
 1

Online Knowledge Center Tools for Metadata Management
Galip Aydin, Harun Altay, Mehmet S. Aktas, M. Necati Aysan, Geoffrey Fox, Cevat Ikibas, Jungkee Kim,

Ali Kaplan, Ahmet E. Topcu, Marlon Pierce, and Beytullah Yildiz
Community Grids Lab

Indiana University
Bloomington, IN 47404-3730

Ozgur Balsoy

Computer Science Department
Florida State University

Tallahassee, FL

Abstract
We describe the design and implementation of an XML metadata management system for
creating, delivering and managing general metadata. We describe message composition
wizards, a multipurpose delivery system implementation, and message access role
definitions. This system may be used as the foundation for both human readable
messaging (such as newsgroups and citation management systems) as well as event-
driven application-to-application systems. We describe in detail the design of an Access
Control System.

Introduction
XML [1] can be used to provide a computer platform-, programming language-, and
application endpoint-independent way for publishing and browsing metadata, or data
about data. We may think of these metadata “nuggets” as messages that may be both
synchronously and asynchronously communicated to interested and authorized users.
Instead of concentrating on endpoint implementations (some of which may be produced
by independent developers), we can develop application metadata formats and use
common wire protocols (such as HTTP [2] and SMTP [3]) to transport these as messages.
These messages then become events in a general purpose message-oriented middleware
system.
In this report, we collect, update, and expand previous descriptions of our system, which
are available from Refs [4] and [5]. We have built many applications using the basic
architecture described here, including a) a newsgroup system that allows users to post
messages, which can then be delivered by email, through a generated web page, or both;
b) a training registration system that allows students to register for classes and instructors
to post classes and course materials for students; c) a bibtex-based reference management
systems that support several related schemas for journal articles, book articles,
conference proceedings, etc; d) Basic Interoperability Data Model (BIDM) [6]
compatible applications, and e) glossary term and acronym managers. Demonstrations
and several running examples are available from http://www.xmlnuggets.org. We are also
interested in extending the system to support applications in scientific metadata
management. Annotating data provenance, in which metadata is used to describe the
history of (real or synthetic) data, is one important example.
We identify the following key constituents of our metadata management system design:
an XML message composition tool for creating valid, well-formed messages; an

 2

architecture and implementation for delivering the messages to the appropriate interested
listeners (supporting both push and on-demand pull delivery systems); and a user
role/access control system to define various levels of users and their privileges. The
architecture for the entire system is show in Figure 1, with each part described in more
detail in following sections.

Wizard

MailHandler JMS
Server

NewsRecorder Database

NewsFeeder

NewsReader

PORTAL

JMS publish

JMS subscribe

JDBC

JDBC

RSS & XML

HTML to
Portal

JMS publish

Users HTTP

SMTP

Mailbox

New post
& reply

Portal menu

MailDistributor

JMS
subscribe

SMTP

JMS
clients

JSP
Interfaces

SMTP
Host

NumberGenerator
(Resource counter)

Socket

Socket

Figure 1 Metadata system architecture

Metadata Composition with Wizards
The first step in our system is creating the XML schemas that define the particular types
of metadata instances that we wish to transfer for a particular application. Particular XML
messages are instances of these general schemas. The advantage of the XML messaging
format is that it only requires the client application to create a valid, well-formed message,
which can then be handed off to the system using well established wire protocols. Thus
for example a user can create a message posting by hand with any kind of text editor and
post through email, as shown in Figure 1. In this case, messages are received by the Mail
Handler, assigned a unique ID with the Number Generator, and published to the system
through the JMS server.
It is also desirable to allow users to post information to the system through browser
interface that ensures that valid schema instances of messages are created. A “wizard”

