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Abstract 

We study many Big Data applications from a variety of research and commercial areas and suggest a set 
of characteristic features and possible kernel benchmarks that stress those features for data analytics. We 
draw conclusions for the hardware and software architectures that are suggested by this analysis. 

1. Introduction 

With the proliferation of data intensive applications, there is a critical and timely need to understand these 
properties and the relationship between different applications. The aim of our work is to capture the 
essential and fundamental Big Data properties, and then to understand applications with those properties.  

There are many different types of Big Data applications, and we cover them broadly including both 
research and commercial cases. However our focus is on Science and Engineering research of data-
intensive applications. We compare and contrast some general properties of Big Data applications with 
classical HPC simulation applications. Pulling together these observations, we identify six key system 
architectures and note different emphases of commercial and research use cases. Furthermore we point 
out that combining ideas from HPC and commercial Big Data systems leads to an attractive and powerful 
Big Data software model. 

Section 2 describes the sources of information for our study and their properties. It also details lessons 
from related studies of parallel computing. Section 3 showcases the features of Big Data use cases and the 
facets into which we group them, and introduce Ogres to designate broad groupings of applications that 
exhibit facets. We describe some generic kernels (mini-applications), or instances of Ogres, in the data 
analytics area. In section 4, we present implications for needed hardware and software while conclusions 
are in section 5. 

2. Sources of Information 

2.1. Data Intensive Use Cases 

In discussing the structure of Big Data applications, let us first discuss the inevitably incomplete input 
that we used to do our analysis. We have gained quite a bit of experience from our research over many 
years, but 3 explicit sources that we used were a recent use case survey by NIST from Fall 2013[1]; an 
important NRC report [2], a survey of data intensive research applications by Jha et al. [3, 4]; in addition 
we conducted a study of members of data analytics libraries including R[5], Mahout [6] and MLLib [7]. 
We start with a summary of the first two sources. 

The NIST Big Data Public Working Group (NBD-PWG) was launched in June 2013 with a set of 
working groups covering Big Data Definitions, Taxonomies, Requirements, Security and Privacy 
Requirements, Reference Architectures White Paper Survey, Reference Architectures, Security and 
Privacy Reference Architectures and Big Data Technology Roadmap. The Requirements working group 
gathered 51 use cases from a public call and then analyzed them in terms of requirements of a reference 
architecture [8]. Here we will look at them in an alternate fashion to identify common patterns and 



characteristics, which can be used to guide and evaluate Big Data hardware and software. The 51 use 
cases are organized into nine broad areas, with the number of associated use cases in parentheses: 
Government Operation (4), Commercial (8), Defense (3), Healthcare and Life Sciences (10), Deep 
Learning and Social Media (6), The Ecosystem for Research (4), Astronomy and Physics (5); Earth, 
Environmental and Polar Science (10) and Energy (1).  

Note that the majority of use cases come from research applications, but commercial, defense and 
government operations have some coverage. A template was prepared by the requirements working 
group, which allowed experts to categorize each use case by 26 features including those listed below. 

Use case Actors/Stakeholders and their roles and responsibilities; use case goals and description. 
Specification of current analysis covering compute system, storage, networking and software.  
Characteristics of use case Big Data with Data Source (distributed/centralized), Volume (size), Velocity 
(e.g. real time), Variety (multiple datasets, mashup), Variability (rate of change). The so-called Big Data 
Science (collection, curation, analysis) with Veracity (Robustness Issues, semantics), Visualization, Data 
Quality (syntax), Data Types and Data Analytics. These detailed specifications were complemented by 
broad comments including Big Data Specific Challenges (Gaps), Mobility issues, Security & Privacy 
Requirements and identification of issues for generalizing this use case. 

The complete set of 51 responses, in addition to a summary from the working group of applications, 
current status and futures (as well as extracted requirements), can be found in [8]. They are summarized 
in the Appendix which also gives 20 other use cases coming from the NBD-PWG which do not have the 
detailed 26 feature template recorded. These 20 cover enterprise data applications and security & privacy. 

The impressive NRC report [2] is a rich source of information. It has several relevant examples in chapter 
2; most of these are also present in the NIST study, but NRC does have an interesting discussion of Big 
Data in Networking and Telecommunication that is omitted from the NIST compilation. We will return to 
the important “Giants” in chapter 10, which are related to different facets of our Ogres. 

