Towards a Comprehensive set of Big Data Benchmarks
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Overview of Ogres
What is an Ogre? 
The Berkeley Dwarfs [1] were an important step towards defining an exemplar set of parallel (high performance computing) applications. The recent NRC report [2] gave Seven Computational Giants Of Massive Data Analysis, which start to define critical types of data analytics problems. We propose [3] Ogres ― an extension of these ideas based on an analysis by NIST of 51 big data applications [4]. Big Data Ogres provide a systematic approach to understanding applications, and as such they have facets which represent key characteristics defined both from our experience and from a bottom-up study of features from several individual applications. The facets capture common characteristics which are inevitably multi-dimensional and often overlapping. We note that in HPC, the Berkeley Dwarfs were very successful as patterns but did not get adopted as a standard benchmark set. Rather the NAS Parallel Benchmarks [5], Linpack [6], and (mini-)applications played this role. This suggests that benchmarks do not follow directly from patterns, but the latter can help by allowing one to understand breadth of applications covered by a benchmark set. 
Ogres have Facets
We suggest that Ogres would have properties that we classify in four distinct dimensions or views. Each view consists of facets; when multiple facets are linked together, they describe classes of big data problems represented as an Ogre.  One view of an Ogre is the overall problem architecture which is naturally related to the machine architecture needed to support data intensive application while still being different. Then there is the execution (computational) features view, describing issues such as I/O versus compute rates, iterative nature of computation and the classic V’s of Big Data: defining problem size, rate of change, etc. The data source & style view includes facets specifying how the data is collected, stored and accessed. The final processing view has facets which describe classes of processing steps including algorithms and kernels. Ogres are specified by the particular value of a set of facets linked from the different views. The views contain the following facets given in Table 1.

	Facet and View
	Comments
	Dibbs
	DB
	NIST

	[bookmark: RANGE!A1:B61]Facets in Problem Architecture View:

	1
	Pleasingly Parallel
	Clear qualitative property overlapping Local Analytics
	M
	H
	H

	2
	Classic MapReduce
	Clear qualitative property
	M
	H
	H

	3
	Map-Collective
	Clear qualitative property
	S
	N
	H

	4
	Map Point-to-Point (graphs)
	Clear qualitative property
	H
	S
	M

	5
	Map Streaming
	Property of growing importance. Not well benchmarked
	N
	N
	H

	6
	Shared memory (as opposed to distributed parallel algorithm)
	Corresponds to problem where shared memory implementations important. Tend to be dynamic asynchronous 
	S
	N
	S

	7
	Single Program Multiple Data SPMD
	Clear qualitative property
	H
	H
	H

	8
	Bulk Synchronous Processing BSP
	Needs to be defined but reasonable qualitative property
	H
	S
	H

	9
	Fusion
	Only present for composite Ogres
	N
	S
	H

	10
	Dataflow
	Only present for composite Ogres
	N
	M
	H

	11
	Agents
	Clear but uncommon qualitative property
	N
	N
	S

	12
	Orchestration (workflow)
	Only present for composite Ogres
	N
	H
	H

	

	Facets in Execution View:

	1
	Performance Metrics
	Result of Benchmark
	-
	-
	-

	2
	Flops per Byte (Memory or I/O)
	I/O Not needed for “pure in memory” benchmark. Value not clear in broad overview. Could depend on implementation
	-
	-
	-

	3
	Execution Environment (LN = Libraries needed, C= Cloud, HPC = HPC)
	Depends on how benchmark set up
	-
	-
	-

	4
	Volume
	Depends on data size 
	-
	-
	-

	5
	Velocity
	Associated with streaming facet but value depends on particular problem
	N
	S
	H

	6
	Variety
	Most useful for composite Ogres
	N
	S
	H

	7
	Veracity
	Most problems would not discuss but potentially important
	N
	N
	M

	8
	Communication Structure (D=Distributed, I=Interconnect, S=Synchronization)
	Qualitative property – related to BSP and Shared memory
	U
	U
	U

	9
	D=Dynamic or S=Static
	Clear qualitative property
	H
	H
	H

	10
	R=Regular or I=Irregular
	Clear qualitative property
	H
	H
	H

	11
	Iterative?
	Clear qualitative property
	H
	S
	H

	12
	Data Abstraction(K= key-value, BW= bag of words, BI = bag of items, P= pixel/spatial, V= vectors/matrices, S= sequence, G= graph)
	Clear quantitative property although important data abstractions not agreed
	H
	H
	H

	13
	M= Metric Space or N= not?
	Clear qualitative property
	H
	N
	H

	14
	NN= O(N2) or N= O(N)?
	Clear qualitative property
	H
	N
	H

	