 3

composer can be used to reliably create messages from a particular schema. After
defining the necessary schema for a particular application, these schemas have a natural
mapping to both user interface components (HTML form elements, Java Swing
components, etc.) and data objects (such as JavaBeans). We must thus generate the code
for the user interface and the data model.
The process of mapping an XML schema to classes in a particular object oriented
programming language is called data binding. This language in our case is Java, and so
we wish to cast a particular XML instance into JavaBeans. An XML schema and its
instances correspond directly with Java classes and objects. The Java classes have
member data corresponding to the schema’s elements and attributes and accessor
methods (“getters” and “setters”) for the data. Tools such as JAXB [7] implementations
and Castor [8] for making the conversion, or marshaling, between XML and JavaBeans
are available.
The data object bindings may be automatically generated as described above, but we
must also develop user interfaces based on the schema that use these data objects. We
have initially implemented wizard user interfaces by hand using JavaServer Pages (JSP)
[9], mapping the schema elements to corresponding HTML form elements and including
corresponding Java data objects generated by Castor in the page.
The next step is to automate the user interface creation. We have developed such a
general purpose Schema Wizard system, which we describe in detail in Ref [10] and
summarize here. We assume that the content to be generated is based on one or more
XML schemas. We provide a set of constraints and directives to schema developers by
which they can take control over interface generation. The wizard, then by using built-in
mappings from schema elements to HTML form elements, is invoked with schemas to
generate user interfaces and necessary source code for data handling and validation. The
resulting Web forms are used to interact with users and help generate schema-based and
validated XML documents.
The Schema Wizard works by mapping each schema primitive type to a JSP template
“nugget” (written in Velocity [11] for scripting) that defines both the user interface and
the action. A string element, for example, may be mapped to a text field, an enumeration
to radio buttons, and so on. These JSP nuggets can be used to build up displays for more
complicated types. The final JSP page for a particular schema is simply the aggregation
of all the base JSP nugget types that are needed.

Metadata Publication Mechanisms
XML messages may be posted either through any email client or through the web-based
wizard system. The former assumes the user correctly created an XML message in
agreement with the schema for the particular application, while the latter (as described in
the previous section) creates correct messages. In our system, we use Java Messaging
Service (JMS) [12] implementations, with one publisher per message type; i.e. we have a
mail handler for incoming email postings and a wizard poster for particular browser
wizard applications. As we will describe in the next section, this architecture allows us to
decouple message posting and delivery mechanisms and to support multiple delivery of
single messages.

 4

The posted message actually consists of more than just the XML message created by the
wizard or user. The parts of the final posted message are a) a message header, consisting
of the regular email header after being converted to XML; b) the message body; and c)
optionally one or more attachments to the posting. Attachments may be binary document
files attached to the text message during HTTP upload or email postings. We wrap this
entire message (XML posting plus optional email headers and MIME attachments) as a
SOAP [13] message with MIME attachments.
Each message is assigned a URI as a unique identifier. This defines a hierarchical,
searchable structure for messages: a message can contain child messages (for example, a
thread in a news group system). For instance, in a newsgroup application of the
messaging system, we can create the reply messages as a child of the message which is
replied to. By the URI type unique ID, the attachments can be stored to the unique
directory which is related to the unique ID. In this structure, we can also store the
messages as an XML file in a directory structure just as we stored attachments. We
generate these URIs in an automatic fashion. Top level message names begin with an
XML namespace, followed by a number indicating their place in the sequence of posted
messages. A child message starts with the name of its parent, followed by a number
indicating its place in the sequence of postings to that particular parent.
The message must still be directed to the correct message topic channel. We do this by
including a destination tag in the posted message with a URI corresponding to the
appropriate message channel (newsgroup topic, for instance).

Metadata Delivery Mechanisms
We need in general to support two sorts of message delivery mechanisms: a “push”
model that immediately sends out the message to the subscribing application and a “pull”
model that archives posting that can then be recovered on demand. As we illustrate in
Figure 1, we use email message delivery as our push system and a database querying
system with a browser front end for pull.
As shown in Figure 1, a user may post messages through an email client. This message is
received by the Email Handler, which assigns it a unique URI through the ID Generator
service and then publishes it to a message distribution hub. Browser wizard postings
work similarly. We assign all the channels a unique, hierarchical URI [14]. For example,
consider a message group for researcher is Signal Image Processing (SIP). This channel
should have gxos://[(unique)destination]/Organization/Newsgroup/SIP. This system can
be integrated to the any XML Messaging System. If user want to create new group
derived from the SIP message channel, new URI for the new channel is
gxos://[(unique)destination]/Organization/ Newsgroup/SIP/SIPArchive created. The
administrator of the SIP channel will be automatically assigned to the SIPArchive
channel.

