
Vol. , No. , 200x 1

On the Secure Creation,
Organization and Discovery of
Topics in Distributed
Publish/Subscribe Systems
Shrideep Pallickara
Community Grids Lab, Indiana University,
Bloomington, IN 47404, USA
E-mail: spallick@indiana.edu

Geoffrey Fox
Community Grids Lab, Indiana University,
Bloomington, IN 47404, USA
E-mail: gcf@indiana.edu

Harshawardhan Gadgil
Community Grids Lab, Indiana University,
Bloomington, IN 47404, USA
E-mail: hgadgil@cs.indiana.edu

Abstract: Publish/Subscribe infrastructures have in the recent years gained significant
traction with several specifications such as the Java Message Service, WS-Eventing and
WS-Notification trying to capture the essence of publish/subscribe systems and enabling
the development of interoperable systems. In this paper we present a scheme for the secure
organization and discovery of topics in distributed publish/subscribe systems. The scheme
outlined in this paper addresses security related issues such as authorization and provenance
in the discovery of the aforementioned topics. We have also included results from our
implementation of this scheme to demonstrate the feasibility of this mechanism. We have
also included a scheme for the organization and discovery of topics that have hierarchical
relationships and those that are part of a collection of topics in dynamic, high-flux
publish/subscribe environments. The work that we describe here can be used in systems
based on JMS, WS-Eventing or WS-Notification

Keywords: publish/subscribe, topics, topic discovery, authorization.

Reference to this paper should be made as follows: Pallickara, S., Fox, G. and
Gadgil, H. (2006) ‘On the Secure Creation, Organization and Discovery of Topics
in Distributed Publish/Subscribe Systems’, Int. J. High Performance Computing
and Networking, Vol. X, Nos. YY, pp.ZZ-ZZ.

Biographical notes:

Shrideep Pallickara received his Masters and PhD from Syracuse University in 1998 and
2001 respectively. He is currently a Post Doctoral Researcher at the Community Grids Lab
at Indiana University. His research interests include fault tolerant systems, P2P computing,
Grid computing, Web Services and Security.

Geoffrey Fox received his PhD from Cambridge University in 1967. He is a Professor in
the Department of Computer Science, School of Informatics and Physics at Indiana
University. He is the Director of the Community Grids Lab at Indiana University. He was
also the director of the Northeast Parallel Architectures Center at Syracuse University from
1990-2000.

Copyright © 200x Inderscience Enterprises Ltd.

mailto:spallick@indiana.edu
mailto:gcf@indiana.edu
mailto:hgadgil@cs.indiana.edu

 Shrideep Pallickara, Geoffrey Fox, Harshawardhan Gadgil

Harshawardhan Gadgil is a Graduate Student at Indiana University, Bloomington. He is
currently pursuing his PhD in Computer Science from Indiana University, Bloomington. He
holds a B.E. (Bachelor of Engineering) in Computer Engineering from Mumbai University,
Mumbai, India and a M.S. in Computer Science from Indiana University. His current
research focuses on publish subscribe systems, Web Services and workflow technologies
and management issues in large scale distributed systems.

1 INTRODUCTION

Messaging is a fundamental primitive in distributed
systems. Entities communicate with each other through the
exchange of messages, which can encapsulate information
of interest such as application data, errors and faults, system
conditions, search and discovery of resources. Messaging
infrastructures can be based on several distinct paradigms
viz. publish/subscribe systems, queuing systems, and peer-
to-peer systems among others. Our work focuses on systems
based on the publish/subscribe paradigm.

The publish/subscribe paradigm is a powerful one and one
in which there is a clear decoupling of the message producer
and consumer roles that interacting entities/services might
have. The routing of messages from the publisher to the
subscriber is within the purview of the message oriented
middleware (MOM), which is responsible for routing the
right content from the producer to the right consumers. In
publish/subscribe systems a subscriber registers its interest
in events by subscribing to topics. In its simplest form these
topics are typically “/” separated Strings, these have
sometimes also been referred to as subjects. When a
publisher issues events on a specific topic the middleware
substrate routes the events to the subscribers that have
registered an interest in this topic.

There are several standards/specifications that define the
exchanges, control messages and communications within
the publish/subscribe paradigm. This facilitates the
development of interoperable systems based on
conformance to these aforementioned specifications. Here
we note three such specifications. First is the Java Message
Service (JMS) (Happner et al., 2000) specification from
Sun which defines a set of Java interfaces that enables the
development of publish/subscribe applications. One of the
excellent features of JMS is the ability that clients have of
replacing the underlying provider with little or perhaps no
change to the applications. Second, is the WS-Eventing
(Microsoft, et.al. 2004) specification which enables web
services to leverage the pub/sub paradigm; here, a sink
service registers its interest (subscribes) in certain events
with another source service (the publisher). When an event
occurs the source routes the notification describing the
occurrence to the registered sinks that had matching
subscriptions. Finally there is WS-Notification (IBM et al.,
2004), which is part of the Web Service Resource
Framework (WSRF) (Foster et. al, 2004). WSRF is a
realignment of the dominant Open Grid Service
Infrastructure (Foster et al., 2002; Tuecke, et al., 2003) to be
more in line with the emerging consensus (Booth, et al.,
2004) within the Web Services community. WS-
Notification is sophisticated specification designed to meet

the demands of modern Grid systems. WS-Notification
comprises WS-BaseNotification, WS-BrokeredNotification
and WS-Topics.

In each of these systems interactions proceed with the
assumption that the entity knows what the topic that it needs
to subscribe to. Here we note that the WS-Notification
specification incorporates the concept of topic spaces which
facilitates the organization and categorization of topics. A
topic space typically contains multiple trees of topics (some
or all of which would be based on hierarchical topics).
There could be multiple topic spaces each of which has its
own namespace. The work that we present here can be used
in tandem with the WS-Topics, and can be used by entities
leveraging JMS, WS-Eventing or WS-Notification
specifications.

