can encapsulate,
among other things, information pertaining to transactions,
data interchange, system conditions and finally the search,
discovery and subsequent sharing of resources. The
routing of these events is managed by a middleware, which
as the scale and scope of the system increases, needs to be
based on a distributed messaging infrastructure.

In this paper we describe our scheme for the reliable
delivery of events within NaradaBrokering [1-5], which is
a distributed messaging infrastructure supporting a wide
variety of event driven interactions – from P2P interactions
to audio-video conferencing applications. The scheme
outlined in this paper facilitates delivery of events to
interested entities in the presence of node and link failures.
Furthermore, entities are able to retrieve any events that
were issued during an entity’s absence (either due to
failures or an intentional disconnect). The scheme outlined
in this paper can be easily extended to ensure guaranteed
exactly-once ordered delivery.

This reliable delivery guarantee must hold true in the
presence of four distinct conditions.
1. Broker and Link Failures: The delivery guarantees

need to be satisfied in the presence of individual or
multiple broker and link failures. It is conceivable that
the entire broker network may fail. In this case, once
the broker network recovers (even if the new broker
network comprises of a single broker node) the
delivery guarantees are met.

2. Prolonged Entity disconnects: Entities interested in a
certain event may not be online at the time the event is
published. This entity may reconnect after disconnects
and the delivery guarantee will be met with the entity
receiving all the events missed in the interim.

3. Stable Storage Failures: It is possible that stable
storages present in the system may fail. The delivery
guarantees must be satisfied once the storage recovers.

4. Unpredictable Links: The events can be lost,
duplicated or re-ordered in transit over individual
links, en route to the final destinations.

The remainder of this paper is organized as follows.
Section 2 provides an overview of related work. Section 3
provides an overview of NaradaBrokering, while section 4
includes details regarding the main components of the
reliable delivery scheme. Sections 5 and 6 outline our
scheme for ensuring reliable delivery and recovering from
failures. We include experimental results in section 8.
Finally in section 9 we outline our conclusions.

2 Related Work
The problem of reliable delivery [6, 7] and ordering [8,

9] in traditional group based systems with process crashes
has been extensively studied. The approaches normally
have employed the primary partition model [10], which
allows the system to partition under the assumption that
there would be a unique partition which could make
decisions on behalf of the system as a whole, without risk
of contradictions arising in the other partitions and also
during partition mergers. However the delivery
requirements are met only within the primary partition.
Recipients that are slow or temporarily disconnected may
be treated as if they had left the group.

This virtual synchrony model, adopted in Isis [11],
works well for problems such as propagating updates to
replicated sites. This approach does not work well in
situations where the client connectivity is intermittent, and
where the clients can roam around the network. Systems
such as Horus [12] and Transis [13] manage minority
partitions (by having variants of the virtual synchrony
model) and can handle concurrent views in different
partitions. The overheads to guarantee consistency are
however too strong for our case.

Spinglass [14] employs “gossip” style algorithms,
where recipients periodically compare their disseminations
with other members of the group. Each recipient compares
it dissemination sequence (a message digest of the
message sequences received so far) with one of the group
members. Deviations in the digest result in solicitation
requests (or unsolicited responses) for missing messages
between these recipients. This approach is however
unsuitable for our scheme where memberships are fluid
and hence a recipient is unaware of other recipients that
should have received the same message sequences.
Approaches to building fault-tolerant services using the
state machine approach have been suggested in Ref [15].

DACE [16] introduces a failure model, for the strongly
decoupled nature of pub/sub systems. This model tolerates
crash failures and partitioning, while not relying on
consistent views being shared by the members. DACE
achieves its goal through a self-stabilizing exchange of
views through the Topic Membership protocol. This
however may prove to be very expensive if the number
and rate at which the members change their membership is
high. The Gryphon [17] system uses knowledge and
curiosity streams to determine gaps in intended delivery
sequences. This scheme requires persistent storage at every
publishing site and meets the delivery guarantees as long
as the intended recipient stays connected in the presence of
intermediate broker and link failures. It is not clear how
this scheme will perform when most entities within the
system are both publisher and subscribers, thus entailing

 1/8

stable storage at every node in the broker network.
Furthermore it is conceivable that the entity itself may fail,
the approach does not clearly outline how it handles these
cases. Systems such as Sienna [18] and Elvin [19] focus on
efficiently disseminating events, and do not sufficiently
address the reliable delivery problem.

Message queuing products (MQSeries) [20] are
statically pre-configured to forward messages from one
queue to another. This leads to the situation where they
generally do not handle changes to the network (node/link
failures) very well. Furthermore these systems incur high
latency since they use the store-and-forward approach,
where a message is stored at every stage before being
propagated to the next one. Queues need to also recover
within a finite amount of time to resume operations.

