
On the Discovery of Topics in Distributed Publish/Subscribe systems
Shrideep Pallickara, Geoffrey Fox and Harshawardhan Gadgil

(spallick, gcf hgadgil)@indiana.edu
Community Grid Labs, Indiana University

1 Introduction

Messaging is a fundamental primitive in distributed
systems. Entities communicate with each other through
the exchange of messages, which can encapsulate
information of interest such as application data, errors and
faults, system conditions, search and discovery of
resources. Messaging infrastructures can be based on
several distinct paradigms viz. publish/subscribe systems,
queuing systems, and peer-to-peer systems among others.
Our work focuses on a systems based on the
publish/subscribe paradigm.

The publish/subscribe paradigm is a powerful one and
one in which there is a clear decoupling of the message
producer and consumer roles that interacting
entities/services might have. The routing of messages
from the publisher to the subscriber is within the purview
of the message oriented middleware (MOM), which is
responsible for routing the right content from the
producer to the right consumers. In publish/subscribe
systems a subscriber registers its interest in events by
subscribing to topics. In its simplest form these topics are
typically “/” separated Strings, these have sometimes also
been referred to as subjects. When a publisher issues
events on a specific topic the middleware substrate routes
the events to the subscribers that have registered an
interest in this topic.

 There are several standards/specifications that
define the exchanges, control messages and
communications within the publish/subscribe paradigm.
This facilitates the development of interoperable systems
based on conformance to these aforementioned
specifications. Here we note three such specifications.
First is the Java Message Service (JMS) [1] specification
from Sun which defines a set of Java interfaces that
enables the development of pub/sub applications. One of
the excellent features of JMS is the ability that clients
have of replacing the underlying provider with little or
perhaps no change to the applications. Second, is the WS-
Eventing [2] specification which enables web services to
leverage the pub/sub paradigm; here, a sink service
registers its interest (subscribes) in certain events with
another source service (the publisher). When an event
occurs the source routes the notification describing the
occurrence to the registered sinks that had matching

subscriptions. Finally there is WS-Notification [3], which
is part of the Web Service Resource Framework (WSRF)
[4] . WSRF is a realignment of the dominant Open Grid
Service Infrastructure [5, 6] to be more in line with the
emerging consensus [7] within the Web Services
community. WS-Notification is sophisticated
specification designed to meet the demands of modern
Grid systems. WSN comprises WS-BaseNotification,
WS-BrokeredNotification and WS-Topics.

In each of these systems interactions proceed with the
assumption that the entity knows what the topic that it
needs to subscribe to. Here we note that the WS-
Notification specification incorporates the concept of
topic spaces which facilitates the organization and
categorization of topics. A topic space typically contains
multiple trees of topics (some or all of which would be
based on hierarchical topics). There could be multiple
topic spaces each of which has its own namespace. The
work that we present here can be used in tandem with the
WS-Topics, and can be used by entities leveraging JMS,
WS-Eventing or WS-Notification specifications.

 In this paper we present a framework for the
discovery of topics in publish/subscribe systems. This
scheme facilitates the creation, advertisement and
authorized discovery of topics by entities within the
system. The discovery process is a distributed process and
is resilient to failures that might take place within the
system. In this paper we also include empirical results
from our experiments related to the implementation of
our scheme. We have performed these experiments in the
context of our system NaradaBrokering [1-7] which is a
distributed messaging infrastructure based on the
publish/subscribe paradigm.

2 Brief Overview of NaradaBrokering

NaradaBrokering [8-11] is an open-source, distributed
messaging infrastructure based on the publish/subscribe
paradigm. The smallest unit of this distributed messaging
substrate intelligently processes and routes messages,
while working with multiple underlying communication
protocols. We refer to this unit as a broker. The broker
network in NaradaBrokering is based on hierarchical,
cluster-based structure [8]. This cluster-based architecture
allows NaradaBrokering to support large heterogeneous

client configurations. The routing of events within the
substrate is very efficient [11] since for every event, the
associated targeted brokers are usually the only ones
involved in disseminations. Furthermore, every broker,
either targeted or en route to one, computes the shortest
path to reach target destinations while eschewing links
and brokers that have failed or have been failure-
suspected.

