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Abstract— In this paper we present a framework for the secure 
end-to-end delivery of messages in distributed messaging 
infrastructures based on the publish/subscribe paradigm. The 
framework enables authorized publishing and consumption of 
messages. Brokers, which constitute individual nodes within the 
messaging infrastructure, also ensure that the dissemination of 
content is enabled only for authorized entities. The framework 
includes strategies to cope with attack scenarios such as denial of 
service attacks and replay attacks. Finally, we include 
experimental results from our implementation. 

I. INTRODUCTION 
Entities in distributed systems communicate through the 

exchange of messages. The underlying messaging framework 
in these systems could be based on point-to-point 
communications, queuing systems, peer-to-peer (P2P) based 
interactions, hardware multicast-based disseminations or 
publish/subscribe systems. This work focuses on 
publish/subscribe systems.  

In publish/subscribe systems typically there are one or 
more router nodes, referred to as brokers, which are 
responsible for routing messages from the publishers to the 
subscribers. Individual messages are routed based on the 
content descriptor, referred to as the topic, information 
contained within these messages. This information is added by 
the publisher to describe the message contents. Subscribing 
entities need to first register their interests in specific topics – 
the subscriptions – with the broker. 

Depending on the expressiveness of the content description, 
there are two kinds of topics viz. simple and complex. In the 
case of simple topics, this is usually a “/” separated String 
such as /Sports/Football. Complex topics describe the content 
in a more verbose manner. Here, the content could be 
described using a set of tag=value pairs, a set of properties 
associated with the message, verbose text or as an XML 
(eXtensible Markup Language) document. In each of these 
cases the corresponding subscriptions provided by an entity 
would be <tag, value> pairs with wild card operators, SQL 
queries on the properties, regular expressions that should be 

evaluated against the verbose text and finally XPath or 
XQuery queries on the XML document describing the content. 

Upon receipt of a message (previously issued by a 
publisher) the broker checks the topic information contained 
within the message with the list of previously registered 
subscriptions. The broker then proceeds to route the message 
to subscribers with matching subscriptions. Here matching 
refers to the process of evaluating the stored subscriptions 
against the topic information contained within the message.  

The work presented in this paper focuses on the secure end-
to-end delivery of messages within publish/subscribe systems. 
This work addresses the four critical issues related to secure 
end-to-end delivery of messages viz. confidentiality, 
authorization, integrity and non-repudiation. The work ensures 
that the message contents are encrypted for confidentiality, 
and that the contents can only be deciphered by authorized 
entities that demonstrate possession of valid credentials. 
Actions initiated by an entity, such as publishing and 
subscribing, need to demonstrate appropriate authorizations, 
the lack thereof results in the failure of the corresponding 
actions. The framework also allows for enforcing the duration 
for which the aforementioned authorizations are valid. To 
enable tamper-evidence (message integrity) and to verify the 
source (non-repudiation) of a published message, all messages 
are signed by the publishers. 

The framework addresses issues related to revocation of 
entity credentials, and copes with attack scenarios such as 
denial of service attacks and replay attacks. We have 
implemented the framework outlined in this paper and we also 
report on our benchmarks of this implementation. These 
benchmarks target several aspects of the security framework, 
and, we believe, demonstrate the feasibility of our proposed 
framework.  

This research leverages well known cryptography 
techniques such as encryption and decryption to ensure 
confidentiality and PKI-based signing and verification of 
messages. This paper is not about the development of new 
cryptography algorithms. Similarly, in our section on coping 
with security attacks we do not consider cryptographic attacks 



that target vulnerabilities in the cryptography algorithms that 
we leverage such as AES and RSA. 

 This paper is organized as follows. In section II we provide 
a brief overview of the NaradaBrokering system, and the topic 
discovery scheme which is leveraged within our security 
framework. Section III provides a brief overview of the 
security framework, while section IV describes this 
framework in detail. In section V we describe how the 
framework copes with various attack scenarios. We include 
benchmarks from our implementation of this framework in 
section VI. Related work is included in section VII, and we 
outline our conclusions and future work in section VIII.  

