
Towards an Understanding of Facets and Exemplars of Big Data Applications
Geoffrey C.Fox1, Shantenu Jha2, Judy Qiu1, Andre Luckow2

(1) School of Informatics and Computing, Indiana University, Bloomington, IN 47408, USA

(2) RADICAL, Rutgers University, Piscataway, NJ 08854, USA

Abstract

We study many Big Data applications from a variety of research and commercial areas and suggest a set
of characteristic features and possible kernel benchmarks that stress those features for data analytics. We
draw conclusions for the hardware and software architectures that are suggested by this analysis.

1. Introduction

With the proliferation of data intensive applications, there is a critical and timely need to understand these
properties and the relationship between different applications. The aim of our work is to capture the
essential and fundamental Big Data properties, and then to understand applications with those properties.

There are many different types of Big Data applications, and we cover them broadly including both
research and commercial cases. However our focus is on Science and Engineering research of data-
intensive applications. We compare and contrast some general properties of Big Data applications with
classical HPC simulation applications. Pulling together these observations, we identify six key system
architectures and note different emphases of commercial and research use cases. Furthermore we point
out that combining ideas from HPC and commercial Big Data systems leads to an attractive and powerful
Big Data software model.

Section 2 describes the sources of information for our study and their properties. It also details lessons
from related studies of parallel computing. Section 3 showcases the features of Big Data use cases and the
facets into which we group them, and introduce Ogres to designate broad groupings of applications that
exhibit facets. We describe some generic kernels (mini-applications), or instances of Ogres, in the data
analytics area. In section 4, we present implications for needed hardware and software while conclusions
are in section 5.

2. Sources of Information

2.1. Data Intensive Use Cases

In discussing the structure of Big Data applications, let us first discuss the inevitably incomplete input
that we used to do our analysis. We have gained quite a bit of experience from our research over many
years, but 3 explicit sources that we used were a recent use case survey by NIST from Fall 2013[1]; an
important NRC report [2], a survey of data intensive research applications by Jha et al. [3, 4]; in addition
we conducted a study of members of data analytics libraries including R[5], Mahout [6] and MLLib [7].
We start with a summary of the first two sources.

The NIST Big Data Public Working Group (NBD-PWG) was launched in June 2013 with a set of
working groups covering Big Data Definitions, Taxonomies, Requirements, Security and Privacy
Requirements, Reference Architectures White Paper Survey, Reference Architectures, Security and
Privacy Reference Architectures and Big Data Technology Roadmap. The Requirements working group
gathered 51 use cases from a public call and then analyzed them in terms of requirements of a reference
architecture [8]. Here we will look at them in an alternate fashion to identify common patterns and

characteristics, which can be used to guide and evaluate Big Data hardware and software. The 51 use
cases are organized into nine broad areas, with the number of associated use cases in parentheses:
Government Operation (4), Commercial (8), Defense (3), Healthcare and Life Sciences (10), Deep
Learning and Social Media (6), The Ecosystem for Research (4), Astronomy and Physics (5); Earth,
Environmental and Polar Science (10) and Energy (1).

Note that the majority of use cases come from research applications, but commercial, defense and
government operations have some coverage. A template was prepared by the requirements working
group, which allowed experts to categorize each use case by 26 features including those listed below.

Use case Actors/Stakeholders and their roles and responsibilities; use case goals and description.
Specification of current analysis covering compute system, storage, networking and software.
Characteristics of use case Big Data with Data Source (distributed/centralized), Volume (size), Velocity
(e.g. real time), Variety (multiple datasets, mashup), Variability (rate of change). The so-called Big Data
Science (collection, curation, analysis) with Veracity (Robustness Issues, semantics), Visualization, Data
Quality (syntax), Data Types and Data Analytics. These detailed specifications were complemented by
broad comments including Big Data Specific Challenges (Gaps), Mobility issues, Security & Privacy
Requirements and identification of issues for generalizing this use case.

The complete set of 51 responses, in addition to a summary from the working group of applications,
current status and futures (as well as extracted requirements), can be found in [8]. They are summarized
in the Appendix which also gives 20 other use cases coming from the NBD-PWG which do not have the
detailed 26 feature template recorded. These 20 cover enterprise data applications and security & privacy.

The impressive NRC report [2] is a rich source of information. It has several relevant examples in chapter
2; most of these are also present in the NIST study, but NRC does have an interesting discussion of Big
Data in Networking and Telecommunication that is omitted from the NIST compilation. We will return to
the important “Giants” in chapter 10, which are related to different facets of our Ogres.

For the case of distributed applications there are at least two existing attempts to survey and analyze them.
In Jha et al [4], the authors examine at a high-level approximately 20 distinct scientific applications that
have either been distributed by design or were distributed “by nature”. They reduce the number of
carefully examined applications to six representative selections. These applications range from the
ubiquitous “@home” class of distributed applications, to Montage – an image reconstruction application
which is now emblematic of loosely coupled workflows – to highly specialized and performance oriented
applications such as NEKTAR.

Building upon [4], Jha et al [3] seek to understand distributed, dynamic and data-intensive applications
(D3 Science) investigating the programming models and abstractions, the runtime and middleware
services, and the computational infrastructure. The survey includes the following applications: NGS
Analytics, CMB, Fusion, Industrial Incident Notification and Response, MODIS Data Processing,
Distributed Network Intrusion Detection, ATLAS/WLCG, LSST, SOA Astronomy, Sensor Network
Application, Climate, Interactive Exploration of Environmental Data, and Power Grids.

2.2 Lessons from Parallel Computing

Before we get to discussing features and patterns of Big Data applications, it is instructive to consider the
better understood parallel computing situation. Here the application requirements have been captured in
many ways:

a) Benchmark Sets. These vary from full applications [9] to kernels or mini-applications such as
the NAS Parallel Benchmarks [10, 11] or Parkbench [12], with the Top500 [13] pacing
application Linpack (HPL) being particularly well-known [14]. The new sparse HPCG conjugate
gradient benchmark is worthy of mention [14]. Note benchmarks can be specified via explicit
code and/or by a “pencil and paper specification” that can be optimized in any way for a
particular platform.

b) Patterns or Templates. These can be similar to benchmarks but have different goals, such as
providing a generic framework that can be modified by users with details of their application as in
Template book [15, 16]. Alternatively they can be aimed at illustrating different applications as in
the original Berkeley Dwarfs [17].

In this paper, our approach adheres closest to the Dwarfs framework; this is one motivation for choosing
to name it the Big Data ‘Ogres’. In looking at this previous work, we note that benchmarks often cover a
variety of different application aspects and are accompanied by principles or folklore that can guide the
writing of parallel code or designing suitable hardware and software. For example, data locality and cost
of data movement, sparseness, Amdahl’s law, communication latency, bisection bandwidth and scaled
speedup are associated with substantial folklore.