The substrate incorporates support for both JMS and the
WS-Eventing specification. Work is currently underway
on incorporating support for the WS-Notification suite of
specifications. The NaradaBrokering substrate also
incorporates support for WS-ReliableMessaging [12] and
WS-Reliability [13] that facilitate reliable messaging
between Web Services. Subscription formats supported
within the substrate include “/” separate Strings, Integers,
<tag, value> pairs, regular expressions, XPath and SQL
queries. In NaradaBrokering entities can also specify
constraints on the qualities of service (QoS) related to the
delivery of events. The QoS pertain to the reliable
delivery, playbacks, order, duplicate elimination, global
timing services, security and size of the published events
and their encapsulated payloads. Additional information
regarding NaradaBrokering can be found in Refs [8-11].

3 Topic Creation request

When an entity is interested in creating a topic, it needs to
create a topic creation request. A topic creation request
generally includes information pertaining to the topic.
Among the information encapsulated within the topic
creation request are –

[1] Information regarding the creator and possibly
the institution that the creator belongs to

[2] Information regarding the lifetime of this topic
[3] Information regarding the topic – topic

descriptors.
[4] The topic synopsis type
[5] The placeholder topic synopsis information –

This information is modified by the TDN as we
will describe subsequently.

We refer to information regarding the topic as topic
descriptors. Topic descriptors provide comprehensive
information regarding the topic. This topic description
information could be based on “/” separated strings
organizing data in a hierarchical fashion. Topic
descriptors could also be based on text which describes
the data and keywords which facilitate easier descriptive
information. In some cases topic descriptors could also be
based on set of properties on which SQL queries can be
specified. The descriptive information could also be
organized based on an XML document on which XPath
or XQuery queries could be specified. Finally, all of these

topic descriptor formats could be searched based on
regular expressions.

Topics provide a synopsis pertaining to the content of an
event. In their simplest form this synopsis is based on “/”
separated Strings. There are however systems based on
the content-based variant of publish/subscribe systems
where this synopses can take more complex forms such as
a series of comma-separated <tag, value> pairs, XML
Documents or a set of Properties. In its creation request
the topic creator also needs to specify the synopsis type.
Finally, in some cases the topic creator will include place
holder information. The TDN adds information to this
placeholder synopsis information. We will discuss this
issue in a later section. For security purposes the entity
might also include its credentials in this request.

4 Topic Discovery Nodes (TDN)

In our system TDNs are specialized nodes that keep track
of topics contained within the system. There could be
more than one TDN within the system. The information
maintained within individual TDNs may overlap each
other. However, we do not mandate that the information
at individual TDNs be exact replicas of each other.
Furthermore, some of the TDNs will be accessible
without the need to present credentials, while some TDNs
may base their responses on the credentials presented
within the system. Similarly it is entirely conceivable that
one might setup a TDN that manages discovery of topics
created by entities within a certain administrative realm.
The TDN serves three functions

a) As a repository of the topic information
b) Addition of system wide unique information to

the topic synopsis
c) Signing credentials for the creator which would

be used as a provenance regarding the topic
ownership. This in turn would then be used to
delegate authorizations regarding various
publish/subscribe functions.

In order to receive entity interactions pertaining to topic
discovery TDNs within the system subscribe to one or
more topics of the form Services/Discovery/Topics,
Services/Discovery/TopicDiscoveryNode,
Services/Discovery/TopicDiscoveryNode/TDN-
ID. The TDN-ID corresponds to the unique identifier
associated with a specific TDN and facilitates targeted
interactions with a given TDN.

4.1 Locating a TDN
Prior to propagating a topic creation request within the
system the entity needs to locate a TDN. To locate a TDN
the entity issues a TDN discovery request to the topic
Services/Discovery/TopicDiscoveryNode. The

entity also includes its ID in this request. The entity must
have already subscribed to Entity/EID where EID
corresponds to the entity identifier associated with the
entity in question. The entity may also include its
credentials along with this request.

There could be specialized nodes which respond only to
topic creation requests of a certain type. These TDNs
might choose to store information regarding topics from a
given institution or creator. The TDN may also choose to
store information based on the topic description
information contained in these requests.