II. THE NARADABROKERING SYSTEM 
NaradaBrokering (http://www.naradabrokering.org) [1-3] is 

an open-source, distributed messaging infrastructure based on 
the publish/subscribe paradigm. The subscription formats 
supported by the messaging infrastructure include Strings, 
Regular expressions, SQL queries, XPath queries and comma-
separated tag=value pairs. For a given topic the system 
provides services for reliable and ordered delivery. Additional 
services include Network Time Protocol based synchronized 
timestamps [2] at distributed entities, buffering services to 
reduce jitter in multi-media settings, replay and recording 
services and finally services for broker and topic discovery.  

A. The Topic Creation and Discovery Scheme 
Interactions between entities in publish/subscribe systems 

are predicated on the knowledge of the topic that will be used 
for communications; the publisher will publish over this topic 
while the subscriber registers a subscription to this topic. The 
topic discovery and creation scheme [3] in NaradaBrokering 
facilitates the creation, advertisement and authorized 
discovery of topics by entities within the system. The 
discovery process is a distributed process and is resilient to 
failures that might take place within the system. Topic owners 
can advertise their topics and can also enforce constraints 
related to the discovery of these topics. Specifically, a topic 
owner may require that entities present appropriate credentials 
(a X.501 security certificate [4]) prior to discovering a topic 
that it owns. This discovery scheme provides solutions for -- 
• Provenance –- Verify topic ownership. 
• Secure discovery –- A topic owner can restrict the 

discovery of a topic only to authorized entities or to 
those that possess valid credentials. 

These capabilities are provided by specialized nodes – 
Topic Discovery Nodes (TDNs) – within the system. Since a 
given topic advertisement will be stored at multiple TDN 
nodes, this scheme easily sustains the loss of TDN nodes due 
to failures or scheduled downtimes.  

III. THE SECURITY SCHEME OVERVIEW 
This section provides an overview of the objectives and 

operations involved in the secure delivery of messages. 
Subsequent sections explain the scheme in greater detail. A 
message comprises the topic information, message headers 
and finally the content payload. During secure 

communications it is the content payload of message that is 
secured. A topic over which communications need to be 
secure is referred to as a secure topic; this would involve 
authorized publishing and subscribing, in addition to message 
payloads being encrypted and signed for confidentiality and 
integrity/tamper-evidence respectively. Associated with every 
secure topic is a secret symmetric key that is maintained at a 
Key Management Center (KMC). There can be more than one 
KMC within the system and a given KMC can manage more 
than one secure topics. The KMC is also responsible for 
generating security tokens that are presented by entities to 
facilitate authorized publishing and consumption of messages. 

The secret key associated with a topic is distributed 
securely to the interested entities (described in section IV-D). 
A publisher encrypts the content payload of the message with 
this secret key. To ensure integrity of the payload, this 
publisher also signs the encrypted payload; this involves 
computing the message digest of the encrypted payload and 
encrypting this hashed value with an asymmetric (e.g. RSA) 
private personal-key. In our approach we secure messages 
independently of any transport level security. This provides a 
fine-grained security structure suitable for distributed systems 
and multiple security roles. 

Upon receipt of secure messages, an authorized subscriber 
can validate the signature – to verify the source and to confirm 
message integrity – and then proceed to decrypt the encrypted 
payload using the previously distributed secret key. 

Based on the security tokens associated with the actions 
initiated by the publisher and subscriber, brokers that are part 
of the messaging infrastructure can enforce authorization rules 
and prevent (or restrict) the dissemination of content. 

A. Notations Used in this Paper 
A secret symmetric key is represented by K . A public key 

associated with an entity X is represented as while the 
corresponding private key is represented as . The 
symmetric key (secret) associated with a Topic 

XKU

XKR
T is 

represented as . The encryption operation TK E using a 
symmetric key K  over message M resulting in a cipher-text 

 is represented as C )(MEC K= and the corresponding 
decryption operation D  is represented as .)( MCDK =  

The signing operation S , by an entity X, using a hashing 
algorithm H over a message M is represented as 
follows )]([H

X
)( MEMS KRX = . The corresponding 

verification operation V using the signing entity’s public key 
is represented as follows: V ; the 
verification is a success if the result is H . 
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IV. THE SECURITY SCHEME 
We now present details about our security framework. Fig 

1 depicts various components of this framework. There is 
exactly one Certificate Authority within the system. 
Certificates are assigned to the entities in an out-of-band 
fashion. The Certificate Authority is not connected to the 
broker network. There can be one or more KMCs and TDNs 



within the system. There can be several clients within the 
system. All KMCs, TDNs and Clients are connected to one of 
the brokers within the broker network cloud.  

