
A Framework for Secure End-to-End Delivery of
Messages in Publish/Subscribe Systems

Shrideep Pallickara, Marlon Pierce, Harshawardhan Gadgil, Geoffrey Fox, Yan Yan, Yi Huang
Community Grids Lab, Indiana University

501 N Morton St, Suite 224
Bloomington, Indiana 47401- USA

spallick@indiana.edu

marpierc@indiana.edu

hgadgil@indiana.edu

gcf@indiana.edu

yayan@indiana.edu

yihuan@indiana.edu

Abstract— In this paper we present a framework for the secure
end-to-end delivery of messages in distributed messaging
infrastructures based on the publish/subscribe paradigm. The
framework enables authorized publishing and consumption of
messages. Brokers, which constitute individual nodes within the
messaging infrastructure, also ensure that the dissemination of
content is enabled only for authorized entities. The framework
includes strategies to cope with attack scenarios such as denial of
service attacks and replay attacks. Finally, we include
experimental results from our implementation.

I. INTRODUCTION
Entities in distributed systems communicate through the

exchange of messages. The underlying messaging framework
in these systems could be based on point-to-point
communications, queuing systems, peer-to-peer (P2P) based
interactions, hardware multicast-based disseminations or
publish/subscribe systems. This work focuses on
publish/subscribe systems.

In publish/subscribe systems typically there are one or
more router nodes, referred to as brokers, which are
responsible for routing messages from the publishers to the
subscribers. Individual messages are routed based on the
content descriptor, referred to as the topic, information
contained within these messages. This information is added by
the publisher to describe the message contents. Subscribing
entities need to first register their interests in specific topics –
the subscriptions – with the broker.

Depending on the expressiveness of the content description,
there are two kinds of topics viz. simple and complex. In the
case of simple topics, this is usually a “/” separated String
such as /Sports/Football. Complex topics describe the content
in a more verbose manner. Here, the content could be
described using a set of tag=value pairs, a set of properties
associated with the message, verbose text or as an XML
(eXtensible Markup Language) document. In each of these
cases the corresponding subscriptions provided by an entity
would be <tag, value> pairs with wild card operators, SQL
queries on the properties, regular expressions that should be

evaluated against the verbose text and finally XPath or
XQuery queries on the XML document describing the content.

Upon receipt of a message (previously issued by a
publisher) the broker checks the topic information contained
within the message with the list of previously registered
subscriptions. The broker then proceeds to route the message
to subscribers with matching subscriptions. Here matching
refers to the process of evaluating the stored subscriptions
against the topic information contained within the message.

The work presented in this paper focuses on the secure end-
to-end delivery of messages within publish/subscribe systems.
This work addresses the four critical issues related to secure
end-to-end delivery of messages viz. confidentiality,
authorization, integrity and non-repudiation. The work ensures
that the message contents are encrypted for confidentiality,
and that the contents can only be deciphered by authorized
entities that demonstrate possession of valid credentials.
Actions initiated by an entity, such as publishing and
subscribing, need to demonstrate appropriate authorizations,
the lack thereof results in the failure of the corresponding
actions. The framework also allows for enforcing the duration
for which the aforementioned authorizations are valid. To
enable tamper-evidence (message integrity) and to verify the
source (non-repudiation) of a published message, all messages
are signed by the publishers.

The framework addresses issues related to revocation of
entity credentials, and copes with attack scenarios such as
denial of service attacks and replay attacks. We have
implemented the framework outlined in this paper and we also
report on our benchmarks of this implementation. These
benchmarks target several aspects of the security framework,
and, we believe, demonstrate the feasibility of our proposed
framework.

This research leverages well known cryptography
techniques such as encryption and decryption to ensure
confidentiality and PKI-based signing and verification of
messages. This paper is not about the development of new
cryptography algorithms. Similarly, in our section on coping
with security attacks we do not consider cryptographic attacks

that target vulnerabilities in the cryptography algorithms that
we leverage such as AES and RSA.

 This paper is organized as follows. In section II we provide
a brief overview of the NaradaBrokering system, and the topic
discovery scheme which is leveraged within our security
framework. Section III provides a brief overview of the
security framework, while section IV describes this
framework in detail. In section V we describe how the
framework copes with various attack scenarios. We include
benchmarks from our implementation of this framework in
section VI. Related work is included in section VII, and we
outline our conclusions and future work in section VIII.