4.1.1 Processing a discovery request
Upon receipt of this topic creation request a TDN may
respond based on the credentials and the discovery
response policy configuration associated with it. When a
TDN does indeed choose to respond to such a discovery
request it includes information regarding its identifier the
TDN-ID which facilitates targeted interactions through
messages published to the topic
Services/Discovery/TopicDiscoveryNode/TDN-
ID. The TDN might also include its credentials in its
response.

4.1.2 Processing discovery responses
An entity may receive several responses to its TDN
discovery request. Upon receipt of these responses the
entity chooses one of the TDNs to communicate with.
This choice would be based on the response times or the
credentials associated with the responding TDN.

5 Topic Creation and Advertisements

In this section we outline issues related to the creation
and advertisement of a topic.

5.1 Issuing the topic creation request
The client then proceeds to issue the topic creation
request to the selected TDN. The entity can target this
request to the TDN through the broker network by
sending the request to the topic
Services/Discovery/TopicDiscoveryNode/TDN-
ID where TDN-ID corresponds to the identifier
associated with the TDN. For security purposes the entity
may sign the request and attach its credentials along with
the message.

5.2 Processing a topic creation request
Upon receipt of a topic creation request the TDN
generates a new UUID. This UUID will now be part of
the topic synopsis. Once the TDN adds this UUID into
the structure of the topic synopsis, the topic synopsis
associated with the topic creation request is now unique.

It must be noted that in some cases this qualifier will
replace the synopsis originally in place. The topic
synopsis structure associated with the topic will now be
unique throughout the system. Next, the TDN takes all
the information previously specified in the topic creation
request, along with the modified template synopsis
structure and proceeds to generate a hash (using SHA-
256) and proceeds to sign this.

The reason we have UUID generation at the TDN is
related to a security issue. Since the topic UUIDs can
easily be discovered in the system, a malicious user can
present this information to the TDN and request the TDN
to issue credentials regarding the provenance of this topic.
A given TDN has of course no way of determining if this
UUID was generated by the entity in question or if the
entity has simply gleaned this information through a
previous discovery process and now wishes to claim
possession of the topic. Our scheme for authorizations
regarding subscriptions and publishing relies on delegated
credentials and the vulnerability mentioned above would
defeat our scheme. On the other hand UUID generation at
the TDN prevents a malicious user from claiming some
other topic as theirs.

The signature, the topic information supplied and the
modified topic synopsis structure constitutes the topic
advertisement. The topic advertisement is then
encapsulated in a topic creation response and issued back
to the entity through the broker network by publishing the
topic creation response on Entity/EID.

5.3 Creating a topic advertisement
Upon receipt of the topic creation response, the entity
gleans the topic advertisement. The entity then proceeds
to advertise this information by issuing the advertisement
to the topic Services/Discovery/Topics. This
message is then delivered by the broker network to those
TDNs that previously subscribed to it.

A TDN does not maintain any information regarding the
topic creation that it serviced. Information about topics is
stored based on the topic advertisement propagations
within the system. TDNs maintain information regarding
topic advertisements, regardless of whether these
advertisements were created based on information
provided by some other TDN. TDNs keep track of the
topic advertisements that were advertised by entities. Of
course different TDNs may have policies regarding the
type of information that it stores and also regarding the
provenance of these advertisements.

6 Topic Discovery

To discover topics an entity issues discovery requests.
Upon receipt of responses to the discovery request, the
entity is aware of constructing the right topic subscription
requests.

6.1 Issuing a topic discovery request
An entity issues a topic discovery request for discovering
topics. The request encapsulates a search query. This
query could be a simple character String, an SQL query
on certain properties, an XPath or XQuery query and
finally even a regular expression. The discovery request
would be sent to all TDNs within the broker network by
issuing the discovery request to the topic
Services/Discovery/Topics or to a specialized TDN
by sending it to Services/Discovery/Topics/TDN-
ID where TDN-ID corresponds to the identifier
associated with a specific TDN. In most cases the best
way to issue a discovery request would be to first do an
asynchronous location of TDNs and then issue a
discovery request to a subset of the available TDNs.

