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Abstract

The emergence of Big Data, Artificial Intelligence (AI), and Machine Learning (ML)
demand more efficient and high performant data engineering frameworks. The Bulk
Synchronous Parallel (BSP) model of execution has been around for more than four
decades and has been widely adopted by the HPC community. Vis-a-vis, recent Big Data
analytics frameworks have adopted a distributed asynchronous computing approach,
given its advantages in commodity cloud infrastructure. This report attempts to exploit
opportunities to bridge these computing models together and creating a more efficient
high-performance data engineering pipeline.

1 Introduction

Data engineering is becoming (have already become) an increasingly important element
in both scientific enterprise and research communities. The exponential growth of data
generation in every aspect of society is a major contributor to this Big Data revolution. The
emergence of Artificial Intelligence (Al) and Machine Learning (ML), has further exacerbated
the need to come up with efficient and high performant data engineering approaches.
Extract-Transform-Load (ETL) logic is at the heart of data engineering. Data processing
systems can be broadly categorized into 1. batch, 2. streaming, 3. graph, and 4. AI/ML.
Each system comes with its own data formats, storage, and transformation/ analysis routines.
Modern applications require resources beyond a single node’s ability to provide. However,
this is just a small part of the issues facing the overall data processing environment, which



must also support a raft of data engineering for pre- and post-data processing, communication,
and system integration.

This report aims at examining a decades-old execution paradigm, "Bulk Synchronous
Parallel (BSP)" and integrate it with the widely used "Distributed Asynchronous" execution, to
create efficient high-performance data engineering pipelines. While BSP is still being heavily
used in high-performance computing applications (MPI), there exists a presumption that BSP-
style programming is not so convenient for the emerging data science community. Similarly,
the HPC community has not welcomed fully asynchronous execution, citing performance
implications. Hence, the report also aims at providing a specification for distributed data
abstraction for BSP-like execution environments, that could provide modern user-friendly
APIs without affecting performance aspects. The report also investigates the workflow
management (WFM) frameworks, that have been mixing BSP and distributed asynchronous
execution. This has been successfully adopted even in HPC WFM frameworks. But, as
of current literature available, there has been little effort gone into bridging these models
together in data engineering.

The report is organized as follows. Section 2 discusses both the execution paradigms
together with workflow management, which is closely related to the same domain. Section
3 discusses commonly used data abstractions that are being currently used. Next, Section 4
looks at emerging technology trends that could encourage integrating the said paradigms.
Given such advancements in the domain, Section 5 discusses the opportunity for such an
integration. And lastly, Section 6 presents a survey of existing frameworks that covers the
latest developments in the said domains.

2 Execution Models

Parallel problem classes can be categorized into the following.

¢ Synchronous - Tightly coupled. Software exploits features of the problem structure to
get good scaling.

* Loosely synchronous - Similar to synchronous, but performs on non-identical data
elements

¢ Asynchronous - Functional parallelism that irregular in space and time.

¢ Embarrassingly parallel - Independent execution of disconnected components.

There have been various computation frameworks designed to handle these problem
classes. Bulk Synchronous Parallel and Distributed Asynchronous models have been the most
widely used models thus far.

2.1 Bulk Synchronous Parallel Model (BSPM)

Many real-life problems can be categorized into Loosely synchronous parallel computations.
This idea originated in 1987 from Fox, G.C. in the article "What Have We Learnt from Using
Real Parallel Machines to Solve Real Problems" [1]. Later, a similar idea was published in
an article by Valiant, L [2] in 1990 which introduced the term “Bulk Synchronous Parallel”. It
was proposed as a bridging model for designing parallel algorithms. (Eventually, the scientific
community has adopted the latter term "BSP" and it will be used in this report throughout).



In the loosely / bulk synchronous parallel model, processors work on independent data
elements and communicate in parallel, but they arrive at a barrier synchronization at some
point in the application. This model is widely adopted in the High-Performance Computing
(HPC) community. The most popular specification that champions this idea is the Message
Passing Interface (MPI).