The Fault Tolerant CORBA (FT-CORBA) [21]
specification from the OMG defines interfaces, policies
and services that increase reliability and dependability in
CORBA applications. The fault tolerance scheme used in
FT-CORBA is based on entity redundancy [22],
specifically the replication of CORBA objects. In CORBA
objects are uniquely identified by their interoperable object
reference (IOR). The FT-CORBA specification introduces
interoperable group object references (IGOR). When a
remote object, the client can access a replica simply by
iterating through the references contained in the IGOR
until the invocation is successfully handled by the
replicated object. The specification introduces several
schemes to manage different replication schemes.

The DOORS (Distributed Object-Oriented Reliable
Service) system [23] incorporates strategies to augment
implementations of FT-CORBA with real time
characteristics. Among the issues that the DOORS system
tries to address are avoiding expensive replication
strategies and dealing with partial failure scenarios.
DOORS provides fault tolerance for CORBA ORBs based
on the service approach. Approaches such as Eternal [24]
and Aqua [25], provide fault tolerance by modifying the
ORB. OS level interceptions of have also been used to
tolerate faults in applications.

The WS-ReliableMessaging [26] specification provides
a scheme to ensure reliable delivery of messages between
the source and the sink for a given message. The
specification provides an acknowledgement based scheme
to ensure that data is transferred reliably between the
communicating entities. The specification, though it is for
point-to-point communications, supports composition and
interoperates with specifications pertaining to policies,
transactions, coordination and metadata exchanges. Also
of interest is WS-TransmissionControl, which provides a
set of constructs controlling message exchanges between
services to improve reliability.

3 NaradaBrokering Overview

NaradaBrokering [1-5] is distributed messaging
infrastructure designed to run on a large network of
cooperating broker nodes. Communication within
NaradaBrokering is asynchronous and the system

efficiently routes any given event between the originators
and the registered consumers of that event.
NaradaBrokering places no constraints either on the
number of entities or on the size/rate of the events.

The smallest unit of the messaging infrastructure that
provides a back bone for routing these events needs to be
able to intelligently process and route events while
working with multiple underlying network communication
protocols. We refer to this unit as a broker where we avoid
the use of the term servers to distinguish it clearly from the
application servers that would be among the sources/sinks
to events processed within the system. Entities within the
system utilize the broker network to effectively
communicate and exchange data with each other. These
interacting entities could be any combination of users,
resources, services and proxies thereto. These are also
sometimes referred to as clients.

In NaradaBrokering we impose a hierarchical structure
on the broker network, where a broker is part of a cluster
that is part of a super-cluster, which in turn is part of a
super-super-cluster and so on. Clusters comprise strongly
connected brokers with multiple links to brokers in other
clusters, ensuring alternate communication routes during
failures. This organization scheme results in “small world
networks” where the average communication pathlengths
between brokers increase logarithmically with geometric
increases in network size, as opposed to exponential
increases in uncontrolled settings.

3.1 Entities, Profiles and Event Templates

An event comprises of headers, content descriptors and
the payload encapsulating the content. An event’s headers
provide information pertaining to the type, unique
identification, timestamps, dissemination traces and other
QoS related information pertaining to the event. The
content descriptors for an event describe information
pertaining to the encapsulated content. The content
descriptors and the values these content descriptors take
collectively comprise the event’s content synopsis.

The set of headers and content descriptors constitute the
template of an event. Events containing identical sets of
headers and content descriptors are said to be conforming
to the same template. It should be noted that the values
which the content descriptors and payloads take might be
entirely different for events conforming to the same
template. When we say template events, we mean events
conforming to the same template.

Entities have multiple profiles each of which signifies
an interest in events conforming to a certain template. This
interest is typically specified in the form of a constraint
that events need to satisfy, before being considered for
routing to the entity in question. This constraint is also
sometimes referred to as a subscription. Entities specify
constraints on the content descriptors and the values some
or all of these descriptors might take. Individual profiles
can also include information pertaining to security and
device types for special processing of events. When an
event traverses through the system these constraints are

 2/8

evaluated against the event’s synopsis to determine the
eventual recipients.

An event’s synopsis thus determines the entities that an
event needs to be routed to. Two synopses are said to be
equal if the content descriptors and the values these
descriptors take are identical. It is possible for events with
the same synopsis to encapsulate different content in its
payload. It is however possible for events with different
synopses to be routed to the same set of destinations.

The type of constraints specified by the entities varies
depending on the complexity and type of the content
descriptors. In NaradaBrokering the specified constraints
could be a simple character string based equality test, an
XPath query on the XML document and an SQL like query
on the properties and the values these properties take,
Integers or (tag, value) equality tests.