In this paper we present a framework for the creation and
discovery of topics in distributed publish/subscribe systems.
This scheme facilitates the creation, advertisement and
authorized discovery of topics by entities within the system.
The discovery process is a distributed process and is
resilient to failures that might take place within the system.
In this paper we also include empirical results from our
experiments related to the implementation of our scheme.
We have performed these experiments in the context of our
system NaradaBrokering (Pallickara and Fox, 2003; Fox et
al., 2005; Fox and Pallickara, 2005; Pallickara and Fox,
2004) which is a distributed messaging infrastructure based
on the publish/subscribe paradigm.

This paper is an extended version of the paper that
appeared in the ACM/IEEE GRID 2005 Workshop and
which was subsequently invited for publication in this
journal. In the extended version of this article we have
added the management of hierarchical and collections of
topics. This addresses a critical problem in
publish/subscribe systems where there is a very large
number of topics, and where it is difficult to manage the
relationships that various topics have with each other. As far
as we know, this work presents the first solution to the
problem of facilitating the secure organization, management
and discovery of collections of topics that have dynamic,
real-time and continually changing spatial relationships with
other topics. Furthermore, the hierarchical and collections of
topics that we consider do not comprise a static set of topics
but one which is very fluid and continues to evolve over
time.

The remainder of this paper is organized as follows. In
section 2 we provide a brief overview of the
NaradaBrokering substrate which provided the basis for this
work. In sections 3, 4, 5 and 6 we include various details
pertaining to or topic creation and discovery scheme.
Section 7 highlights the fault tolerance and security aspects
of this scheme. Section 8 includes details about our scheme

On the Secure Creation, Organization and Discovery of Topics in Distributed Publish/Subscribe Systems

to manage hierarchical and collections of topics. Section 9
includes a discussion of various performance measurements
related to our implementation. Section 10 provides an
overview of related work in this area. Finally, in section 11
we present our conclusions.

2 BRIEF OVERVIEW OF NARADABROKERING

NaradaBrokering (Pallickara and Fox, 2003; Fox et al.,
2005; Fox and Pallickara, 2005; Pallickara and Fox, 2004)
is an open-source, distributed messaging infrastructure
based on the publish/subscribe paradigm. The smallest unit
of this distributed messaging substrate intelligently
processes and routes messages, while working with multiple
underlying communication protocols. We refer to this unit
as a broker. The broker network in NaradaBrokering is
based on hierarchical, cluster-based structure (Pallickara
and Fox, 2003). This cluster-based architecture allows
NaradaBrokering to support large heterogeneous client
configurations. The routing of events within the substrate is
very efficient (Pallickara and Fox, 2004) since for every
event, the associated targeted brokers are usually the only
ones involved in disseminations. Furthermore, every broker,
either targeted or en route to one, computes the shortest path
to reach target destinations while eschewing links and
brokers that have failed or have been failure-suspected.

The substrate incorporates support for both JMS and the
WS-Eventing specification. Work is currently underway on
incorporating support for the WS-Notification suite of
specifications. The NaradaBrokering substrate also
incorporates support for WS-ReliableMessaging (BEA et
al., 2004) and WS-Reliability (Fujitsu, 2004) that facilitates
reliable messaging between Web Services. Subscription
formats supported within the substrate include “/” separate
Strings, Integers, <tag, value> pairs, Regular expressions,
XPath and SQL queries. In NaradaBrokering entities can
also specify constraints on the qualities of service (QoS)
related to the delivery of events. The QoS pertain to the
reliable delivery, playbacks, order, duplicate elimination,
global timing services, security and size of the published
events and their encapsulated payloads. Additional
information regarding NaradaBrokering can be found in
Refs (Pallickara and Fox, 2003; Fox et al., 2005; Fox and
Pallickara, 2005; Pallickara and Fox, 2004).

3 TOPIC CREATION REQUEST

When an entity is interested in creating a topic, it needs to
create a topic creation request. A topic creation request
generally includes information pertaining to the topic.
Among the information encapsulated within the topic
creation request are –
1. Information regarding the creator and possibly the

institution that the creator belongs to
2. Information regarding the lifetime of this topic
3. Information regarding the topic – topic descriptors.

4. The topic synopsis type
5. The placeholder topic synopsis information – This

information is modified by the TDN as we will describe
subsequently.

We refer to information regarding the topic as topic
descriptors. Topic descriptors provide comprehensive
information regarding the topic. This topic description
information could be based on “/” separated strings
organizing data in a hierarchical fashion. Topic descriptors
could also be based on text which describes the data and
keywords which facilitate easier descriptive information. In
some cases topic descriptors could also be based on set of
properties on which SQL queries can be specified. The
descriptive information could also be organized based on an
XML document on which XPath or XQuery queries could
be specified. Finally, all of these topic descriptor formats
could be searched based on regular expressions.

Topics provide a synopsis pertaining to the content of an
event. In their simplest form this synopsis is based on “/”
separated Strings. There are however systems based on the
content-based variant of publish/subscribe systems where
this synopses can take more complex forms such as a series
of comma-separated <tag, value> pairs, XML Documents or
a set of Properties. In its creation request the topic creator
also needs to specify the synopsis type. Finally, in some
cases the topic creator will include place holder information.
The TDN adds information to this placeholder synopsis
information. We will discuss this in Section 5.2. For
security purposes the entity might also include its
credentials in this request.