Almost all the HPC workloads adopt BSPM, and lately, it has been the same model used
by data-parallel distributed deep learning (DL) applications. For an example, Horovod DL
framework[3] for distributed TensorFlow, and PyTorch Distributed package [4]. Additionally,
the same approach is used in big data analytics tools such as Twister2 [5], and Cylon [6].

2.2 Distributed Asynchronous Model (DAM)

The Distributed Asynchronous/ fully distributed model also became very popular with the
popularization of web services and distributed systems architecture. It was powered by the
commodity cloud and networking infrastructure, which brought massively parallel comput-
ing to enterprise applications, a capability that was previously limited to supercomputers.

In a distributed asynchronous model, there is a separate client process that will be submit-
ting tasks to a cluster of processes. These tasks could be an independent piece of computation
or communication, and usually, there is a scheduler process (centralized or distributed) that
will be managing the cluster and its tasks.

This model can be considered the cornerstone of Big Data analytics infrastructure and
distributed database systems (RDBMS and NoSQL). It paved way to many data analytics
frameworks, such as Hadoop [7] and MapReduce [8], Apache Spark [9], Apache Flink [10],
etc. Furthermore, DAM has been widely adopted by distributed execution frameworks such
as Dask [11], Ray [12], and also by distributed actor frameworks such as CAF [13], Akka [14].

DAM model enables some important features that were challenging to implement by its
predecessor models, the most important being fault tolerance. It also promotes the effective
usage of shared computing resources in multi-tenant environments.

2.3 BSPM vs DAM
Following are the key differences between BSPM and DAM.



Area

BSPM

DAM

tixed parallelism (no scheduler)

Focus Computation, Synchronization fo- | Communication, Concurrency fo-
cused cused
Synchronization Loosely synchronous - communica- | Fully asynchronous
tion operations can still be async but
the resources would be dedicated to
the job until completion
Scheduling Tightly coupled to hardware with | Loosely coupled with hardware.

Schedulers have freedom to schedule
tasks anywhere.

Data partitions

Data partitions are restricted to paral-
lelism

Explicitly supports any number of
data partitions

Handling messages

Efficient communications — Receiver
immediately receives the message
from the sender

Sent messages needs to be stored un-
til the receiving task is scheduled
(mailboxes)

computation overheads

Performance High performance (time per work- | High throughput (number of work-
load is reduced) loads per given time is increased)
Suitability Suitable for workloads with high | Suitable for workloads with high

communication overhead

Fault tolerance

Does not support fault-tolerance in-
herently

Supports fault-tolerance

Hardware allocation

Requires fixed hardware allocation
for a workload

Supports dynamic hardware alloca-
tion

Multi-tenancy

Multi-tenant workloads would re-
quire separate hardware / dedicated
execution

Supports multi-tenant execution on
the same cluster / shared execution

Hardware requirement

Suitable for dedicated hardware

Suitable for cloud environments, with
preemptive resources

Table 1: BSPM vs DAM

2.4 Workflow Management (WFM)

Workflow management has also been an important component of computational and data-
driven research practices, and some WFM predates the Big Data phenomenon. Some notable
scientific workflow management systems are Pegasus, Kepler, Apache Airflow, Luigi, etc.

WEFM frameworks primarily adopt the DAM for execution, and the most notable feature
amongst all of these frameworks is that they arrange the workflow on a directed acyclic
graph (DAG). DAG-based executions are also being heavily used in dataflow programming
paradigm, which is an integral component in the data engineering frameworks (ex: Apache
Spark, Twister2, Apache Flink, Apache Beam, TensorFlow, PyTorch).

Lately, data engineering pipelines have become extremely complex that they are required
to manage a variety of data formats, storage, data extraction, transformation, and data
movements. Hence, some data analytics frameworks have promoted themselves to orchestrate
heterogeneous analytics workloads. For example, Spark 3.0 scheduler can now schedule



GPU-accelerated ML and DL applications on Spark clusters with GPUs, removing bottlenecks,
increasing performance, and simplifying clusters [15].

