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1 Introduction 
The Grid [1-4] has made dramatic progress recently with impressive technology and several large important 
applications initiated in high-energy physics [5,6], earth science [7,8] and other areas [9,10]. At the same time, there 
have been equally impressive advances in broadly deployed Internet technology. We can cite the dramatic growth in 
the use of XML, the “disruptive” impact of peer-to-peer (P2P) approaches [11] that have resulted in a slew of 
powerful applications, and the more orderly, but still widespread adoption, of a universal Web Service approach to 
Web based applications [12,13].  
 
Grids are exemplified by the infrastructure used to allow seamless access to supercomputers or large scale 
integration of datasets. P2P technology facilitates sophisticated resource sharing environments between peers over 
the “edges” of the Internet, enabling ad hoc communities of low-end clients to advertise and access resources on 
communal computers. The deployments and utilization of Web services are driven by a slew of XML based 
specifications that pertain to exposing services, discovering them and accessing these securely once the requestor is 
authenticated and authorized.  
 
Grids, P2P Networks and Web Services consist of a sea of message based services. Services inject and extract 
messages whose transport and manipulation are supported by a logically distinct “MessageGrid” supplying the Grid 
Message layer. We can abstract such environments as a distributed system of “clients” or “end-points” which consist 
either of “users” or “resources” or proxies thereto. These clients must be linked together in a flexible fault tolerant 
efficient high performance fashion. The messaging infrastructure linking clients (both users and resources of course) 
would provide the messaging backbone. 
 
The smallest unit of this messaging infrastructure should be able to intelligently process and route messages while 
working with multiple underlying communication protocols. We refer to this unit as a broker, where we avoid the 
use of the term servers to distinguish it clearly from the application and system servers that would be among the 
sources/sinks to messages generated within the integrated system. For our purposes (registering, transporting and 
discovering information), we use the term events/messages interchangeably where events are just messages − 
typically with time stamps. We may enumerate the following requirements for the messaging infrastructure for Grid 
messaging −  
1. Scaling: This is of paramount importance considering the number of devices, clients and services that would be 

aggregated in the P2P grid. The distributed broker network should scale to support the increase in these 
aggregated entities. However the addition of brokers to aid the scaling should not degrade performance by 
increasing communication pathlengths or ineffective bandwidth utilizations between broker nodes within the 
system.. 

2. Efficient disseminations: The disseminations pertain to routing content, queries, invocations etc. to the relevant 
destinations in an efficient manner. The routing engine at each broker needs to ensure that the paths traversed 
within the broker network to reach destinations are along efficient paths that eschew failed broker nodes.  

3. Robust delivery mechanisms: This is to ensure robust delivery of messages in, and despite, the presence of 
failures and prolonged disconnects. 

4. Location independence: To eliminate bandwidth degradations and bottlenecks stemming from entities accessing 
a certain known broker over and over again to gain access to services, it must be ensured that any broker within 
the broker network is just as good as the other. Services and functionality would then be accessible from any 
point within the broker network. 

5. Support for P2P interactions:  P2P systems tend to be autonomic, obviating the need for dedicated 
management.  P2P systems incorporate sophisticated search and subsequent discovery mechanisms. Support for 
P2P interactions facilitates access to information resources and services hosted by peers at the “edge” of the 
network.  

6. Interoperate with other messaging clients:  Enterprises have several systems that are built around messaging. 
These clients could be based on enterprise vendors such as IBM’s MQSeries or Microsoft’s MSMQ. Sometimes 



these would be clients conforming to mature messaging specifications such as the Java Message Service (JMS) 
[14]. JMS clients, existing in disparate enterprise realms, can utilize the distributed broker network as a JMS 
provider to communicate with each other. 

7. Communication through proxies and firewalls: It is inevitable that the realms we try to federate would be 
protected by firewalls stopping our elegant application channels dead in their tracks. The messaging 
infrastructure should thus be able to communicate across firewall, DHCP and NAT boundaries. Sometimes 
communications would also be through authenticating proxies.  