II. THE NARADABROKERING SYSTEM
NaradaBrokering (http://www.naradabrokering.org) [1-3] is

an open-source, distributed messaging infrastructure based on
the publish/subscribe paradigm. The subscription formats
supported by the messaging infrastructure include Strings,
Regular expressions, SQL queries, XPath queries and comma-
separated tag=value pairs. For a given topic the system
provides services for reliable and ordered delivery. Additional
services include Network Time Protocol based synchronized
timestamps [2] at distributed entities, buffering services to
reduce jitter in multi-media settings, replay and recording
services and finally services for broker and topic discovery.

A. The Topic Creation and Discovery Scheme
Interactions between entities in publish/subscribe systems

are predicated on the knowledge of the topic that will be used
for communications; the publisher will publish over this topic
while the subscriber registers a subscription to this topic. The
topic discovery and creation scheme [3] in NaradaBrokering
facilitates the creation, advertisement and authorized
discovery of topics by entities within the system. The
discovery process is a distributed process and is resilient to
failures that might take place within the system. Topic owners
can advertise their topics and can also enforce constraints
related to the discovery of these topics. Specifically, a topic
owner may require that entities present appropriate credentials
(a X.501 security certificate [4]) prior to discovering a topic
that it owns. This discovery scheme provides solutions for --
• Provenance –- Verify topic ownership.
• Secure discovery –- A topic owner can restrict the

discovery of a topic only to authorized entities or to
those that possess valid credentials.

These capabilities are provided by specialized nodes –
Topic Discovery Nodes (TDNs) – within the system. Since a
given topic advertisement will be stored at multiple TDN
nodes, this scheme easily sustains the loss of TDN nodes due
to failures or scheduled downtimes.

III. THE SECURITY SCHEME OVERVIEW
This section provides an overview of the objectives and

operations involved in the secure delivery of messages.
Subsequent sections explain the scheme in greater detail. A
message comprises the topic information, message headers
and finally the content payload. During secure

communications it is the content payload of message that is
secured. A topic over which communications need to be
secure is referred to as a secure topic; this would involve
authorized publishing and subscribing, in addition to message
payloads being encrypted and signed for confidentiality and
integrity/tamper-evidence respectively. Associated with every
secure topic is a secret symmetric key that is maintained at a
Key Management Center (KMC). There can be more than one
KMC within the system and a given KMC can manage more
than one secure topics. The KMC is also responsible for
generating security tokens that are presented by entities to
facilitate authorized publishing and consumption of messages.

The secret key associated with a topic is distributed
securely to the interested entities (described in section IV-D).
A publisher encrypts the content payload of the message with
this secret key. To ensure integrity of the payload, this
publisher also signs the encrypted payload; this involves
computing the message digest of the encrypted payload and
encrypting this hashed value with an asymmetric (e.g. RSA)
private personal-key. In our approach we secure messages
independently of any transport level security. This provides a
fine-grained security structure suitable for distributed systems
and multiple security roles.

Upon receipt of secure messages, an authorized subscriber
can validate the signature – to verify the source and to confirm
message integrity – and then proceed to decrypt the encrypted
payload using the previously distributed secret key.

Based on the security tokens associated with the actions
initiated by the publisher and subscriber, brokers that are part
of the messaging infrastructure can enforce authorization rules
and prevent (or restrict) the dissemination of content.

A. Notations Used in this Paper
A secret symmetric key is represented by K . A public key

associated with an entity X is represented as while the
corresponding private key is represented as . The
symmetric key (secret) associated with a Topic

XKU

XKR
T is

represented as . The encryption operation TK E using a
symmetric key K over message M resulting in a cipher-text

 is represented as C)(MEC K= and the corresponding
decryption operation D is represented as .)(MCDK =

The signing operation S , by an entity X, using a hashing
algorithm H over a message M is represented as
follows)]([H

X
)(MEMS KRX = . The corresponding

verification operation V using the signing entity’s public key
is represented as follows: V ; the
verification is a success if the result is H .

)]([)(MSDM XKUX =

)(M
X

IV. THE SECURITY SCHEME
We now present details about our security framework. Fig

1 depicts various components of this framework. There is
exactly one Certificate Authority within the system.
Certificates are assigned to the entities in an out-of-band
fashion. The Certificate Authority is not connected to the
broker network. There can be one or more KMCs and TDNs

within the system. There can be several clients within the
system. All KMCs, TDNs and Clients are connected to one of
the brokers within the broker network cloud.