There is a crucial difference between constraints
specified on simple and complex event templates. In the
former case, all entities that have specified the constraint
are valid destinations. In the latter case it is possible that
none, some or all the entities that have specified
constraints on the same complex template are valid
destinations for the event.

Every entity within the system has a unique identifier
(EID) associated with it. Every entity within the system
subscribes to its EID to ensure that interactions targeted to
it are routed and delivered by the broker network.

4 The reliable delivery scheme
In this section we describe in detail the key elements of our
reliable delivery scheme. To ensure the reliable delivery of
events conforming to a specific template to registered
entities there are 3 distinct issues that need to be addressed.
First, there should be exactly one RDS node that is
responsible for providing reliable delivery for a specific
event template. In a subsequent section we discuss the
presence of replicators within the system to provide
additional robustness. Second, entities need to make sure
that their subscriptions are registered with RDS. Finally, a
publisher needs to ensure that any given event that it issues
is archived at the relevant RDS. In our scheme we make
use of positive acknowledgements (abbr. ACK) and
negative acknowledgements (abbr. NAK).

4.1 Objectives of this scheme
There are several objectives that we seek to achieve in our
scheme. We may enumerate these below
• Not tied to a specific storage type: We need the

ability to maintain different storage types (flat files,
relational databases or native XML databases) for
different event templates.

• Unconstrained RDS instances: There could be
multiple RDS instances within the system. A given
RDS instance could manage reliable delivery to one or
more templates.

• Autonomy: It should be possible for individual entities
to manage their own event templates. This would

involve provision of stable storage and authorizing
entity constraints on the managed template.

• Location independence: A RDS node can be present
anywhere within the system.

• Flexible template management: It should be possible
to handoff template managements easily within the
system.

• Fast Recovery schemes: The recovery scheme needs
to efficiently route missed events to entities.

4.2 The Reliable Delivery Service (RDS)

RDS can be looked upon as providing a service to
facilitate reliable delivery for events conforming to any
one of its managed templates. To accomplish this RDS
provides four very important functions. First, RDS
archives all published events that conform to any one of its
managed templates. This archival operation is the
precursor to any error corrections stemming from events
being lost in transit to their targeted destinations and also
for entities recovering either from a disconnect or a failure.

Second, for every managed template, RDS also
maintains a list of entities (and the corresponding EIDs)
for which it facilitates reliable delivery. RDS may also
maintain information regarding access controls,
authorizations and credentials of entities that generate or
consume events targeted to this managed template. Entity
registrations could either be user controlled or automated.

Third, RDS also facilitates calculation of valid
destinations for a given template event. This is necessary
since it is possible that for two events conforming to the
same template, the set of valid destinations may be
different. To ensure that system resources are not
expended in ensuring reliable delivery of an event to
uninterested entities the service maintains a list of the
profiles and the encapsulated constraints specified by each
of the registered entities. For each managed template the
service also hosts the relevant matching engines, which
computes entity destinations from a template event’s
synopsis. It is conceivable that two or more of the
managed templates share the same matching engine.
 Finally, RDS keeps track not only of the entities that are
supposed to receive a given template event, but also those
entities that have not explicitly acknowledged receipt of
these events. The information maintained by RDS forms
the basis for servicing retransmission and recovery
requests initiated by registered entities.

Every event template within the system has a unique
identifier – templateID. RDS advertises its archival
capabilities for a specific event template by subscribing to:
RDS/EventType/Template-ID. For example RDS/XML/
98765213 could be the subscription from a RDS node
managing reliable delivery functions for an XML template
with templateID 98765213.

RDS also archives entity profile related operations
initiated by registered entities. These operations include
the addition, removal and update of constraints specified
on any of the managed templates. For every archived event
or other entity profile related operations, RDS assigns

 3/8

monotonically increasing sequence numbers. These
sequence numbers play a crucial role in error detection and
correction, while also serving to provide audit trails.
Templates managed by a RDS are also referred to as
reliable templates.

4.3 Publishing template events

In this sub-section we discuss details pertaining to
publishing events to a reliable template. A publisher can of
course generate events that conform to different templates.
The system imposes no constraints on the number and type
of template events that a publisher is allowed to generate.

When an entity is ready to start publishing events on a
given template (either for the first time or after a prolonged
disconnect) it issues a discovery request to determine the
availability of RDS that provides archival for the generated
template events. The publisher will not publish template
events till such time that it receives a confirmation that a
managing RDS is available. The discovery message is
issued with a synopsis of the form RDS/EventType/
TemplateID.