4 TOPIC DISCOVERY NODES (TDN)

In our system TDNs are specialized nodes that keep track of
topics contained within the system. There could be more
than one TDN within the system. The information
maintained within individual TDNs may overlap each other.
However, we do not mandate that the information at
individual TDNs be exact replicas of each other.
Furthermore, some of the TDNs will be accessible without
the need to present credentials, while some TDNs may base
their responses on the credentials presented within the
system. Similarly it is entirely conceivable that one might
setup a TDN that manages discovery of topics created by
entities within a certain administrative realm. The TDN
serves three functions
a) As a repository of the topic information
b) Addition of system wide unique information to the

topic synopsis
c) Signing credentials for the creator which would be used

as a provenance regarding the topic ownership. This in
turn would then be used to delegate authorizations
regarding various publish/subscribe functions.

In order to receive entity interactions pertaining to topic
discovery, TDNs within the system subscribe to one or more
topics of the form Services/Discovery/Topics,
Services/Discovery/TopicDiscoveryNode, and
Services/Discovery/TopicDiscoveryNode/TDN-ID. The

 Shrideep Pallickara, Geoffrey Fox, Harshawardhan Gadgil

TDN-ID corresponds to the unique identifier associated
with a specific TDN and facilitates targeted interactions
with a given TDN.

4.1 Locating a TDN

Prior to propagating a topic creation request within the
system the entity needs to locate a TDN. To locate a TDN
the entity issues a TDN discovery request to the topic
Services/Discovery/TopicDiscoveryNode. The entity also
includes its ID in this request. The entity must have already
subscribed to Entity/EID where EID corresponds to the
entity identifier associated with the entity in question. The
entity may also include its credentials along with this
request.

There could be specialized nodes which respond only to
topic creation requests of a certain type. These TDNs might
choose to store information regarding topics from a given
institution or creator. The TDN may also choose to store
information based on the topic description information
contained in these requests.

4.1.1 Processing a discovery request

Upon receipt of this topic creation request a TDN may
respond based on the credentials and the discovery response
policy configuration associated with it. When a TDN does
indeed choose to respond to such a discovery request it
includes information regarding its identifier the TDN-ID
which facilitates targeted interactions through messages
published to the topic
Services/Discovery/TopicDiscoveryNode/TDN-ID. The
TDN might also include its credentials in its response.

4.1.2 Processing discovery responses

An entity may receive several responses to its TDN
discovery request. Upon receipt of these responses the entity
chooses one of the TDNs to communicate with. This choice
would be based on the response times or the credentials
associated with the responding TDN.

5 TOPIC CREATION AND ADVERTISEMENTS

In this section we outline issues related to the creation and
advertisement of a topic.

5.1 Issuing the topic creation request

The entity then proceeds to issue the topic creation request
to the selected TDN. The entity can target this request to the
TDN through the broker network by sending the request to
the topic Services/Discovery/TopicDiscoveryNode/TDN-ID
where TDN-ID corresponds to the identifier associated with
the TDN. For security purposes the entity may sign the
request and attach its credentials along with the message.

5.2 Processing a topic creation request

Upon receipt of a topic creation request the TDN generates
a new UUID. This UUID will now be part of the topic
synopsis. Once the TDN adds this UUID into the structure
of the topic synopsis, the topic synopsis associated with the
topic creation request is now unique. It must be noted that in
some cases this qualifier will replace the synopsis originally
in place. The topic synopsis structure associated with the
topic will now be unique throughout the system. Next, the
TDN takes all the information previously specified in the
topic creation request, along with the modified template
synopsis structure and proceeds to generate a hash (using
SHA-256) and proceeds to sign this.

The reason we have UUID generation at the TDN is
related to a security issue. Since the topic UUIDs can easily
be discovered in the system, a malicious user can present
this information to the TDN and request the TDN to issue
credentials regarding the provenance of this topic. A given
TDN has of course no way of determining if this UUID was
generated by the entity in question or if the entity has
simply gleaned this information through a previous
discovery process and now wishes to claim possession of
the topic. Our scheme for authorizations regarding
subscriptions and publishing relies on delegated credentials
and the vulnerability mentioned above would defeat our
scheme. On the other hand UUID generation at the TDN
prevents a malicious user from claiming some other topic as
theirs.

The signature, the topic information supplied and the
modified topic synopsis structure constitutes the topic
advertisement. The topic advertisement is then encapsulated
in a topic creation response and issued back to the entity
through the broker network by publishing the topic creation
response on Entity/EID.

5.3 Creating a topic advertisement

Upon receipt of the topic creation response, the entity gleans
the topic advertisement. The entity then proceeds to
advertise this information by issuing the advertisement to
the topic Services/Discovery/Topics. This message is then
delivered by the broker network to those TDNs that
previously subscribed to it.

A TDN does not maintain any information regarding the
topic creation that it serviced. Information about topics is
stored based on the topic advertisement propagations within
the system. TDNs maintain information regarding topic
advertisements, regardless of whether these advertisements
were created based on information provided by some other
TDN. TDNs keep track of the topic advertisements that
were advertised by entities. Of course different TDNs may
have policies regarding the type of information that it stores
and also regarding the provenance of these advertisements.

On the Secure Creation, Organization and Discovery of Topics in Distributed Publish/Subscribe Systems

6 TOPIC DISCOVERY

To discover topics an entity issues discovery requests. Upon
receipt of responses to the discovery request, the entity is
aware of constructing the right topic subscription requests.

6.1 Issuing a topic discovery request

An entity issues a topic discovery request for discovering
topics. The request encapsulates a search query. This query
could be a simple character String, an SQL query on certain
properties, an XPath or XQuery query and finally even a
regular expression. The discovery request would be sent to
all TDNs within the broker network by issuing the
discovery request to the topic Services/Discovery/Topics or
to a specialized TDN by sending it to
Services/Discovery/Topics/TDN-ID where TDN-ID
corresponds to the identifier associated with a specific TDN.
In most cases the best way to issue a discovery request
would be to first do an asynchronous location of TDNs and
then issue a discovery request to a subset of the available
TDNs.