 
Fig 1: Components involved in the Security Framework 

A. The CA within the system 
In our scheme we have one Certificate Authority (CA) 

within the system. The most important function that a CA is 
responsible for is the issuing of certificates to entities within 
the system. These certificates can also identify an entity as an 
authorized KMC or TDN. The CA is also responsible for 
managing revocation lists pertaining to compromised or rogue 
entities within the system. The CA also notifies brokers and 
KMCs within the system about any additions to these 
revocation lists. A newly added broker or KMC may also 
request the entire set of revoked certificates from the CA. 
Please note that the certificate revocations are typically done 
in an out-of-band fashion.  

B. Key Management Center (KMC) 
A KMC is a specialized node within the system which is 

responsible for managing information pertaining to secure 
topics. There can be more than one KMC within the system, 
and a given KMC may manage more than one secure topic. 
However, a given secure topic can be managed by only one 
KMC. A given KMC performs four core functions. First, the 
KMC is responsible for the generation of the secret symmetric 
key that is used for encrypting and decrypting content 
payloads. Second, the KMC maintains the list of authorized 
entities associated with a secure topic. In addition to this, the 
KMC maintains authorization information related to each of 
these entities. Some of these entities may be registered to 
publish, subscribe or both.  

The third function performed by the KMC is the generation 
of security tokens. All actions (such as publishing and 
subscribing) initiated by entities, related to a specific secure 
topic, require the presentation of the security token. The KMC 
generates a security token for every authorized entity. This 
security-token establishes an entity’s rights (publish, subscribe 

or both) over a secure topic and the duration for which these 
rights are valid. This security token comprises the following:  
• Client Certificate, including the identifier or the 

Distinguished Name. 
• Rights – publish, subscribe or both 
• Duration for which these rights, and, in fact the token 

itself, is valid. 
The security token  associated with a Topic A T  for an 

entity , is . Entities 

are expected to include this security token along with every 
action they initiate with individual brokers within the 
infrastructure. To enable tamper-evidence the contents of this 
security-token are hashed and signed by the KMC.  

X ),,,( DurationTRightsCSA XKMC
X

T T
=

Third, the KMC is also responsible for the secure 
distribution of secret keys and secure tokens associated with a 
secure topic. To do this the KMC encrypts the contents of the 
message with a secret key. This secret key is then encrypted 
using the entity’s public personal-key. Only the entity that is 
in possession of the corresponding private personal-key is able 
to decrypt the contents of the communications.  

Finally, the KMC also sets up a topic over which 
authorized entities may communicate with it through the 
exchange of messages. In its topic advertisement to the TDNs, 
the KMC can also specify restrictions pertaining to the 
discovery of this topic. Only, entities that are authorized or 
those that have the right credentials would be authorized to 
discover the aforementioned topic. No entity will 
communicate1 directly with the KMC; no entity, except the 
KMC administrator and the broker that KMC is connected to 
will be aware of the physical location of the KMC. This 
provides an additional degree of insulation from denial of 
service attacks that are targeted at the host and assorted port 
numbers over which the KMC listens to for communications. 

C. Registering a secure topic 
To ensure secure communications over a topic, the topic 

owner first needs to register the secure topic with a KMC. To 
do this, the topic owner first needs to discover KMCs that are 
willing to host the secure topic. When the topic owner initiates 
this discovery request if it had valid credentials there would 
one or more responses (containing the advertisements) from 
the TDN identifying the topics over which the corresponding 
KMCs communicate. Since a KMC may restrict discovery of 
KMC-Topic based on the presentation of appropriate 
credentials, it is possible that a topic owner will not be able to 
retrieve topic information pertaining to some of the KMCs 
within the system. 