For the case of distributed applications there are at least two existing attempts to survey and analyze them. 
In Jha et al [4], the authors examine at a high-level approximately 20 distinct scientific applications that 
have either been distributed by design or were distributed “by nature”.  They reduce the number of 
carefully examined applications to six representative selections. These applications range from the 
ubiquitous “@home” class of distributed applications, to Montage – an image reconstruction application 
which is now emblematic of loosely coupled workflows – to highly specialized and performance oriented 
applications such as NEKTAR. 

Building upon [4], Jha et al [3] seek to understand distributed, dynamic and data-intensive applications 
(D3 Science) investigating the programming models and abstractions, the runtime and middleware 
services, and the computational infrastructure. The survey includes the following applications: NGS 
Analytics, CMB, Fusion, Industrial Incident Notification and Response, MODIS Data Processing, 
Distributed Network Intrusion Detection, ATLAS/WLCG, LSST, SOA Astronomy, Sensor Network 
Application, Climate, Interactive Exploration of Environmental Data, and Power Grids.  

2.2 Lessons from Parallel Computing 

Before we get to discussing features and patterns of Big Data applications, it is instructive to consider the 
better understood parallel computing situation. Here the application requirements have been captured in 
many ways: 



a) Benchmark Sets. These vary from full applications [9] to kernels or mini-applications such as 
the NAS Parallel Benchmarks [10, 11] or Parkbench [12], with the Top500 [13] pacing 
application Linpack (HPL) being particularly well-known [14]. The new sparse HPCG conjugate 
gradient benchmark is worthy of mention [14]. Note benchmarks can be specified via explicit 
code and/or by a “pencil and paper specification” that can be optimized in any way for a 
particular platform. 

b) Patterns or Templates. These can be similar to benchmarks but have different goals, such as 
providing a generic framework that can be modified by users with details of their application as in 
Template book [15, 16]. Alternatively they can be aimed at illustrating different applications as in 
the original Berkeley Dwarfs [17].  

In this paper, our approach adheres closest to the Dwarfs framework; this is one motivation for choosing 
to name it the Big Data ‘Ogres’. In looking at this previous work, we note that benchmarks often cover a 
variety of different application aspects and are accompanied by principles or folklore that can guide the 
writing of parallel code or designing suitable hardware and software. For example, data locality and cost 
of data movement, sparseness, Amdahl’s law, communication latency, bisection bandwidth and scaled 
speedup are associated with substantial folklore.  

The famous NAS Parallel Benchmarks (NPB) consist of: MG: Multigrid, CG: Conjugate Gradient, FT: 
Fast Fourier Transform, IS: Integer sort, EP: Embarrassingly Parallel, BT: Block Tridiagonal, SP: 
Scalar Pentadiagonal, and LU: Lower-Upper symmetric Gauss Seidel. All these are fairly uniform. With 
the exception of EP, which is an application class, the other members are typical constituents of a low 
level library for parallel simulations. On the other hand, the Berkeley Dwarfs are Dense Linear Algebra , 
Sparse Linear Algebra, Spectral Methods, N-Body Methods, Structured Grids, Unstructured Grids, 
MapReduce, Combinational Logic, Graph Traversal, Dynamic Programming, Backtrack and Branch-and-
Bound, Graphical Models and Finite State Machines. The Dwarfs are not exact kernels, but instead 
describe problems from different points of view, including programming model (MapReduce), numerical 
method (Grids, Spectral method), kernel structure (dense or sparse linear algebra), algorithm (dynamic 
programming) and application class (N-body), etc. We believe it is generally accepted that both parallel 
computing and Big Data cannot be characterized with a single criterion, and so we introduce multiple 
Ogres exhibiting a set of facets in four different directions. We anticipate that there will be a correlation 
between the values of specific facet and application type and the needed computing architecture to 
support them.  