	Facets in Data Source&Style View:

	1
	SQL/NoSQL/NewSQL?
	Clear qualitative property. Need to decide on categories such as key-value, graph, document …
	N
	H
	H

	2
	Enterprise data model (warehouses)
	Clear qualitative property of data model
	N
	H
	M

	3
	Files/Objects?
	Clear qualitative property of data model
	N
	N
	H

	4
	HDFS/Lustre/GPFS?
	Clear qualitative property of data model
	N
	H
	H

	5
	Archive/Batched/Streaming
	Clear qualitative property but not for kernels as describes how data collected
	N
	N
	H

	6
	Shared/Dedicated/Transient/Permanent
	Clear qualitative property of data
	N
	N
	H

	7
	Metadata/Provenance
	Clear qualitative property but not for kernels as important aspect of data collection process
	N
	N
	H

	8
	Internet of Things
	Clear qualitative property.
	N
	S
	H

	9
	HPC Simulations
	Clear qualitative property
	N
	N
	H

	10
	Geographic Information Systems;
	Clear property but not for kernels
	S
	N
	H

	

	Facets in Processing View:

	1
	Micro-benchmarks
	Important subset of kernels
	N
	H
	N

	2
	Local Analytics
	Well defined but overlaps Pleasingly Parallel
	H
	H
	H

	3
	Global Analytics
	Clear qualitative property
	H
	S
	H

	4
	Base Statistics
	Describes simple statistical averages needing simple MapReduce. MRStat in [4]
	N
	S
	M

	5
	Recommender Engine
	Clear type of machine learning of especial importance commercially
	N
	M
	H

	6
	Search/Query/Index
	Clear important class of algorithms 
	S
	H
	H

	7
	Classification
	Clear important class of algorithms
	S
	M
	H

	8
	Learning
	Includes deep learning as category. 
	S
	M
	H

	7
	Optimization Methodology ( ML= Machine Learning, NO = Nonlinear Optimization, LS = Least Squares, EM = expectation maximization, LQP = Linear/Quadratic Programming, CO = Combinatorial Optimization)
	LQP and CO overshadowed by machine learning but important where used. ML includes many analytics which are often NO and EM and sometimes LS (or similar Maximum Liklihood)
	H
	M
	H

	10
	Streaming
	Clear important class of algorithms
	N
	S
	H

	11
	Alignment
	Clear important class of algorithms
	N
	N
	M

	12
	Linear Algebra Kernels
	Important property of some analytics
	H
	N
	H

	13
	Graph Algorithms
	Clear important class of algorithms
	H
	S
	M

	14
	Visualization
	Clearly important aspect of data analysis but different in character to most other facets
	S
	N
	H


Table 1: The four views and their constituent facets: High Use; M Medium use; S Small use; N essentially no use; - inapplicable; U Unknown. Dibbs is [7]. DB is Database analysis [8]. NIST is [4]
Pleasingly Parallel
Classic MapReduce
Map-Collective

MP2P Map Point-to-Point
Map Streaming
Shared Memory
Single Program Multiple Data
Bulk Synchronous Parallel
Fusion
Dataflow
Agents
Workflow  
Geographic Information System
HPC Simulations
Internet of Things
Metadata/Provenance
Shared / Dedicated / Transient / Permanent
Archived/Batched/Streaming
HDFS/Lustre/GPFS
Files/Objects
Enterprise Data Model
SQL/NoSQL/NewSQL
Ogre Views and Facets
Performance Metrics
Flops/Byte
Flops/Byte; Memory I/O
Execution Environment; Core Libraries
Volume
Velocity
Variety
Veracity
Communication Structure
Iterative / Simple
Metric = M / Non-Metric = N
 = NN /  = N

Regular = R / Irregular = I
Dynamic = D / Static = S
Linear Algebra Kernels
Graph Algorithms
Deep Learning
Classification
Recommender Engine
Search / Query / Index
Basic Statistics
Optimization Methodology
Global Analytics
Local Analytics
Micro-benchmarks
Visualization
Streaming
Problem 
Architecture View
Data Source and
Style View
1
2
3
4
5
6
7
8
9
10
11
12
10
9
8
7
6
5
4
3
2
1
1
2
3
4
5
6
7
8
9
10
11
13
14
9
8
7
5
4
3
2
1
14
13
12
11
10
Alignment
6
Data Abstraction
12
Execution View
Processing View

In our language, instances of Ogres can form benchmarks.  One can consider composite or atomic (simple, basic) benchmarks. For example, a clustering benchmark is an instance of an Ogre with a Map-Collective facet in the Problem Architecture view and the machine learning facet in the Processing view. The Execution view describes properties that could  differ for different clustering algorithms and would often be measured in a benchmarking process. Note a simple benchmark like this could ignore the data source & style view and just be studied for in-memory data. Alternatively we can consider a composite benchmark linking clustering to different data storage mechanisms. A given benchmark can be associated with multiple facets in a single view, i.e. clustering has other problem architecture facets including SPMD, BSP, and Global Analytics. 