Based on these responses, the topic owner decides the 
KMC that it would communicate with. The topic owner then 
registers the secure topic with a KMC while specifying 
parameters about the symmetric secret key that would be 
associated with the secure topic. These parameters include the 
encryption algorithm, the key size and the padding scheme to 
be used. If there are problems with any of these parameters the 
                                                 
1. All communications with the KMC are based on sending messages to 
the topics that a KMC listens to.  



KMC will report problems back to the topic owner. 
Additionally, the topic owner may specify the Hashing 
scheme to be used for signing the security tokens generated by 
the KMC. Having a larger digest increases the integrity of the 
message; in the case of smaller digests a malicious user can 
exploit vulnerabilities in collisions arising from the hashing 
function employed to compute the digest. In our scheme by 
default we use the 160-bit SHA-1 [5] based message digests. 

Trade offs between encryption strength and the 
performance of the encryption algorithms need to be 
considered while determining the key lengths for encryptions. 
Also, shorter key lifetimes, in general, tend to mitigate the 
effects of lost/stolen keys. 

The topic owner then proceeds to register the entities 
authorized to communicate over the secure-topic, the rights 
(publish/subscribe) and the duration for which these rights are 
valid. This information is used to create the security token 
associated with every authorized entity. 

D. Entity KMC communications 
All communications between the entities and the KMC 

need to be secure. To ensure this, all exchanges between the 
entities and KMC are encrypted using the following rule. First, 
a secret symmetric key is generated at the sender, and then 
used to encrypt the content payload. Second, depending on the 
direction of the communication this secret key is then secured 
using the KMC’s or the entity’s public personal-key. Only the 
entity or the KMC that is in possession of the corresponding 
private personal-key is able to decrypt the secret key that was 
used for encrypting the content payload. 

This method leverages both symmetric and asymmetric key 
encryptions. Specifically, asymmetric encryptions have higher 
overheads for large payloads. By restricting the use of 
asymmetric encryptions (and subsequent decryptions) to 
operate on only the secret key, which would typically be a 
256-bit AES key [6], we have worked around the high 
overhead constraint for asymmetric encryptions/decryptions. 

E. Distributing keys and security tokens 
An entity interested in communications over a secure topic, 

discovers the topic over which the KMC managing this secure 
topic communicates. Once this KMC-interaction topic has 
been discovered the entity issues a request message to the 
KMC to retrieve the Secret-Key associated with the secure-
topic. In this request the entity also includes its credentials and 
the topic over which any responses should be issued. 

Upon receipt of this secret-key request, the KMC first 
checks to see if the entity is authorized to receive the secret 
secure-topic key. If the entity is indeed authorized for 
communications over the secure-topic, the KMC securely 
routes this secret key to the entity based on the strategy 
outlined in section IV-D. In addition to the secret key that was 
routed to the entity, the KMC also routes the corresponding 
security token (discussed in section IV-B) associated with the 
requesting entity.  This security-token establishes an entity’s 
rights (publish, subscribe or both) and the duration for which 
these rights are valid.  

An entity is expected to include this security token for all 
actions and exchanges related to this secure topic. These 
actions include publishing messages or subscribing to the 
secure-topic. A broker will not perform the expected actions if 
the entity fails to include this token in exchanges related to 
this topic (see section IV-H). 

F. Publishing messages 
When a publisher is ready to publish a message, it performs 

three steps. First, it encrypts the content payload of the 
message with the secret secure-topic key that it received from 
the KMC. Second, the entity also includes its security-token 
within this message. Finally, the publisher then proceeds to 
sign the message by computing the message-digest of the 
encrypted content payload and then encrypting this computed 
message-digest with its private-personal key. This digital 
signing enables subscribers to verify the integrity of the 
message by checking to see if the message has been tampered . 

A message comprises a set of message headers and the 
message payload: PH MMM += . We secure both the 
headers and the body of the message. We do not need 
confidentiality for the headers, but we do need tamper 
evidence. In the case of the message payload, we need both 
confidentiality and tamper-evidence. The message header 
associated with message is . Finally, the 
message published by a publisher X is 

. Fig 2 provides an overview of 
the security related operations at an entity. 
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Fig 2: Overview of security operations at an entity 

G. Subscribing to secure topics 
When an entity is ready to subscribe to a secure topic it 

includes the security token, assigned to it by the KMC, in its 
subscription request. Failure to include this security token in 
its subscription request would prevent the messaging 
infrastructure from routing messages which match the 
specified subscription constraint.  