6.2 Processing a topic discovery request

Upon receipt of this discovery request at a TDN, a TDN will
evaluate this query against the set of stored advertisements.
Different TDNs may have different schemes for evaluating
the search query on the set of stored advertisements. The
advertisements could be searched based on their creation
times, expiration times, duration of validity. Depending on
the strategies deployed at various TDNs the response times
for receipt of advertisements may vary.

6.3 Processing the topic discovery responses

The topic discovery responses encapsulate multiple topic
advertisements. These advertisements, as previously
articulated, contain topic synopsis information which can
facilitate publishing/subscribing to topics. The topics that an
entity subscribes to is based on the information contained in
the received advertisements. It is possible that an entity may
receive the same advertisement from multiple TDNs in
which case one might have a duplicate list.

6.4 Responding to unavailability of TDNs

If none of the TDNs respond, an alternative option would be
to flush the topic discovery request through the broker
network and have individual entities respond to the request.

7 SECURITY AND FAULT TOLERANT ASPECTS OF
THIS APPROACH

We first discuss the security issues pertinent to the
discovery, subscription and issuing events conforming to a
given template. Every aspect of the system from discovery

of TDNs, advertisements, topic discovery, subscription and
publication to topics can be secure. Every entity in the
system has credentials associated with them. This is
generally in the form of a certificate issued through some
out-of-band methods. The certificates identify entities and
TDNs. Upon receipt of topic creation requests the TDN
signs the topic advertisement. TDNs within the system are
the only ones authorized to sign topic advertisements.

The creator of a topic can, in turn, authorize users by
signing their credentials to publish or subscribe to the topic
that it created. The entity needs to present and demonstrate
possession of the right credentials to be authorized for
certain actions. TDNs will not respond to topic creation
requests, or topic advertisement disseminations, if these
actions are not accompanied by the right credentials.
Similarly, a broker will simply check to see if the entity has
the right credentials prior to disseminating its
publish/subscribe actions within the broker network.

We now proceed to enumerate the fault tolerant aspects of
our approach.
1. TDN Failures can occur, requests/responses to topic

creation requests can be lost
2. Entity failures can occur at any time. Since the

advertisements remain dormant until the entity issues
an explicit advertisement dissemination request, so state
is maintained during the creation process at any TDN
within the system. This in turn implies that no garbage
collection operations need to be performed within the
system.

3. A TDN need not be active at all times. In fact the
discovery scheme will work even if none of the TDNs
are available online. In this case the discovery request
will be propagated through the broker network

a. Entities that are currently present and are topic
creators can respond to this request. Of course
there would be a TTL associated with these
requests. Note that this scheme is akin to P2P
requests.

4. Topic Advertisements /Discovery requests-responses
can be lost en route to TDNs and entities alike.

8 MANAGING THE ORGANIZATION AND DISCOVERY
OF TOPICS: HIERARCHICAL AND COLLECTIONS

In publish/subscribe systems there tend to several topics that
exist within the system. Some of these topics have
hierarchical relationships with each other and in some cases
the topics have spatial relationships with other topics simply
because they are part of the same application (for example
the audio, video and chat streams in a collaborative
application). Furthermore, relationships that topics have
with each other continually evolve over the lifetime of a
system. The management, organization and discovery of
topics in such settings is a difficult problem and is
exacerbated as the scale of the system increases. These
issues tend to be dealt with in an ad-hoc, application
specific manner. In this section we provide a framework for
managing and organizing these topics. We also provide a

 Shrideep Pallickara, Geoffrey Fox, Harshawardhan Gadgil

rich discovery scheme which can be leveraged to discover
the inter-relationships that topics have with each other. In
this section, we deal with the two scenarios that we outlined
earlier. The first case pertains to the hierarchical
organization of topics, while the second one pertains to
managing collections of related topics.

8.1 Managing Hierarchical Topics

In the hierarchical organization of topics we deal with the
management of topics that have hierarchical relationships
with each other. It should be possible to discover the parent
or child topics associated with a given topic. Traditionally,
hierarchical organization of topics has been done using “/”
separated Strings; here, a topic of the form A/B/C is
interpreted to imply that A is the parent of topic B, while
topic C is the child of topic B. In such systems, a
subscription to the parent topic automatically implies
subscriptions to all the child topics. However, subscription
to a child topic does not imply subscription to any of the
parent topics. Thus, if a user has subscribed to receive
scores over the topic Scores/Sports/NBA it will receive
scores from all NBA games; however, a user who has
subscribed to receive scores for the Indiana Pacers
basketball team through a topic
Scores/Sports/NBA/IndianaPacers will receive scores
related only to the Pacers.
In some cases, an entity may be interested in publishing
streams related to a specific player. In this case, the entity
may publish the scores on a topic such as
Scores/Sports/NBA/IndianaPacers/ONeal. In general in
the case of hierarchical topics subscriptions to the child
topics provides access to finer granularity of the published
content. Furthermore, subscriptions to parent topics
typically result in higher traffic as compared to subscription
to the child topics.
There are some disadvantages to schemes that are based on
hierarchical topics. These include

1. A parent topic has no control over either the
breadth, depth or the number of child topics within
the topic hierarchy.

2. The topic string itself reveals the hierarchy of the
topics. It is thus possible to launch denial of service
attacks by simply flooding the system with
messages to topics within the hierarchy.

3. Since no one really owns topics or enforces
hierarchies, it is generally quite difficult to
discover the structure of the topic hierarchy. This
also results in the inability to enforce who would
be authorized to discover such information.

In the scheme that we propose, we address these
disadvantages.

8.1.1 The Topic Creation Request
In the topic creation request, the topic owner includes
additional fields to facilitate hierarchical organization of
topics. These include

1. RootTopic: This is true by default and specifies that
the topic in question is the root topic of a topic
hierarchy.

2. Allow_Child_Topics: This is false by default, and
indicates if this node is willing to host child topics.

The other fields are present only if this node authorizes (or
is authorized to have) child topics.

