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Abstract: Time ordering of events generated by entities existing within a distributed 
infrastructure is far more difficult than time ordering of events generated by a group of 
entities having access to the same underlying clock. Network Time Protocol (NTP) has been 
developed and provided to the public to let them adjust their local computer time from single 
(multiple) time source(s), which are usually atomic time servers provided by various 
organizations, like NIST and USNO. In this paper, we describe the implementation of a NTP 
based time service used within NaradaBrokering, which is an open source distributed 
middleware system. We will also provide test results obtained using this time service.  
Keywords: Distributed middleware systems, network time services, time based ordering, 
NTP  
 
1. Introduction 

In a distributed messaging system, messages are timestamped before they are issued. 
Local time is used for timestamping and because of the unsynchronized clocks, the messages 
(events) generated at different computers cannot be time-ordered at a given destination.  

On a computer, there are two types of clock, hardware clock and software clock. 
Computer timers keep time by using a quartz crystal and a counter. Each time the counter is 
down to zero, it generates an interrupt, which is also called one clock tick. A software clock 
updates its timer each time this interrupt is generated. Computer clocks may run at different 
rates. Since crystals usually do not run at exactly the same frequency two software clocks 
gradually get out of sync and give different values. The accuracy of computer clocks can vary 
due to manufacturing defects, changes in temperature, electric and magnetic interference, the 
age of the oscillator, or computer load [1]. Another issue is that an ill-behaved software 
program can use the timer’s counter and change the interrupt rate. This could cause the clock 
to rapidly gain or lose time. A software clock looses state when the machine is turned off and 
it synchronizes itself with the hardware clock at reboot. Furthermore, hardware clock itself 
may not be synchronized with the real time and may be seconds, minutes or even days off. 
Finally, a software clock’s accuracy would be bounded by the accuracy of the hardware clock 
at the reboot. 

Because of hardware or software reasons, computer clocks may run slower or faster 
than they should. An ideal clock is a clock whose derivative with respect to real time is equal 
to 1. If this derivative is smaller than 1 it is considered a slow clock, and if this derivative is 
greater than 1 it is considered a fast clock.  

It is thus necessary to synchronize the clocks in a distributed system, if the time-based 
order of messages matter. One cannot rely on the underlying hardware or software clocks to 
provide synchronization. One of the most widely used algorithms in the Internet is the 
Network Time Protocol (NTP) [2-3], which has been around more than a decade and may 
provide an accuracy of 1-30 ms range, where accuracy implies that using NTP the underlying 
clock is within 30 ms of time server clock (usually an atomic clock). NTP achieves this 
accuracy by using advanced clock synchronization algorithms. There are atomic time servers 
provided by various organizations, i.e. National Institute of Standards and Technology (NIST) 
[4] and U.S. Naval Observatory (USNO) [5]. NIST and USNO Internet Time Services use 



multiple stratum-11 time servers, which are open to public access. Using a NTP client, anyone 
can synchronize their clock with the atomic time server time within that range.  

NaradaBrokering [6 -10] messaging system has also been used to carry audio/video 
(A/V) data. More recently NaradaBrokering has also been used to provide archival and 
reliable delivery of messages. Real-time constraints for A/V conferencing applications can 
vary anytime between 30-100 ms, depending on the jitter in inter-packet arrivals in these 
streams. Packets in these streams generated at different locations can be buffered (either 
during replay or real-time), and time-ordered to provide an efficient collaboration session. If 
time-ordering among these streams is lost, it would be very unpleasant during the replay/real-
time-play of these streams. The range that NTP provides is sufficient for such a collaboration 
environment.  

The paper is organized in the following way: Section 2 describes related work. Section 
3 introduces NaradaBrokering messaging system. Section 4 describes the design and 
implementation of time service provided to NaradaBrokering. Section 5 provides test results. 
And we will give conclusion and future work in section 6. 
 
2. Related work 

Different approaches exist to synchronize the events in a distributed system. One of 
them is to use logical clocks, which was first presented by Lamport [11], and the other one is 
to synchronize the system clocks so that clocks running on different machines are 
synchronized with each other.  