Fig 1: Components involved in the Security Framework

A. The CA within the system
In our scheme we have one Certificate Authority (CA)

within the system. The most important function that a CA is
responsible for is the issuing of certificates to entities within
the system. These certificates can also identify an entity as an
authorized KMC or TDN. The CA is also responsible for
managing revocation lists pertaining to compromised or rogue
entities within the system. The CA also notifies brokers and
KMCs within the system about any additions to these
revocation lists. A newly added broker or KMC may also
request the entire set of revoked certificates from the CA.
Please note that the certificate revocations are typically done
in an out-of-band fashion.

B. Key Management Center (KMC)
A KMC is a specialized node within the system which is

responsible for managing information pertaining to secure
topics. There can be more than one KMC within the system,
and a given KMC may manage more than one secure topic.
However, a given secure topic can be managed by only one
KMC. A given KMC performs four core functions. First, the
KMC is responsible for the generation of the secret symmetric
key that is used for encrypting and decrypting content
payloads. Second, the KMC maintains the list of authorized
entities associated with a secure topic. In addition to this, the
KMC maintains authorization information related to each of
these entities. Some of these entities may be registered to
publish, subscribe or both.

The third function performed by the KMC is the generation
of security tokens. All actions (such as publishing and
subscribing) initiated by entities, related to a specific secure
topic, require the presentation of the security token. The KMC
generates a security token for every authorized entity. This
security-token establishes an entity’s rights (publish, subscribe

or both) over a secure topic and the duration for which these
rights are valid. This security token comprises the following:
• Client Certificate, including the identifier or the

Distinguished Name.
• Rights – publish, subscribe or both
• Duration for which these rights, and, in fact the token

itself, is valid.
The security token associated with a Topic A T for an

entity , is . Entities

are expected to include this security token along with every
action they initiate with individual brokers within the
infrastructure. To enable tamper-evidence the contents of this
security-token are hashed and signed by the KMC.

X),,,(DurationTRightsCSA XKMC
X

T T
=

Third, the KMC is also responsible for the secure
distribution of secret keys and secure tokens associated with a
secure topic. To do this the KMC encrypts the contents of the
message with a secret key. This secret key is then encrypted
using the entity’s public personal-key. Only the entity that is
in possession of the corresponding private personal-key is able
to decrypt the contents of the communications.

Finally, the KMC also sets up a topic over which
authorized entities may communicate with it through the
exchange of messages. In its topic advertisement to the TDNs,
the KMC can also specify restrictions pertaining to the
discovery of this topic. Only, entities that are authorized or
those that have the right credentials would be authorized to
discover the aforementioned topic. No entity will
communicate1 directly with the KMC; no entity, except the
KMC administrator and the broker that KMC is connected to
will be aware of the physical location of the KMC. This
provides an additional degree of insulation from denial of
service attacks that are targeted at the host and assorted port
numbers over which the KMC listens to for communications.

C. Registering a secure topic
To ensure secure communications over a topic, the topic

owner first needs to register the secure topic with a KMC. To
do this, the topic owner first needs to discover KMCs that are
willing to host the secure topic. When the topic owner initiates
this discovery request if it had valid credentials there would
one or more responses (containing the advertisements) from
the TDN identifying the topics over which the corresponding
KMCs communicate. Since a KMC may restrict discovery of
KMC-Topic based on the presentation of appropriate
credentials, it is possible that a topic owner will not be able to
retrieve topic information pertaining to some of the KMCs
within the system.

Based on these responses, the topic owner decides the
KMC that it would communicate with. The topic owner then
registers the secure topic with a KMC while specifying
parameters about the symmetric secret key that would be
associated with the secure topic. These parameters include the
encryption algorithm, the key size and the padding scheme to
be used. If there are problems with any of these parameters the

1. All communications with the KMC are based on sending messages to
the topics that a KMC listens to.

KMC will report problems back to the topic owner.
Additionally, the topic owner may specify the Hashing
scheme to be used for signing the security tokens generated by
the KMC. Having a larger digest increases the integrity of the
message; in the case of smaller digests a malicious user can
exploit vulnerabilities in collisions arising from the hashing
function employed to compute the digest. In our scheme by
default we use the 160-bit SHA-1 [5] based message digests.

Trade offs between encryption strength and the
performance of the encryption algorithms need to be
considered while determining the key lengths for encryptions.
Also, shorter key lifetimes, in general, tend to mitigate the
effects of lost/stolen keys.

The topic owner then proceeds to register the entities
authorized to communicate over the secure-topic, the rights
(publish/subscribe) and the duration for which these rights are
valid. This information is used to create the security token
associated with every authorized entity.