6.2 Processing a topic discovery request
Upon receipt of this discovery request at a TDN, a TDN
will evaluate this query against the set of stored
advertisements. Different TDNs may have different
schemes for evaluating the search query on the set of
stored advertisements. The advertisements could be
searched based on their creation times, expiration times,
duration of validity. Depending on the strategies deployed
at various TDNs the response times for receipt of
advertisements may vary.

6.3 Processing the topic discovery responses
The topic discovery responses encapsulate multiple topic
advertisements. These advertisements, as previously
articulated, contain topic synopsis information which can
facilitate publishing/subscribing to topics. The topics that
an entity subscribes to is based on the information
contained in the received advertisements. It is possible
that an entity may receive the same advertisement from
multiple TDNs in which case one might have a duplicate
list.

6.4 Responding to unavailability of TDNs
If none of the TDNs respond, an alternative option would
be to flush the topic discovery request through the broker
network and have individual entities respond to the
request.

7 Security and Fault Tolerant Aspects of

this approach

We first discuss the security issues pertinent to the
discovery, subscription and issuing events conforming to

a given template. Every aspect of the system from
discovery of TDNs, advertisements, topic discovery,
subscription and publication to topics can be secure.
Every entity in the system has credentials associated with
them. This is generally in the form of a certificate issued
through some out-of-band methods. The certificates
identify entities and TDNs. Upon receipt of topic creation
requests the TDN signs the topic advertisement. TDNs
within the system are the only ones authorized to sign
topic advertisements.

The creator of a topic can, in turn, authorize users by
signing their credentials to publish or subscribe to the
topic that it created. The entity needs to present and
demonstrate possession of the right credentials to be
authorized for certain actions. TDNs will not respond to
topic creation requests, or topic advertisement
disseminations, if these actions are not accompanied by
the right credentials. Similarly, a broker will simply
check to see if the entity has the right credentials prior to
disseminating its publish/subscribe actions within the
broker network.

We now proceed to enumerate the fault tolerant aspects of
our approach.
1. TDN Failures can occur, requests/responses to topic

creation requests can be lost
2. Entity failures can occur at any time. Since the

advertisements remain dormant until the entity issues
an explicit advertisement dissemination request, so
state is maintained during the creation process at any
TDN within the system. This in turn implies that no
garbage collection operations need to be performed
within the system.

3. A TDN need not be active at all times. In fact the
discovery scheme will work even if none of the
TDNs are available online. In this case the discovery
request will be propagated through the broker
network

a. Entities that are currently present and are
topic creators can respond to this request. Of
course there would be a TTL associated
with these requests. Note that this scheme is
akin to P2P requests.

4. Topic Advertisements /Discovery requests-responses
can be lost en route to TDNs and entities alike.

8 Performance Measurements

We tested our system with two topologies. Table 1
summarizes the machines used for testing and their
configuration.

Machine
Machine

Specification
JVM Version

Complexity
Indianapolis,
IN, USA

SunOS
complexity 5.9
Generic_112233-
03 sun4u sparc
SUNW,Sun-Fire-
880

Java HotSpot(TM)
Client VM (build
1.4.2-beta-b19,
mixed mode)

Local Machine
for testing,
CGL,
Bloomington,
IN

Pentium 4, 1.6
GHz, 1 GB
RAM, Win XP
Professional
Edition

Java HotSpot(TM)
Client VM (build
1.4.2_06-b03, mixed
mode)

Table 1 Machine Configuration

In the first topology, the Topic Discovery Node (TDN)
and the Clients were placed on separate machines (Refer
Figure 1). Figure 2 shows the topic creation time in this
topology. This time includes the following steps. (1)
Entity sends a TDN discovery request, (2) TDN sends an
encrypted TDN Dsicovery response, (3) Entity sends an
encrypted Topic Creation request, (4) TDN creates a
Topic Advertisement, (5) TDN encrypts and sends the
Topic Advertisement to the Entity, (6) Entity computes
the digest of the Topic Advertisement, signs it with its
private key and broadcasts a packet containing the Topic
Advertisement, its X.509 Certificate and the signed digest
over a pre-defined topic to all TDNs. Figure 3 shows the
distribution of time spent in various activities in the TDN.
For this topology, we also timed the process of
discovering a topic. Figure 4 shows the time required
when 1, 10 and 100 topics were discovered. Note that
these experiments were carried out for string topic
synopsis types only. Ref [11] contains a detailed
discussion on other types of topic synopsis matching such
as tag-value pairs, integers and regular expressions
among others.