8. Extensible transport framework:  Here we consider the communication subsystem, which provides the 
messaging between the resources and services. Examining the growing power of optical networks we see the 
increasing universal bandwidth that in fact motivates the thin client and server based application model. 
However the real world also shows slow networks and links (such as dial-ups), leading to a high fraction of 
dropped packets. Thus the messaging infrastructure should manage the communication between external 
resources, services and clients to achieve the highest possible system performance and reliability. We suggest 
this problem is sufficiently hard that we only need solve this problem “once” i.e. that all communication – 
whether TCP/IP, UDP, RTP (A Transport Protocol for Real-Time Applications) [15], RMI, XML/SOAP or 
you-name-it be handled by a single messaging or event subsystem.  

9. Security Infrastructure: Since it is entirely conceivable that messages (including queries, invocations and 
responses) would have to traverse over hops where the underlying communication mechanisms are not 
necessarily secure, a security infrastructure that relies on message level security needs to be in place. 
Furthermore, the infrastructure should incorporate an authentication and authorization scheme to ensure 
restricted access to certain services.  The infrastructure must also ensure a secure and efficient distribution of 
keys to ensure access by authorized clients to content encapsulated in encrypted messages. The infrastructure 
will also handle Denial Of Service attacks (message flooding, replay) and compromised endpoints and brokers. 

 
In this paper we discuss the NaradaBrokering messaging infrastructure which addresses several of the issues 
discussed above. The remainder of this paper is organized as follows. In section 2 we present an overview of 
NaradaBrokering. In section 3 we present results for NaradaBrokering’s transport interfaces. In section 4 and 5 we 
provide results for NaradaBrokering’s support for JMS and JXTA clients. In section 6 we present results from our 
experiments with routing audio/video conferencing applications. In section 7 we present results from the assortment 
of matching engines within NaradaBrokering that are used for computing destinations based on the content 
encapsulated by the event. 
 
We are currently in the process of gathering performance numbers over transatlantic links in collaboration with the 
University of Cardiff. The final version of this paper will include comprehensive results from these benchmarks. 
Furthermore, in the final version of the paper the JXTA results will be updated and the security overheads in 
NaradaBrokering will be qualified. 
 
2 NaradaBrokering  
NaradaBrokering [16-26] is an event brokering system designed to run on a large network of cooperating broker 
nodes. Communication within NaradaBrokering is asynchronous and the system can be used to support different 
interactions by encapsulating them in specialized events. NaradaBrokering efficiently routes any given event 
between the originators and registered consumers of the event in question. Events could be used to encapsulate 
information pertaining to transactions, data interchange, system conditions and finally the search, discovery and 
subsequent sharing of resources.  
 
Events encapsulate expressive power at multiple levels. Where, when and how these events reveal their expressive 
power is what constitutes information flow. NaradaBrokering manages this information flow. NaradaBrokering 
places no constraints either on the number, size or rate of these interactions. Scaling, availability and fault tolerance 
requirements entail that the messaging infrastructure managing this information flow be based on a distributed 
network of cooperating nodes.  
 
Every event has an implicit or explicit destination list, comprising clients, associated with it. The brokering system 
as a whole is responsible for computing broker destinations (targets) and ensuring efficient delivery to these targeted 
brokers en route to the intended client(s). Events as they pass through the broker network are be updated to snapshot 
its dissemination within the network. The event dissemination traces eliminate continuous echoing and in tandem 
with the BNM – used for computing shortest paths – at each broker, is used to deploy a near optimal routing 



solution. The routing is near optimal since for every event the associated targeted set of brokers are usually the only 
ones involved in disseminations. Furthermore, every broker, either targeted or en route to one, computes the shortest 
path to reach target destinations while employing only those links and brokers that have not failed 
 
In NaradaBrokering, stable storages existing in parts of the system are responsible for introducing state into the 
events. The arrival of events at clients advances the state associated with the corresponding clients. Brokers do not 
keep track of this state and are responsible for ensuring the most efficient routing. Since the brokers are stateless, 
they can fail and remain failed forever. The guaranteed delivery scheme within NaradaBrokering does not require 
every broker to have access to a stable store or DBMS. The replication scheme is flexible and easily extensible. 
Stable storages can be added/removed and the replication scheme can be updated. Stable stores can fail but they do 
need to recover within a finite amount of time. During these failures the clients that are affected are those that were 
being serviced by the failed storage. Currently in NaradaBrokering we have both SQL and file based 
implementations of the storage services needed by the robust delivery algorithms. 
 