We use JMS as our message publishing and subscribing hub. A messaging system will be
typically divided into several message channels, such as newsgroup topics or classes in a
training system. As shown in Figure 1, we only have one publisher per protocol (message
posting wizard for HTTP, for example) and one subscriber per protocol (Email

 5

Distributor for SMTP, for example). These are decoupled, so email postings can be later
read through a browser client to the archive. We thus are funneling actual end user
publishers and subscribers through a small number of publishers and subscriber proxies.
The Email Handler, for example, receives all email postings and is responsible for
delivering the posted message to the correct JMS message channel. Thus access control
rights are enforced by the publisher and subscriber proxies, which consult an access
control service (described in detail in the next section).
Once the message is posted, it will be both immediately sent out and also archived.
Immediate notification (“push”) is handled by the Email Distributor. The distributor acts
as a subscriber to the JMS publishing hub, and contacts the database to get a list of end
subscribers that need immediate notification for postings to a particular message channel.
The archival middleware of the messaging system is responsible for recording the
messages and providing (feeding) them to the requesters. These two parts of the system
are designed to be independent from the message creation part and the message requester
part. For that reason, the server should provide us a functionality that the receiver does
not need to know anything about the sender. However, the receiver and publisher have to
know the message format. The server should also deliver a message to a client only once.
JMS provides this functionality for us. The messages are received by the Java Messaging
Service in the middleware of messaging system.
The JMS server can be used to communicate events between Java services running on
different hosts. These services, such as Email Distributor, may act as bridges to general
purpose protocols. The other modules of messaging systems which generate events
register as a publisher to the JMS server. The recorder module of the middleware
registers to the JMS server as a subscriber to the publication channels which we want to
listen. Each message is stored to a database to provide persistency. The unique ID is used
to search the database. The Message Recorder module completes its mission by storing
the message to the database and the attachment to the directory system. The Message
Feeder is completely independent from the recorder part. The requests are received via
HTTP GET/POST requests through JSP pages. These requests invoke the feeder to
retrieve a message from the database. If the requested information can be found in the
database, an XML file is created dynamically. This file includes the information which
the requester asked.
The requester makes two kind of request. One is a request which includes the information
of the all messages. The response is in RDF Site Summary [15] format. This RSS file
includes information such as the link to the original message, the sender name, and the
date. The other request is for a specific message, such as a course or a newsgroup posting.
To make this request, the requester takes the RSS file and derives the information to
request the message body to obtain the desired information.
The Message Displayer uses RSS URI to construct the e-mail/message hierarchy and to
get the body of messages. The Message Feeder constructs the RSS file at the request of
the message channel. XSL can be used to extract data from XML based message in order
to show the required messages to the users. Message Displayer checks the user’s access
rights by using the database. User access rights allow users to read from and write into
message channel topics.

 6

The confirmed message channel can be used to post or read messages. The interface
reads the index structure of the message channel by using an RSS Feeder to recover the
message IDs in order to index the archived messages.

Channel-Based Access Control
All of our applications are designed around the principle that multiple users will need to
access and possibly update various pieces of information in the system, but no two users
will necessarily have access to the same sets of data stored in the system. Also, some
users must be granted additional privileges for managing access to certain subsets of the
data. The channel-based architecture of our system naturally lends itself to this sort of
access control, which must be enforced at both the publication points (recorders) and
subscription points (readers and distributors) of Figure 1.

Access control systems are important to any system with multiple users, and we highlight
some related work. For example, UNIX [16] provides a very simple but powerful form
of access control that partially inspires some of our system. Akenti [17] is an access
control systems for distributed systems based upon Public Key Infrastructure. An
important recent development for Web Services is WS-Policy [18], which provides
secure environment for Web Services. Also for Web Services, SAML [19] can be used
to convey both authentication and access control assertions in SOAP headers.

Access Control System Requirements
XML metadata may be organized into various categories, or channels. In our newsgroup
system, for example, we have many news topics. Each topic includes users with different
types of roles, with multiple access privileges. Individuals may also possess different
roles in different topics. The default “user” role grants privileges to read and optionally
write to one or more message channels. Users have additional options with regard to the
choice of message delivery mechanism. That is, a user may request message notification
by email, through a web interface, or both. Each channel users is assigned to a role and
group. Each role has several privileges (properties). For example, a user may additionally
request that attachments to topic postings be sent to him through email. User can make
requests to change these properties, which are granted or denied by channel
administrators.

Other available roles include “administrator”, and “super-administrator”. Message
Channel Administrators have the authority to assign users to a specific message channel.
A channel user may have administration privileges over more than one message channel,
and a specific channel has one or more administrators. Administrators may modify the
access rights of a user, denying a user the privilege of writing to a particular channel, for
example. Super administrators manage the entire messaging system. In addition to
possessing administrator authorities for all channels, this role has the authority to create
new messages channels and assign administrators to them. These roles are summarized
in Figure 2.