3 Data Abstractions

Data abstractions play a vital role in data engineering. Each data processing workload (batch,
streaming, graph, etc) has its own data abstraction. It is important to chosse the appropriate
data abstraction while implementing a data engineering framework.

3.1 Arrays and Matrices

Arrays and Matrices are the core data abstraction used in linear algebraic tool-kits, such as
Basic Linear Algebra Subroutines (BLAS), Linear Algebra Package (LAPACK), NumPy, etc.
These are homogeneously typed, contiguous data structures. Matrices may be arranged in
column- or row-major order in memory.

3.2 Tables, DataFrames, and DataSets

Tables are at the heart of data engineering. This is undoubtedly the most widely adopted data
structure in the world, because it is the core data structure used in databases management
systems (both relational and NoSQL). Tables are heterogeneously typed data structures which
could contain a wide variety of data types. Frameworks may choose to employ row- or
column-major memory representation based on the application, ex: a transaction processing
framework may store data in row format, while analytical processing framework may use
columnar format.

DataFrames were originally introduced in S programming language in Bell Labs, which is
synonymous to tables. They were open-sourced by R language and then widely popularized
by Python Pandas [16] for data analytics. DataSets are an extension to DataFrames, by adding
a strongly-typed schema and operations. Both DataFrames and DataSets provide a functional
programming flavor to data analytics compared to rigid SQL routines. Hence they has been
widely used interactive data analytics.

Apache Spark [9] is the most popular implementation of distributed dataframes, while
Dask [11] and Modin [17] are becoming increasingly popular due its compatibility with
Python Pandas Dataframe. CuDF [18] and Dask-CuDF is a GPU based implementation of
dataframes.

3.3 Tensors

Tensors are the main data abstraction for Al and ML frameworks. It is a multidimensional
array with a uniform data type. Mathematically, scalars, arrays, matrices, all are tensors.
Tensors are categorized differently because, the AI/ML frameworks such as TensorFlow,
PyTorch, MXNet, etc, use implementation-specific memory representations. DLPack [19] is
an open in-memory tensor structure to for sharing tensor among frameworks.



4 Emerging Trends

In the past few decades, processor and networking hardware have achieved significant
improvements. Processor architectures have reached the end of Moore’s Law for a single
processor, but continuing to add more and more computing elements into a single processing
unit. This is seen in both CPU and GPU architectures, as well as other hardware like FPGA'’s.

Computer network speeds have also improved significantly in the past decade. Specialized
network hardware is being designed for accelerators such as NVLink and NVSwitch for GPUs,
InfiniBand networks for compute nodes, and specialized software is also being developed to
get the best out of these new network hardware (ex: Remote Direct Memory Access (RDMA)).

Analytic workloads are also becoming increasingly complex and resource-intensive. As a
consequence, much more complex compute nodes are becoming publicly available such as
Nvidia DGX systems with multi-CPU and GPU units.

Cloud infrastructure providers (ex: Amazon AWS, Google Cloud Platform, Microsoft
Azure) are also providing dedicated hardware on-demand.

5 Opportunity For Improvement

As described in Section 4, these emerging technological advancements, open up new opportu-
nities for improvement in the high-performance data engineering domain.

One key observation here is, that there is no one-stop-shop model for data engineering applica-
tions. For example,

* Big company managing a company-wide Spark cluster and employees are submitting their
queries to it - DAM

* Spawning a distributed Spark cluster in a dedicated DGX node/ cluster to perform a data
preprocessing task — BSPM

* Running distributed hyper param search of a DNN in a multi-GPU node/ cluster — DAM +
BSPM

Another observation is, that distributed AI/ML/DL workloads are almost always follow-
ing BSPM. But, most of the popular big data preprocessing frameworks are using a DAM.
Hence, the data engineers would have to run separate distributed preprocessing and DL
pipelines and orchestrate them with a workflow manager.

There are some inadvertent uses of DAM and BSPM together in processing pipelines. For
example, a CPU process submits multiple GPU computation kernels via multiple ‘streams’.
Here, the CPU process is synonymous with DAM while the interaction of GPU streams is
synonymous with BSPM.