3. MaxDepth: the number of levels including this one
that is allowed within the topic sub-tree that
originates at this topic. A value of 0 for this field
indicates that there are no restrictions on the depth.

4. MaxWidth: the total number of immediate child
nodes that any topic within the topic sub-tree can
have. A value of 0 for this field indicates that there
are no restrictions on the depth.

5. ParentTopic: The topic creation request also
includes the Topic which would be the parent of
the topic in question.

The topic creation request also includes information about
entities that are authorized, or barred, from either registering
child topics or discovering the topic hierarchy. This is in
addition to the information included in the topic creation
request about the entities that are authorized to discover
them.

8.1.2 Registration of Child Topics
To register a child topic, the owner of the child-topic first
needs to discover the immediate-parent topic. Next, it needs
to issue a topic creation request which specifies this topic as
the parent topic to the topic that will be created at the TDN.
Upon receipt of this request, the TDN checks to see if the
entity is authorized to perform this operation and if this
operation would violate any of the constraints specified by
the parent topic any of the successive parent topics within
the topic hierarchy. It should be noted that restrictions at the
parent nodes take precedence over those specified by child
nodes within the topic hierarchy. If the restrictions specified
within a given child node violates any of the restrictions
specified by the parent, the topic creation request results in a
failure. If a child topic’s registration breaks the MaxDepth
restriction imposed by any of its immediate parents the
registration request results in an error. Similarly, if the
addition of topic breaks the MaxWidth restriction at its
parent the registration request results in an error. For
example if there is a topic T which is set up as a root topic
with a MaxDepth of 2. If there is a request to register a child
topic which specifies the MaxDepth as 2 or 0, that request
results in an error. This is because it violates the maximum
depth request specified in the root topic. If the entity is
authorized to register a child topic and no constraints are
violated within the topic hierarchy, the TDN generates a
UUID that would be part of the topic synopsis as describe
earlier. The TDN then also updates the hierarchical tree that
it maintains internally to reflect the addition of this child
topic.
The lifetime of a child topic is determined by the lifetime of
its parent. When a topic expires, all child topics also expire.
This is built into the topic advertisement. The expiration
time associated with a child topic never exceeds that of any
of the parent nodes within its topic hierarchy.

On the Secure Creation, Organization and Discovery of Topics in Distributed Publish/Subscribe Systems

8.1.3 Discovery Operations
A child topic may further restrict its discovery in a manner
which is consistent with restrictions specified by the root
topic. As a general rule when an entity subscribes to a
parent topic it can also request subscriptions to all child
topics (or subscriptions to child topics up to a certain depth)
within the topic hierarchy. A given topic will be part of
exactly one topic hierarchy and has exactly one parent.
Entities may also register for change notifications to the
underlying topic hierarchy. Addition of child nodes to the
topic hierarchy are automatically routed to these registered
entities.
It should be noted that the topics themselves do not contain
any visible footprints of the topic hierarchy. In the case of
simple string topics, for example, every topic is based on a
128-bit UUID. There is thus no “/” separated string which
reveals part of the topic hierarchy. Furthermore, if an entity
is authorized to discover the topic hierarchy, that entity can
discover the entire (or a specific sub-tree) topic hierarchy
depending on discovery restrictions. Authorized entities are
allowed to discover information about the topic hierarchy of
a given topic. The discovery operations can target discovery
of the immediate parent nodes or the entire set of child
topics or both.
In some cases, if an entity’s registration or discovery request
is signed by the owner of the appropriate topic owner within
the hierarchy, registration and discovery would be possible.
Once again all exchanges between the entities are secured
using a combination of symmetric and asymmetric key
encryptions. In general topics at increasing depths of the
topic hierarchy may add entities that are authorized to
discover the topics. On the other hand discovery of the root
topic within a deep topic hierarchy would probably be
restricted to fewer entities.

8.2 Managing Collections of Topics

An application based on the publish/subscribe paradigm
typically deals with a large number of topics. As an
exemplar we consider a collaborative application that is
based on the publish/subscribe paradigm. Further, this
application consumes a wide variety of multimedia streams
such as audio, video, whiteboards, images, shared displays
and text. There is thus a collection of topics that an entity
has to subscribe to, in order to ensure seamless operation.
Furthermore, the number of topics that an application has to
subscribe to is not usually static and can vary substantially
over time. Topics may be valid for very short durations and
the number of related topics may change continually over
time with entities publishing related streams. As an
example, consider the scenario where a speaker’s audio
stream is in English, but someone else would perform the
role of real-time interpreter and generate new audio streams
in say Greek and somebody else would do the same for
Latin; in some cases, there may be multiple streams in
Greek. The participants within the collaborative session thus
have access to multiple audio streams, depending on their
authorizations, if they subscribe to the right topic
corresponding to the audio stream of their choice. There

thus needs to be a framework which facilitates clients and
applications to cope with the high flux inherent in such
situations by providing accurate information about the
topics that are part of the collection at any given point of
time.

As far as we know no system currently incorporates
schemes to manage collection of topics. We believe that
there would be systems that manage this problem in an ad
hoc, application-specific manner. The scheme that we
propose provides a generalized framework for the
management of collections of topics and to facilitate
discovery of topics that part of such collections in dynamic,
high flux environments.

A topic collection is a tree-based structure which is used
to manage the topics that comprise the collection. A
collection may itself be composed of multiple collections.
Depending on the topic owner’s credentials and
accompanying authorizations, a given topic can be
registered or deregistered from any collection. A collection
is thus amenable to reorganizations, where the constituent
topics and collections may be added, removed or
reorganized within the collection’s structure. Additionally, a
given topic or collection may be part of multiple collections
concurrently. All nodes within the collection tree are
collections with the topics constituting the leaf nodes. An
example of the collection tree is depicted in Figure 1.