Using logical clocks guarantee the order of events among themselves. They do not 
need to run at a constant rate, but they must increase monotonically. Using Lamport 
timestamps, Lamport synchronizes logical clocks by defining a relation called “happens-
before”. Vector clocks [12-13] have also been introduced because Lamport timestamps 
cannot capture causality. But a major drawback is that vector clocks add a vector timestamp, 
whose size is linear with the number of processes, onto each message in order to capture 
causality. Vector clocks thus do not scale well in large settings. 

Various algorithms have been devised to synchronize physical clocks in a distributed 
environment. In Cristian’s algorithm [14], all of the machines in the system synchronize their 
clocks with a time server. In this algorithm, each machine asks the current time to the time 
server by sending a message to it. The time server responds to that message including its 
current time as fast as it can. Time server in Cristian’s algorithm is passive. In the Berkeley 
algorithm [15], time server is active. It polls every machine periodically, and then computes 
the average time based on the times received from them and tells them to adjust their time to 
the recent computed time. Another type of synchronization algorithm is the averaging 
algorithm, which are also known as decentralized algorithms. An example to a decentralized 
algorithm might be to average the time received from other machines. Each machine 
broadcasts its time and when the resynchronization interval is up for a machine it computes 
the average time from the samples received in that time interval. In averaging those times one 
might just take the average of them or can discard the m highest and m lowest samples and 
then average the rest.  

Hardware approaches [16-19], are also available. But hardware approaches might 
require some custom made hardware components such as Network Time Interface (NTI) M-
Module [19]. NTI M-Module is a custom VLSI chip that has interfaces to GPS receivers. It 
uses the time received by GPS receivers to achieve synchronization. Obviously hardware 
solutions are expensive and might require changes to the underlying platform.  

                                                 
1 Stratum number is an integer indicating the distance from the reference clock. Stratum-0 is the reference clock. 
 



There are also other solutions available, but one that we are most interested in is the 
Network Time Protocol (NTP). NTP is one of the most widely used algorithms in the Internet 
and can achieve to 1-30 ms accuracy. However, this accuracy also depends on the roundtrip 
delay between the machine and the time server supplying the time service. The difference 
between the delay from machine to time server and the delay from time server to machine 
also contributes to the accuracy of the offset computed. NTP achieves this accuracy by using 
filtering, selection and clustering, and combining algorithms to adjust the local time. NTP 
receives time from several time servers. Filtering algorithm selects the best from a window of 
samples obtained from a time server. Selection and clustering algorithms pick best 
truechimers and discard the falsetickers. Combining algorithm computes a weighted average 
of the time offset of the best truechimers. An adaptation of NTP, Simple Network Time 
Protocol (SNTP) [20] can also be used to synchronize computer clocks in the Internet. The 
major difference between SNTP and NTP is that SNTP does not implement the algorithms 
mentioned above. It just uses the time obtained from a time server.  

NTP daemons are implemented for Linux, Solaris and Windows machines and are 
also available online, [21]. These NTP daemons sometimes adjust the system clock every 1 
sec. This synchronization interval might be too frequent, and can place strains on bandwidth 
and CPU utilization. The decision on deciding the synchronization interval is also another 
issue. Setting this to a high value might cause the clocks getting out of sync too much while 
setting this to a low value might cause performance degrade. If two clocks need to be 
synchronized with δt time apart, then synchronization interval, ∆t, should be chosen as 
δt/(σ1+σ2) where σ1 is the drift rate2 of clock1 and σ2 is the drift rate of clock2 [22].  
 
3. NaradaBrokering 

NaradaBrokering is an event brokering system designed to run on a large network of 
cooperating broker nodes. Communication within NaradaBrokering is asynchronous and the 
system can be used to support different interactions by encapsulating them in specialized 
events. NaradaBrokering guarantees delivery of events in the presence of failures and 
prolonged client disconnects, and ensures fast dissemination of events within the system. 
Events could be used to encapsulate information pertaining to transactions, data interchange, 
system conditions and finally the search, discovery and subsequent sharing of resources. 