5.1 Bridging BSPM and DAM

According to the current literature, no framework has been able to bring the BSPM and DAM
models together. Each model has its own merits, and therefore, both paradigms are required
for complex data analytics jobs and effective use of modern hardware (and advancements).



There is an opportunity to propose a framework that supports both BSPM and DAM
execution. In such a system, a ‘task” would be executed in BSPM fashion with dedicated re-
source allocation, while ‘tasks” are scheduled in DAM fashion that would effectively schedule
resources (similar to WFM).

Consequently, there are data engineering workloads (SQL-like workloads) that could
benefit from BSPM execution than the existing DAM execution in data analytics frameworks
(provided that there are sufficient resources available). This would be valuable for high-
performance data engineering.

Furthermore, there is an opportunity to propose a Dataframe specification for MPI-like
environments, which is currently not available. There are emerging dataframe specifications
for DAM-based models (ex: Modin), but the BSPM execution is left behind because there is a
perception in the data engineering community that BSPM way of programming is inconvenient!.

Allin all, such a system would create a coherent ecosystem for distributed data engineering
and deep learning workloads.

5.2 Possible Outcomes

* High performance data engineering framework that integrates BSPM and DAM

* Develop a distributed dataframe abstraction for MPI-like environments

* Extend data engineering to hardware platforms other than CPU and GPU by supporting
OpenCL and Intel One API

* Use the proposed framework to support other hardware accelerators such as FPGA,
TPU, etc.

5.3 Challenges
While the idea seems to be promising, several challenges need to be addressed.

¢ Load imbalance in partitions is a major challenge in the distributed data processing.
BSPM is more susceptible to it because it cannot arbitrarily increase the number of
partitions (which could be a way to mitigate the issue to a certain degree.)

* There are several papers published on server-less AI/ML/DL applications, and they
claim that going serverless could be cheaper. The question remains if this would compel
the DL community to move into the DAM approach.

* Recent researches have shown that there are irregular variations in inter-node network
performance, especially in cloud service providers [20][21]. This is caused by the
physical layout of servers, racks, etc. Therefore, implementing a pure clean BSP execution
would not be a straightforward exercise.

* How to support computation and communication overlap in the BSPM model? This can
be supported in BSPM using a task-like model without compromising the distributed-
memory semantics

* Someone may argue that "Data preprocessing is a one-time task!, So it doesn’t matter if
it is inefficient or not!". (This has been partially addressed by the claim that, 80% of data
scientist’s time is spent on pre-processing data)

* Theoretically, it can be argued that BSPM is a subset of DAM. While this is a valid
argument, the existing data analytics tools do not have explicit schedulers for BSPM



style workloads. But, it would be possible to extend current schedulers to provide this
functionality.

* Data analytics workloads are mostly SQL-like workloads and big data frameworks have
done a decent job in this space. There are also GPU accelerated extensions are being
introduced to them. Therefore, it would be required to show a considerable upside by
integrating BSPM and DAM.

6 Survey on Existing Frameworks

To make the most out of the opportunities described in Section 5, it is imperative to carry out
a detailed survey of existing frameworks.

e Dask - DAM execution framework and a distributed dataframe abstraction

* Ray - DAM execution framework designed for Reinforcement Learning (RL)

e Horovod - BSPM execution framework for distributed DL

e Modin - distributed dataframe abstraction

¢ CuDF and Dask-CuDF - distributed dataframe abstraction for GPUs

* Apache Spark and Rapids Acceleration - WFM-like orchestration of both data processing
and DL workloads

¢ Parsl - WEM framework for heterogeneous resources

6.1 Dask - Rocklin M. (2015) [11]

Dask is a specification that encodes task schedules with minimal incidental complexity
using terms common to all Python projects, namely dicts, tuples, and callables. Ideally, this
minimum solution is easy to adopt and understand by a broad community. It represents
a computation as a directed acyclic graph of tasks with data dependencies. It attempts
to provide a software solution to parallelize the scientific python software stack without
triggering a full rewrite. Following are the main components in Dask.