NaradaBrokering incorporates an extensible transport framework [19] and virtualizes the channels over which 
entities interact with each other. Entities are thus free to communicate across firewalls, proxies and NAT boundaries 
which can prevent interactions from taking place. Furthermore, NaradaBrokering provides support for multiple 
transport protocols such as TCP (blocking and non-blocking), UDP, SSL, HTTP and RTP. NaradaBrokering 
incorporates a monitoring service [20] at individual broker nodes which monitor the state of the links originating 
from a node. The performance metric measured include loss rates, communication delays and jitters among others. 
 
NaradaBrokering is JMS compliant [21] and also provides support for routing JXTA interactions [22]. Work is 
currently underway to provide support for routing Gnutella interactions. NaradaBrokering has also been used to 
support audio-video conferencing [23] applications.   
 
To address the issues [24] of scaling, load balancing and failure resiliency, NaradaBrokering is implemented on a 
network of cooperating brokers.  In NaradaBrokering we impose a hierarchical structure on the broker network, 
where a broker is part of a cluster that is part of a super-cluster, which in turn is part of a super-super-cluster and so 
on. Figure 1 depicts a sub-system comprising of a super-super-cluster SSC-A with 3 super-clusters SC-1, SC-2 and 
SC-3 each of which have clusters that in turn are comprised of broker nodes. Clusters comprise strongly connected 
brokers with multiple links to brokers in other clusters, ensuring alternate communication routes during failures. 
This organization scheme results in “small world networks” where the average communication pathlengths between 
brokers increase logarithmically with geometric increases in network size, as opposed to exponential increases in 
uncontrolled settings. 
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Figure 1:An example of a NaradaBrokering broker network sub-section 

 
This distributed cluster architecture allows NaradaBrokering to support large heterogeneous client configurations 
that scale to a very large size. Within every unit (cluster, super-cluster and so on), there is at least one unit-
controller, which provides a gateway to nodes in other units. For example in figure 1, cluster controller node 20 
provides a gateway to nodes in cluster m. Creation of broker network maps (BNMs) and the detection of network 
partitions are easily achieved in this topology.   
 
More recently NaradaBrokering also provides support for routing real-time XML events to consumers based on the 
specified XPath queries [25].  NaradaBrokering incorporates a message based security scheme to facilitate end-to-
end message security. Finally, work is currently underway on incorporating a topology viewer to facilitate 
visualization [26] of the broker networks.  
 
3 Measurements from the transport framework 
Figure 2 and Figure 3 depict results for the TCP implementation of the framework. The graphs depict the mean transit 
delays, and the accompanying standard deviations, for native NaradaBrokering messages traversing through 
multiple (2, 3, 5 and 7) hops with multiple brokers (1, 2, 4 and 6 respectively) in the path from the sender of the 
message to the receiver. For each test case the message payload was varied. The transit delay plotted is the average 
of the 50 messages that were published for each payload. The sender/receiver pair along with every broker involved 
in the test cases were hosted on different physical machines (Pentium-3, 1 GHz, 256 MB RAM). The machines 
reside on a 100 Mbps LAN. The run-time environment for all the processes is JRE-1.3 build Blackdown-1.3.1, Red 
Hat Linux 7.3  



 
Figure 2: Transit Delay for message samples Figure 3: Standard Deviation for message samples 

 
The average delay per inter-node (broker-broker, broker-client) hop was around 500-700 microseconds. The 
standard deviation varies from 0 microseconds for 50 byte messages traversing a hop to 800 microseconds over 7 
hops. 
 