In NaradaBrokering, stable storages existing in parts of the system are responsible for 
introducing state into the events. The arrival of events at clients advances the state associated 
with the corresponding clients. The guaranteed delivery scheme within NaradaBrokering does 
not require every broker to have access to a stable store or DBMS. Stable stores can fail but 
they do need to recover within a finite amount of time. During these failures the clients that 
are affected are those that were being serviced by the failed storage. Currently in 
NaradaBrokering we have both SQL and file based implementations of the storage services 
needed by the robust delivery algorithms. NaradaBrokering is Java Message Service (JMS) 
compliant [23], supports P2P interactions [9], and audio-video conferencing [24-26], and 
communication through firewalls among others.  
 
4. Time Service 

Time service provided within NaradaBrokering (0.95) currently implements NTP 
version 3. NaradaBrokering is also an open source project which is implemented completely 
in Java. A configuration file, which contains time server addresses and other required NTP 
parameters, is provided to the time service. We impose no limit on the number of time servers 

                                                 
2 The maximum drift rate of a hardware clock is provided by the manufacturer and indicates how many 
microseconds a hardware clock drifts apart from real-time per second. 



that can be specified in the configuration file. In addition to these parameters, the interval that 
the time service should run is also specified in the configuration file. The value of this 
parameter affects the synchronization range of the computer clock. If it is too high, computer 
clock may be way of out of sync, and if it is too low it may utilize too much system and 
bandwidth resources.  

It should be noted that time service does not change the system time. That is, unlike 
NTP daemons provided, it does not set system time to a new value. There are two reasons for 
this. First, in order to change the underlying system clock, one needs administrative 
privileges. This is not possible for clients without administrator privilege. The second reason 
is that the objective of this time service is to provide a mechanism to be able to time-order the 
events generated within NaradaBrokering without affecting the system and other applications 
running on the same machine. A call to the Time Service returns the adjusted time. It achieves 
this by keeping the offset in a separate variable. The getTimestamp() method returns the time 
obtained from the local system time adjusted with this offset in milliseconds. When time 
service starts it computes the first value of the offset. After this initialization, time service 
updates the offset at regular intervals based on the parameter specified in the configuration 
file. All events generated anywhere, by any entity, within the system utilize their Time 
Service to timestamp events. 

 
4.1 Initialization 

The initialization step is an important step in achieving synchronization. This 
initialization step is a blocking operation during the bootstrapping of NaradaBrokering 
services and should complete within a few seconds. The initialization step also uses NTP, but 
instead of using the interval specified in the configuration file, it waits 500 ms between its 
attempts, which is also limited for a total of 5 seconds. 

 
4.2 NTP Implementation 

We use NTP version 3 as the basis for our NTP implementation. We have chosen NTP 
instead of SNTP, because NTP implements advanced algorithms to filter the NTP message 
obtained from the time server and implements selection algorithms to those received NTP 
messages. A NTP message can be received from any number of NTP time servers. Our NTP 
implementation is as follows:  

First step involves getting samples from NTP time servers. NTP client sends NTP 
messages to those servers specified in the configuration file one by one. That is, it sends a 
NTP message and waits for the response. This message is a datagram packet and the NTP 
message sent may be lost in the network. Because of this, NTP client sets a timeout to the 
UDP socket. The timeout chosen for our implementation is 500 ms. This step requires that 
NTP replies be received from at least half of the servers. Offset and roundtrip delay are 
calculated at this step. Upon receiving a NTP packet, a NtpInfo object is generated which 
contains NTP parameter values, i.e. offset, roundtrip delay, dispersion, timestamps, etc. 

After collecting NTP samples from servers, the second step is to use the NTP filtering 
algorithm. The filtering algorithm checks timestamps to validate the received NTP message. 
It keeps a register dedicated for each time server and records the NTP samples received from 
that server. This register only keeps a specified amount of samples, and uses a First-In-First-
Out (FIFO) scheme to accommodate new samples the register is full. The window size of this 
register is specified in the configuration file and has an effect on the computed offset.  

After the previous steps are successfully completed, the new offset is computed using 
selection and combine algorithms as explained in the NTP specification. A clustering 
algorithm explained in NTP specification is then used to find a candidate list from which the 
new offset would be computed. Clustering algorithm uses stratum value obtained from NTP 



message and synchronization distance computed from the NTP parameters of the related 
server to construct this candidate list. The result of clustering algorithm provides a candidate 
list, which contains the synchronization distance and the offset obtained from each time 
server. The combining algorithm then computes the weighted average of this candidate list 
according to the synchronization distance. So a server with a small synchronization distance 
has more impact on the new offset.  