The famous NAS Parallel Benchmarks (NPB) consist of: MG: Multigrid, CG: Conjugate Gradient, FT:
Fast Fourier Transform, IS: Integer sort, EP: Embarrassingly Parallel, BT: Block Tridiagonal, SP:
Scalar Pentadiagonal, and LU: Lower-Upper symmetric Gauss Seidel. All these are fairly uniform. With
the exception of EP, which is an application class, the other members are typical constituents of a low
level library for parallel simulations. On the other hand, the Berkeley Dwarfs are Dense Linear Algebra ,
Sparse Linear Algebra, Spectral Methods, N-Body Methods, Structured Grids, Unstructured Grids,
MapReduce, Combinational Logic, Graph Traversal, Dynamic Programming, Backtrack and Branch-and-
Bound, Graphical Models and Finite State Machines. The Dwarfs are not exact kernels, but instead
describe problems from different points of view, including programming model (MapReduce), numerical
method (Grids, Spectral method), kernel structure (dense or sparse linear algebra), algorithm (dynamic
programming) and application class (N-body), etc. We believe it is generally accepted that both parallel
computing and Big Data cannot be characterized with a single criterion, and so we introduce multiple
Ogres exhibiting a set of facets in four different directions. We anticipate that there will be a correlation
between the values of specific facet and application type and the needed computing architecture to
support them.

2.3 Properties of the 51 NIST use cases

Tables 1 to 3 summarize characteristics of the 51 use cases, which we will combine with other input for
the Ogres. Note that Big Data and parallel programming are intrinsically linked, as any Big Data analysis
is inevitably processed in parallel. Parallel computing is almost always implemented by dividing the data
between processors (data decomposition); the richness here is illustrated in Table 1, which lists the
members of space that are decomposed for different use cases. Of course these sources of parallelism are
broadly applicable outside the 51 use cases from which they were extracted. In Table 2, we identify 15
use case features that will be used later as facets of the Ogres. The second column of Table 2 lists our
estimate of the number of use cases that illustrate this feature; note these are not exclusive, so any one use
case will illustrate many features.

It is important to note that while machine learning is commonly used, there is an interesting distinction
between what are termed Local Machine Learning (LML) and Global Machine Learning (GML) in Table
2. In LML, there is parallelism over items of Table 1 and machine learning is applied separately to each

item; needed machine learning parallelism is limited, typified by the use of accelerators (GPU). In GML,
the machine learning is applied over the full dataset with MapReduce, MPI or an equivalent. Typically
GML comes from maximum likelihood or χ2 with a sum over the data items – documents, sequences,
items to be sold, images, etc., and often links (point-pairs). Usually GML is a sum of positive numbers, as
in least squares, and is illustrated by algorithms like PageRank, clustering/community detection, mixture
models, topic determination, Multidimensional scaling, and (Deep) Learning Networks. Somewhat
quixotically, GML can be termed Exascale Global Optimization or EGO.

Table 1: What is Parallelism Over for NIST Use Cases?
General Class Examples

People Users (see below) or Subjects of application and often both
Decision makers Researchers or doctors (users of application)

Items

Experimental observations
Contents of online store
Images or “Electronic Information nuggets”
EMR: Electronic Medical Records (often similar to people parallelism)
Protein or Gene Sequences
Material properties, Manufactured Object specifications, etc., in custom dataset

Modelled entities Vehicles and people
Sensors Internet of Things
Events Detected anomalies in telescope, credit card or atmospheric data
Graph Nodes RDF databases
Regular Nodes Simple nodes as in a learning network
Information Units Tweets, Blogs, Documents, Web Pages, etc., and characters/words in them
Files or data To be backed up, moved or assigned metadata
Particles/cells/ mesh points Used in parallel simulations

The difference between LML and GML is illustrated in Table 3, which contrasts 9 of the 51 NIST use
cases that involve image-based data. For example, use case 18 with light source data is largely

Table 2: Some Features of NIST Use Cases
Abbreviation # Description

PP 26 Pleasingly Parallel or Map Only
MR 18 Classic MapReduce MR (add MRStat below for full count)
MRStat 7 Simple version of MR where key computations are simple reduction as found in statistical

averages, such as histograms and averages
MRIter 23 Iterative MapReduce or MPI
Graph 9 Complex graph data structure needed in analysis
Fusion 11 Integrate diverse data to aid discovery/decision making; could involve sophisticated

algorithms or just be a portal
Streaming 41 Some data comes in incrementally and is processed this way
Classify 30 Classification: divide data into categories
S/Q 12 Index, Search and Query
CF 4 Collaborative Filtering for recommender engines
LML 36 Local Machine Learning (Independent for each parallel entity)
GML 23 Global Machine Learning: Deep Learning, Clustering, LDA, PLSI, MDS,

Large Scale Optimizations as in Variational Bayes, MCMC, Lifted Belief Propagation,
Stochastic Gradient Descent, L-BFGS, Levenberg-Marquardt. Can call EGO or Exascale
Global Optimization with scalable parallel algorithm

 51 Workflow: Universal, so no label
GIS 16 Geotagged data often displayed in ESRI, Microsoft Virtual Earth, Google Earth,

GeoServer, etc.
HPC 5 Classic large-scale simulation of cosmos, materials, etc., generating (visualization) data
Agent 2 Simulations of models of data-defined macroscopic entities represented as agents

independent machine learning on each image from the source, i.e. LML. In contrast, deep learning in use
case 26 works by constructing a learning network integrating all the images.

2.4 Properties of Distributed Use Cases

In the process of reduction and classification, the authors of [3, 4] analyze the structure of applications
and find commonalities; they introduce the term “vectors” to capture four essentially orthogonal but
critical properties that determine both the development and the execution of the application. These vectors
are: execution unit, communication, coordination and an execution environment. The first three are
internal properties of a distributed application, whereas the last is essentially an external property. Based
upon recurring values of vectors, the authors propose a set of common patterns that help elucidate the
structure of the distributed applications. It is worth noting that vectors and patterns for distributed
applications do not provide insight into performance aspects of the applications.

In [3], the authors propose a framework for describing applications, distributed and dynamic data and
infrastructure. Figure 1 shows the data lifecycle model used for the analysis capturing both applications
using sensors and computationally generated data.

Figure 1. Application Stages

The authors call out the Big Data aspects, the dynamic aspects and the distributed aspects of a large set of
applications, and introduce quantitative estimates for various performance related properties.