Since the RDS that would perform archival operations
for these template events had previously subscribed to this
topic, it can respond to this discovery request. The request
and responses to discover this availability of RDS can of
course be lost. The publisher issues this discovery request
at increasingly larger intervals till such time that it receives
the discovery response. The discovery operation can
timeout after a certain number of failed attempts or a
specified elapsed time. A publisher is ready once it
confirms the existence of RDS for a templateID.
 For every template event that it generates, the publisher
is required to ensure that these events are archived by the
relevant RDS. Archival negotiations occurring between a
publishing entity and RDS is a precursor to ensuring
reliable delivery of that event to all interested entities.
Archival negotiations pertain to the acknowledgement of
received template events and also requests for
retransmissions of template events lost en route to the
RDS. The negotiations comprising acknowledgements and
retransmission requests are initiated by RDS.

To ensure archival, the publisher generates a
companion event for every template event that it generates.
The companion event has only one destination – the
relevant RDS – and contains enough information to
determine the right ordering and also to detect losses that
might have taken place during the template events’ transit
to RDS. A given template event and its companion event
share the same EventID and entity identifier EID.

A publisher assigns monotonically increasing
catenation numbers to every template event that it
publishes. These catenation numbers allow us to determine
the order in which the template events were generated.
Since it is conceivable that a publisher might publish
events conforming to multiple templates, for a given
template we also need information pertaining to the
catenation number associated with the last published event
that conformed to this template. Catenation information is

maintained in a template event’s companion event. Figure
1.(a) and depicts a template event, while Figure 1.(b)
depicts the companion event.

Template ID

ACK/NAK

Single (Multiple)
Catenation Number(s)

Synopsis:
Publisher-ID/
Negotiations

(a) (b)

(c)

(d)

Publisher ID

Event ID

Content Synopsis

Content Payload

Publisher ID

Event ID

Catenation Number

Previous Catenation
Number on this templateID

Synopsis:
RDS/TemplateID

Publisher ID

Event Retransmission

Event ID

Catenation Number

Previous Catenation Number
on this templateID

Synopsis:
RDS/TemplateID/

Negotiations

Figure 1: Publishing template events

A RDS generally has the weakest constraints on a
template event’s synopsis. This ensures that most (if not
all) templates events are routed to RDS. RDS also
maintains catenation information pertaining to each
registered publisher for every managed templateID.

Upon receiving an event conforming to one of its
managed templates, RDS does not act on this template
event till such time that it receives the corresponding
companion event. Based on the catenation information in
the companion events RDS has the ability to determine the
order (publisher) and to detect any missed template events.
RDS can easily retrieve the precise catenation information
that should be used to retrieve a missed template event.

Based on the catenation, successful receipt can be
confirmed, if there were no prior losses and if the template
event is in the right order. Upon successful receipt the
event is archived and a negotiation ACK is issued (with
synopsis EID/Negotiations) to the publisher EID.
Otherwise, a negotiation NAK with the appropriate
catenation is issued to the publisher EID. The format of the
archival negotiation request is depicted in Figure 1.(c).
Receipt of the archival negotiation ACK signifies that all
template events issued by the publisher up until that point
have been received and successfully archived. A publisher
is expected to hold an event in its buffer till such time that
it receives a negotiation ACK confirming the archival of
the template event.

Upon receipt of the negotiation ACK the publisher
releases the template event corresponding to the catenation

 4/8

information included in the negotiation ACK. If on the
other hand, the publisher receives a negotiation NAK from
RDS, the publisher creates an event, as depicted in Figure
1.(d). This republished event is a fusion of the information
contained in both the template event and its companion
event. This republished event is routed by the system to the
requesting RDS (with synopsis RDS/TemplateID/
Negotiations).

Finally, it is possible that companion event for a given
template event might have been lost in transit. In this case
RDS issues an archival negotiation NAK with event’s
identifier EventID to retrieve the template event. If both
template and companion events for a catenation are lost,
subsequent events (template or companion) will trigger a
request to retrieve this lost template event.

4.4 Archiving template events at RDS

Upon confirming successful receipt of a template event
at RDS the relevant matching engine is used to compute
destinations associated with the template event. The
template event and its intended destinations now need to
be archived.

At RDS we maintain two sets of information. First, we
create the inventory event which includes the template
event in its entirety minus the dissemination traces
associated with it. Also associated with every inventory
event is a monotonically increasing sequence number,
which plays a crucial role in recoveries. We also store the
templateID and the eventID associated with the original
template event. Including the templateID in the inventory
event allows for easier migrations of one or more managed
templates to other entities, locations or underlying storage
implementations. The eventID information is useful in
dealing with certain types of retransmission requests.
Figure 2.(a) depicts the structure of the inventory event.

Sequence
Number

Template
ID

Message
ID Template Event

(a)
Sequence
Number

Destination
1

...