¢ Dask graph - Dictionary mapping identifying keys to values (or tasks)

¢ Key - Any hashable value that is not a task

¢ Task - A tuple with a Python callable. Represents atomic units of work meant to be run
by a single worker

Dynamic task scheduling considers graph creation and graph execution are separable
problems. Currently, it provides single-threaded, multi-threaded, multi-process, and distributed
schedulers. Schedulers determine execution order during execution rather than ahead of time
through static analysis.

According to the authors, most dynamic task schedulers (Luigi, DAGuE, Spark, Dryad)
are not suitable for blocked algorithms in shared memory computation. It requires lightweight,
easily installable in Python, low latency, and memory-efficient task scheduling. Another important
feature in Dask schedulers, is they are extensible.

Following Dask collections are currently available.

¢ Array - Implements a subset of the NumPy ndarray interface using blocked algorithms,
cutting up the large array into many small arrays.
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Figure 1: Dask execution

* Bag - Implements operations like map, filter, fold, and groupby on collections of generic
Python objects.

* Dataframe - Large parallel DataFrame composed of many smaller Pandas DataFrames,
split along the index.

* Delayed - Operates Python functions lazily, and arranges them in a DAG

¢ Futures - Extends Python’s concurrent.futures interface for lazy operations

Dask Distributed

Dask distributed is a centrally managed, distributed, dynamic task scheduler. The central
dask-scheduler process coordinates the actions of several dask-worker processes spread across
multiple machines and the concurrent requests of several clients. It is asynchronous and
event-driven, simultaneously responding to requests for computation from multiple clients
and tracking the progress of multiple workers.

Workers communicate amongst each other for bulk data transfer over TCP. Internally the
scheduler tracks all work as a constantly changing DAG of tasks. This graph of tasks grows
as users submit more computations, fills out as workers complete tasks, and shrinks as users
leave or become disinterested in previous results.

6.2 Ray - Berkeley (2018) [12]

Ray implements a unified interface that can express both task-parallel and actor-based compu-
tations, supported by a single dynamic execution engine. It employs a distributed scheduler
and a distributed and fault-tolerant store to manage the system’s control state and focuses on
reinforced learning (RL).

A system for RL must support fine-grained computations, must support heterogeneity
both in time and in resource usage, and must support dynamic execution, as results of
simulations or interactions with the environment can change future computations. Existing
frameworks that have been developed for Big Data workloads or for supervised learning



workloads fall short of satisfying these new requirements for RL. Hence the authors propose
Ray, a general-purpose cluster-computing framework that enables simulation, training, and
serving for RL applications.

Tasks enable Ray to efficiently and dynamically load balance simulations, process large
inputs and state spaces (e.g., images, video), and recover from failures. In contrast, actors
enable Ray to efficiently support stateful computations, such as model training, and expose
shared mutable states to clients, (e.g., a parameter server).

Ray implements the actor and the task abstractions on top of a single dynamic execution
engine that is highly scalable and fault-tolerant. It distributes two components that are
typically centralized in existing frameworks, 1. task scheduler; 2. Metadata store which
maintains the computation lineage and a directory for data objects.

Ray provides lineage-based fault tolerance for tasks and actors and replication-based
fault tolerance for the metadata store. To achieve scalability and fault tolerance, the authors
propose a system in which the control state is stored in a sharded metadata store and all other
system components are stateless. To achieve scalability, we propose a bottom-up distributed
scheduling strategy.

RL applications must provide efficient support for,

¢ Training - Distributed SGD typically relies on an allreduce aggregation step or a param-
eter server

* Serving - Uses the trained policy to render an action based on the current state of the
environment.

¢ Simulations - Evaluate the policy

Ray model
Ray implements a dynamic task graph computation model (models an application as a
DAG of dependent tasks that evolves during execution)

Tasks (stateless) Actors (stateful)
Fine-grained load balancing Coarse-grained load balancing
Support for object locality Poor locality support
High overhead for small updates | Low overhead for small updates
Efficient failure handling Overhead from checkpointing

Figure 2: Ray tasks vs actors

Architecture

Major components - 1. Global control store (GCS); 2. Distributed scheduler, and 3.
Distributed object store (All components are horizontally scalable and fault-tolerant).