Table 4 below (from [4]) shows the specific values of the “DPA vectors” for the set of six distinct
applications investigated. It is interesting to note that the categorization did not lead to a well-defined and

Table 3: 9 Image-based NIST Use Cases
Use Case Title Application Features
17 Pathology Imaging/

Digital Pathology
Moving to terabyte size 3D images, Global
Classification

PP, LML, MR
for search

18 Light sources Biology and Materials PP, LML
26 Large-scale Deep

Learning
Stanford ran 10 million images and 11 billion
parameters on a 64 GPU HPC; vision (drive car),
speech, and Natural Language Processing

GML

27 Organizing large-scale,
unstructured collections
of photos

Fit position and camera direction to assemble 3D
photo ensemble

GML

36 Catalina Real-Time
Transient Synoptic Sky
Survey (CRTS)

Processing of individual images for events based on
classification of image structure (GML)

PP, LML, GML

43 Radar Data Analysis for
CReSIS Remote Sensing
of Ice Sheets

Identify glacier beds and snow layers.
See GML when one addresses full ice sheet

PP, LML
moving to GML

44 UAVSAR Data
Processing

Find and display slippage from radar images.
Includes Data Product Delivery, and Data Services

PP

45, 46 Analysis of Simulation
visualizations

Find paths, classify orbits, classify patterns that
signal earthquakes, instabilities, climate, turbulence

PP, LML, GML

non-overlapping classification of application, as the complexity of considering the end-to-end aspects and
the diverse ways in which applications are utilized resulted in classes that had overlapping characteristics.

3. The Big Data Ogres and their Four Facets

Synthesizing lessons learned from HPC, distributed applications and the NIST use case given above, we
argue that there is a need to construct classes of mini-applications that facilitate the understanding and
characterization of the Big Data properties of these applications. We further introduce facets or features in
4 classification dimensions or views to categorize Big Data applications. These are the Problem
architecture, Execution features, Data Source or Style, and Processing views. There are of course other
ways of looking at the Ogres and our work should be treated as an initial suggestion for further
discussion. These views and their facets build on earlier discussions, especially Table 2. Note that a given
application can be made up of components with different facets in Ogre classification. We will reference
the 7 computational giants G1-G7 from the NRC report recorded in Table 5. These are important Big
Data patterns, although the Ogres go into more detail. The final subsection discusses a selection of kernels
focusing on analytics which are instances of Ogres. We intend to follow up with other Ogre “mini-app” or
“kernel” instances covering a broader set of facets, including those from database benchmarking [18].

 3.1 Problem Architecture View of Ogres

Table 4: Characteristics of 6 Distributed Applications
Application
Example

Execution Unit Communication Coordination Execution Environment

Montage Multiple sequential and
parallel executable

Files Dataflow
(DAG)

Dynamic process
creation, execution

NEKTAR Multiple concurrent
parallel executables

Stream based Dataflow Co-scheduling, data
streaming, async. I/O

Replica-
Exchange

Multiple seq. and parallel
executables

Pub/sub Dataflow and
events

Decoupled coordination
and messaging

Climate
Prediction
(generation)

Multiple seq. & parallel
executables

Files and
messages

Master-
Worker, events

@Home (BOINC)

Climate
Prediction
(analysis)

 Multiple seq. & parallel
executables

 Files and
messages

Dataflow Dynamics process
creation, workflow
execution

SCOOP Multiple Executable Files and
messages

Dataflow Preemptive scheduling,
reservations

Coupled
Fusion

 Multiple executable Stream-based Dataflow Co-scheduling, data
streaming, async I/O

Table 5: 7 Computational Giants of Massive Data Analysis [2]
G1 Basic Statistics
G2 Generalized N-Body Problems
G3 Graph-Theoretic Computations
G4 Linear Algebraic Computations
G5 Optimizations
G6 Integration
G7 Alignment Problems

The Problem Architecture view has facets that describe the overall structure of the application, which
determines the overall software and is an important driver of the software and hardware architecture
discussed later.

3.2 Execution Features View of Ogres

Table 7: Execution Features View Facets of Ogres
Performance metrics As measured in benchmarks
Flops per byte Important for performance
Execution
Environment

Cloud or HPC; are Core libraries needed such as matrix-matrix/vector algebra,
conjugate gradient, reduction, broadcast … (G4)

Volume Data size
Velocity Measures Streaming
Variety Multiple data sources are often mixed. See Fusion facet
Veracity Accuracy of data affecting pre-processing needed and reliability of answer
Communication
Structure

Interconnect structure? Is communication Synchronous or Asynchronous? In latter
case shared memory may be attractive;

Static or Dynamic? Does application (graph) change during execution?
Regularity Most applications consist of a set of interconnected entities; is this regular as a set of

pixels or is it a complicated irregular graph?
Iterative or not? Important algorithm characteristic
Data Abstraction Key-value, pixel, graph, vector, HDF5, Bag of words, etc.
Data Space? Are data points in metric or non-metric spaces (G2)?
Complexity Is algorithm O(N2) or O(N) (up to logs) for N points per iteration (G2)?

This facet contains application characteristics that are familiar from the simulation domain as well as the
famous V’s of Big Data. The data abstraction layer is a key facet that we highlight in the software
architecture rather than burying it as is done now in particular packages like Hadoop (key-value) and
Giraph (graph). Simulations are often set up in well-defined physical spaces, however data is generally
more abstract and the algorithms are typically quite different for metric and non-metric spaces. In contrast
to the problem architecture facet, the computational features facet has a direct handle/relevance to
performance. Note non-metric space algorithms are often O(N2). As discussed in the NRC report, there is
a great deal of opportunity to incorporate sophisticated new algorithms to reduce O(N2) to O(N and logs).

 Table 6: Problem Architecture View Facets of Ogres (Meta or Macro
Pattern)

Pleasingly Parallel Seen in BLAST, Protein docking, some (bio-) imagery including Local Analytics or Local
Machine Learning with pleasingly parallel filtering

Classic MapReduce Search, Index and Query and Classification algorithms like collaborative filtering (G1 for
MRStat in Table 2, G7)

Map Collective Seen in machine learning – especially with linear algebra kernels
Map P2P Point to Point Communication seen in parallel simulation and graph algorithms
Map Streaming Combination of (parallel) long running maps accepting streamed data
Shared Memory As opposed to distributed data (memory). Corresponds to problem where shared memory

implementations are important. Tend to be dynamic asynchronous
SPMD Single Program Multiple Data, well-known parallel computing style
BSP Bulk Synchronous Processing: well-defined compute-communication phases
Fusion Knowledge discovery often involves fusion of multiple methods or sources
Dataflow Composite structure with multiple components linked by exchanged data
Agents As used in epidemiology, discrete event simulations, etc. Swarm approaches
Workflow Many applications often involve orchestration (workflow) of multiple components

This is commonly used in search and sort algorithms but not yet applied in computation despite promising
initial work [2, 19, 20].

3.3 Data Source and Data Style View of Ogres

Table 8: Data Source and Style View Facets of Ogres
SQL, NoSQL or NewSQL NoSQL includes Document, Column, Key-value, Graph, Triple store
Enterprise data systems 10 examples from NIST [1] integrate SQL/NoSQL
Files or Objects Files as managed in iRODS and extremely common in scientific research.