D. Entity KMC communications
All communications between the entities and the KMC

need to be secure. To ensure this, all exchanges between the
entities and KMC are encrypted using the following rule. First,
a secret symmetric key is generated at the sender, and then
used to encrypt the content payload. Second, depending on the
direction of the communication this secret key is then secured
using the KMC’s or the entity’s public personal-key. Only the
entity or the KMC that is in possession of the corresponding
private personal-key is able to decrypt the secret key that was
used for encrypting the content payload.

This method leverages both symmetric and asymmetric key
encryptions. Specifically, asymmetric encryptions have higher
overheads for large payloads. By restricting the use of
asymmetric encryptions (and subsequent decryptions) to
operate on only the secret key, which would typically be a
256-bit AES key [6], we have worked around the high
overhead constraint for asymmetric encryptions/decryptions.

E. Distributing keys and security tokens
An entity interested in communications over a secure topic,

discovers the topic over which the KMC managing this secure
topic communicates. Once this KMC-interaction topic has
been discovered the entity issues a request message to the
KMC to retrieve the Secret-Key associated with the secure-
topic. In this request the entity also includes its credentials and
the topic over which any responses should be issued.

Upon receipt of this secret-key request, the KMC first
checks to see if the entity is authorized to receive the secret
secure-topic key. If the entity is indeed authorized for
communications over the secure-topic, the KMC securely
routes this secret key to the entity based on the strategy
outlined in section IV-D. In addition to the secret key that was
routed to the entity, the KMC also routes the corresponding
security token (discussed in section IV-B) associated with the
requesting entity. This security-token establishes an entity’s
rights (publish, subscribe or both) and the duration for which
these rights are valid.

An entity is expected to include this security token for all
actions and exchanges related to this secure topic. These
actions include publishing messages or subscribing to the
secure-topic. A broker will not perform the expected actions if
the entity fails to include this token in exchanges related to
this topic (see section IV-H).

F. Publishing messages
When a publisher is ready to publish a message, it performs

three steps. First, it encrypts the content payload of the
message with the secret secure-topic key that it received from
the KMC. Second, the entity also includes its security-token
within this message. Finally, the publisher then proceeds to
sign the message by computing the message-digest of the
encrypted content payload and then encrypting this computed
message-digest with its private-personal key. This digital
signing enables subscribers to verify the integrity of the
message by checking to see if the message has been tampered .

A message comprises a set of message headers and the
message payload: PH MMM += . We secure both the
headers and the body of the message. We do not need
confidentiality for the headers, but we do need tamper
evidence. In the case of the message payload, we need both
confidentiality and tamper-evidence. The message header
associated with message is . Finally, the
message published by a publisher X is

. Fig 2 provides an overview of
the security related operations at an entity.

X
T

P
X

H AMSM +=)(

)()(P
K

HH
X MEMMS

T
++

Fig 2: Overview of security operations at an entity

G. Subscribing to secure topics
When an entity is ready to subscribe to a secure topic it

includes the security token, assigned to it by the KMC, in its
subscription request. Failure to include this security token in
its subscription request would prevent the messaging
infrastructure from routing messages which match the
specified subscription constraint.

H. Broker Operations
All entities within the system use the broker, which it is

connected to, to funnel messages into the messaging
infrastructure. The broker performs crucial functions
(summarized in Fig 3) related to message routing.

1) Keeping track of revoked certificates
In order to verify the credentials and signatures associated

with messages and exchanges a broker needs to keep track of
revoked certificates. When a broker starts up for the first time,
it retrieves the list of revoked certificates (including those
issued to KMCs and TDNs). A broker may store (and retrieve)
the list of revoked certificates onto (and from) a stable storage.
Thus, between successive re-starts a broker only needs to
retrieve certificates that have been revoked in the interim.

Fig 3: Broker Operations

2) Keeping track of secure topics
Brokers (newly added or otherwise) know about secure-

topics as soon as they receive messages targeted to a secure-
topic and containing valid security tokens. When a broker
joins the broker network this broker retrieves the list of
secure-topics maintained by the broker that it connected to.

If a broker receives messages targeted to a secure-topic
without a valid security-token it will discard the message
without any further processing and concomitant routing. In
case a broker is not aware of a secure-topic this broker may
propagate the message without a security token (and without
performing steps outlined in the next sub-section). A broker
that encounters such a message, on what it knows to be a
secure-topic, issues an error-message back to the broker that it
received the message from. Upon receipt of such a message,
the original broker updates its secure-topics list to include this
missed secure-topic.