Global control store (GCS) is a Redis KV store with replication. Object metadata is stored
in the GCS rather than in the scheduler, fully decoupling task dispatch from task scheduling
(makes the scheduler stateless). Provides debugging, profiling, and visualization tools.

Distributed Scheduler is a two-level scheduler, global and per-node local. Tasks are first
accepted by the local scheduler and if it decides not to schedule the task, it forwards to the

10
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Figure 3: Ray major components

global scheduler. Then the global scheduler schedules it in some other node. Scheduler states
are managed in GCS

In-Memory Distributed Object Store is an Apache Arrow Plasma store distributed storage
system to store the inputs and outputs of every task, or stateless computation.

Ray is closely related to CIEL and Dask. All three support dynamic task graphs with
nested tasks and implement the futures abstraction. It is not a framework for data analytics,
but they have taken some preliminary efforts to provide a distributed Pandas Dataframe
abstraction on top of Ray execution.

6.3 Horovod - Uber (2018) [3]

Horovod is an open-source library that improves on obstructions to scaling distributed Tensor-
Flow applications by, 1. employing efficient inter-GPU communication via ring reduction, and
2. requiring only a few lines of modification to user code, enabling faster, easier distributed
training.

The standard distributed DL TensorFlow package runs with a parameter server approach
to averaging gradients. This entails the following issues: 1. identifying the right ratio of
worker to parameter servers, 2. handling increased program complexity.

Ring-AllReduce

2017 Baidu published a new all-reduce approach, Ring-allreduce which is bandwidth-
optimal. Horovod implements ring-allreduce with NCCL. The authors show that this new all
reduce algorithm performs better than OpenMPI v1.1, but it would have been better if a later
version of OpenMPI was used for the comparison.

Distributed operation is handled by MPI (BSPM). Adds support for models that fit inside
a single server, potentially on multiple GPUs, whereas the original TF version only supported

11



models that fit on a single GPU.

Horovod also provides a timeline, a profiling tool, and Tensor Fusion, an algorithm that
fuses tensors before calling the ring-allreduce.

Authors show that Horovod scales well on both plain TCP and RDMA-capable networks,
and they have planned to implement very large models using the framework.

6.4 Modin (2020) [17]

Authors identify issues with dataframes as, 1. dataframes face performance issues even
on moderately large datasets, and 2. significant ambiguity regarding dataframe semantics.
Hence the authors propose Modin, a scaled-up implementation of Python pandas. They also
introduce a simple data model and algebra for dataframes.

Dataframes provide a functional interface that is more tolerant of unknown data structure
and well-suited to developer and data scientist workflows, including REPL-style imperative
interfaces and data science notebooks. It is an intuitive data model that embraces an implicit
ordering on both rows and columns and treats them symmetrically. It is also a query language
that bridges relational (e.g., filter, join), linear algebra (e.g. transpose), and spreadsheet-like
(e.g., pivot) operators. Also, it is an incrementally composable syntax that encourages easy
and rapid validation and iterative evaluation of queries.

Padas has a rich set of APIs, but they have significant redundancies. There’s no query
plan, hence can not be optimized based on the entire application. Modin aims to overcome
these by providing a distributed scalable dataframe system on large datasets. It rewrites
pandas API calls into a sequence of operators in a new, compact dataframe algebra.

The authors propose a superset of operators called "dataframe algebra" that could span
Pandas 240+ operators. Parallel execution is done using partitions. Each partition is then
processed independently by the execution engine, with the results communicated across
partitions as needed.