...
Destination

N

(b)
Figure 2: The stored elements

Second, we separately maintain a dissemination table.
For a given sequence number, the dissemination table
maintains information regarding the list of entities to
which the original template event is yet to be routed to.
The dissemination table is continually updated to reflect
the successful delivery of the template event to the
intended destinations. The dissemination table thus allows
us to determine holes in sequences for events that should
have been delivered to an entity. Figure 2.(b) depicts the
structure of the record format in the dissemination table.

4.5 Subcriptions
RDS stores entity interactions corresponding to

registration and change of profiles (including constraint
additions, removals and updates) too. Just like template
events, these entity registrations and profile updates also
have a sequence number associated with it.

The first time an entity registers with RDS, the
sequence number associated with the archival of this
interaction is its epoch. The epoch signifies the point from
which the registered entity is authorized to receive events
conforming to the template for which it registers.

The subscribing entity also needs to make sure that its
profile and encapsulated constraint are registered at RDS
managing the template in which it is interested in. Prior to
this the entity needs to discover RDS that manages the
template in question. This discovery process is similar to
what we described for the publishing entity in an earlier
section. We impose no limit on the number of constraints a
subscribing entity specifies on a given event template.

To register its constraint on an event template, the
entity proceeds to issue a subscription message comprising
its identifier and the constraint. This subscribing event is
issued with synopsis RDS/TemplateID/ProfileChange.
The entity will issue this event at regular intervals until it
receives a response from the relevant RDS confirming the
addition of this profile to the list of profiles that RDS
maintains. This response contains the sequence number
corresponding to the archival performed by RDS. If this is
the first profile specified by the subscribing entity on a
given template this is that entity’s epoch on that template.
The response indicates that the entity’s change has been
registered and that the entity will have reliable delivery of
template events from this point on if any template event
satisfies the constraints specified in the entity’s profile. A
newly specified entity profile on a templateID is valid
only after an express notification from the relevant RDS
signifying receipt of the entity profile change.

It is conceivable that there could be multiple profile
change requests on a given template and the corresponding
responses may be lost. The detection and correction of
these are errors and losses are governed by the same
principles that correspond to ensuring storage of template
events issued by a publisher.

It should be noted that for a given template and an
entity consuming those template events, there is a sync at
both the entity and RDS. The sync (for a specific
templateID) associated with an entity corresponds to the
sequence number, up until which, RDS is sure that the
subscribing entity has received all prior events up until its
epoch. There is a sync associated with every reliable
template to which an entity is registered to. However, the
sync (for a specific templateID) at an entity cannot be
advanced until it has been advanced by RDS and this
advancement is notified to the entity. The sync
advancement at an entity is an indication that the
subscriber has received all the template events that it was
supposed to receive up until the sequence number
contained in the sync advancement.

 5/8

5 Ensuring Reliable Delivery

Once a template event has been archived, RDS issues
an archival notification. Archival notifications allow a
subscribing entity to keep track of the template events it
has received while facilitating error detection and
correction. This archival notification, depicted in Figure
3.(a), contains among other things the sequence number
associated with the archival and also the sequence number
associated with the last archival of an event which
conformed to this template. We need to make sure that the
archival notifications reach the entities interested in the
corresponding template event. To do this we make sure
that the synopsis for this archival notification is the same
as that of the original template event.

Invoice events encapsulate exchanges, between the
entity and RDS, corresponding to the set of template
events received and also requests to retransmit missed
template events. The archival notification for a template
event includes the eventID for that template event. Upon
receipt of an archival notification the subscribing entity
checks to see if it has received the corresponding template
event. If it has indeed received the template event the
subscribing entity issues an ACK invoice event, which
outlines the archival sequence(s) that it has received after
its sync was last advanced by RDS. An entity must await a
response to this ACK invoice to advance the sync
associated with the template. Figure 3.(b) depicts the
structure of the ACK invoice event.

To account for the fact that ACK invoice events may be
lost in transit to RDS, the entity should continue to
maintain information about the archival sequences it has
received. If this information is lost, RDS will route those
events which were not explicitly acknowledged using
invoice events.

Upon receipt of the ACK invoice event from the entity,
RDS updates records in the dissemination table associated
with the sequence(s) outlined in the ACK invoice event to
reflect the fact that the entity received template events
corresponding to those archival sequences. If the entity has
received all the template events it was supposed to receive
and there were no missed events between the entity’s
current sync and the highest sequence number contained in
the ACK invoice event, RDS advances the sync point
associated with this entity and issues the ACK-Response
invoice event which notifies the entity about this sync
advancement. Only upon receipt of this event is the entity
allowed to advance its sync.