C1

T1C2

C3

T2

T3 T4

T6

T5

Figure 1 An example collection tree

8.2.1 Creating a Topic Collection

The creation of a collection is very similar to the creation of
topic. Here the owner of a collection, issues a request to the
TDN to request the creation of a topic collection. This
request includes the following:
1. Information regarding the creator and possibly the

institution that the creator belongs to
2. Information regarding the lifetime of this collection
3. Information regarding the collection –descriptors

outlining the collection.
4. Authorization information related to the discovery of

this collection – this controls the entities that authorized
to discover the collection and those that are not.

 Shrideep Pallickara, Geoffrey Fox, Harshawardhan Gadgil

5. Information regarding restrictions on the breadth and
depth of the collection tree hosted by this node. The
owner may also specify the limit on the total number of
topics that can be part of this collection.

Some collections may be created with a fixed number of
topics, where the structure of the collection cannot be
changed or modified at run-time. In some cases, the
mutations to the collection’s structure may be allowed but
would be based on the credentials associated with the
entities that are initiating this action. When a collection is
being created the owner can specify if the collection can be
1. Part of other collections, i.e. it could be a node of a

larger collection tree
2. Can have child collection nodes in the sub-tree of

which it is the root node.
3. Restrictions on who is authorized to perform the actions

outlined above.
4. Restrictions on the Topics, i.e. credentials of the topic

owners, that will be the leaf nodes of the collection or
those that would be part of the sub-tree of which the
collection node in question is the root.

After discovering the best available TDN, the entity issues
a collection request to the TDN. This TDN then generates a
new UUID. This UUID will now be unique identifier
associated with the collection. Next, the TDN takes all the
information that has been specified in the topic creation
request, along with the modified template synopsis structure
and proceeds to generate a hash (such as using SHA-256
algorithm) and sign it. This constitutes the collection
advertisement. The collection advertisement is then
encapsulated in a collection creation response and issued
back to the entity through the broker network by publishing
the creation response on Entity/EID topic. Upon receipt of
the collection creation response, the entity verifies the
signature and the integrity of the message, and then
proceeds to glean the collection advertisement. The entity
then proceeds to advertise this information to the available
TDNs within the system.

8.2.2 Addition of Topics and Collections to an existing
Collection

Additions of topics and collections to an existing collection
can be performed at any time. When an entity tries to
register a topic as part of collection, it needs to satisfy three
requirements. First, the entity should be the owner of the
topic and demonstrate possession of the appropriate
credentials. Second, the entity must indeed be authorized to
do so by the creator of the collection. Third, the addition of
the topic to the collection does not violate restrictions
pertaining to the breadth of the collection tree. In order to
deregister a topic from a collection, the topic owner simply
needs to demonstrate possession of the appropriate
credentials.

When a collection node is added as a sub-tree to an
existing collection structure, the addition should be
consistent with the constraints specified by the immediate
parent nodes right up till the root node of the collection tree.

Besides the authorization constraints, the addition of the
collection should not violate restriction pertaining to the
depth of the collection tree.

8.2.3 Keeping track of the anatomy of the Collection

The owner of a collection, and others as authorized by the
collection owner, can keep track of the anatomy of the
collection by registering to receive change notifications
corresponding to changes to the collection’s structure.
Associated with every collection is a UUID-based topic
over which these change notifications are issued.
Authorized entities can subscribe to this topic and keep
track of the topics that they need to subscribe to. There can
sometimes be several collections that are part of the
collection’s hierarchy. Each of these collections may have
their own change-notification topics, which entities may or
may not be authorized to receive. Authorizations that are
valid for the root collection are valid for the sub-collections.
Thus, changes to sub-trees within the collection tree will be
routed to those authorized to receive notifications about the
collection tree.

8.2.4 Discovery operations related to a Collection

Depending on their credentials different entities will be
authorized to discover information pertaining to different
parts of the collection tree. The discovery operation will
support the discovery of the following.
1. The complete list of topics within the collection

hierarchy
2. The list of collections that constitute the collection tree

or sub-trees within the structure.
3. The list of topics that are part of a collection sub-tree

within the structure.
4. The list of collections that a given topic is a part of.

It should be noted that the number of topics within a
collection is in a constant state of flux, the discovery
operations will return the list of topics/collections based on
the information available at the TDN at any given time.

9 PERFORMANCE MEASUREMENTS

We tested our system with two topologies. Table 1
summarizes the machines used for testing and their
configuration.

Machine Machine
Specification

JVM Version

Complexity
Indianapolis,
IN, USA

SunOS
complexity 5.9
Generic_112233-
03 sun4u sparc
SUNW,Sun-Fire-
880

Java HotSpot(TM)
Client VM (build
1.4.2-beta-b19,
mixed mode)

Local
Machine for
testing, CGL,
Bloomington,

Pentium 4, 1.6
GHz, 1 GB RAM,
Win XP
Professional

Java HotSpot(TM)
Client VM (build
1.4.2_06-b03,
mixed mode)

On the Secure Creation, Organization and Discovery of Topics in Distributed Publish/Subscribe Systems

IN Edition

Table 1 Machine Configuration

In the first topology, the Topic Discovery Node (TDN)
and the Clients were placed on separate machines (Refer
Figure 2).

Figure 2 Wide Area Topology

Figure 3 shows the topic creation time in this topology.
This time includes the following steps.
1. Entity sends a TDN discovery request,
2. TDN sends an encrypted TDN Discovery response,
3. Entity sends an encrypted Topic Creation request,
4. TDN creates a Topic Advertisement,
5. TDN computes the digest of the Topic Advertisement,

signs it with its private key and broadcasts a packet
containing the Topic Advertisement, its X.509
Certificate and the signed digest. This response is
encrypted and sent to the Entity,

6. Entity validates the signed Topic Advertisement and
broadcasts the signed advertisement over a pre-defined
topic to all TDNs.