H. Broker Operations 
All entities within the system use the broker, which it is 

connected to, to funnel messages into the messaging 
infrastructure. The broker performs crucial functions 
(summarized in Fig 3) related to message routing.  

1)  Keeping track of revoked certificates 
In order to verify the credentials and signatures associated 

with messages and exchanges a broker needs to keep track of 
revoked certificates. When a broker starts up for the first time, 
it retrieves the list of revoked certificates (including those 
issued to KMCs and TDNs). A broker may store (and retrieve) 
the list of revoked certificates onto (and from) a stable storage. 
Thus, between successive re-starts a broker only needs to 
retrieve certificates that have been revoked in the interim. 

 
Fig 3: Broker Operations 

2)  Keeping track of secure topics 
Brokers (newly added or otherwise) know about secure-

topics as soon as they receive messages targeted to a secure-
topic and containing valid security tokens. When a broker 
joins the broker network this broker retrieves the list of 
secure-topics maintained by the broker that it connected to. 

If a broker receives messages targeted to a secure-topic 
without a valid security-token it will discard the message 
without any further processing and concomitant routing. In 
case a broker is not aware of a secure-topic this broker may 
propagate the message without a security token (and without 
performing steps outlined in the next sub-section). A broker 
that encounters such a message, on what it knows to be a 
secure-topic, issues an error-message back to the broker that it 
received the message from. Upon receipt of such a message, 
the original broker updates its secure-topics list to include this 
missed secure-topic. 

3)  Handling messages published by a publisher 
Upon receiving a message, issued over a secure topic, from 

an entity the broker checks to see if there is a security token 
associated with the message. If the topic is a secure topic and 
there is no security token associated with the message, the 

broker discards the message without performing any checks 
and concomitant routing.  

If on the other hand there is a security token associated with 
the message targeted to a secure topic, the broker performs 
three functions – verifying if the security token is valid, check 
topic information contained in token and check for rights 
associated with the token. If any of these three checks fail the 
message is simply discarded; if the publisher is connected to 
the broker and error message is issued. 

To verify that the security token is a valid one, the broker 
first checks to see if the certificate associated with the KMC, 
which signed this token has been revoked and also if the token 
has been tampered with, by verifying the signature associated 
with the security token. Next, the broker checks to see if the 
topic in the token matches the topic contained within the 
message. Finally, the broker checks to see if the security token 
indicates that the publisher that signed the message, indeed 
has publish permission reflected in its security token. If these 
checks are completed successfully, the broker proceeds to 
route the message within the messaging infrastructure.  

4)  Routing messages to subscribing entities 
When a broker receives a subscription request to a secure 

topic if there is no security token associated with the request, 
the request is discarded and an error message is issued back to 
the entity. If there is a security token associated with the 
subscription request, the broker performs three checks – 
validity of the security token, topic information and 
subscription rights. If either of these checks fails the request is 
discarded and an error message is issued back to the 
subscribing entity. 

A broker will not route messages, corresponding to a 
subscription to a secure topic, under two distinct conditions. 
In the first scenario the token associated with the subscription 
is no longer valid. This might be because either the certificate 
of the KMC that issued the token was revoked or because the 
duration of validity within the security token has elapsed. 

In the second scenario, it might be possible that a 
subscription without a security token was allowed by a certain 
broker that was not aware of a certain secure topic. When the 
broker encounters a message with a valid security token, it 
determines the matching subscriptions for the message; if any 
of these subscriptions do not have a security token associated 
with them, that subscription is removed from the list of 
subscriptions maintained at the broker.  

V. COPING WITH VARIOUS ATTACK SCENARIOS 
In this section we outline our strategy to cope with some 

attack scenarios.  