3) Handling messages published by a publisher
Upon receiving a message, issued over a secure topic, from

an entity the broker checks to see if there is a security token
associated with the message. If the topic is a secure topic and
there is no security token associated with the message, the

broker discards the message without performing any checks
and concomitant routing.

If on the other hand there is a security token associated with
the message targeted to a secure topic, the broker performs
three functions – verifying if the security token is valid, check
topic information contained in token and check for rights
associated with the token. If any of these three checks fail the
message is simply discarded; if the publisher is connected to
the broker and error message is issued.

To verify that the security token is a valid one, the broker
first checks to see if the certificate associated with the KMC,
which signed this token has been revoked and also if the token
has been tampered with, by verifying the signature associated
with the security token. Next, the broker checks to see if the
topic in the token matches the topic contained within the
message. Finally, the broker checks to see if the security token
indicates that the publisher that signed the message, indeed
has publish permission reflected in its security token. If these
checks are completed successfully, the broker proceeds to
route the message within the messaging infrastructure.

4) Routing messages to subscribing entities
When a broker receives a subscription request to a secure

topic if there is no security token associated with the request,
the request is discarded and an error message is issued back to
the entity. If there is a security token associated with the
subscription request, the broker performs three checks –
validity of the security token, topic information and
subscription rights. If either of these checks fails the request is
discarded and an error message is issued back to the
subscribing entity.

A broker will not route messages, corresponding to a
subscription to a secure topic, under two distinct conditions.
In the first scenario the token associated with the subscription
is no longer valid. This might be because either the certificate
of the KMC that issued the token was revoked or because the
duration of validity within the security token has elapsed.

In the second scenario, it might be possible that a
subscription without a security token was allowed by a certain
broker that was not aware of a certain secure topic. When the
broker encounters a message with a valid security token, it
determines the matching subscriptions for the message; if any
of these subscriptions do not have a security token associated
with them, that subscription is removed from the list of
subscriptions maintained at the broker.

V. COPING WITH VARIOUS ATTACK SCENARIOS
In this section we outline our strategy to cope with some

attack scenarios.

A. Denial of service
In denial of service attacks the attacker may try to overload

the system resources such as CPU and network cycles by
generating a large volume of spurious messages that are
processed by the system. Since only authorized entities are
allowed to publish messages within the system, messages
published by unauthorized entities would be rejected at
brokers that receive them. In the event that someone tries to

overload the KMC by sending multiple messages to the topic
over which the KMC communicates; the KMC will generate a
new topic for communications and unsubscribe to messages
issued to the old (and compromised) topic. In general it is
difficult to “guess” the KMC topic since it based on a
randomly generated 128-bit UUID.

No one, except the KMC administrator and the broker that
the KMC has connected to, is aware of the physical network
address and ports associated with the KMC. It is thus quite
difficult to launch a direct denial of service attack on the
KMC. In the unlikely event that this information has been
compromised, and a denial of service attack was launched
based on the network address and port numbers, this particular
vulnerability is addressed by rejecting communications from
IP addresses that have made multiple bogus attempts.

B. Thwarting replay attacks
It is possible for a rogue entity to capture valid messages

and continually publish these messages. To thwart this, a
broker keeps track of timestamps associated with the
messages published over secure-topics by authorized entities.
For every authorized entity the broker maintains the
timestamp associated with the last secure message published
by that entity. If the timestamp associated with a message is
less than or equal to the timestamp associated with the last
message published by the entity in question, the message is
discarded as a duplicate.

Some schemes resort to maintaining a list of identifiers
(typically UUIDs) associated with published messages to
determine duplicates. This scheme obviates the need to
maintain such identifier information. If the timestamps have
millisecond resolution, this limits the rate at which secure
messages could be published by an entity to 1000 per second.
This limitation is circumvented by also including sequence
numbering if the timestamps for two messages are identical.
In this case, a broker maintains the timestamp and the
sequence numbering within this timestamp. For two messages
issued by an entity with identical timestamps a broker will not
reject the second message so long as the sequence numbering
for the second message is greater than the first one.

This scheme is used in tandem with the global Network
Time Protocol (NTP) based timestamps within
NaradaBrokering. This enables a broker to discard an old
message based on the NTP timestamps within the message.