The steps explained in this section can be depicted as in figure 1. There are two offset 
values indicated in figure 1, offset1 and offset2. offset1 is the offset value computed with 
NTP. Since we do not change the system clock, we need to keep a variable named as 
BaseTime, which keeps the offset computed with NTP in an earlier computation. offset2 is 
the difference between the BaseTime and the offset computed by NTP. It can also be viewed 
as change of the offset. 

 
Figure 1: Steps taken in computing offset using NTP algorithms 
 
4.3 Updating Offset 

Unfortunately, calculating offset as in previous steps is not sufficient to achieve 
synchronization. A newly computed offset may not be used as is. The order of the messages 
generated at the local computer should also be preserved. Let’s say message m1, which is the 
latest message before the new offset is calculated, has timestamp of t1 and message m2, 
which is the first message would use the new adjusted time, has a timestamp of t2. Then t2 
cannot be less than t1. Because in that case, ordering algorithms may conclude that m2 was 
generated before m1, which is not correct. So the offset is not updated if the new value would 
cause such an inconsistency in the order of the messages. In this case we do not update the 
timestamp so long as the discrepancy persists. The pseudo code can be written as below; 
long getTimestamp() { 
 timestamp = LocalTime + BaseTime; 
 if (timestamp >lastTimestamp)  
  lastTimestamp = timestamp; 
 return lastTimestamp; 
} 
 
5. Test Results 

We have done tests on several linux machines. The test duration is 48 hours. The 
interval for updating offset is about 30 seconds. There are 8 time servers specified in the 
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configuration file and all of them are stratum-1 NIST time servers. In the test results we also 
show the first offset value, standard deviation, average offset change, minimum and 
maximum values.  

The tests mentioned in this section are done on computers available to Community 
Grids Lab, Indiana University, researchers. Computer clocks are not modified or preset before 
the tests. Test cases are given below. 
i) darya.ucs.indiana.edu 

 
Figure 2: Change of offset with time for 
darya.ucs.indiana.edu 

OS:      Red Hat Linux release 7.3 (Valhalla) 
CPU:   AMD Athlon(tm)MP 1800+, 1533.42 MHz 
Memory: 512 MB 
JVM version: 1.4.1_03 

initialization offset value 0 ms 
standard deviation 0.11 
average  -0.00018 ms 
min value -2 ms 
max value 3 ms 
total change -1 ms 
number of data 5690 
total test duration 172800 sec 

Table 1: Numeric values for darya.ucs.indiana.edu 
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ii) kamet.ucs.indiana.edu 

 
Figure 3: Change offset with time for 
kamet.ucs.indiana.edu 

OS:   Red Hat Linux release 9 (Shrike)  
CPU:   Intel(R) XEON(TM) CPU 1.80GHz 
Memory: 1 GB 
JVM version: 1.4.1_02 

initialization offset value 1185869 ms 
standard deviation 3.32 
average  5.21 ms 
min value -1 ms 
max value 12 ms 
total change 29666 ms 
number of data 5690 
total test duration 172800 sec 

Table 2: Numeric values for kamet.ucs.indiana.edu 
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iii) murray.ucs.indiana.edu 

 
Figure 4: Change offset with time for 
murray.ucs.indiana.edu 
 

OS:  Red Hat Linux release 7.2 (Enigma) 
CPU:  Intel Intel(R) Pentium(R) III CPU family   
1266MHz 
Memory:1 GB 
JVM version: 1.4.1-rc 

initialization offset value -139895 ms 
standard deviation 0.71 
average  -0.19 ms 
min value -3 ms 
max value 2 ms 
total change -1060 ms 
number of data 5690 
total test duration 172800 sec 

Table 3: Numeric values for 
murray.ucs.indiana.edu 
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5.1 Evaluation of Test Results 
s, totally 5690 times the offset is computed and the changes 

of offs

 5690 computed offset values only 24 
of them

nning. But time server is set to 
“clock.

ffsets in case (iii) is 
betwee

ffset changes, as indicated in tables 
1 – 3, t

5.2 Inter Client Discrepancy 
 discrepancy between two of the machines that are running the 

time se

ers that run NTP server and NTP clients (b) Initiation and en me request betwee

Over a period of 48 hour
ets are shown in figures 2 – 4. First offset values, standard deviations, averages, 

minimum values , maximum values and total changes in the offsets for test cases i – iii are 
shown in tables 1 – 3 to give us some numerical ideas.  