Figure 1 Wide Area Topology

Figure 2 Topic Creation (Wide Area Topology)

Figure 3 Time spent in Topic Creation sub-activities
(Wide Area Topology)
Note that in Figure 4 the discovery time increases as more
topics satisfying the specified criteria are discovered.
Since the Topic Discovery responses are also encrypted,
we conclude that the increase in time for overall topic
discovery is because of the increase in time for encrypting
bigger response packet.

Figure 4 Topic Discovery (Wide Area Topology),
String topics
Table 2 lists the metrics associated with wide area
topology.

 All values in MilliSeconds

Mean
Std.
Dev.

Max Min
Std.

Error
Topic

Creation 641.06 38.51 723.18 551.63 3.85

Topic Discovery
Discovering

1 Topic 236.86 32.01 348.88 178.95 3.20

Discovering
10 Topics 378.33 33.42 548.11 32..68 3.34

Discovering
100 Topics 829.69 73.61 1057.50 712.84 7.36

Table 2 Metrics for Topic Creation and Discovery
(Wide Area Topology)
In our second topology (Figure 5), we ran the TDN and
the clients on the same machine. Figure 6 - Figure 8 show
the corresponding results.

Figure 5 Local Machine Topology

Our scheme relies heavily on digital certificates and we
observed that a majority of percentage of processing time
of the TDN is spent in encrypting the messages. The
encryption procedure is a two step process. In the first
step a random SecretKey is generated and the TDN
response is encrypted using this secret key. This secret
key is then encrypted using the public key of the entity
(topic creator or topic discovery client) in question.
Further all topic advertisements are signed by the topic
creator. A signed topic advertisement contains 3 parts,

namely, the Topic Advertisement, the X.509 certificate of
the creator and the signed digest of the topic
advertisement.

Figure 6 Topic Creation (Local Machine Topology)

Figure 7 Time spent in Topic Creation sub-activities
(Local Machine Topology)

Figure 8 Topic Discovery (Local Machine Topology) ,
String Topics

Table 3 summarizes the metrics associated with the
process in the local area topology.

 All values in MilliSeconds

Mean
Std.
Dev.

Max. Min.
Std.

Error
Topic

Creation 211.26 22.19 319.50 180.35 2.22

Topic Discovery
Discovering

1 Topic 65.86 10.74 99.38 47.26 1.07

Discovering
10 Topics 104.25 21.49 258.50 81.29 2.15

Discovering
100 Topics 480.72 49.89 672.75 422.67 4.99

Table 3 Metrics for Topic Creation and Discovery
(Local Machine Topology)

9 Conclusions

In this paper we presented our scheme to discover topics
in distributed publish/subscribe settings. We also included
performance measurements related to our
implementation. There are a few advantages related to our
approach which we enumerate below.
a) No singe point of failure: Any component within the

system can fail. The scheme does not rely on any
component being available at all times. This is more
clearly outlined in the previous section.

b) Asynchronous discovery of topics: The discovery of
topics is not time bound nor do we make any
assumptions regarding the response times associated
with these responses.

c) Discovery of topics can be based on a variety of
search formats such as Regular Expressions, SQL
queries or XPath Queries. It should be noted that
neither the TDN which signed the advertisement nor
the entity which initiated its creations needs to be
present in the system for an entity to discover the
topic advertisement.

d) Every interaction within the system can be secured
and require demonstrating the possession of right
credentials before any actions can proceed. The
created topic advertisement can itself be secured by
encrypting the advertisement with a symmetric key
and securing this advertisement key with the
creator’s public key.