2.3 Properties of the 51 NIST use cases 

Tables 1 to 3 summarize characteristics of the 51 use cases, which we will combine with other input for 
the Ogres. Note that Big Data and parallel programming are intrinsically linked, as any Big Data analysis 
is inevitably processed in parallel. Parallel computing is almost always implemented by dividing the data 
between processors (data decomposition); the richness here is illustrated in Table 1, which lists the 
members of space that are decomposed for different use cases. Of course these sources of parallelism are 
broadly applicable outside the 51 use cases from which they were extracted. In Table 2, we identify 15 
use case features that will be used later as facets of the Ogres. The second column of Table 2 lists our 
estimate of the number of use cases that illustrate this feature; note these are not exclusive, so any one use 
case will illustrate many features. 

It is important to note that while machine learning is commonly used, there is an interesting distinction 
between what are termed Local Machine Learning (LML) and Global Machine Learning (GML) in Table 
2. In LML, there is parallelism over items of Table 1 and machine learning is applied separately to each 



item; needed machine learning parallelism is limited, typified by the use of accelerators (GPU). In GML, 
the machine learning is applied over the full dataset with MapReduce, MPI or an equivalent. Typically 
GML comes from maximum likelihood or χ2 with a sum over the data items – documents, sequences, 
items to be sold, images, etc., and often links (point-pairs). Usually GML is a sum of positive numbers, as 
in least squares, and is illustrated by algorithms like PageRank, clustering/community detection, mixture 
models, topic determination, Multidimensional scaling, and (Deep) Learning Networks. Somewhat 
quixotically, GML can be termed Exascale Global Optimization or EGO.  

Table 1: What is Parallelism Over for NIST Use Cases? 
General Class Examples 

People Users (see below) or Subjects of application and often both 
Decision makers Researchers or doctors (users of application) 

Items 

Experimental observations 
Contents of online store 
Images or “Electronic Information nuggets” 
EMR: Electronic Medical Records (often similar to people parallelism) 
Protein or Gene Sequences 
Material properties, Manufactured Object specifications, etc., in custom dataset 

Modelled entities Vehicles and people 
Sensors Internet of Things 
Events Detected anomalies in telescope, credit card or atmospheric data 
Graph Nodes RDF databases 
Regular Nodes Simple nodes as in a learning network 
Information Units Tweets, Blogs, Documents, Web Pages, etc., and characters/words in them 
Files or data To be backed up, moved or assigned metadata 
Particles/cells/ mesh points Used in parallel simulations 

The difference between LML and GML is illustrated in Table 3, which contrasts 9 of the 51 NIST use 
cases that involve image-based data. For example, use case 18 with light source data is largely 

Table 2: Some Features of NIST Use Cases 
Abbreviation # Description 

PP 26 Pleasingly Parallel or Map Only 
MR 18 Classic MapReduce MR (add MRStat below for full count) 
MRStat 7 Simple version of MR where key computations are simple reduction as found in statistical 

averages, such as histograms and averages 
MRIter 23 Iterative MapReduce or MPI 
Graph 9 Complex graph data structure needed in analysis  
Fusion 11 Integrate diverse data to aid discovery/decision making; could involve sophisticated 

algorithms or just be a portal 
Streaming 41  Some data comes in incrementally and is processed this way 
Classify 30 Classification: divide data into categories 
S/Q 12 Index, Search and Query 
CF 4 Collaborative Filtering for recommender engines 
LML 36 Local Machine Learning (Independent for each parallel entity) 
GML 23 Global Machine Learning: Deep Learning, Clustering, LDA, PLSI, MDS,  

Large Scale Optimizations as in Variational Bayes, MCMC, Lifted Belief Propagation, 
Stochastic Gradient Descent, L-BFGS, Levenberg-Marquardt. Can call EGO or Exascale 
Global Optimization with scalable parallel algorithm 

 51 Workflow: Universal, so no label 
GIS 16 Geotagged data often displayed in ESRI, Microsoft Virtual Earth, Google Earth, 

GeoServer, etc. 
HPC 5 Classic large-scale simulation of cosmos, materials, etc., generating (visualization) data 
Agent 2 Simulations of models of data-defined macroscopic entities represented as agents 



independent machine learning on each image from the source, i.e. LML. In contrast, deep learning in use 
case 26 works by constructing a learning network integrating all the images. 