In one of our preliminary experiments involving machines at the University of Cardiff (UC) and Indiana University 
(IU), we had a broker process running at IU and 2 client processes running at IU. The run-time environment for all 
the processes is JRE-1.4.1. The transit delay plotted is the average of the 50 messages that were published for each 
payload. Figure 4 and Figure 5 depict the transit delay and standard deviation for the message samples respectively. 
 

 
Figure 4: Transit delay for message samples 

 

 
Figure 5: Standard Deviation for message samples 

 
 
 
4 JMS Performance Data 
To gather performance data, we run an instance of the SonicMQ (version 3.0) [42] broker and NaradaBrokering 
broker on the same dual CPU (Pentium-3, 1 GHz, 256MB) machine. We then setup 100 subscribers over 10 
different JMS TopicConnections on another dual CPU (Pentium-3, 866MHz, 256MB) machine. There is also a 
measuring subscriber and a publisher that are set up on a third dual CPU (Pentium 3, 866MHz, 256MB RAM) 
machine. The three machines (residing on a 100 Mbps network) have Linux (version 2.2.16) as their operating 
system. The runtime environment for all the processes is Java 2 JRE ( Blackdown-FCS).  
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Figure 6: Transit Delays for messages 
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Figure 7: Standard Deviation for messages 

 
The topic, which the subscribers subscribe to and the publisher publishes to, is the same. We vary the rates at which 
the publisher publishes messages while varying the payload sizes associated with these messages. We compute the 
transit delays associated with individual messages and also the standard deviation in the delays (used to compute the 
mean transit delay) associated with messages in a given test case. Figure 6 depicts the mean transit delays for the 
measuring subscriber under NaradaBrokering and SonicMQ for high publish rates and smaller payload sizes. Figure 
7 depicts the standard deviation associated with message samples under the same conditions. As can be seen 
NaradaBrokering compares very well with SonicMQ. Also, the standard deviation associated with message samples 
in NaradaBrokering were for the most part lower than in SonicMQ.  
 
5 JXTA Performance numbers 
For comparing JXTA performance in NaradaBrokering we setup the topologies depicted in Figure 8. For each 

topology we then compare the performance of the 
pure JXTA environment, the integrated Narada-JXTA 
system and the pure NaradaBrokering system. To 
compute communication delays while obviating the 
need for clock synchronizations and the need to 
account for clock drifts, the receiver/sender pair is 
setup on the same machine (Pentium-3, 1 GHz, 256 
MB RAM). In all the test cases, a message published 
by the sender is received at the receiver and the delay 
is computed. For a given message payload this is done 
for a sample of messages and we compute the mean 
delay and the standard deviation associated with the 
samples. We also measure the Jitter J, which is 
defined as the mean deviation (smoothed absolute 
value) of the difference D in packet spacing at the 
receiver compared to the sender for a pair of packets.  
The Jitter J is computed based on the formula 
explained in RTP RFC [15] − J = J + (|D(i-1, i)| - 
J)/16, where D(i-1, i) corresponds to the difference 
between the delay for ith packet and the delay for the 

(i-1)th packet.  The formula ensures that values from the past and present play a role in the jitter calculation. Of 
course if the Jitter or D is very high they would predominate in the calculation of the accumulated jitter. The gain 
parameter, 1/16, gives a good noise reduction ratio while maintaining a reasonable rate of convergence. This is 
repeated for different payload sizes. For every topology every node (broker or rendezvous peer) involved in the 
experimental setup is hosted on a different machine (Pentium-3, 1 GHz, 256MB RAM). The run-time environment 
for all the processes is (JDK-1.3 build Blackdown-1.3.1, Red Hat Linux 7.3).  The machines involved in the 
experimental setup reside on a 100 Mbps LAN.   
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Figures 9 through 12 depict the mean transit delay for the message samples. We also performed this experiment 
involving machines at Indiana University (IU), University of Texas (UT) and Florida State University (FSU). The 
sender/receiver pair was hosted on a machine (Pentium-3, 550MHz, 512MB RAM) at FSU. For each topology half 
the nodes resided on machines (Pentium-3, 1 GHz, 256MB RAM) at UT and the other half resided on machines 
(Pentium-3, 1 GHz, 256MB RAM) at IU. Figure 12 depicts the mean transit delay for the topology involving 
machines at IU,UT and FSU. Results depicted in figures 9 through 12 indicate the superior performance of the 
native NaradaBrokering system over the pure JXTA system. These results also demonstrate that the integrated 
Narada-JXTA system provides substantial performance improvements over the pure JXTA system.  
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6 Performance measurements for A/V conferencing 