VI. EXPERIMENTAL RESULTS
We have measured several aspects of the security

framework, so that the reader has a precise idea of the costs
involved in secure communications. All processes executed
within JVM 1.4.2, and the cryptography package used was
BouncyCastle (http://www. bouncycastle.org) v1.3. In our
benchmarks we have used the topologies depicted in Figure 4,
the machines hosting the various components are listed in
parentheses. In all cases, to obviate the need for clock
synchronizations, the publisher and the measuring subscriber
(which reports the results) were hosted on the same machine.

All machines (Table 1) involved in the benchmarks had Linux
as the OS, and were hosted on a 100 Mbps LAN.

TABLE 1: MACHINES INVOLVED IN THE BENCHMARKS

Machine Configuration
A Pentium IV, 2.53GHz, 512MB RAM
B, C, D, E,
F, G, H

4 CPU (Xeon, 2.4GHz)machine, 2GB RAM

Messages issued by the publisher are time-stamped and
upon receipt at the subscriber (after traversal over the network
to the broker and then to the subscriber) the transit delay is
computed. For the settings in which NaradaBrokering have
been deployed – such as the routing of GIS sensor data, A/V
multimedia traffic and collaboration messages – the payload
sizes do not typically exceed 16 KB. In our experiments, the
payloads for messages were varied from 16 bytes to 16KB in
increments which were powers of 2.

Topology I: 1 Broker, 1 Subscriber

Topology II: 1 Broker, 101 Subscribers

Topology III: 3 Brokers, 301 Subscribers

Broker
(B)

TDN
(A)

KMC
(A)

Pub
(A) Measuring

Subscriber (A)

Broker
(B)

TDN
(A)

KMC
(A)

Pub
(A)

Measuring
Subscriber (A)

100 Subscribers
(G)

Broker
(C)

Broker
(D)

100 Subscribers
(H)

50 Subscribers
(E)

50 Subscribers
(F)

Broker
(B)

TDN
(A)

KMC
(A)

Pub
(A)

Measuring
Subscriber (A)

50 Subscribers (F)

50 Subscribers (E)

Figure 4 Benchmark Topologies

Table 2 summarizes the costs – for a 16KB payload, 256-
bit AES key, 1024-RSA PKI and 160-bit SHA-1 – involved in
the various operations related to the secure delivery of
messages. These costs have the 3 main components –
• Publisher costs: This includes the costs related to

computing the initialization vector for a payload,
encrypting the message payload with the topic secret key,
signing the message and including the security token
assigned to it by the KMC.

• Broker costs: This includes the costs for validating the
security token, verifying the publisher’s signature,
computing the destinations and finally routing the
message to authorized subscribers.

• Subscriber costs: This includes the costs for validating the
publisher signature and decrypting the content payload
using the secret topic key that it had previously retrieved
from the KMC.

The publisher, broker and subscriber costs were computed
separately on machine A. End-to-End costs are based on the
topologies depicted in the experimental setups.
TABLE 2: TIMING MEASUREMENTS IN MILLISECONDS. UNLESS OTHERWISE
NOTED, THE TABLE REFLECTS COSTS FOR TOPOLOGY-I OVER 100 MBPS LAN
FOR A CONTENT-PAYLOAD OF 16KB WITH THE FOLLOWING CRYPTOGRAPHIC
PROFILE: ENCRYPTION ALGORITHM {AES 256, PKCS7 PADDING WITH CBC
MODE}, SIGNING {1024-BIT RSA, 160-BIT SHA-1}

Operation Mean Standard
Deviation

Error

End-to-End Delivery (16KB payload)
1 Broker, 1
Subscriber

64.5 1.32 0.13

1 Broker, 101
Subscribers

83.77 13.93 1.502

3 Brokers, 301
Subscribers

129.6 12.78 1.32

Publisher Costs
Initialization Vector 1.108 0.025 0.003
Encryption 1.421 0.055 0.005

Signing
Payload 15.518 0.126 0.013
Header 15.238 0.112 0.011

Broker Costs
Token and Message
Validation

6.989 0.199 0.020

Replay-attack check 0.031 0.005 0.0

Subscription validity
check

0.027 0.004 0.0

Subscriber Costs
Verify Token +
Header Signature

3.74 0.13 0.013

Verify Payload
Signature

1.64 0.032 0.003

Decryption 1.41 0.021 0.002
KMC: Secure Topic Management
 Generate Secret Key 2.91 0.43 0.04
 Generate Signed

Security Token
54.89 4.67 0.48

Retrieval: Security
Token and Secure Key

71.38 7.22 0.73

Fig 5 depicts the costs involved in the secure end-to-end
delivery of messages – at the measuring subscriber for
topologies depicted in Figure 4 – for different payload sizes.
Costs related to encryption and decryption increase as the
payload size increases, this translates to higher overheads for
end-to-end delivery. Furthermore, at each broker as the
number of targeted subscribers increase the average cost of
routing a message to a subscriber increases; this also results in
an increase in the time that a message spends in the queue
awaiting processing. Finally, as the number of hops increase,
broker costs are added to the final transit delay at the
measuring subscriber.