 

2.4 Properties of Distributed Use Cases 

In the process of reduction and classification, the authors of [3, 4] analyze the structure of applications 
and find commonalities; they introduce the term “vectors” to capture four essentially orthogonal but 
critical properties that determine both the development and the execution of the application. These vectors 
are: execution unit, communication, coordination and an execution environment. The first three are 
internal properties of a distributed application, whereas the last is essentially an external property. Based 
upon recurring values of vectors, the authors propose a set of common patterns that help elucidate the 
structure of the distributed applications. It is worth noting that vectors and patterns for distributed 
applications do not provide insight into performance aspects of the applications. 

In [3], the authors propose a framework for describing applications, distributed and dynamic data and 
infrastructure. Figure 1 shows the data lifecycle model used for the analysis capturing both applications 
using sensors and computationally generated data. 

 

Figure 1. Application Stages 

The authors call out the Big Data aspects, the dynamic aspects and the distributed aspects of a large set of 
applications, and introduce quantitative estimates for various performance related properties. 

Table 4 below (from [4]) shows the specific values of the “DPA vectors” for the set of six distinct 
applications investigated. It is interesting to note that the categorization did not lead to a well-defined and 

Table 3: 9 Image-based NIST Use Cases 
Use Case Title Application Features 
17 Pathology Imaging/ 

Digital Pathology 
Moving to terabyte size 3D images, Global 
Classification 

PP, LML, MR 
for search 

18 Light sources Biology and Materials PP, LML 
26  Large-scale Deep 

Learning 
Stanford ran 10 million images and 11 billion 
parameters on a 64 GPU HPC; vision (drive car), 
speech, and Natural Language Processing 

GML 

27 Organizing large-scale, 
unstructured collections 
of photos 

Fit position and camera direction to assemble 3D 
photo ensemble 

GML 

36 Catalina Real-Time 
Transient Synoptic Sky 
Survey (CRTS) 

Processing of individual images for events based on 
classification of image structure (GML) 

PP, LML, GML 

43 Radar Data Analysis for 
CReSIS Remote Sensing 
of Ice Sheets 

Identify glacier beds and snow layers. 
See GML when one addresses full ice sheet 

PP, LML 
moving to GML  

44  UAVSAR Data 
Processing 

Find and display slippage from radar images. 
Includes Data Product Delivery, and Data Services 

PP 

45, 46 Analysis of Simulation 
visualizations 

Find paths, classify orbits, classify patterns that 
signal earthquakes, instabilities, climate, turbulence 

PP, LML, GML 



non-overlapping classification of application, as the complexity of considering the end-to-end aspects and 
the diverse ways in which applications are utilized resulted in classes that had overlapping characteristics. 

 

3. The Big Data Ogres and their Four Facets 

Synthesizing lessons learned from HPC, distributed applications and the NIST use case given above, we 
argue that there is a need to construct classes of mini-applications that facilitate the understanding and 
characterization of the Big Data properties of these applications. We further introduce facets or features in 
4 classification dimensions or views to categorize Big Data applications. These are the Problem 
architecture, Execution features, Data Source or Style, and Processing views. There are of course other 
ways of looking at the Ogres and our work should be treated as an initial suggestion for further 
discussion. These views and their facets build on earlier discussions, especially Table 2. Note that a given 
application can be made up of components with different facets in Ogre classification. We will reference 
the 7 computational giants G1-G7 from the NRC report recorded in Table 5. These are important Big 
Data patterns, although the Ogres go into more detail. The final subsection discusses a selection of kernels 
focusing on analytics which are instances of Ogres. We intend to follow up with other Ogre “mini-app” or 
“kernel” instances covering a broader set of facets, including those from database benchmarking [18]. 

 3.1 Problem Architecture View of Ogres 

Table 4: Characteristics of 6 Distributed Applications 
Application 
Example 

Execution Unit Communication Coordination  Execution Environment 

Montage Multiple sequential and 
parallel executable 

Files Dataflow 
(DAG) 

Dynamic process 
creation, execution 

NEKTAR Multiple concurrent 
parallel executables 

Stream based Dataflow Co-scheduling, data 
streaming, async. I/O  

Replica-
Exchange 

Multiple seq. and parallel 
executables 

Pub/sub Dataflow and 
events 

Decoupled coordination 
and messaging 

Climate 
Prediction 
(generation) 