Objects most common in ABDS
HDFS/Lustre/GPFS Are data and compute collocated?
Archive/Batched
/Streaming

Streaming is Incremental update of datasets with new algorithms to achieve
real-time response (G7)

Storage system styles Styles include Shared, Dedicated, Permanent, and Transient
Metadata/Provenance Define overall features of data and processing
Internet of Things 24 [21] to 50 (Cisco [22, 23]) billion devices on the Internet by 2020
HPC generated data Simulations generate visualization output that often needs to be mined
GIS Geographical Information Systems provide access to geospatial data
The facets of Table 8 cover the acquisition, storage, management and access to the data. The mantra of
bringing computing to the data is an important principle, especially for the Internet of Things when it is
often not practical since backend (clouds) are needed to provide adequate computing. It is interesting that
the HPC approach of large shared file systems uses technologies like Lustre, which is rather different
from commercial systems that use databases or HDFS. Before the data gets to the compute system, there
is often an initial data gathering phase which is characterized by a block size and timing. Block size varies
from month (Remote Sensing, Seismic) to day (genomic) to seconds or lower (Real time control,
streaming). This is measured by Archived/Batched/Streaming facets. Figure 1 stresses that an important
source of data is the output of other programs, as data is streamed through a workflow. Other
characteristics are needed for permanent auxiliary/comparison datasets which could be interdisciplinary,
implying nontrivial data movement/replication. This is covered by the Variety facet in the Execution
view.

3.4 Processing or Run-time View of Ogres

Table 9: Processing or Run-time View Facets of Ogres
Micro Benchmarks A simple kernel or mini-app used to measure core system performance
LML Local Analytics or Local machine Learning
GML Global Analytics or Machine Learning requiring iterative runtime (G5, G6)
Base Statistics Simple statistics seen in Table 2 as MRStat
Recommendations Collaborative Filtering and other recommender analytics
Search/Query/Index Rich set of technologies used in Search, Query and Indexing data
Classification Technologies to label data (SVM, Bayes, deep learning, clustering)
Learning Training algorithms
Optimization Methodology Machine Learning, Nonlinear Optimization, Least Squares, Linear/Quadratic

Programming, Combinatorial Optimization, expectation maximization, Monte
Carlo, Variational Bayes, Global Inference

Streaming Growing class of fast online O(N) algorithms
Alignment Variant of Search seen in sequence comparison as in BLAST
Linear Algebra Many machine learning algorithms build on linear algebra kernels
Graph Problem set up as a graph as opposed to vector, grid, etc. (G3)
Visualization Important component of many analysis pipelines

We have already stressed the importance and distinction between Local and Global Machine Learning.
These are often associated with Expectation Maximization and Steepest descent methods.

3.5 Analytics Algorithm/Kernels as Ogre Instances

Table 10: Ogre Instances covering important Analytics
Pleasingly Parallel (Map Only) or Local Machine Learning: ~any algorithm

Map-Reduce
Search, Query, Index: Dominant commercial use and important in Science with fewer users
Recommender Systems including Collaborative filtering: Major commercial use, little use in Science
Summarizing statistics (MRStat) as in LHC Data analysis (histograms) (G1)
Linear Classifiers: Bayes, Random Forests

Alignment and Streaming (G7)
Genomic Alignment, Incremental Classifiers

Global Analytics – Nonlinear Solvers (Structure depends on Objective Function) (G5, G6)
Stochastic Gradient Descent SGD
(L-)BFGS approximation to Newton’s Method
Levenberg-Marquardt solver

Global Analytics – Map-Collective (See Mahout, MLlib) (G2, G4, G6)
Outlier Detection
Clustering (many methods) related to community identification in networks
Mixture Models, LDA (Latent Dirichlet Allocation), PLSI (Probabilistic Latent Semantic Indexing)
SVM and Logistic Regression
PageRank (find leading eigenvector of sparse matrix)
SVD (Singular Value Decomposition)
MDS (Multidimensional Scaling)
Learning Neural Networks (Deep Learning)
Hidden Markov Models

Global Analytics – Map-Communication (targets for Giraph) (G3)
Graph Structure (Communities, subgraphs/motifs, diameter, maximal cliques, connected components)
Network Dynamics - Graph simulation Algorithms (epidemiology)

Global Analytics – Asynchronous Shared Memory (may be distributed algorithms)
Graph Structure (Betweenness centrality, shortest path) (G3)
Linear/Quadratic Programming, Combinatorial Optimization, Branch and Bound (G5)

Table 10 records particular data analysis algorithms that play the same role as the members of the NAS
parallel benchmarks. They form instances of Ogres covering a range of facets already introduced. These
are deliberately kernels and further work is needed to specify more precise mechanisms. For example,
there are many very different outlier and clustering algorithms corresponding to different scenarios (such
as metric or non-metric spaces) and goals (such as tradeoff between performance and quality). Working
with colleagues, we are developing benchmarks in the areas identified in Table 9. One should also
introduce Ogre instances corresponding to full applications and workflows. These are important but not
discussed here. We intend to investigate further work to introduce mini-apps as Ogre instances with broad
coverage of the different facets in the 4 views.

4. Hardware and Software Architecture Issues

4.1 Six Important Architectures

Table 11: Distinctive Software/Hardware Architectures for Data Analytics

1 Pleasingly Parallel
(Map Only)

Includes local machine learning (LML) as in parallel decomposition over items and
apply data processing to each item. Hadoop could be used but also other High
Throughput Computing or Many Task tools

2 Classic
MapReduce

Includes MRStat, search applications and those using collaborative filtering and motif
finding implemented using classic MapReduce (Hadoop)

3 Iterative Map-
Collective

Iterative MapReduce using Collective Communication as needed in clustering –
Hadoop with Harp, Spark, etc.

4 Iterative Map-
(Point to Point)
Communication

Iterative MapReduce such as Giraph with point-to-point communication; includes most
graph algorithms such as maximum clique, connected component, finding diameter,
community detection. Vary in difficulty of finding partitioning (classic parallel load
balancing)

5 Map-Streaming Architecture such as that of Apache Storm that supports streaming data. [24] A set of
brokers holding data as it streams, supplying a set of long running tasks that filter and
accumulate data.

6 Shared (Large)
Memory

Thread-based (event driven) graph algorithms such as shortest path and Betweenness
centrality. Large memory applications

In Table 11, we present 6 problem architectures that map into 6 distinct system architectures which seem
to cover the Ogres and their facets discussed in previous sections. Category 11.6 is the shared memory
architecture needed for some graph algorithms that perform better here as well as for some large memory
applications. The central batch architectures are 11.1 to 11.4 which correspond exactly to the four forms
of MapReduce we have presented previously [25] summarized in Figures 2a) and Figure 2b), which
introduces the Map-Streaming architecture. Note these six architectures only describe some of the facets
in Tables 6-9. There are many other issues that need to be addressed including support of workflow and
the data systems captured in the facets of Table 8.