The overheads for secure end-to-end delivery are well
within the real-time constraints (typically around 100-200
milliseconds) for several interactive collaborative applications
such as audio/video conferencing, and distance-education.
These overheads are also acceptable for the secure routing of
GIS streams by NaradaBrokering in the SERVOGrid project
(http://www.servogrid.org/). Successive messages would all
be delayed by the amount depicted in our graphs. However,
the inter-message spacing for all messages in the stream
would be preserved in our scheme. This makes the scheme
suitable for applications that can sustain this initial delay.

 50

 60

 70

 80

 90

 100

 110

 120

 130

 10 100 1000 10000

T
ra

n
si

t
D

el
ay

 (
M

ill
is

ec
o
n
ds

)

Payload Size (Bytes)

End-to-end delivery costs in different topologies
Cryptographic Profile: 256-bit AES, 7PKCS padding

1024-bit RSA keys and 160-bit SHA-1

 1 Broker, 1 Subscriber
 1 Broker, 101 Subscribers

 3 Brokers, 301 Subscribers

Fig 5: End-to-End costs in different settings

For a given secure message, the latency experienced at a
subscriber that is N hops away from the publisher can be
approximated as the sum of the publisher costs, the processing
at (N-1) intermediate brokers, the subscriber costs and the
average communication latency for N hops:

. In wide area network
settings, communication costs can be in the order of 20-100
milliseconds, the latency at the subscriber N hops away from
the publisher is approximately: .

t
hop

t
sub

t
bro

t
pub NtttNt coscoscos

ker
cos)1(++−+

WAN
hop

t
bro NttN +− cos

ker)1(
Presently, we cryptographically verify the security token

associated with every message. For a given topic and
publisher, this authorization token is typically set to expire
after several hours. At the broker, a check is also made to see
if the certificate associated with the KMC, which generated
the token, is now part of the Certificate Revocation List.

Incorporating optimistic strategies, where a copy of a
verified token is stored in memory, and subsequently
compared with those contained in the message will accrue
significant savings, especially in settings involving a large
number of broker hops, since this verification cost is borne at
both the broker and the subscriber. The entries in memory
would be invalidated after a certain time (a few minutes) has
elapsed or a certain number of messages (say 100) have been
routed after the last successful verification for the token
associated with a publisher/topic pair. We expect this to
accrue significant savings, especially in settings involving a
large number of broker hops, since this verification cost is

borne at both the broker and the subscriber. However, in this
scheme it is possible that, for a small interval, messages would
be routed even if the subscriber’s duration has elapsed or if
the KMC’s certificate is revoked. This issue needs to be
investigated further.

VII. RELATED WORK
GKMP [7] outlines architecture for the management of

cryptographic keys for multicast communications. GKMP
creates keys for cryptographic groups and distributes this key
securely to the group members while incorporating peer
review to incorporate the security policy. GKMP also denies
access to known compromised hosts, while monitoring
permissions and updating them. Ref [8] outlines strategies for
reducing the number of encryptions required to preserve
confidentiality between an end-point broker and its
subscribing entities in the context of content based publish-
subscribe systems.

P2P systems incorporate several strategies that address
secure interchange while incorporating schemes to incorporate
trust and reputations. Groove [9] provides P2P security by
securing shared spaces, which comprise documents, messages
etc. Incremental changes to a shared space object are
transmitted to authorized peers in a secure way. Systems such
as http://www.advagato.org incorporate trust metrics to
support reputations while defeating scenarios where users
band together to boost reputation scores. The Free Haven
system [10] provides strategies for incorporating
accountability while maintaining peer anonymity. Each server
in Free Haven maintains values pertaining to reputation and
credibility, while broadcasting referrals in some cases. Ref [11]
presents a categorization and details of several attacks
scenarios in P2P hash lookup systems, and suggested defences
in some of these cases. An excellent survey of security issues
that occur in P2P routing protocols, as well as fairness and
trust issues that occur in file sharing and other P2P
applications is presented in Ref [12].