A. Denial of service 
In denial of service attacks the attacker may try to overload 

the system resources such as CPU and network cycles by 
generating a large volume of spurious messages that are 
processed by the system. Since only authorized entities are 
allowed to publish messages within the system, messages 
published by unauthorized entities would be rejected at 
brokers that receive them. In the event that someone tries to 



overload the KMC by sending multiple messages to the topic 
over which the KMC communicates; the KMC will generate a 
new topic for communications and unsubscribe to messages 
issued to the old (and compromised) topic. In general it is 
difficult to “guess” the KMC topic since it based on a 
randomly generated 128-bit UUID.  

No one, except the KMC administrator and the broker that 
the KMC has connected to, is aware of the physical network 
address and ports associated with the KMC. It is thus quite 
difficult to launch a direct denial of service attack on the 
KMC. In the unlikely event that this information has been 
compromised, and a denial of service attack was launched 
based on the network address and port numbers, this particular 
vulnerability is addressed by rejecting communications from 
IP addresses that have made multiple bogus attempts. 

B. Thwarting replay attacks 
It is possible for a rogue entity to capture valid messages 

and continually publish these messages. To thwart this, a 
broker keeps track of timestamps associated with the 
messages published over secure-topics by authorized entities. 
For every authorized entity the broker maintains the 
timestamp associated with the last secure message published 
by that entity. If the timestamp associated with a message is 
less than or equal to the timestamp associated with the last 
message published by the entity in question, the message is 
discarded as a duplicate. 

Some schemes resort to maintaining a list of identifiers 
(typically UUIDs) associated with published messages to 
determine duplicates. This scheme obviates the need to 
maintain such identifier information. If the timestamps have 
millisecond resolution, this limits the rate at which secure 
messages could be published by an entity to 1000 per second. 
This limitation is circumvented by also including sequence 
numbering if the timestamps for two messages are identical. 
In this case, a broker maintains the timestamp and the 
sequence numbering within this timestamp. For two messages 
issued by an entity with identical timestamps a broker will not 
reject the second message so long as the sequence numbering 
for the second message is greater than the first one. 

This scheme is used in tandem with the global Network 
Time Protocol (NTP) based timestamps within 
NaradaBrokering. This enables a broker to discard an old 
message based on the NTP timestamps within the message. 

VI. EXPERIMENTAL RESULTS 
We have measured several aspects of the security 

framework, so that the reader has a precise idea of the costs 
involved in secure communications. All processes executed 
within JVM 1.4.2, and the cryptography package used was 
BouncyCastle (http://www. bouncycastle.org) v1.3.  In our 
benchmarks we have used the topologies depicted in Figure 4, 
the machines hosting the various components are listed in 
parentheses. In all cases, to obviate the need for clock 
synchronizations, the publisher and the measuring subscriber 
(which reports the results) were hosted on the same machine. 

All machines (Table 1) involved in the benchmarks had Linux 
as the OS, and were hosted on a 100 Mbps LAN.  

TABLE 1: MACHINES INVOLVED IN THE BENCHMARKS 

Machine Configuration 
A Pentium IV, 2.53GHz, 512MB RAM 
B, C, D, E, 
F, G, H 

4 CPU (Xeon, 2.4GHz)machine, 2GB RAM 

Messages issued by the publisher are time-stamped and 
upon receipt at the subscriber (after traversal over the network 
to the broker and then to the subscriber) the transit delay is 
computed. For the settings in which NaradaBrokering have 
been deployed – such as the routing of GIS sensor data, A/V 
multimedia traffic and collaboration messages – the payload 
sizes do not typically exceed 16 KB. In our experiments, the 
payloads for messages were varied from 16 bytes to 16KB in 
increments which were powers of 2. 

Topology I: 1 Broker, 1 Subscriber

Topology II: 1 Broker, 101 Subscribers

Topology III: 3 Brokers, 301 Subscribers

Broker
(B)

TDN
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50 Subscribers (F)
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Figure 4 Benchmark Topologies 

Table 2 summarizes the costs – for a 16KB payload, 256-
bit AES key, 1024-RSA PKI and 160-bit SHA-1 – involved in 
the various operations related to the secure delivery of 
messages. These costs have the 3 main components – 
• Publisher costs: This includes the costs related to 

computing the initialization vector for a payload, 
encrypting the message payload with the topic secret key, 
signing the message and including the security token 
assigned to it by the KMC. 