It is possible that RDS, based on the ACK invoice
event, detects that there are some archival sequences
(between the sync and highest sequence number in the
ACK invoice event) which were not explicitly
acknowledged by the entity using ACK invoice events.
RDS then assumes that these events were lost in transit to
the entity. RDS also checks to see if, based on the current
invoice event, the sync associated with the entity can
indeed be advanced. The sync associated with an entity is
advanced up until the point at which the sequencing

information contained in the ACK invoice is lower than
that of the detected “missed” event.

Template ID

Event ID

Sequence Number
Previous Sequence

Number on this template
Synopsis:

Content Synopis of
archived event with
matching EventID

(a)

(b)Template ID

ACK-Response

sync-point advance
(true | false)

new sync-point

Missed sequencing
information

Synopsis:
EntityID/Invoice

(c) (d)

Template ID

NAK-Response

Sequence Number

Inventory Event

Synopsis:
EntityID/Invoice

Template ID

Entity Identifier (EID)

ACK/NAK

Single (Multiple)
Sequence Number(s)

Synopsis:
RDS/TemplateID/
Invoice

Figure 3: Archival notifications and such ...

 After the detection of missed sequences RDS issues an
ACK-Response invoice (Figure 3.(c)), which contains
information pertaining to the entity’s sync advancement (if
it is indeed possible) and also the sequencing information
corresponding to the “missed” template events. It is
entirely possible that the ACK invoice events may have
been lost in transit and that the entity may actually have
indeed received these events.

RDS does not pro-actively retransmit the inventory
event based on the missing sequences. There are two main
reasons for this. First, it is possible that the template
event(s) are in transit or that just the ACK invoice event
was lost. Second, the retransmission costs may be
prohibitive with increases in payload sizes.

Upon receiving an ACK-Response invoice event, the
entity gains information regarding the archival sequences
that it missed. To retrieve events corresponding to these
archival sequences, entity has to issue a NAK invoice
event requesting the missed event(s). The NAK invoice
event contains sequencing information pertaining to the
“missing” template events. Upon receipt of this NAK
invoice at a RDS, the service retrieves the inventory event
corresponding to this sequence number and proceeds to
create the recovery event depicted in Figure 3.(d). A
recovery event includes information contained in both the
template event and the correlated archival notification that
was issued in the wake of its archival.

A subscribing entity can detect that it has missed either
the template event or the archival notification detailing

 6/8

sequencing information for a given template event or both.
An entity can issue a NAK invoice to retrieve sequencing
information regarding a template event (with id eventID)
that it has previously received. If both the event and the
archival event are lost, upon receipt of an ACK-Response
invoice event an entity knows the sequences that it has
missed. To retrieve events the entity has to issue a NAK
invoice event requesting the missed event(s).

The invoice events might themselves be lost in transit
due to failures either at the client or en route to RDS or
vice versa. The only way an entity will not be routed a
template event that it was supposed to receive is if the sync
is advanced incorrectly at RDS. However, syncs
corresponding to an entity (for a specific managed
template) are never advanced (at RDS) until it is confirmed
that the entity has indeed explicitly acknowledged receipt
of events up until that advancement point. As is clear from
our discussions these sync advancements can sustain losses
of invoice events.

6 Entity Recovery

When a entity reconnects to the broker network after
failures or a prolonged disconnect. It needs to retrieve the
template events that were issued in the interim and those
that were in transit prior to the entity leaving. The
recovering entity issues a recovery request for every
reliable template that it is interested in. The structure of the
recovery request is depicted in Figure 4.(a), these requests
are targeted to RDS managing one or more of the
templates in question.

(a)
(b)

Template ID

Entity ID
Synopsis:
RDS/TemplateID/
Recovery

Template ID

ACK-Response

Previously registered
Profiles

Last Catenation number

Synopsis:
EntityID/Recovery

Figure 4: Recovery requests

Upon receipt of the recovery request, RDS scans the
dissemination table starting at the sync associated with the
entity (based on the EID contained in the request). RDS
then generates an ACK-Response invoice event outlining
the archival sequences, which the entity did not previously
receive. In this scheme the entity is not required to
maintain any information pertaining to its sync or the
archival sequences that it had previously received on a
given template. Subscribing entities are also automatically
registered to all profiles that they were previously
registered to. Publishing and subscribing entities are
automatically notified of their last catenation and sync-
advances on the specified templateID. The recovery
response is depicted in Figure 4.(b).

The ACK-Response contained in the recovery response
is processed to advance sync points and to initiate
retransmissions as outlined earlier. Failures can take place
even during this recovery process and the scheme can
sustain the loss of the recovery requests and responses.