Figure 2. Six Distinctive Software/Hardware Architectures for Data Analytics

Note that we separate Map-Collective [26, 27] and Map-(Point to Point) Communication following the
Apache projects Hadoop, Spark and Giraph which focus on these cases. These programming models or
runtimes differ in communication style (bandwidth versus latency), application abstraction (key-value
versus graph), possible scheduling or load-balancing. HPC with MPI suggests that one could integrate
categories 11.3 and 11.4 into a single environment. This approach is illustrated by the Harp plug-in for
Hadoop which supports both models [28]. We recently added the map-streaming architecture of Table
11.5 and Fig. 2b); recall that Table 2 listed 41 streaming applications in the 51 use cases.

4.2 Comparison between Data Intensive and Simulation Problems

We can use the Ogre facet analysis and the data analytics architectures to compare data intensive and
simulation applications. Looking back at Table 6, there are some clear similarities between them, with
“Pleasingly parallel” (11.1), BSP and SPMD being common in both arenas. However the Classic
MapReduce architecture (11.2) is a major Big Data paradigm though much less common in simulations.

(1) Map Only
(4) Point to Point or

Map-Communication
(3) Iterative Map Reduce or

Map-Collective
(2) Classic

MapReduce

Input

map

reduce

Input

map

reduce

IterationsInput

Output

map

Local

Graph

(5) Map-Streaming

maps brokers

Events

(6) Shared memory
Map Communicates

Map & Communicate

Shared Memory

One example is the execution of multiple simulations (as in Quantum Monte Carlo) followed by a reduce
operation to collect the results of different simulations. The Iterative Map-Collective architecture
(category 11.3) is common in Big Data analytics such as clustering where there is no local graph structure
and the parallel algorithms involve large-scale collectives but no point-to-point communication. The same
structure is seen in N-body (long range force) or other “all-pairs” simulations without the locality typical
from discretizing differential operators.

Many simulation problems have the Map-Communication (category 11.4) architecture with many
smallish point-to-point messages coming from local interactions between points defining systems to be
simulated. The importance of sparse data structures and algorithms is well understood in simulations and
is seen in some Big Data problems such as PageRank, which calculates the leading eigenvector of the
sparse matrix formed by internet site links. Other Big Data sparse data structures are seen in user-item
ratings and bags of words problems (although these have feature that suggest sparseness corresponds to
missing information and not to zero values). Most items are rated by only a few users and many
documents contain a small fraction of the word vocabulary. However important data analytics involve full
matrix algorithms. For example, recent papers [28-30] on a new Multidimensional Scaling method use
conjugate gradient solvers with full matrices as opposed to the new sparse conjugate gradient benchmark
HPCG being developed for supercomputer (Top500) evaluations [31].

Note that there are similarities between some Big Data graph problems and particle simulations with an
unusual potential defined by the graph node connectivity. Both use the Map-Communication architecture,
and the links in a Big Data graph are equivalent to strength of force between the graph nodes considered
as particles. In this analogy, many Big Data problems are “long range force” corresponding to a graph
where all nodes are linked to each other. As in simulation cases, these O(N2) problems are typically very
compute intense but straightforward to parallelize efficiently. It is interesting to consider the analogue of
the “fast multi-pole” methods for the fully connected Big Data problems, which can dramatically improve
the performance to O(N) or O(NlogN) as discussed in Sec. 3.3. Finally note the network connections
used in deep learning are indeed sparse, but in recent image interpretation studies [32], the network
weights are block sparse (corresponding to links to pixel blocks) and can be formulated as full matrix
operations with GPUs and MPI running efficiently with these blocks.

The map-streaming architecture (11.5) is seen in problems such as Twitter analysis and data assimilation
where large-scale simulations are updated by streaming data. The final architecture of category11.6
(Shared Memory) is important in some applications but not heavily used in either simulations or Big
Data, although large memory systems are used extensively in gene assembly applications.

The above discussion focuses on a qualitative comparison of Big Data applications with traditional
simulation (HPC) applications, namely comparing the structure. As is evident, there are similarities as
well as points of distinction. It is likely, however, that there will be significant differences in values of
facets of the “execution features” view for the two application classes; for instance the distribution of the
values of different ratios (e.g., ratio of computing to I/O, ratio of memory to I/O, etc.) characterizing the
computational feature will be different. We will investigate both quantitative and qualitative differences
in future work.

4.3 A Big Data Software Environment

We have previously described [33-35] how we propose to implement Big Data applications exploiting the
HPBDS architecture sketched in Table 12 [36]. This combines the best practice commercial Big Data

software with an emphasis on Apache projects with HPC subsystems. Table 12 illustrates by green
shading those layers where HPC adds significant value to the Apache stack ABDS. Note that high
performance communication is known to be critical for simulations but is also essential for many
scientific Big Data applications. Commercial applications have large “search” (10.2) components
corresponding to the huge number of users accessing commercial Big Data systems. In science, this step
is necessary – especially for good data management – but is a much lower fraction of system use as the
number of scientists accessing data is far lower than the number of users of commercial Big Data.

Table 12: Kaleidoscope of (Apache) Big Data Stack (ABDS) and HPC Technologies
Cross-
Cutting

Functions
1) Message
and Data
Protocols:
Avro, Thrift,
Protobuf
2) Distributed
Coordination:
Google
Chubby,
Zookeeper,
Giraffe,
JGroups
3) Security &
Privacy:
InCommon,
Eduroam
OpenStack
Keystone,
LDAP, Sentry,
Sqrrl, OpenID,
SAML OAuth
4)
Monitoring:
Ambari,
Ganglia,
Nagios, Inca