• Broker costs: This includes the costs for validating the 
security token, verifying the publisher’s signature, 
computing the destinations and finally routing the 
message to authorized subscribers. 

• Subscriber costs: This includes the costs for validating the 
publisher signature and decrypting the content payload 
using the secret topic key that it had previously retrieved 
from the KMC. 

The publisher, broker and subscriber costs were computed 
separately on machine A. End-to-End costs are based on the 
topologies depicted in the experimental setups. 
TABLE 2: TIMING MEASUREMENTS IN MILLISECONDS. UNLESS OTHERWISE 
NOTED, THE TABLE REFLECTS COSTS FOR TOPOLOGY-I OVER 100 MBPS LAN 
FOR A CONTENT-PAYLOAD OF 16KB WITH THE FOLLOWING CRYPTOGRAPHIC 
PROFILE: ENCRYPTION ALGORITHM {AES 256, PKCS7 PADDING WITH CBC 
MODE}, SIGNING {1024-BIT RSA, 160-BIT SHA-1} 

Operation Mean Standard  
Deviation 

Error 

End-to-End Delivery (16KB payload) 
1 Broker, 1 
Subscriber 

64.5 1.32 0.13 

1 Broker, 101 
Subscribers 

83.77 13.93 1.502 

 

3 Brokers, 301 
Subscribers 

129.6 12.78 1.32 

Publisher Costs 
Initialization Vector 1.108 0.025 0.003 
Encryption 1.421 0.055 0.005 

 

Signing     
Payload 15.518 0.126 0.013  
Header 15.238 0.112 0.011 

Broker Costs 
Token and Message 
Validation 

6.989 0.199 0.020 

Replay-attack check 0.031 0.005 0.0 

 

Subscription validity 
check 

0.027 0.004 0.0 

Subscriber Costs 
Verify Token + 
Header Signature 

3.74 0.13 0.013 

Verify Payload 
Signature 

1.64 0.032 0.003 

 

Decryption 1.41 0.021 0.002 
KMC: Secure Topic Management 
 Generate Secret Key 2.91 0.43 0.04 
 Generate Signed 

Security Token 
54.89 4.67 0.48 

Retrieval: Security 
Token and Secure Key  

71.38 7.22 0.73 

Fig 5 depicts the costs involved in the secure end-to-end 
delivery of messages – at the measuring subscriber for 
topologies depicted in Figure 4 – for different payload sizes. 
Costs related to encryption and decryption increase as the 
payload size increases, this translates to higher overheads for 
end-to-end delivery. Furthermore, at each broker as the 
number of targeted subscribers increase the average cost of 
routing a message to a subscriber increases; this also results in 
an increase in the time that a message spends in the queue 
awaiting processing. Finally, as the number of hops increase, 
broker costs are added to the final transit delay at the 
measuring subscriber. 

The overheads for secure end-to-end delivery are well 
within the real-time constraints (typically around 100-200 
milliseconds) for several interactive collaborative applications 
such as audio/video conferencing, and distance-education. 
These overheads are also acceptable for the secure routing of 
GIS streams by NaradaBrokering in the SERVOGrid project 
(http://www.servogrid.org/). Successive messages would all 
be delayed by the amount depicted in our graphs. However, 
the inter-message spacing for all messages in the stream 
would be preserved in our scheme. This makes the scheme 
suitable for applications that can sustain this initial delay. 
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Fig 5: End-to-End costs in different settings 

For a given secure message, the latency experienced at a 
subscriber that is N hops away from the publisher can be 
approximated as the sum of the publisher costs, the processing 
at (N-1) intermediate brokers, the subscriber costs and the 
average communication latency for N hops: 

. In wide area network 
settings, communication costs can be in the order of 20-100 
milliseconds, the latency at the subscriber N hops away from 
the publisher is approximately: . 

t
hop

t
sub

t
bro

t
pub NtttNt coscoscos

ker
cos )1( ++−+

WAN
hop

t
bro NttN +− cos

ker)1(
Presently, we cryptographically verify the security token 

associated with every message. For a given topic and 
publisher, this authorization token is typically set to expire 
after several hours. At the broker, a check is also made to see 
if the certificate associated with the KMC, which generated 
the token, is now part of the Certificate Revocation List.  