12
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Figure 4: Modin Architecture
Dataframe Characteristic Relational Characteristic
Ordered table Unordered table
Named rows labels No naming of rows
A lazily-induced schema Rigid schema
Column names from d € Dom  Column names from att [ 17
Column/row symmetry Columns and rows are distinct

Support for linear alg. operators ~ No native support

Figure 5: Dataframes vs RDBMS table

Dataframe Characteristic Matrix Characteristic
Heterogeneously typed Homogeneously typed
Both numeric and non-numeric types  Only numeric types
Explicit row and column labels No row or column labels
Support for rel. algebra operators No native support

Figure 6: Dataframes vs Matrices

Dataframe Algebra

Modin presents an extensive definition for dataframe operations - “dataframe algebra”.
The authors also analyze Dataframe usage stats of 1 million Jupyter notebooks from GitHub
(Rule et al) to understand the usages of dataframes.
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Operator (Meta)data | Schema | Origin | Order | Description

SELECTION X static REL Parent | Eliminate rows

PROJECTION X static REL Parent | Eliminate columns

UNION X static REL Parent’ | Set union of two dataframes

DIFFERENCE X static REL | Parent’ | Setdifference of two dataframes

CROSS PRODUCT / JOIN X static REL Parent’ | Combine two dataframes by element

DROP DUPLICATES X static REL Parent | Remove duplicate rows

GROUPBY X static REL New Group identical attribute values for a given (set of) attribute(s)
SORT X static REL New Lexicographically order rows

RENAME (x) static REL Parent | Change the name of a column

WINDOW X static SQL Parent | Apply a function via a sliding-window (either direction)
TRANSPOSE (x) X dynamic DF Parent Swap data and metadata between rows and columns
MAP (x) X dynamic DF Parent | Apply a function uniformly to every row

TOLABELS (%) X dynamic DF Parent | Set a data column as the row labels column
FROMLABELS (x) X dynamic DF Parent | Convert the row labels column into a data column

Figure 7: Modin Dataframe Algebra - Operation Super-set

Data analysis workflow is broken into,

* Operator - single dataframe operation

¢ Statement - a set of operators

* Query - a set of statements arranged as a DAG
¢ Session - a complete end-to-end application

Modin Dataframes are maintaining a strict order but attempts to implement "physical
data independence" by altering metadata rather than changing physical data. It also proposes
to evaluate queries and return results in futures. Authors believe that this approach could use
user "think time" for query evaluation.

Modin treats the dataframe data model and algebra as first-class citizens, as opposed to
a means to enable distributed processing, addressing challenges in dataframe processing in
systems like pandas and R at scale, while not sacrificing the convenient functionalities that
have made dataframes so popular.

6.5 CuDF/ Dask-CuDF [18]

Built based on the Apache Arrow columnar memory format, cuDF is a GPU DataFrame
library for loading, joining, aggregating, filtering, and otherwise manipulating data.

CuDF provides a pandas-like API that will be familiar to data engineers and data scientists,
so they can use it to easily accelerate their workflows without going into the details of CUDA
programming.

Dask-CuDF

cuDF is a single-GPU library. For Multi-GPU cuDF solutions Rapids developers use Dask
and the dask-cudf package, which is able to scale cuDF across multiple GPUs on a single
machine, or multiple GPUs across many machines in a cluster.

As discussed in the Section 6.1, Dask DataFrame was originally designed to scale Pandas,
orchestrating many Pandas DataFrames spread across many CPUs into a cohesive parallel
DataFrame. Because cuDF currently implements only a subset of Pandas’s API, not all Dask
DataFrame operations work with cuDF.
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6.6 Apache Spark and Rapids Acceleration (2020) [15]

NVIDIA has worked with the Apache Spark community to implement GPU acceleration
through the release of Spark 3.0 and the open-source RAPIDS Accelerator for Spark. It is
believed that 80% of a data scientist’s time is spent on data preprocessing and hence improving
data preprocessing workflows is vital.

Spark 2.x

| Data Preparation |, Model Training

' Spark Orchestrated
Data - P. . .

Sources Shared Storage

Figure 1. In Spark 2.x, separate clusters were needed for ETL on CPUs,
and model training on GPUs.