7 Advantages & Applications

In this scheme since we do not maintain any state in the
individual brokers, recovery does not involve state
reconstructions. In fact brokers can fail and remain failed
forever. The system will work even if there is just a single
broker within the broker network. The scheme does not
make any assumption regarding the underlying storage
type. The storage structure makes it easier to migrate
management of individual templates to different RDS
instances. The failure of an RDS affects only those entities
whose template(s) are being managed by the failed RDS in
question. We do not place any restrictions regarding the
placement or number of RDS’ available within the system.

We can separate generation of archival notifications,
retransmissions and recovery of entities into distinct
services. We will discuss this research in future papers.

The scheme outlined in this paper can be easily
extended to exactly-once ordered delivery by ensuring that
delivery is allowed only upon receipt of a sync-advance
and only if this sync-advance is greater than the sync
currently at the entity.

 Several NaradaBrokering applications utilize the
reliable delivery service provided within system.
Additionally we have augmented GridFTP to exploit this
feature. Here, we had a proxy collocated with the GridFTP
client and GridFTP server. This proxy, a NaradaBrokering
entity, utilizes NaradaBrokering’s fragmentation service to
fragment large payloads (> 1 GB) into smaller fragments
and publish fragmented events. Upon reliable delivery at
the server-proxy, NaradaBrokering reconstructs original
payload from the fragments and delivers to the GridFTP
server. Details of this application, demonstrated at
SuperComputing’03, can be found in [27].

8 Experimental Results

In this section we include results from our performance
measurements involving three brokers. We compared the
performance of NaradaBrokering’s reliable delivery
algorithms with its best effort approach. Furthermore, for
best effort, all entities/brokers within the system
communicate using TCP, while in the reliable delivery
approach all communications are based on UDP. The
experimental setups are depicted Figure 5. The lines
connecting entities and brokers are communication paths
that have been established. The publishing/subscribing
entities (hosted on the same machine to account for clock
synchronizations and drifts), brokers and RDS are all
hosted on separate machines (1GHz, 256MB RAM) with
each process running in a JRE-1.4 Sun VM. Currently, in
the RDS we support flat-file and SQL based archival. The
results reported here are for scheme where the RDS
utilizes MySQL–4.0 for storage operations. We found that

 7/8

the archival overheads were between 4-6 milliseconds for
payloads varying from 100b–10 KB.

Figure 5: Experimental results and setups

 We computed the delays associated with the delivery of
events in the best-effort and reliable delivery schemes. The
results reported here for the reliable delivery case
correspond to the strongest case where the event is not
delivered unless the corresponding archival notification is
received. Figure 5 depicts our results.

In the reliable delivery case there is an overhead of 4-6
milliseconds (depending on payload size) associated with
the archival of the event, with an additional variable delay
of 0-2 milliseconds due to wait()-notify() statements in the
thread which triggers archival. These factors, in addition to
retransmissions (NAKs) triggered by the subscribing entity
due to lost packets, contributed to higher delays in the
reliable delivery case. Note that we can have an optimistic
delivery scheme which does not wait for archival
notifications prior to delivery; this would be even faster.

9 Conclusions & Future Work

In this paper we describe our scheme for the reliable
delivery of events. This feature has been exploited by
native NaradaBrokering applications and also been used to
augment third party applications such as GridFTP. We are
currently working towards providing support for WS-RM
and WS-Reliability within NaradaBrokering.

10 References
[1] The NaradaBrokering System

http://www.naradabrokering.org
[2] Shrideep Pallickara and Geoffrey Fox. NaradaBrokering: A

Middleware Framework and Architecture for Enabling
Durable Peer-to-Peer Grids. Proceedings of ACM/IFIP/
USENIX International Middleware Conference. 2003.

[3] On the Matching Of Events in Distributed Brokering
Systems. (To appear) Proceedings of IEEE ITCC
Conference on Information Technology. April 2004.

[4] Geoffrey Fox, Shrideep Pallickara and Xi Rao. A Scaleable
Event Infrastructure for Peer to Peer Grids. Proceedings of
ACM Java Grande ISCOPE Conference 2002.

[5] A. Uyar, S. Pallickara and G. Fox. Towards an Architecture
for Audio Video Conferencing in Distributed Brokering
Systems. Proceedings of the International Conference on
Communications in Computing. pp 17-23. 2003.

[6] Kenneth Birman. The process group approach to reliable
distributed computing. Communications of the ACM,
36(12):36–53, 1993.