Since NaradaBrokering is a Java-based messaging system, we contrast the performance of the NaradaBrokering 
broker with a conferencing server written in Java using JMF [27] libraries. This server creates an audio or video 
session and delivers the audio or video streams it receives to all participants except the sender itself. 

In our measurements we create 1 audio or 1 video conference at a time. In each case, we test the results for 
different number of participants. One participant sends an audio or video stream to the server, and the server delivers 



it to all the other participants. In each test we have send 2000 audio or video packages. To compute transit delays for 
each delivered package, we assign a package-id to every package and track the send/receive times for each package. 
For NaradaBrokering we used the RTP sequence number as package id, but for JMF we could not use this since 
JMF conferencing server modifies the sequence number and timestamp. We instead compute a unique package-id 
from the audio/video data that is sent out. 

Although we have hundreds of audio/video receiver clients in a conference, we gathered results only from 12 
video and 30 audio clients. These clients and the sender client ran in the same machine and rest of the receiver 
clients ran in another machine. This way we avoid the clock synchronization/drift issues that arise when we 
incorporate results from receivers running on different machines. On the other hand, having all receivers running on 
the same machine as the sender, would introduce application overhead that would cloud the metrics we wish to 
measure. Having only 12 video or 30 audio receivers ensures that the overhead alluded to earlier are minimum. In 
addition, to make sure that the results which we gather reflect the true performance of the server, we gather video 
results from first 4, middle 4 and the last 4 clients that were added to the conference. In the audio case results are 
retrieved from the first 10, middle 10 and last 10 clients. Finally, when we performed one of our benchmarks on 4 
machines by hosting one-half of the non-measuring receivers on the fourth machine, the results were similar to the 
ones we report in this paper. 
 
6.1 Video test 
We have created a video conference on the server machine – 1.2GHz Intel Pentium III dual CPU, 1GB MEM, 
RedHat Linux 7.3. One of the participants sends a H.263 video stream to the server, which delivers it to all the other 
participants in the session. The sender client and the 12 receiver clients, from whom we gather results, were running 
on a 2.4GHz Intel Pentium 4 CPU, 512GB MEM, RedHat Linux 7.3. The video stream had an average bandwidth of 
more than 600 kbps. We calculated the transit delay and jitter values for each video package. The sender application 
sends 2000 packages in each test. We used the same video stream for each test. The 3 machines involved in this test 
reside on a gigabit subnet. For every package we calculated the transit delay, (receivedTime – sentTime), for all 12 
clients. We then get the average of these 12 delay values for that package in milliseconds. We also calculate jitter for 
each package. We then get the average jitter for the 12 clients. 

Table 1 summarizes the video tests which were conducted. It shows the average transit delays and average jitter 
values for the NaradaBrokering broker and JMF conferencing server. It also shows the total bandwidth used to 
transfer the test video stream to participants involved in the tests. The tests clearly demonstrate that the 
NaradaBrokering broker out performs the JMF conferencing server in every aspect, and is capable of delivering a 
video stream to 100-400 participants with acceptable jitter.  

 
Number of 

clients 
NaradaBrokering  
Avg Delay (ms) 

JMF 
Avg Delay (ms) 

NaradaBrokering 
Avg  Jitter 

JMF Avg 
Jitter 

Total  
bandwidth 
(Mbps) 

50 2.23 3.08 0.95 1.10 30 

100 7.20 10.72 2.57 3.34 60 

200 20.38 27.69 6.18 7.56 120 

300 42.61 60.86 9.93 11.84 180 

400 80.76 229.2 13.38 15.55 240 

Table 1. Video streaming performance results 

It should be noted that the bandwidth requirement of our test video stream is quite high and several real-time 
videoconferencing result in streams, whose bandwidth utilizations, fall in the 100-200kbps range. A single 
NaradaBrokering broker can thus deliver up to 1200 such real-time video clients. It should be noted that the natural 
setting for NaradaBrokering is a distributed broker network, thus one can use NaradaBrokering to build A/V 
controllers with essentially unlimited number of clients interacting in real time. 
 