Figure 8: Spark 2.x Execution

The Apache Spark community has been focused on bringing both phases of this end-to-
end pipeline together so that data scientists can work with a single Spark cluster and avoid
the penalty of moving data between phases. Spark 3.0 represents a key milestone, as Spark
can now schedule GPU-accelerated ML and DL applications on Spark clusters with GPUs,
removing bottlenecks, increasing performance, and simplifying clusters.

The RAPIDS Accelerator for Apache Spark enables applications to take advantage of GPU
parallelism and high-bandwidth memory speed with no code changes, through the Spark
SQL and DataFrame APIs and a new Spark shuffle implementation.

With the RAPIDS accelerator, the Catalyst query optimizer has been modified to identify
operators within a query plan that can be accelerated with the RAPIDS API, mostly a one-
to-one mapping. The new Spark shuffle implementation is built upon the GPU-accelerated
Unified Communication X (UCX) library to dramatically optimize the data transfer between
Spark processes. UCX exposes a set of abstract communication primitives which utilize the
best of available hardware resources and offloads, including RDMA, TCP, GPUs, shared
memory, and network atomic operations.

The Criteo Terabyte click logs public dataset, one of the largest public datasets for recom-
mendation tasks, was used to demonstrate the efficiency of a GPU-optimized DLRM training
pipeline. With eight V100 32-GB GPUs, processing time was sped up by a factor of up to 43X
compared to an equivalent Spark-CPU pipeline.
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6.7 Parsl - Argonne NL (2018) [22]

Parsl (Parallel Scripting Library), is a Python library for programming and executing data-
oriented workflows in parallel. It addresses the challenges of integrating workflow systems
in science gateways.

Parsl identifies challenges associated with current scientific gateway approaches as, 1.
many workflow engines are focused on many task applications rather than interactive, online,
or machine learning analyses, 2. workflow engines are not easily integrated into external ser-
vices (e.g., gateways) due to issues such as language mismatch and the need for intermediate
workflow representations.

Parsl is built on the Swift workflow language model and brings parallel workflow capabil-
ities to scripts, applications, and gateways implemented in Python. When a Parsl script is
executed, the Parsl library causes annotated functions (Apps) to be intercepted by the Parsl
execution fabric, which captures and serializes their parameters, analyzes their dependencies,
and runs them on selected resources.

Executors
DataFlow Kernel

Pars| Script UNIX Threads ‘

from parsl import * ‘Data Manager
A
lef ec . st =

in

‘Error Handlmg‘

Campus Resources
Google
amazon {7 ;

webservices

Clouds

IPILyl:ipyParallel

Figure 11: Parsl Architecture

Parsl scripts are decomposed into a simple dependency DAG by the DataFlow Kernel
(DFK). The DFK provides a single lightweight abstraction on top of different execution
resources. A Parsl script consists of standard Python code plus a number of Apps—annotated
units of Python code or external applications that specify their input and output characteristics
and that may be run in parallel.

Parsl Apps are completely asynchronous. When an App is invoked, there is no guarantee
of when the result will be returned. Instead of directly returning a result, Parsl returns an
AppFuture: a construct that includes the real result as well as the status and exceptions for
that asynchronous function invocation.

When instantiating the DFK, developers specify the specific execution providers and
executors that will be used for executing the parallel components of the script. Execution
providers are simple abstractions over computational resources and executors provide an
abstraction layer for executing tasks.
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Figure 12: Parsl Block Model - Resource allocation

7 Conclusion

This report discusses two main execution paradigms used in current distributed systems,
Bulk Synchronous Parallel Model (BSPM) and Distributed Asynchronous Model (DAM). It
proposes the idea of bridging these two models together to create efficient high-performance
data engineering pipelines. It also recognizes that current Workflow Management (WFM)
systems have been successful in using BSPM within a DAM environment. Furthermore, the
report aims at providing a specification for distributed data abstraction for BSP-like execution
environments that could provide modern and user-friendly APIs without losing performance.
The report presents a survey of existing frameworks that encompasses the latest developments
in the said domains to evaluate this idea.
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