 7

Figure 2 Access roles are arranged in a pyramid structure of privilege.

Figure 3 shows three different use-cases for the access request/confirmation process. The
User Request Pool contains requested objects that are initiated by different users of the
channels. The Admin Pool captures the request objects and handles the results based on
the administrator of the channel. The Result Pool sends users the results of their request.
User might have different roles for each news channels. In the figure, for example,
Administrator of Ch1 confirmed the user request for both User U1 and User U2 for the
channel Ch1. Then, both User U1 and User U2 started to use the channel by having Role
R1 in the channel system. However, for the channel Ch2, Administrator of Ch2
confirmed only the User U1’s request having a role R1. Administrator of Ch3 having all
these control rejects User U3’s request for channel Ch3, it is easy to configure user rights
for channel, and we have very powerful access control structure for channels having this
structure. Different administrators can handle user request objects, which have different
roles and different channels.

 8

User U1 start to use
Channel Ch2

User U1
Role R1

Channel Ch1
User Request Pool

User U2
Role R1

Channel Ch1

User U3
Role R2

Channel Ch3

Administrator of
Ch1

Confirmed

Confirm
Administrator of

Ch3

User U1
Role R1

Channel Ch2

Administrator of
Ch2

Confirm ed Rejected

User
U1

User
U2

 Ch1
 R1

User
U1

 Ch1
R1

no use of the Channel
Ch3

User
U3

Result Pool

Admin Pool

User U1 and U2 start to
use Channel Ch1

Ch3
R2

Figure 3 User request and confirmation model.

Web Service for Access Control
Designing systems around a Web services approach has many advantages: protocol
independent services, well-defined interfaces for distributed services, and separation of
interface from implementation (transparency). Due to transparent services capability of
Web services, underlying data-storage may be XML database, relational databases, or flat
file system.

The system architecture is shown in Figure 4. The end user sends a request in the SOAP
message format. The web server forwards incoming requests to web service engine,
which executes the proper web service in the web service pool. The invoked web service
ingests the SOAP message, connects to database using JDBC connection, and performs
the incoming service request. If there are responses for the incoming service request, it
wraps it into SOAP message and passes it to the Web service engine. The Web service
engine delivers the output to requestor by passing it to web server.

Let us examine services needed for manipulating our access control model.

 9

Database

Access
Rights

Request
Service

WEB Server

WEB Service
Engine

Web Browser
(User)

or
Application

HTTP(s)

Local
Access JDBC

Web Service Pool

Access
Rights

Approve
Modify
Service Access

Rights
Query
ServiceMessage

Channel
Management

Service

Figure 4: Interaction of users with the Access Control service.

Access Rights Request Service: This service allows a user to make a request on desired
message channel to have proper access rights. For instance, a new user makes a request
for read, write, email notify access rights on “java beginners” message channel by calling
this service transparently using his/her browser. When Access Rights Request Service has
this incoming request, it uses the JDBC to connect to database and enters user’s request.

Access Rights Approve, Modify Service: Channel administrators or super
administrators use this service. Channel administrator may approve, modify or reject to
any request. In addition, he/she may modify the current access rights of the subscribed
users by using this web service. Super administrators assign users as a message channel
administrators or degrade them by using this service.

Access Rights Query Service: This service is designated for users who do not have right
to enter any information (access rights request, modification of access rights, etc.) into
database, but they need to access rights information in the database. For example, a
message-brokering publisher may need this service to verify the current message sender
has write access on given message channel before publishing his/her message. The
following are the current methods of this service:
getReadableTopics, getWritableTopics, getAllUsers, getUsersHaveReadAccess,
hasReadAccess, hasWriteAccess, getUsersHaveWriteAccess, getAllTopics,
hasReadWriteAccess.

Message Channel Management Service: Super administrators use this service. They
can add new message channel into system, remove expired message channels from the
system and manage their channel administrators by calling this service.

 10

Conclusions
We have presented several aspects of an XML metadata management system: XML
instance composition assistance through schema wizards, a system architecture that
supports both “push” and “pull” publication mechanisms, and access controls on posting
and delivery. We have developed several applications around this basic architecture.