References
[1] Mark Happner, Rich Burridge and Rahul Sharma. Sun

Microsystems. Java Message Service Specification. 2000.
http://java.sun.com/products/jms

[2] Web Services Eventing. Microsoft, IBM & BEA.
http://ftpna2.bea.com/pub/downloads/WS-
Eventing.pdf

[3] Web Services Notification (WS-Notification). IBM,
Globus, Akamai et al.

http://www-
106.ibm.com/developerworks/library/specification/w
s-notification/

[4] [wsrf] The Web Services Resource Framework.
http://www.globus.org/wsrf/

[5] [ogsa] I. Foster, C. Kesselman, J. Nick, S. Tuecke,
“The Physiology of the Grid: An Open Grid Services
Architecture for Distributed Systems Integration.”
Open Grid Service Infrastructure WG, Global Grid
Forum, June 22, 2002. Available from
http://www.globus.org/research/papers/ogsa.pdf.

[6] [ogsi] The Open Grid Services Infrastructure (OGSI).
http://www.gridforum.
org/Meetings/ggf7/drafts/draft-ggf-ogsi-gridservice-
23_2003-02-17.pdf

[7] [ws-arch] D. Booth, H. Haas, F. McCabe, E.
Newcomer, M. Champion, C. Ferris, and D. Orchard,
“Web Services Architecture.” W3C Working Group
Note 11 February 2004. Available from
http://www.w3.org/TR/2004/NOTE-ws-arch-
20040211/.

[8] Shrideep Pallickara and Geoffrey Fox.
NaradaBrokering: A Middleware Framework and
Architecture for Enabling Durable Peer-to-Peer
Grids. Proceedings of ACM/IFIP/USENIX
International Middleware Conference Middleware-
2003.

[9] Geoffrey Fox, Shrideep Pallickara, Marlon Pierce,
Harshawardhan Gadgil. Building Messaging
Substrates for Web and Grid Applications. (To
appear) in the Special Issue on Scientific
Applications of Grid Computing in the Philosophical
Transactions of the Royal Society of London 2005.

[10] Geoffrey Fox and Shrideep Pallickara. Deploying the
NaradaBrokering Substrate in Aiding Efficient Web
& Grid Service Interactions. Invited paper for Special
Issue of the Proceedings of the IEEE on Grid
Computing. Vol 93, No 3. pp 564-577. March 2005.

[11] Shrideep Pallickara and Geoffrey Fox. On the
Matching Of Events in Distributed Brokering
Systems. Proceedings of IEEE ITCC Conference on
Information Technology. April 2004. pp 68-76
Volume II.

[12] Web Services Reliable Messaging Protocol (WS-
ReliableMessaging)
ftp://www6.software.ibm.com/software/developer/lib
rary/ws-reliablemessaging200403.pdf

[13] Web Services Reliable Messaging TC WS-
Reliability. http://www.oasis-
open.org/committees/download.php/5155/WS-
Reliability-2004-01-26.pdf

http://java.sun.com/products/jms
http://ftpna2.bea.com/pub/downloads/WS-Eventing.pdf
http://ftpna2.bea.com/pub/downloads/WS-Eventing.pdf
http://www-106.ibm.com/developerworks/library/specification/ws-notification/
http://www-106.ibm.com/developerworks/library/specification/ws-notification/
http://www-106.ibm.com/developerworks/library/specification/ws-notification/
http://www.globus.org/wsrf/
http://www.globus.org/research/papers/ogsa.pdf
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
ftp://www6.software.ibm.com/software/developer/library/ws-reliablemessaging200403.pdf
ftp://www6.software.ibm.com/software/developer/library/ws-reliablemessaging200403.pdf
http://www.oasis-open.org/committees/download.php/5155/WS-Reliability-2004-01-26.pdf
http://www.oasis-open.org/committees/download.php/5155/WS-Reliability-2004-01-26.pdf
http://www.oasis-open.org/committees/download.php/5155/WS-Reliability-2004-01-26.pdf

	Introduction
	Brief Overview of NaradaBrokering
	Topic Creation request
	Topic Discovery Nodes (TDN)
	Locating a TDN
	Processing a discovery request
	Processing discovery responses

	Topic Creation and Advertisements
	Issuing the topic creation request
	Processing a topic creation request
	Creating a topic advertisement

	Topic Discovery
	Issuing a topic discovery request
	Processing a topic discovery request
	Processing the topic discovery responses
	Responding to unavailability of TDNs

	Security and Fault Tolerant Aspects of this approach
	Performance Measurements
	Conclusions
	References