17) Workflow-Orchestration: ODE, ActiveBPEL, Airavata, Pegasus, Kepler, Swift, Taverna, Triana,
Trident, BioKepler, Galaxy, IPython, Dryad, Naiad, Oozie, Tez, Google FlumeJava, Crunch, Cascading,
Scalding, e-Science Central, Azure Data Factory, Google Cloud Dataflow, NiFi (NSA), Jitterbit, Talend,
Pentaho, Apatar
16) Application and Analytics: Mahout , MLlib , MLbase, DataFu, R, pbdR, Bioconductor, ImageJ,
OpenCV, Scalapack, PetSc, Azure Machine Learning, Google Prediction API & Translation API, mlpy,
scikit-learn, PyBrain, CompLearn, DAAL(Intel), Caffe, Torch, Theano, DL4j, H2O, IBM Watson,
Oracle PGX, GraphLab, GraphX, IBM System G, GraphBuilder(Intel), TinkerPop, Google Fusion
Tables, CINET, NWB, Elasticsearch, Kibana, Logstash, Graylog, Splunk, Tableau, D3.js, three.js, Potree
15B) Application Hosting Frameworks: Google App Engine, AppScale, Red Hat OpenShift, Heroku,
Aerobatic, AWS Elastic Beanstalk, Azure, Cloud Foundry, Pivotal, IBM BlueMix, Ninefold, Jelastic,
Stackato, appfog, CloudBees, Engine Yard, CloudControl, dotCloud, Dokku, OSGi, HUBzero, OODT,
Agave, Atmosphere
15A) High level Programming: Kite, Hive, HCatalog, Tajo, Shark, Phoenix, Impala, MRQL, SAP
HANA, HadoopDB, PolyBase, Pivotal HD/Hawq, Presto, Google Dremel, Google BigQuery, Amazon
Redshift, Drill, Kyoto Cabinet, Pig, Sawzall, Google Cloud DataFlow, Summingbird
14B) Streams: Storm, S4, Samza, Granules, Google MillWheel, Amazon Kinesis, LinkedIn Databus,
Facebook Puma/Ptail/Scribe/ODS, Azure Stream Analytics
14A) Basic Programming model and runtime, SPMD, MapReduce: Hadoop, Spark, Twister,
Stratosphere (Apache Flink), Reef, Hama, Giraph, Pregel, Pegasus, Ligra, GraphChi
13) Inter process communication Collectives, point-to-point, publish-subscribe: MPI, Harp, Netty,
ZeroMQ, ActiveMQ, RabbitMQ, NaradaBrokering, QPid, Kafka, Kestrel, JMS, AMQP, Stomp, MQTT,
Public Cloud: Amazon SNS, Lambda, Google Pub Sub, Azure Queues, Event Hubs
12) In-memory databases/caches: Gora (general object from NoSQL), Memcached, Redis, LMDB (key
value), Hazelcast, Ehcache, Infinispan
12) Object-relational mapping: Hibernate, OpenJPA, EclipseLink, DataNucleus, ODBC/JDBC
12) Extraction Tools: UIMA, Tika
11C) SQL(NewSQL): Oracle, DB2, SQL Server, SQLite, MySQL, PostgreSQL, CUBRID, Galera
Cluster, SciDB, Rasdaman, Apache Derby, Pivotal Greenplum, Google Cloud SQL, Azure SQL,
Amazon RDS, Google F1, IBM dashDB, N1QL, BlinkDB
11B) NoSQL: Lucene, Solr, Solandra, Voldemort, Riak, Berkeley DB, Kyoto/Tokyo Cabinet, Tycoon,
Tyrant, MongoDB, Espresso, CouchDB, Couchbase, IBM Cloudant, Pivotal Gemfire, HBase, Google
Bigtable, LevelDB, Megastore and Spanner, Accumulo, Cassandra, RYA, Sqrrl, Neo4J, Yarcdata,
AllegroGraph, Facebook Tao, Titan:db, Jena, Sesame
Public Cloud: Azure Table, Amazon Dynamo, Google DataStore
11A) File management: iRODS, NetCDF, CDF, HDF, OPeNDAP, FITS, RCFile, ORC, Parquet
10) Data Transport: BitTorrent, HTTP, FTP, SSH, Globus Online (GridFTP), Flume, Sqoop, Pivotal
GPLOAD/GPFDIST
9) Cluster Resource Management: Mesos, Yarn, Helix, Llama, Google Omega, Facebook Corona,
Celery, HTCondor, SGE, OpenPBS, Moab, Slurm, Torque, Globus Tools, Pilot Jobs
8) File systems: HDFS, Swift, Haystack, f4, Cinder, Ceph, FUSE, Gluster, Lustre, GPFS, GFFS
Public Cloud: Amazon S3, Azure Blob, Google Cloud Storage
7) Interoperability: Libvirt, Libcloud, JClouds, TOSCA, OCCI, CDMI, Whirr, Saga, Genesis
6) DevOps: Docker, Puppet, Chef, Ansible, SaltStack, Boto, Cobbler, Xcat, Razor, CloudMesh, Juju,
Foreman, OpenStack Heat, Rocks, Cisco Intelligent Automation for Cloud, Ubuntu MaaS, Facebook
Tupperware, AWS OpsWorks, OpenStack Ironic, Google Kubernetes, Buildstep, Gitreceive
5) IaaS Management from HPC to hypervisors: Xen, KVM, Hyper-V, VirtualBox, OpenVZ, LXC,
Linux-Vserver, OpenStack, OpenNebula, Eucalyptus, Nimbus, CloudStack, CoreOS, VMware ESXi,
vSphere and vCloud, Amazon, Azure, Google and other public Clouds,
Networking: Google Cloud DNS, Amazon Route 53

21 layers
Over 300
Software
Packages

April 3
2015

5 Discussion and Conclusion

This is only an initial discussion about our objectives, scope and methodology, and is by no means a
complete or comprehensive body of work. It is motivated by the fact that there are several existing efforts
at describing and highlighting Big Data applications, yet many are domain or usage specific. We move
beyond any specific set of applications, and focus on Big Data applications and analytics kernels that are
generally considered to be of relevance/importance to science and engineering using a context that
includes a limited set of commercial problems. Using this broad range of Big Data applications as our
working set, this paper is an attempt at distilling the Big Data properties (facets divided into 4 views) and
organizing the plethora of disparate Big Data applications using these properties. Although we validate
using analytics kernels, this classification/organization will in turn shed light on and help provide better
understanding of both the structure of science and engineering Big Data applications, as well as
determinants of their performance. In Section 4, we show how a deeper appreciation of the Ogre facets
will help design and implement better hardware and software systems.

Acknowledgements

This work was partially supported by NSF CAREER grant OCI-1149432 for Qiu, NSF XPS RaPyDLI
project 1439007, and NSF Datanet Dibbs SPIDAL 1443054.

Appendix: 71 NIST Use Cases

The 71 NIST Use Cases with number in each broad area
Government Operation(4): National Archives and Records Administration, Census Bureau
Commercial(8): Finance in Cloud, Cloud Backup, Mendeley (Citations), Netflix, Web Search, Digital Materials,
Cargo shipping (as in UPS)
Defense(3): Sensors, Image surveillance, Situation Assessment
Healthcare and Life Sciences(10): Medical records, Graph and Probabilistic analysis, Pathology, Bioimaging,
Genomics, Epidemiology, People Activity models, Biodiversity
Deep Learning and Social Media(6): Driving Car, Geolocate images/cameras, Twitter, Crowd Sourcing,
Network Science, NIST benchmark datasets
The Ecosystem for Research(4): Metadata, Collaboration, Language Translation, Light source experiments
Astronomy and Physics(5): Sky Surveys including comparison to simulation, Large Hadron Collider at CERN,
Belle Accelerator II in Japan
Earth, Environmental and Polar Science(10): Radar Scattering in Atmosphere, Earthquake, Ocean, Earth
Observation, Ice sheet Radar scattering, Earth radar mapping, Climate simulation datasets, Atmospheric
turbulence identification, Subsurface Biogeochemistry (microbes to watersheds), AmeriFlux and FLUXNET gas
sensors
Energy(1): Smart grid
Enterprise Data Systems(10): Multiple users performing interactive queries and updates on a database with
basic availability and eventual consistency (BASE); Perform real time analytics on data source streams and notify
users when specified events occur; Move data from external data sources into a highly horizontally scalable data
store, transform it using highly horizontally scalable processing (e.g. Map-Reduce), and return it to the
horizontally scalable data store (ELT); Perform batch analytics on the data in a highly horizontally scalable data
store using highly horizontally scalable processing (e.g. MapReduce) with a user-friendly interface (e.g. SQL);
Perform interactive analytics on data in analytics-optimized database; Visualize data extracted from horizontally
scalable Big Data store; Move data from a highly horizontally scalable data store into a traditional Enterprise
Data Warehouse; Extract, process, and move data from data stores to archives; Combine data from Cloud
databases and on premise data stores for analytics, data mining, and/or machine learning; Orchestrate multiple
sequential and parallel data transformations and/or analytic processing using a workflow manager
Security & Privacy(10): Consumer Digital Media Usage; Nielsen Homescan; Web Traffic Analytics; Health
Information Exchange; Personal Genetic Privacy; Pharma Clinic Trial Data Sharing; Cyber-security; Aviation
Industry; Military - Unmanned Vehicle sensor data; Education - “Common Core” Student Performance Reporting