Figure 3 Topic Creation (Wide Area Topology)

Figure 4 shows the distribution of time spent in various

activities in the TDN. For this topology, we also timed the
process of discovering a topic. Figure 5 shows the time
required when 1, 10 and 100 topics were discovered. Note
that these experiments were carried out for string topic
synopsis types only. Ref (Pallickara and Fox, 2004) contains
a detailed discussion on other types of topic synopsis

matching such as tag-value pairs, integers and regular
expressions among others.

Figure 4 Time spent in Topic Creation sub-activities (Wide Area
Topology)

Figure 5 Topic Discovery (Wide Area Topology), String topics

 All values in MilliSeconds
 Mean Std.

Dev.
Max Min Std.

Error
Topic
Creation

641.06 38.51 723.18 551.63 3.85

Topic Discovery
Discover 1
Topic

236.86 32.01 348.88 178.95 3.20

Discover 10
Topics

378.33 33.42 548.11 32..68 3.34

Discover
100 Topics

829.69 73.61 1057.5 712.84 7.36

Table 2 Metrics for Topic Creation and Discovery (Wide
Area Topology)

Note that in Figure 5 the discovery time increases as more
topics satisfying the specified criteria are discovered. Since
the Topic Discovery responses are also encrypted, we
conclude that the increase in time for overall topic discovery
is primarily because of the increase in time for encrypting

 Shrideep Pallickara, Geoffrey Fox, Harshawardhan Gadgil

bigger response packet. Table 2 lists the metrics associated
with wide area topology.

In our second topology (Figure 6), we ran the TDN and
the clients on the same machine. Figure 7 - Figure 9 show
the corresponding results.

Figure 6 Local Machine Topology

Figure 7 Topic Creation (Local Machine Topology)

Figure 8 Time spent in Topic Creation sub-activities (Local
Machine Topology)

Our scheme relies heavily on digital certificates and we
observed that a majority of percentage of processing time of
the TDN is spent in encrypting the messages. The
encryption procedure is a two step process. In the first step a
random SecretKey is generated and the TDN response is
encrypted using this secret key. This secret key is then
encrypted using the public key of the entity (topic creator or
topic discovery client) in question. Further all topic

advertisements are signed by the topic creator. A signed
topic advertisement contains 3 parts, namely, the Topic
Advertisement, the X.509 certificate of the creator and the
signed digest of the topic advertisement.

Figure 9 Topic Discovery (Local Machine Topology) , String
Topics

Table 3 summarizes the metrics associated with the
process in the local area topology.

 All values in MilliSeconds

 Mean Std.
Dev.

Max. Min. Std.
Error

Topic
Creation

211.26 22.19 319.5 180.35 2.22

Topic Discovery
Discover 1
Topic

65.86 10.74 99.38 47.26 1.07

Discover
10 Topics

104.25 21.49 258.50 81.29 2.15

Discover
100
Topics

480.72 49.89 672.75 422.67 4.99

Table 3 Metrics for Topic Creation and Discovery (Local
Machine Topology)

10 RELATED WORK

The WS-Topics (IBM et al., 2004) specification which is
part of the WS-Notification suite of specifications
incorporates the concept of topic spaces which facilitates the
organization and categorization of topics. There a typically
one or more hierarchically organized topic trees within a
topic-space. Here we note that the specification does indeed
support cases where there no hierarchical topics. Our
scheme can leverage the WS-Topics specification by using
it to organize topic spaces within the TDN. We were a little
surprised with the lack of activity in the area of creation and
discovery of topics in publish/subscribe systems. Systems
such as Gryphon (Banavar, 1999), Siena (Carzaniga et al.,

On the Secure Creation, Organization and Discovery of Topics in Distributed Publish/Subscribe Systems

2000), Elvin (Segall and Arnold, 1997) do not seem to have
addressed this issue. As far as we know JMS based systems
such as SonicMQ (S SonicMQ JMS Server
http://www.sonicsoftware.com/) and openJMS (The
OpenJMS Project http://openjms.exolab.org/) do not
address this discovery issue either; though both these
maintain something similar to topic spaces. It is our
conjecture that applications developers include ad hoc
solutions to ensure the propagation of topic information to
relevant clients.

In the area of P2P systems a related issue is that of
resource discovery. In one of the variants of P2P systems
based on distributed hash tables (DHT) every peer has a
unique identifier. This identifier determines the location of
the peer within the overlay network. To discover a resource,
such as a file, the peer first needs to know the hash value
associated with this resource. DHT based systems store
resources at the peer who identifier is closest to that of the
hash associated with the aforementioned resource. Systems
based on DHTs include Pastry (Rowstron and Druschel,
2001), JXTA (The JXTA Project and Peer-to-Peer
Technology http://www.jxta.org) and Squid (Schmitd and
Parashar, 2004). FLAPPS (Michel and Reiher, 2001; Michel
and Reiher, 2001) provides a generalized infrastructure for
peer network design. It should be noted that though
FLAPPS is not DHT based it can indeed be used to support
DHT-style systems. FLAPPS-based services define
hierarchical, flexible and decomposable namespaces. Here,
service representation of names can vary from delimited text
strings to an XML parse tree. Furthermore, this namespace
also supports prefix names while locating specific resources.

11 CONCLUSIONS

In this paper we presented our scheme to discover topics in
distributed publish/subscribe settings. We also included
performance measurements related to our implementation.
There are a few advantages related to our approach which
we enumerate below.
a) No singe point of failure: Any component within the

system can fail. The scheme does not rely on any
component being available at all times. This is more
clearly outlined in the section 7.

b) Asynchronous discovery of topics: The discovery of
topics is not time bound nor do we make any
assumptions regarding the response times associated
with these responses.

c) Discovery of topics can be based on a variety of search
formats such as Regular Expressions, SQL queries or
XPath Queries. It should be noted that neither the TDN
which signed the advertisement nor the entity which
initiated its creations needs to be present in the system
for an entity to discover the topic advertisement.

d) Every interaction within the system can be secured and
require demonstrating the possession of right
credentials before any actions can proceed. The created
topic advertisement can itself be secured by encrypting

the advertisement with a symmetric key and securing
this advertisement key with the creator’s public key.