Incorporating optimistic strategies, where a copy of a 
verified token is stored in memory, and subsequently 
compared with those contained in the message will accrue 
significant savings, especially in settings involving a large 
number of broker hops, since this verification cost is borne at 
both the broker and the subscriber. The entries in memory 
would be invalidated after a certain time (a few minutes) has 
elapsed or a certain number of messages (say 100) have been 
routed after the last successful verification for the token 
associated with a publisher/topic pair. We expect this to 
accrue significant savings, especially in settings involving a 
large number of broker hops, since this verification cost is 



borne at both the broker and the subscriber. However, in this 
scheme it is possible that, for a small interval, messages would 
be routed even if the subscriber’s duration has elapsed or if 
the KMC’s certificate is revoked. This issue needs to be 
investigated further. 

VII. RELATED WORK 
GKMP [7] outlines architecture for the management of 

cryptographic keys for multicast communications. GKMP 
creates keys for cryptographic groups and distributes this key 
securely to the group members while incorporating peer 
review to incorporate the security policy. GKMP also denies 
access to known compromised hosts, while monitoring 
permissions and updating them. Ref [8] outlines strategies for 
reducing the number of encryptions required to preserve 
confidentiality between an end-point broker and its 
subscribing entities in the context of content based publish-
subscribe systems. 

P2P systems incorporate several strategies that address 
secure interchange while incorporating schemes to incorporate 
trust and reputations. Groove [9] provides P2P security by 
securing shared spaces, which comprise documents, messages 
etc. Incremental changes to a shared space object are 
transmitted to authorized peers in a secure way. Systems such 
as http://www.advagato.org incorporate trust metrics to 
support reputations while defeating scenarios where users 
band together to boost reputation scores.  The Free Haven 
system [10] provides strategies for incorporating 
accountability while maintaining peer anonymity. Each server 
in Free Haven maintains values pertaining to reputation and 
credibility, while broadcasting referrals in some cases. Ref [11] 
presents a categorization and details of several attacks 
scenarios in P2P hash lookup systems, and suggested defences 
in some of these cases. An excellent survey of security issues 
that occur in P2P routing protocols, as well as fairness and 
trust issues that occur in file sharing and other P2P 
applications is presented in Ref [12]. 

The Grid Security Infrastructure (GSI) [13] provides a 
complementary approach that addresses a related problem: a 
user may need to invoke a particular service through one or 
more proxy servers.  GSI breaks this request into a chain of 
point-to-point invocations, with the user’s initial (proxy) 
credential being used to create a sequence of proxy key pairs.  
Each key pair is delegated limited authority to invoke a 
remote service.  Thus the GSI approach treats secure end-to-
end connections as a sequence of secure point-to-point 
connections.  We take a complementary approach that 
enforces security at the endpoints and allows the message to 
travel securely through insecure intermediaries. Legion 
objects communicate within a secure messaging framework 
[14] with an abstract authentication/identity system that may 
use either PKI or Kerberos. Legion also defines an access 
control policy on objects. 

VIII. CONCLUSIONS & FUTURE WORK 
In this paper we presented our scheme for enabling secure 

end-to-end delivery of messages in publish/subscribe systems. 

We also presented performance numbers from our 
implementation of the framework. We believe that these 
benchmarks demonstrate that the costs introduced by our 
security scheme are acceptable.  

As part of future work, we intend to address security 
compromises. One of the ways to detect security compromises 
is to issue authentication challenges at regular intervals along 
with shorter key lifetimes. In our scheme entities would need 
to negotiate and retrieve new keys after the delivery of a set of 
messages or a period of time. Additionally, entities may be 
forced to answer queries from a set negotiated between the 
KMC and the entity during initializations.  

When it is detected or reported that an entity’s security has 
been compromised actions need to be taken to mitigate the 
affects of the compromise. First, new keys need to be 
generated for the secure topics that the entity can publish and 
subscribe to.  Second, a message also needs to be propagated 
throughout the system (to brokers and entities alike) 
propagating the invalidity of the affected entity’s signature 
and the affected secure-topics. 
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