References

1. NIST. Big Data Working Group Reports from V1. 2013 [accessed 2014 March 26]; Report at
http://bigdatawg.nist.gov/V1_output_docs.php Available from: http://bigdatawg.nist.gov/home.php.

2. Committee on the Analysis of Massive Data; Committee on Applied and Theoretical Statistics; Board
on Mathematical Sciences and Their Applications; Division on Engineering and Physical Sciences;
National Research Council, Frontiers in Massive Data Analysis. 2013: National Academies Press.
http://www.nap.edu/catalog.php?record_id=18374

3. Shantenu Jha, Neil Chue Hong, Simon Dobson, Daniel S. Katz, Andre Luckow, Omer Rana, and
Yogesh Simmhan, Introducing Distributed Dynamic Data-intensive (D3) Science: Understanding
Applications and Infrastructure. 2014. https://dl.dropboxusercontent.com/u/52814242/3dpas-
draft.v0.1.pdf.

4. S. Jha, M. Cole, D. Katz, O. Rana, M. Parashar, and J. Weissman, Distributed Computing Practice
for Large-Scale Science & Engineering Applications. Concurrency and Computation: Practice and
Experience, 2013. 25(11): p. 1559-1585. DOI:http://dx.doi.org/10.1002/cpe.2897

5. R open source statistical library. [accessed 2012 December 8]; Available from: http://www.r-
project.org/.

6. Apache Mahout Scalable machine learning and data mining [accessed 2012 August 22]; Available
from: http://mahout.apache.org/.

7. Machine Learning Library (MLlib). [accessed 2014 April 1]; Available from:
http://spark.apache.org/docs/0.9.0/mllib-guide.html.

8. NIST, NIST Big Data Public Working Group (NBD-PWG) Use Cases and Requirements. 2013.
http://bigdatawg.nist.gov/usecases.php

9. Berry, M., D. Chen, P. Koss, D. Kuck, S. Lo, Y. Pang, L. Pointer, R. Roloff, A. Sameh, E. Clementi,
S. Chin, D. Schneider, G. Fox, P. Messina, D. Walker, C. Hsiung, J. Schwarzmeier, K. Lue, S.
Orszag, F. Seidl, O. Johnson, R. Goodrum, and J. Martin, The Perfect Club Benchmarks: Effective
Performance Evaluation of Supercomputers. International Journal of High Performance Computing
Applications, September 1, 1989, 1989. 3(3): p. 5-40. DOI:10.1177/109434208900300302.
http://hpc.sagepub.com/content/3/3/5.abstract

10. NASA Advanced Supercomputing Division. NAS Parallel Benchmarks. 1991 [accessed 2014 March
28]; Available from: https://www.nas.nasa.gov/publications/npb.html.

11. Rob F. Van der Wijngaart, Srinivas Sridharan, and Victor W. Lee, Extending the BT NAS parallel
benchmark to exascale computing, in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis. 2012, IEEE Computer Society Press.
Salt Lake City, Utah. pages. 1-9.

12. PARKBENCH (PARallel Kernels and BENCHmarks). 1996 [accessed 2014 July 19]; Available
from: http://www.netlib.org/parkbench/.

13. Jack Dongarra, Erich Strohmaier, and Michael Resch. Top 500 Supercomputer Sites. 2014 [accessed
2014 July 19]; Available from: http://www.top500.org/.

14. A. Petitet, R. C. Whaley, J. Dongarra, and A. Cleary. HPL - A Portable Implementation of the High-
Performance Linpack Benchmark for Distributed-Memory Computers. 2008 September 10 [accessed
2014 July 19,]; Available from: http://www.netlib.org/benchmark/hpl/.

15. R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C.
Romine, and H. Van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for
Iterative Methods, 2nd Edition. 1994, Philadelphia, PA: SIAM.
http://www.netlib.org/linalg/html_templates/Templates.html

16. Timothy G. Mattson, Beverly A. Sanders, and Berna L. Massingill, Patterns for Parallel
Programming. 2013: Addison-Wesley Professional. ISBN:0321940784

http://bigdatawg.nist.gov/V1_output_docs.php
http://bigdatawg.nist.gov/home.php
http://www.nap.edu/catalog.php?record_id=18374
https://dl.dropboxusercontent.com/u/52814242/3dpas-draft.v0.1.pdf
https://dl.dropboxusercontent.com/u/52814242/3dpas-draft.v0.1.pdf
http://dx.doi.org/10.1002/cpe.2897
http://www.r-project.org/
http://www.r-project.org/
http://mahout.apache.org/
http://spark.apache.org/docs/0.9.0/mllib-guide.html
http://bigdatawg.nist.gov/usecases.php
http://hpc.sagepub.com/content/3/3/5.abstract
https://www.nas.nasa.gov/publications/npb.html
http://www.netlib.org/parkbench/
http://www.top500.org/
http://www.netlib.org/benchmark/hpl/
http://www.netlib.org/linalg/html_templates/Templates.html

17. Asanovic, K., R. Bodik, B.C. Catanzaro, J.J. Gebis, P. Husbands, K. Keutzer, D.A. Patterson, W.L.
Plishker, J. Shalf, S.W. Williams, and K.A. Yelick. The Landscape of Parallel Computing Research:
A View from Berkeley. 2006 December 18 [accessed 2009 December]; Available from:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html.

18. Chaitan Baru and Tilmann Rabl. Tutorial 4 " Big Data Benchmarking" at 2014 IEEE International
Conference on Big Data. 2014 [accessed 2015 January 2]; Available from:
http://cci.drexel.edu/bigdata/bigdata2014/tutorial.htm.