REFERENCES

Mark Happner, Rich Burridge and Rahul Sharma. Sun
Microsystems. Java Message Service Specification. 2000.
http://java.sun.com/products/jms

Web Services Eventing. Microsoft, IBM & BEA.
http://ftpna2.bea.com/pub/downloads/WS-Eventing.pdf

Web Services Notification (WS-Notification). IBM, Globus,
Akamai et al.
http://www-
106.ibm.com/developerworks/library/specification/ws-
notification/

The Web Services Resource Framework.
http://www.globus.org/wsrf/

I. Foster, C. Kesselman, J. Nick, S. Tuecke, “The Physiology of
the Grid: An Open Grid Services Architecture for Distributed
Systems Integration.” Open Grid Service Infrastructure WG,
Global Grid Forum, June 22, 2002. Available from
http://www.globus.org/research/papers/ogsa.pdf.

The Open Grid Services Infrastructure (OGSI).
http://www.gridforum.org/Meetings/ggf7/drafts/draft-ggf-ogsi-
gridservice-23_2003-02-17.pdf

D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C.
Ferris, and D. Orchard, “Web Services Architecture.” W3C
Working Group Note 11 February 2004. Available from
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/.

Shrideep Pallickara and Geoffrey Fox. NaradaBrokering: A
Middleware Framework and Architecture for Enabling Durable
Peer-to-Peer Grids. Proceedings of ACM/IFIP/USENIX
International Middleware Conference Middleware-2003.

Geoffrey Fox, Shrideep Pallickara, Marlon Pierce, Harshawardhan
Gadgil. Building Messaging Substrates for Web and Grid
Applications. (To appear) in the Special Issue on Scientific
Applications of Grid Computing in the Philosophical
Transactions of the Royal Society of London 2005.

Geoffrey Fox and Shrideep Pallickara. Deploying the
NaradaBrokering Substrate in Aiding Efficient Web & Grid
Service Interactions. Invited paper for Special Issue of the
Proceedings of the IEEE on Grid Computing. Vol 93, No 3. pp
564-577. March 2005.

Shrideep Pallickara and Geoffrey Fox. On the Matching Of Events
in Distributed Brokering Systems. Proceedings of IEEE ITCC
Conference on Information Technology. April 2004. pp 68-76
Volume II.

Web Services Reliable Messaging Protocol (WS-
ReliableMessaging)
ftp://www6.software.ibm.com/software/developer/library/ws-
reliablemessaging200403.pdf, BEA et al., 2004

Web Services Reliable Messaging TC WS-Reliability.
http://www.oasis-
open.org/committees/download.php/5155/WS-Reliability-
2004-01-26.pdf, Fujitsu, 2004

Web Services Topics (WS-Topics). IBM, Globus, Akamai et al.
ftp://www6.software.ibm.com/software/developer/library/ws-
notification/WS-Topics.pdf

G. Banavar et al. An Efficient Multicast Protocol for Content-
Based Publish-Subscribe Systems. In Proceedings of the IEEE
International Conference on Distributed Computing Systems,
Austin, Texas, May 1999.

Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf.
Achieving scalability and expressiveness in an internet-scale
event notification service. In Proceedings of the 19th ACM
Symposium on Principles of Distributed Computing, pages
219–227, Portland OR, USA, 2000.

http://www.sonicsoftware.com/
http://openjms.exolab.org/
http://www.jxta.org/
http://java.sun.com/products/jms
http://ftpna2.bea.com/pub/downloads/WS-Eventing.pdf
http://www-106.ibm.com/developerworks/library/specification/ws-notification/
http://www-106.ibm.com/developerworks/library/specification/ws-notification/
http://www-106.ibm.com/developerworks/library/specification/ws-notification/
http://www.globus.org/wsrf/
http://www.globus.org/research/papers/ogsa.pdf
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
ftp://www6.software.ibm.com/software/developer/library/ws-reliablemessaging200403.pdf
ftp://www6.software.ibm.com/software/developer/library/ws-reliablemessaging200403.pdf
http://www.oasis-open.org/committees/download.php/5155/WS-Reliability-2004-01-26.pdf
http://www.oasis-open.org/committees/download.php/5155/WS-Reliability-2004-01-26.pdf
http://www.oasis-open.org/committees/download.php/5155/WS-Reliability-2004-01-26.pdf
ftp://www6.software.ibm.com/software/developer/library/ws-notification/WS-Topics.pdf
ftp://www6.software.ibm.com/software/developer/library/ws-notification/WS-Topics.pdf

 Shrideep Pallickara, Geoffrey Fox, Harshawardhan Gadgil

Bill Segall and David Arnold. Elvin has left the building: A
publish/subscribe noti.cation service with quenching. In
Proceedings AUUG97, pages 243–255, Canberra, Australia,
September 1997.

Antony Rowstron and Peter Druschel. Pastry: Scalable,
decentralized object location and routing for large-scale peer-
to-peer systems. Proceedings of Middleware 2001.

C. Schmidt and M. Parashar. Enabling Flexible Queries with
Guarantees in P2P Systems, IEEE Network Computing,
Special Issue on Information Dissemination on the Web, IEEE
Computer Society Press, Vol. 8, No. 3, pp. 19- 26, May/June
2004.

B. Scott Michel, Peter L. Reiher: Peer-through-Peer
Communication for Information Logistics. GI Jahrestagung (1)
2001: 248-256

B. Michel and P. Reiher. Peer-to-Peer Internetworking. In
OPENSIG, September 2001