Figure 13 and Figure 14 depict the average transit delays and jitter values, of the 12 measuring clients for 1950 
packages, respectively. We ignore the first 50 packages, where delays correspond to application start ups. From the 



graphs it is clear that NaradaBrokering delivers significantly better performance and is stable over time. The transit 
delay values are all in the acceptable range for video. 
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Figure 13. Delays for 400 video clients 
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Figure 14. Jitter for 400 video clients 

 
 

In the JMF conference server the first client that joins the session consistently gets the best performance with 
decreasing performance until the last client gets the worst performance. In the NaradaBrokering broker, we provide 
equal performance to all clients by rotating the delivery privilege among receivers for alternate packages. As a 
result, over time, all NaradaBrokering clients get equal performance. 
 
6.2 Audio Test 
We have created an audio conference on the server machine, 1.2GHz Intel Pentium III dual CPU, 1GB MEM, 
RedHat linux 7.3. One participant sent a ULAW audio stream to the server, which delivers it to all participants in the 
session. The sender client and 30 receiver clients, from whom we gather results, were running on 2.2GHz Intel Xeon 
dual CPU, 1GB MEM, RedHat Linux 7.3. The audio stream has the bandwidth of 64kbps. Every 60ms, a 480 bytes 
audio package is sent. We calculate the latency and jitter values for each audio package. The sender client sends 
2000 packages in each test. The three machines used in this test reside on a 100Mbps subnet. 

 
Number 
of clients NaradaBrokering 

Avg Delay (ms) 

JMF 
Avg 
Delay 
(ms) 

NaradaBrokering 
Avg  Jitter 

JMF 
Avg 
Jitter 

Total  
bandwidth 
(Mbps) 

100 2.89 2.77 0.56 0.61 6.4  

500 12.02 11.80 0.59 0.56 32  

1000 23.44 23.01 0.79 0.47 64  

Table 2: Audio streaming performance results 
 
Table 2 shows that the NaradaBrokering broker is capable of sending an audio stream to 1000 clients by providing a 
very good quality. The 23 ms delay introduced by the broker is well with the real-time constraints imposed on audio 
communications. Since we run this test in a 100 Mbps network, when we increase the number of clients we hit the 
network bottleneck. We are therefore providing results only for up to 1000 clients.  
 
 
7 Profiling the Matching Engines 
The matching engine is responsible for computing destinations associated with an event based on the profiles 
available at a node. Depending on the type of applications, standards, events and subscriptions that need to be 
supported there would be multiple matching engines residing within every processing broker node. We now provide 
some results pertaining to the matching engines residing in brokers within NaradaBrokering. These results (Figures 



7 through 12) are for stand-alone processes, where we computed the matching times as a function of the number of 
subscriptions maintained. The results reported provide the matching time per event. There are optimization in place 
which would allow us to reduce the number of matching operations needed to compute destinations throughout the 
broker network. This optimization exploits the broker and profile organization schemes. In each case, an event is 
matched to retrieve every matching subscription. For every matching engine, the number of subscriptions is varied 
from 10,000 to 100,000. The results were measured on a machine (1GHz,256MB RAM) running the process in a 
Java-1.4 Sun VM with a high-resolution timer for computing delays.  