19. P. Ram, D. Lee, W. March, and A.G. Gray. Linear-time algorithms for pairwise statistical problems.
in Advances in Neural Information Processing Systems. NIPS 2009. Vancouver, BC.

20. Judy Qiu, Jaliya Ekanayake, Thilina Gunarathne, Jong Youl Choi, Seung-Hee Bae, Yang Ruan,
Saliya Ekanayake, Stephen Wu, Scott Beason, Geoffrey Fox, Mina Rho, and Haixu Tang, Data
Intensive Computing for Bioinformatics, Chapter in Data Intensive Distributed Computing, Tevik
Kosar, Editor. 2011, IGI Publishers.
http://grids.ucs.indiana.edu/ptliupages/publications/DataIntensiveComputing_BookChapter.pdf.

21. Om Malik. Internet of things will have 24 billion devices by 2020 from GSMA, the global mobile
industry trade group. 2011 [accessed 2014 July 19]; Available from:
http://gigaom.com/2011/10/13/internet-of-things-will-have-24-billion-devices-by-2020/.

22. Cisco. Visual Networking Index: Forecast and Methodology, 2012–2017. 2013 May 29 [accessed
2013 August 14]; Available from:
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-
481360_ns827_Networking_Solutions_White_Paper.html.

23. Cisco Internet Business Solutions Group (IBSG) (Dave Evans). The Internet of Things: How the Next
Evolution of the Internet Is Changing Everything. 2011 April [accessed 2013 August 14]; Available
from: http://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf.

24. Supun Kamburugamuve, Leif Christiansen, and Geoffrey Fox, A Framework for Real-Time
Processing of Sensor Data in the Cloud. November 7, 2014.
http://grids.ucs.indiana.edu/ptliupages/publications/iotcloud_hindavi_two_column_final_2.pdf.

25. Jaliya Ekanayake, Thilina Gunarathne, Judy Qiu, Geoffrey Fox, Scott Beason, Jong Youl Choi, Yang
Ruan, Seung-Hee Bae, and Hui Li, Applicability of DryadLINQ to Scientific Applications. January 30,
2010, Community Grids Laboratory, Indiana University.
http://grids.ucs.indiana.edu/ptliupages/publications/DryadReport.pdf.

26. J.Ekanayake, H.Li, B.Zhang, T.Gunarathne, S.Bae, J.Qiu, and G.Fox, Twister: A Runtime for iterative
MapReduce, in Proceedings of the First International Workshop on MapReduce and its Applications
of ACM HPDC 2010 conference June 20-25, 2010. 2010, ACM. Chicago, Illinois.
http://grids.ucs.indiana.edu/ptliupages/publications/hpdc-camera-ready-submission.pdf.

27. Bingjing Zhang, Yang Ruan, Tak-Lon Wu, Judy Qiu, Adam Hughes, and Geoffrey Fox, Applying
Twister to Scientific Applications, in CloudCom 2010. November 30-December 3, 2010. IUPUI
Conference Center Indianapolis. http://grids.ucs.indiana.edu/ptliupages/publications/PID1510523.pdf.

28. Bingjing Zhang, Yang Ruan, and Judy Qiu, Harp: Collective Communication on Hadoop, in IEEE
International Conference on Cloud Engineering (IC2E) conference October 10, 2014.
http://grids.ucs.indiana.edu/ptliupages/publications/HarpQiuZhang.pdf.

29. Yang Ruan and Geoffrey Fox, A Robust and Scalable Solution for Interpolative Multidimensional
Scaling with Weighting, in 9th International conference on e-Science. October 22-25, 2013. Beijing.
DOI: http://dx.doi.org/10.1109/eScience.2013.30.

30. Yang Ruan, Geoffrey L. House, Saliya Ekanayake, Ursel Schütte, James D. Bever, Haixu Tang, and
Geoffrey Fox, Integration of Clustering and Multidimensional Scaling to Determine Phylogenetic
Trees as Spherical Phylograms Visualized in 3 Dimensions, in FIRST INTERNATIONAL
WORKSHOP ON CLOUD FOR BIO (C4Bio 2014). May 26-29, 2014. IEEE/ACM CCGrid 2014
Chicago. pages. 26-29.
http://grids.ucs.indiana.edu/ptliupages/publications/PhylogeneticTreeDisplayWithClustering.pdf.

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://cci.drexel.edu/bigdata/bigdata2014/tutorial.htm
http://grids.ucs.indiana.edu/ptliupages/publications/DataIntensiveComputing_BookChapter.pdf
http://gigaom.com/2011/10/13/internet-of-things-will-have-24-billion-devices-by-2020/
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360_ns827_Networking_Solutions_White_Paper.html
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360_ns827_Networking_Solutions_White_Paper.html
http://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/iotcloud_hindavi_two_column_final_2.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/DryadReport.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/hpdc-camera-ready-submission.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/PID1510523.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/HarpQiuZhang.pdf
http://dx.doi.org/10.1109/eScience.2013.30
http://grids.ucs.indiana.edu/ptliupages/publications/PhylogeneticTreeDisplayWithClustering.pdf

31. Jack Dongarra and Michael A. Heroux. Toward a New Metric for Ranking High Performance
Computing Systems. 2013 June [accessed 2014 July 19,]; SANDIA REPORT SAND2013-4744
(Defines HPCG) Available from: http://www.sandia.gov/~maherou/docs/HPCG-Benchmark.pdf.

32. Adam Coates, Brody Huval, Tao Wang, David Wu, Bryan Catanzaro, and Andrew Ng. Deep learning
with COTS HPC systems. in Proceedings of the 30th International Conference on Machine Learning
(ICML-13) 2013.

33. Wo Chang. ISO/IEC JTC 1 Study Group on Big Data in 1st Big Data Interoperability Framework
Workshop: Building Robust Big Data Ecosystem. March 18-21 2014. SDSC, San Diego CA: NIST.

34. Geoffrey Fox, Judy Qiu, and Shantenu Jha, High Performance High Functionality Big Data Software
Stack, in Big Data and Extreme-scale Computing (BDEC). 2014. Fukuoka, Japan.
http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/whitepapers/fox.pdf.

35. Shantenu Jha, Judy Qiu, Andre Luckow, Pradeep Mantha, and Geoffrey C. Fox, A Tale of Two Data-
Intensive Approaches: Applications, Architectures and Infrastructure, in 3rd International IEEE
Congress on Big Data Application and Experience Track. June 27- July 2, 2014. Anchorage, Alaska.
http://arxiv.org/abs/1403.1528.

36. HPC-ABDS Kaleidoscope of over 270 Apache Big Data Stack and HPC Tecnologies. [accessed
2014 April 8]; Available from: http://hpc-abds.org/kaleidoscope/.

http://www.sandia.gov/%7Emaherou/docs/HPCG-Benchmark.pdf
http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/whitepapers/fox.pdf
http://arxiv.org/abs/1403.1528
http://hpc-abds.org/kaleidoscope/