In test case (i), ntpd daemon is running. Among
 are different than zero, which means that ntpd daemon running on the machine and 

our time service are very consistent with each other. The first value of the offset is also zero, 
because ntpd daemon is able to keep the machine synchronized. This ntpd daemon 
synchronizes its time with “time.nist.gov” time server.  

In test case (ii), ntpd daemon is also ru
redhat.com” for this server, which we tried to access using ping command and all 

requests are timed out. That is, it is not reachable. ntpd daemon has no effect on this machine. 
The change offset is between (-1) – (12) ms. The first offset value is 1185869 ms, which 
means that the clock is behind the real time by that many milliseconds.  

In test case (iii), no ntpd daemon is running. The change of o
n (-3) - (2) ms. The first offset value for case (iii) is -139895 ms, which shows how 

much the clock in that machine is ahead of the real time. 
If we pay attention to the average value of these o
he machine in test case (ii) has a positive value and the machine in test case (iii) has a 

negative value. Also total changes for test case (ii) is positive, and for test case (iii) is 
negative. From this we can conclude that the clock running on machine for test case (ii) is a 
slow clock, because positive adjustment is done to the underlying system clock and the clocks 
running on machine for test case (iii) is a fast clock, because negative adjustment is done to 
the underlying system clock. Note that the adjustments needed for cases, (ii, iii), are different. 
This also shows that the clock rates on the machines are different. Since a ntpd daemon is 
running on the machine for test case (i), we avoid making such a conclusion regarding that 
clock.  

 

We have also tested the
rvice explained in this paper. The test environment is established as shown in figure 5. 

In order to receive requests from a remote client, we also implemented a NTP server. We also 
implemented a client that uses the NB Time Service time and is capable of sending NTP 
requests to the server.  
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Figure 6: Discrepancy between machine A 
(murray.ucs.indiana.edu) and machine B 
(kamet.ucs.indiana.edu) 

standard deviation 2.94 
absolute average 
discrepancy 5.6 ms 
absolute minimum 
discrepancy 0 ms 
absolute maximum 
discrepancy 17 ms 
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As shown in figure 5b, a request originates from client and is received by server. Then 
server timestamps after it receives it and before it sends it back to the client. Client 
timestamps the reply. The delay involved in this process is the transmission time (tAB and tBA) 
and the process time on the server (T3-T2).  

The discrepancy (∆T) between these two machine clocks can be approximated as 
∆T=0.5*(T2+T3-T1-T4), if tAB and tBA are ignored. Figure 6 shows this discrepancy 
computed. This approximated discrepancy is also found to be same with the offset computed 
by NTP. The discrepancy is measured every 30 seconds and test duration is about 25 hours. 
 
6. Conclusion and Future Work 

The first offset values in all of these computers are different and this demonstrates the 
need to synchronize these clocks. Hence one cannot rely on the underlying clock and use the 
system clock to timestamp the events generated in messaging systems. Each of these 
machines also have different changes in offset patterns, which shows that if these clocks are 
let running without periodic synchronization, they can be out of sync by large amount all the 
time.  

We used NTP to achieve this synchronization level. NTP allow us to synchronize the 
machine clocks with atomic time servers available all over the world. Servers distributed in a 
wide geographic area would be synchronized with each other in a limited range. To achieve 
this, of course, time servers should use the closest time servers available to them. Since we 
know that those atomic time servers are tightly synchronized with each other, we would also 
be able to synchronize computer clocks. 

Our future work is to implement a buffering service to NaradaBrokering messaging 
system, which will use this time service in order to sort to sort events/messages based on the 
timestamp values they carry.  
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