 
Figure 15: Plots for Integer matching 

 
Figure 16: Plots for String based matching 

 
Figure 17: Plots for <tag,value> based matching 

 
Figure 18: Plots for SQL and XPath based matching 

 
Figure 19: Matching XPath profiles 

<?xml version="1.0" encoding="ISO-8859-1"?>
<menu>
  <softdrinks>
    <brand>Minute Maid</brand>
    <fruit>Apple</fruit>
    <source>Brazil</source>
    <company>Coca Cola</company>
    <price>2.90</price>
    <year>2003</year>
  </softdrinks>
</menu>

XPath Query type:   /menu/softdrinks[price>1.80]
 

Figure 20: The XML event and XPath query type 

The richer the constraints, the greater the CPU-cost associated with the matching process. As can be seen the 
average delays for matching increases progressively (Integer to String to Tag-Value to SQL to XPath in that order) 
as the complexity of the matching increases. For String based matching, as depicted in Figure 16, the average delay 
for matching subscriptions generally increases as the size of the topic String increases. The increase in delays for 
matching as the topic String size doubled from 16 to 32 was in the range of 1 microsecond. Figure 17 depicts the 
costs associated with <tag,value> based matching. As can be seen the costs associated with this style of matching is 
higher than the String based style. We also noted that the costs did not vary as the number of <tag,value> pairs 
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associated with individual subscriptions increased from 5 to 25. The results in Figures x-y demonstrate that it is 
feasible to have real time interactions that are based on the corresponding constraints. 
 
Figure 18 contrasts the costs involved in matching JMS events to stored SQL-92 based selectors on the properties 
contained within the JMS message and XML events to stored XPath conforming constraints. Of course these costs 
can vary significantly depending on the type of the query. For our experiments we used XPath and SQL queries, 
which we felt were comparable. The cost of a single matching operation involving an XML event and an 
accompanying XPath query is around 3 milliseconds. 
 
Next, we proceeded to study the effects of the destination optimization strategies, which we discussed in section 7,in 
the context of XPath profiles.  We first perform the matching (un-optimized) on a set of XPath profiles. The XPath 
profiles in this case are then evenly distributed over 32 different destinations. Figure 19 contrasts the matching times 
in the profile matching with/without optimizations for varying number of profiles.  With optimizations the matching 
times varied between 120-170 milliseconds. The results demonstrate that in the scenario outlined earlier, the 
optimizations improve the performance of matching profiles substantially. In general, in most practical situations it 
is our conjecture that the performance would be similarly enhanced.  Figure 20 outlines the XML type for the stored 
events, and the type of XPath query used in our experiments. Though the results depicted here are for XPath profiles 
we expect optimizations to have a similar effect on SQL based profiles too. 
 
7.1 Implications of query based matching engines 
The Query-based engines are suitable for discovery based services. While providing support for profiles with SQL-
like query based refinements and XPath query based profiles, the system can be viewed as a lightweight, distributed 
relational and XML database respectively. This is the case, since as far as the end-user is concerned, the matched 
event might as well have been stored in a database 
(relational or XML, as the case might be) and the results 
returned (matching events) would not have been different.  
 
Clients in the system can advertise their services in an XML 
schema or a schema that can be queried by an SQL query. 
These advertisements would be stored in the same way that 
the profiles are stored within the system. Events propagated 
by interested clients would essentially be either XPath or 
SQL-like queries. These events would then be matched 
against the stored advertisements with the matching ones 
being routed back to the initiating client. The query events 
can specify the realms within which the query’s propagation 
might take place, thus allowing individual entities to control 
how localized their services can be.   
 
Figure 21 depicts the matching times for a query against a 
set of stored XML events/advertisements. For matching XML advertisements, the performance would vary if it is 
constrained by the number of matched advertisements or stored XML events that need to be included in the query 
response. The stored XML events and the issued XPath query are of the type depicted in Figure 20. For most 
discovery related operations, similar to those initiated in P2P systems, these numbers indicate adequate performance.  
 
We have some optimizations in place which can reduce the matching time needed for SQL and XPath based 
profiles. These can be found in Ref [25]. 
 
8 Conclusions and Future Work 
In this paper we reported results from our experiments with some of the capabilities in NaradaBrokering. The final 
version of this paper will also include results from our security and robust delivery implementations and also results 
from our ongoing experiments being performed between the Indiana University and Cardiff University.  
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