Particular Benchmarks as instances of Ogres
Our approach suggests choosing benchmarks from Ogre instances that cover a diverse range of facets. Rather than trying to be comprehensive at this stage, we give some examples.  Note that kernel benchmarks are instances of Ogre Processing facets; this is where the NAS parallel benchmarks or TeraSort [9] would fit. On the other hand, micro-benchmarks such as MPI ping-pong and SPEC [10] are measures of Ogre execution facets. 

Baru and Rabl’s tutorial [8] has a thorough discussion of benchmarks including the TPC series [11], HiBench [12], Yahoo Cloud Serving Benchmark [13], BigDataBench [14], BigBench [15] and Berkeley Big Data Benchmark [16] that quantify the Ogre data source & style facets.

The processing view has the well-known Graph500 [17] benchmarks (and associated machine ranking), but of course libraries like R [18], Mahout [19] and MLlib [20] also include many candidates for analytics benchmarks. We are part of a recent NSF project from the DIBBs (Data Infrastructure Building Blocks) program where one can use Ogres to classify Building Blocks that are the focus of this program. Below we list a few examples of problems we are studying, with a full set available at [7, 21]. Note each problem can provide benchmarks for many different execution view facets. 

Applications and their characteristics are illustrated in Table 2 with concrete use cases. In particular, we classify them into 1) Graph Problems: Community detection, Subgraph/motif finding, Finding diameter, Clustering coefficient, Page rank, Maximal cliques, Connected component, Betweenness centrality, Shortest path; all are instances of the Graph Algorithm facet of the Processing view and either the Map Point-to-Point and/or Shared memory facets in the Problem architecture view. 2) Spatial Analytics: Spatial relationship-based queries from the Search/Query/Index and MapReduce facets; Spatial Clustering from Global Machine Learning, Map-Collective and Global Analytics facets; Distance-based queries from Pleasingly Parallel and Search/Query/Index facets. These 3 benchmarks all have the spatial data abstraction facet. 3) Machine Learning in general and for image processing: Several Clustering algorithms illustrating O(N), O(N2), and Metric (non-metric) space execution view facets; Levenberg-Marquardt Optimization and SMACOF Multi-Dimensional Scaling with Linear Algebra Kernels and Expectation maximization facets from Processing view; TFIDF Search and Random Forest with Pleasingly Parallel facets. All heavily emphasize the machine learning facet of the processing view.
	Algorithm
	Applications
	Problem Architecture View 
	Execution View
	Processing View

	     Graph Analytics 

	Community detection
	Social networks, webgraph
	4, 7
	9S, 10I, 11, 12G
	3, 9ML, 13

	Subgraph/motif finding
	Webgraph, biological/social networks
	4, 7
	9D, 10I, 12G
	3, 9ML, 13

	Finding diameter
	Social networks, webgraph
	4, 7
	9D, 10I, 12G
	3, 9ML, 13

	Clustering coefficient
	Social networks
	4, 7
	9S, 10I, 11, 12G
	3, 9ML, 13

	Page rank
	Webgraph
	3, 4, 7
	9S, 10I, 11, 12V
	3, 9ML, 12, 13

	Maximal cliques
	Social networks, webgraph
	4, 7
	9D, 10I, 12G
	3, 9ML, 13

	Connected component
	Social networks, webgraph
	4, 7
	9D, 10I, 12G
	3, 9ML, 13

	Betweenness centrality
	Social networks
	6
	9D, 10I, 12G, 13N
	9ML, 13

	Shortest path
	Social networks, webgraph
	6
	9D, 10I, 12G, 13N
	9ML, 13

	      Spatial Queries and Analytics         

	Spatial relationship based queries
	GIS/social networks/pathology informatics (add GIS execution view)