0

2

4

6

8

10

12

14

16

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Ti
m

e
(M

ill
is

ec
on

ds
)

Content Payload Size in Bytes

 Transit delays/Standard deviations in a 3 broker network.
NB-BestEffort(BE)(TCP) Vs NB-ReliableDelivery(RD)(UDP)

 Mean delay (NBRD-UDP)
 Mean delay (NBBE-TCP)

 Std Dev (NBRD-UDP)
 Std Dev (NBBE-TCP)

[7] Vassos Hadzilacos and Sam Toueg. A modular approach to
fault-tolerant broadcasts and related problems. Technical
Report TR94-1425, Cornell University, Ithaca, NY, 1994.

[8] Kenneth Birman. A response to Cheriton and Skeen’s
criticism of causal and totally ordered communication.
Technical Report TR 93-1390, Cornell University, 1993.

[9] Kenneth Birman and Keith Marzullo. The role of order in
distributed programs. Technical Report TR 89-1001, Dept.
Of Computer Science, Cornell University, NY 14853, 1989.

[10] A. Ricciardi, A. Schiper, and K. Birman. Understanding
partitions and the “no partition” assumption. Proceedings of
the Workshop on Future Trends of Distributed Systems, 93.

[11] Kenneth Birman. Replication and Fault tolerance in the ISIS
system. In Proceedings of the10th ACM Symposium on
Operating Systems Principles, pages 79–86, 1985.

[12] R Renesse, K Birman, and S Maffeis. Horus: A flexible
group communication system. In Communications of the
ACM, volume 39(4). April 1996.

[13] D Dolev and D Malki. The Transis approach to high-
availability cluster communication. In Communications of
the ACM, volume 39(4). April 1996.

[14] Spinglass: Secure and Scalable Communications Tools for
Mission-Critical Computing. K. Birman, R van Renesse and
W Vogels. International Survivability Conference and
Exposition. DARPA DISCEX-2001, CA, June 2001.

[15] Fred Schneider. Implementing fault-tolerant services using
the state machine approach: A tutorial. In ACM Computing
Surveys, volume 22(4), pages 299–319. ACM, 1990.

[16] R. Boichat, P. Th. Eugster, R. Guerraoui, and J. Sventek.
Effective Multicastprogramming in Large Scale Distributed
Systems. Concurrency: Practice and Experience, 2000.

[17] S. Bhola, R. Strom, S. Bagchi, Y. Zhao, J. Auerbach:
Exactly-once Delivery in a Content-based Publish-Subscribe
System. DSN 2002: 7-16

[18] Antonio Carzaniga, David S. Rosenblum, and Alexander L.
Wolf. Achieving scalability and expressiveness in an
internet-scale event notification service. In Proceedings of
ACM PODC, pages 219–227, USA, July 2000.

[19] Bill Segall and David Arnold. Elvin has left the building: A
publish/subscribe notification service with quenching. In
Proceedings AUUG97, pp 243–255, Australia, 1997.

[20] The IBM WebSphere MQ Family. http://www-
3.ibm.com/software/integration/mqfamily/

[21] Object Management Group, Fault Tolerant CORBA
Specification. OMG Document orbos/99-12-08 edition, 99.

[22] Object Management Group, Fault Tolerant CORBA Using
Entity Redundancy RFP. OMG Document orbos/98-04-01.

[23] B. Natarajan, A. Gokhale, D. Schmidt and S. Yajnik.
“DOORS: Towards High-performance Fault-Tolerant
CORBA”, Proceedings of International Symposium on
Distributed Objects & Applications (DOA), Belgium, 2000.

[24] P. Narasimhan, et al. Using Interceptors to Enhance
CORBA. IEEE Computer 32(7): 62-68 (1999)

[25] Michel Cukier et al. AQuA: An Adaptive Architecture that
Provides Dependable Distributed Objects. Symposium on
Reliable Distributed Systems 1998: 245-253.

[26] Web Services Reliable Messaging Protocol (WS-
ReliableMessaging) March, 2003. From IBM, Microsoft etc.

[27] G. Fox, S. Lim, S. Pallickara and M. Pierce. Message-Based
Cellular Peer-to-Peer Grids: Foundations for Secure
Federation and Autonomic Services. (To appear) Journal of
Future Generation Computer Systems.

 8/8

http://www.naradabrokering.org/
http://www.cs.cornell.edu/Info/Projects/Spinglass/public_pdfs/Spinglass Secure.pdf
http://www-3.ibm.com/software/integration/mqfamily/
http://www-3.ibm.com/software/integration/mqfamily/

	Introduction
	Related Work
	NaradaBrokering Overview
	Entities, Profiles and Event Templates

	The reliable delivery scheme
	Objectives of this scheme
	The Reliable Delivery Service (RDS)
	Publishing template events
	Archiving template events at RDS
	Subcriptions

	Ensuring Reliable Delivery
	Entity Recovery
	Advantages & Applications
	Experimental Results
	Conclusions & Future Work
	References