Access Control System is part of a larger security framework, which consists additionally
authentication and transport level security. In authentication, the correctness of the user
identity is verified. The Access Control System we have presented here depends on an
external authentication method. Currently, we implement only HTTP-based
authentication. Future versions may incorporate other authentication systems such as PKI,
Kerberos or Shibboleth. Data integrity and privacy are provided by transport level
security mechanisms such as SSL. Communication between the Access Control System
and other entities using the services also needs to use transport level security. Using SSL
in all communications provides a sufficient degree of transport level security that
concerns about data integrity and privacy.

This work was supported by the US Department of Defense High Performance
Computing Modernization Program through the Programming Environment and Training
initiative as part of the Online Knowledge Center.

 11

References
[1] H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn, “XML Schema Part 1:
Structures.” W3C Recommendation 2 May 2001. Available from
http://www.w3.org/TR/xmlschema-1/; P.V. Biron and A. Malhotra, “XML Schema Part
2: Datatypes.” W3C Recommendation 02 May 2001. Available from
http://www.w3.org/TR/xmlschema-2/.

[2] R. Fielding, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee.
Hypertext Transport Protocol—HTTP/1.1. Internet Engineering Task Force Request For
Comments 2616, June 1999. Available from
http://www.w3.org/Protocols/rfc2616/rfc2616.html.

[3] J. B. Postel, “Simple Mail Transfer Protocol (SMTP)”. Internet Engineering Task
Force Request for Comments 821, August 1982. Available from
http://www.ietf.org/rfc/rfc0821.txt.

[4] Galip Aydin, Ali Kaplan, Ahmet E. Topcu, Beytullah Yildiz, Ozgur Balsoy, Marlon
Pierce, and Geoffrey Fox ,“An XML Based System for Dynamic Message Content
Creation, Delivery, and Control” IASTED International Conference on Information and
Knowledge Sharing (IKS 2002) November 18 to November 20, 2002, in St.Thomas, US
Virgin Islands.

[5] Ali Kaplan, Ahmet E. Topcu, Marlon Pierce, and Geoffrey Fox, “Access Control
System Using Web Services for XML Messaging Systems” in Proceedings of
Information Knowledge Engineering (IKE 2003) Las Vegas June 2003.

[6] IEEE Standard for Information Technology—Software Reuse—Data Model for
Reuse Library Interoperability: Basic Interoperability Data Mdoel (BIDM). IEEE Std
14201., 1995. See also Basic Interoperability Data Model (BIDM)
http://www.nhse.org/RIB/bidm.html.

[7] J. Fialli and S. Vajjhala, “The Java Architecture for XML Binding (JAXB), V 1.0”.
See also “Java Architecture for XML Bindings (JAXB)” available from
http://java.sun.com/xml/jaxb/

[8] The Castor Project: http://castor.exolab.org/

[9] JavaServer Pages: http://java.sun.com/products/jsp/.

[10] O. Balsoy, et al. “Automating Metadata Web Service Deployment for Problem
Solving Environments.” Proc. of The International Conference on Computational
Science, Melbourne, Australia, 2003.

[11] Velocity Project Page: http://jakarta.apache.org/velocity/

 12

[12] Java Message Service: http://java.sun.com/products/jms/

[13] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F. Nielsen, S.
Thatte, and D. Winer, “Simple Object Access Protocol (SOAP) 1.1.” W3C Note 08 May
2000. Available from http://www.w3.org/TR/SOAP/ .

[14] URIs, URLs, and URNs: Clarifications and Recommendations 1.0 21 W3C Note
September 2001 Tony Coates Dan Connolly Diana Dack Avaliable from
http://www.w3.org/TR/uri-clarification/

[15] G. Beged-Dov, et al. “RDF Site Summary (RSS) 1.0”. Available from
http://web.resource.org/rss/1.0/spec. See also http://groups.yahoo.com/group/rss-
dev/files/namespace.html

[16] F. Grampp and R. Morris, "UNIX Operating System Security", BSTJ, Vol. 62, No. 8,
1984.

[17] S.S. Mudumbai, W. Johnston, M. R. Thompson, A. Essiari, G. Hoo, K. Jackson,
Akenti- A Distributed Access Control System, Avaliable from http://www-
itg.lbl.gov/Akenti/sc98/akenti.pdf

[18] Web Services Security (WS-Security) Version 1.0 April 5, 2002 Available from:
http://msdn.microsoft.com/webservices/default.aspx?pull=/library/en-
us/dnglobspec/html/ws-security.asp

[19] SAML Specification Available from http://lists.oasis-open.org/archives/security-
services/200106/pdf00002.pdf