The Grid Security Infrastructure (GSI) [13] provides a
complementary approach that addresses a related problem: a
user may need to invoke a particular service through one or
more proxy servers. GSI breaks this request into a chain of
point-to-point invocations, with the user’s initial (proxy)
credential being used to create a sequence of proxy key pairs.
Each key pair is delegated limited authority to invoke a
remote service. Thus the GSI approach treats secure end-to-
end connections as a sequence of secure point-to-point
connections. We take a complementary approach that
enforces security at the endpoints and allows the message to
travel securely through insecure intermediaries. Legion
objects communicate within a secure messaging framework
[14] with an abstract authentication/identity system that may
use either PKI or Kerberos. Legion also defines an access
control policy on objects.

VIII. CONCLUSIONS & FUTURE WORK
In this paper we presented our scheme for enabling secure

end-to-end delivery of messages in publish/subscribe systems.

We also presented performance numbers from our
implementation of the framework. We believe that these
benchmarks demonstrate that the costs introduced by our
security scheme are acceptable.

As part of future work, we intend to address security
compromises. One of the ways to detect security compromises
is to issue authentication challenges at regular intervals along
with shorter key lifetimes. In our scheme entities would need
to negotiate and retrieve new keys after the delivery of a set of
messages or a period of time. Additionally, entities may be
forced to answer queries from a set negotiated between the
KMC and the entity during initializations.

When it is detected or reported that an entity’s security has
been compromised actions need to be taken to mitigate the
affects of the compromise. First, new keys need to be
generated for the secure topics that the entity can publish and
subscribe to. Second, a message also needs to be propagated
throughout the system (to brokers and entities alike)
propagating the invalidity of the affected entity’s signature
and the affected secure-topics.

ACKNOWLEDGEMENTS
This research is supported by grants from the National

Science Foundation’s Division of Earth Sciences project
number EAR-0446610, and the National Science Foundation's
Information and Intelligent Systems Division project number
IIS-0536947.

REFERENCES
[1] S. Pallickara and G. Fox. NaradaBrokering: A Middleware Framework

and Architecture for Enabling Durable Peer-to-Peer Grids. Proceedings
of the ACM/IFIP/USENIX Middleware Conference. 2003. pp 41-61.

[2] H. Bulut, S. Pallickara and G. Fox. Implementing a NTP-Based Time
Service within a Distributed Brokering System. Proceedings of ACM
PPoJ. pp 126-134.

[3] S. Pallickara, G. Fox and H. Gadgil. On the Creation & Discovery of
Topics in Distributed Publish/Subscribe Systems. Proc. of IEEE/ACM
GRID 2005. Seattle, WA.

[4] S. Chokhani and W. Ford Internet X.509 Public Key Infrastructure
Certificate Policy and Certification Practices Framework, RFC 2527.
March 1999

[5] The Secure Hash Algorithm (SHA-1) specified in FIPS 180-1.URL:
http://www.itl.nist.gov/fipspubs/fip180-1.htm

[6] J. Daemen and V. Rijmen. AES Proposal: Rijndael,
http://csrc.nist.gov/CryptoToolkit/aes/rijndael/Rijndael.pdf

[7] H. Harney and C. Muckenhirn. Group Key Management Protocol
(GKMP) Specification. IETF RFC 2093. July 97.

[8] L. Opyrchal and A. Prakash. "Secure Distribution of Events in
Content-Based Publish Subscribe Systems." In Proceedings of the 10th
USENIX Security Symposium, pages 281--295, August 2001.

[9] Groove Networks Inc..http://www.groove.net/
[10] Roger Dingledine, et al. A Reputation System to Increase MIX-net

Reliability. Proceedings, Information Hiding Workshop, Mar 2001.
[11] Emil Sit and Robert Morris. Security Considerations for Peer-to-Peer

Distributed Hash Tables. Proceedings of the First International
Workshop on Peer-to-Peer Systems (IPTPS. 2002. pp 261-269.

[12] Dan S. Wallach: A Survey of Peer-to-Peer Security Issues.
International Symposium on Software Security (ISSS).2002: 42-57

[13] I. Foster, et al. A Security Architecture for Computational Grids,“ Proc.
5th ACM Conference on Computer and Communications Security
Conference, pp. 83-92, 1998

[14] A Ferrari et al. A Flexible Security System for Metacomputing
Environments. (HPCN Europe 99), April 1999