	2
	6
	6

	Distance based queries
	
	1
	12P
	2

	Spatial clustering
	
	3, 7, 8
	12P
	3, 9ML,EM

	Spatial modeling
	
	1
	12P
	2

	        Core Image Processing 

	Image preprocessing
	Computer vision/pathology informatics

	1
	13M
	2

	Object detection & segmentation
	
	1
	13M
	2, 9ML

	Image/object feature computation
	
	1
	13M
	2, 9ML

	3D image registration
	
	1
	13M
	2, 9ML

	Object matching
	
	1
	13N
	2, 9ML

	3D feature extraction
	
	1
	13N
	2, 9ML

	         General Machine Learning 

	DA Vector Clustering
	Accurate Clusters
	3, 7, 8
	9D, 10I, 11, 12V, 13M, 14N
	9ML, 9EM, 12

	DA Non metric Clustering
	Accurate Clusters, Biology, Web
	3, 7, 8
	9S, 10R, 11, 12BI, 13N, 14NN
	9ML, 9EM, 12

	Kmeans; Basic, Fuzzy and Elkan
	Fast Clustering
	3, 7, 8
	9D, 10I(Elkan), 11, 13M, 14N
	9ML, 9EM

	Levenberg-Marquardt Optimization
	Non-linear Gauss-Newton, use in MDS
	3, 7, 8
	9D, 10R, 11, 12V, 14NN
	9ML, 9NO, 9LS, 9EM, 12

	DA, Weighted SMACOF
	MDS with general weights
	3, 7, 8
	9S, 10R, 11,  12BI, 13N, 14NN
	9ML, 9NO, 9LS, 9EM, 12, 17

	TFIDF Search
	Find nearest neighbors in document corpus 
	1
	9S, 10R, 12BI, 9NMN, 14N
	2, 9ML

	All-pairs similarity search
	Find pairs of documents with TFIDF distance below a threshold
	3, 7, 8
	9S, 10R, 12BI, 9NMN, 14NN
	9ML

	Support Vector Machine SVM
	Learn and Classify
	3, 7, 8
	9S, 10R, 11, 12V, 9NMM, 14N
	7, 8, 9ML

	Random Forest
	Learn and Classify
	1
	9S, 10R, 12BI, 9NMM, 14N
	2, 7, 8, 9ML

	Gibbs sampling (MCMC)
	Solve global inference problems
	3, 7, 8
	9S, 10R, 11, 12BW, 9NMN, 14N
	9ML, 9NO, 9NM

	Latent Dirichlet Allocation LDA with Gibbs sampling or Var. Bayes
	Topic models (Latent factors)
	3, 7, 8
	9S, 10R, 11, 12BW, 9NMN, 14N
	9ML, 9NM

	Singular Value Decomposition SVD
	Dimension Reduction and PCA
	3, 7, 8
	9S, 10R, 11, 12V, 9NMM, 14NN
	9ML, 12

	Hidden Markov Models (HMM)
	Global inference on sequence models
	3, 7, 8
	9S, 10R, 11, 12BI
	2, 9ML, 12



[bookmark: _Toc384561016][bookmark: _Toc384561032][bookmark: _Toc384568394][bookmark: _Toc384568518]Table 2: Classification of Applications, their characteristics and Ogres benchmarks

Ogre-Driven Benchmarking
First, we note some qualitatively different types of benchmark. There are at simplest “micro-benchmarks” which capture some core machine performance. Then we have “atomic” kernels – simple non trivial algorithms or problems that cannot usefully be broken up. Then we see a class we call “mini-apps” that are the most complex and can be constructed in two different ways: top-down and bottom-up. In the top-down case, we start with a real complex application and simplify it to capture some “key” capabilities but we do not necessarily make it “atomic”. In the bottom-up approach, we take multiple “atomic kernels” and link them together as for example in benchmarking Mahout’s clustering algorithm reading data from Hbase.

The suggested process is to examine current benchmarking and list facets that they cover, then augment with new benchmarks to cover those facets not addressed in the initial choice.  We can already see from Table 1 that the kernels do not cover many of the facets. This can be understood as facets come from an analysis of full applications and table 1 has by construction only analytics kernels. However we can suggest the following systematic approach

1) Consider analytic kernels in Table 1 
2) Add the data view benchmarks from Baru and Rabl’s tutorial [8] 
3) Add well-known “micro-benchmarks”
4) Examine applications that produced Table 1 which will for example link data and applications and have interesting sources such as HPC. Add these as “mini-application” benchmarks
5) Examine list of facets (such as streaming) that are not (well) represented in collection of benchmarks. Add benchmarks with these missing facets – if necessary returning to applications that motivated benchmarks.
6) Prune collection by noting and perhaps removing those whose facets are already represented

One must also address the many well studied general points of benchmarking, such as agreeing on datasets with various sizes (Volume facet in execution view), requiring correct answers for each implementation, and the choice between pencil and paper and source code specification of a benchmark.
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