Multiple seq. & parallel 
executables 

Files and 
messages 

Master-
Worker, events 

@Home (BOINC) 

Climate 
Prediction 
(analysis) 

 Multiple seq. & parallel 
executables 

 Files and 
messages 

Dataflow  Dynamics process 
creation, workflow 
execution 

SCOOP  Multiple Executable Files and 
messages 

Dataflow Preemptive scheduling, 
reservations 

Coupled 
Fusion  

 Multiple executable Stream-based Dataflow Co-scheduling, data 
streaming, async I/O 

Table 5: 7 Computational Giants of Massive Data Analysis [2] 
G1 Basic Statistics 
G2 Generalized N-Body Problems 
G3 Graph-Theoretic Computations 
G4 Linear Algebraic Computations 
G5 Optimizations 
G6 Integration 
G7 Alignment Problems 



The Problem Architecture view has facets that describe the overall structure of the application, which 
determines the overall software and is an important driver of the software and hardware architecture 
discussed later.   

3.2 Execution Features View of Ogres 

Table 7: Execution Features View Facets of Ogres 
Performance metrics  As measured in benchmarks 
Flops per byte Important for performance 
Execution 
Environment 

Cloud or HPC; are Core libraries needed such as matrix-matrix/vector algebra, 
conjugate gradient, reduction, broadcast … (G4) 

Volume Data size 
Velocity Measures Streaming 
Variety Multiple data sources are often mixed. See Fusion facet 
Veracity Accuracy of data affecting pre-processing needed and reliability of answer 
Communication 
Structure  

Interconnect structure? Is communication Synchronous or Asynchronous? In latter 
case shared memory may be attractive; 

Static or Dynamic? Does application (graph) change during execution? 
Regularity Most applications consist of a set of interconnected entities; is this regular as a set of 

pixels or is it a complicated irregular graph? 
Iterative or not? Important algorithm characteristic 
Data Abstraction Key-value, pixel, graph, vector, HDF5, Bag of words, etc. 
Data Space? Are data points in metric or non-metric spaces (G2)? 
Complexity Is algorithm O(N2) or O(N) (up to logs) for N points per iteration (G2)? 
 

This facet contains application characteristics that are familiar from the simulation domain as well as the 
famous V’s of Big Data. The data abstraction layer is a key facet that we highlight in the software 
architecture rather than burying it as is done now in particular packages like Hadoop (key-value) and 
Giraph (graph). Simulations are often set up in well-defined physical spaces, however data is generally 
more abstract and the algorithms are typically quite different for metric and non-metric spaces. In contrast 
to the problem architecture facet, the computational features facet has a direct handle/relevance to 
performance. Note non-metric space algorithms are often O(N2). As discussed in the NRC report, there is 
a great deal of opportunity to incorporate sophisticated new algorithms to reduce O(N2) to O(N and logs). 

 Table 6: Problem Architecture View Facets of Ogres (Meta or Macro 
Pattern) 

Pleasingly Parallel Seen in BLAST, Protein docking, some (bio-) imagery including Local Analytics or Local 
Machine Learning with pleasingly parallel filtering 

Classic MapReduce Search, Index and Query and Classification algorithms like collaborative filtering (G1 for 
MRStat in Table 2, G7) 

Map Collective Seen in machine learning – especially with linear algebra kernels 
Map P2P Point to Point Communication seen in parallel simulation and graph algorithms 
Map Streaming Combination of (parallel) long running maps accepting streamed data 
Shared Memory As opposed to distributed data (memory). Corresponds to problem where shared memory 

implementations are important. Tend to be dynamic asynchronous 
SPMD Single Program Multiple Data, well-known parallel computing style 
BSP Bulk Synchronous Processing: well-defined compute-communication phases 
Fusion  Knowledge discovery often involves fusion of multiple methods or sources 
Dataflow Composite structure with multiple components linked by exchanged data 
Agents As used in epidemiology, discrete event simulations, etc. Swarm approaches 
Workflow Many applications often involve orchestration (workflow) of multiple components 



This is commonly used in search and sort algorithms but not yet applied in computation despite promising 
initial work [2, 19, 20].  

3.3 Data Source and Data Style View of Ogres 

Table 8: Data Source and Style View Facets of Ogres 
SQL, NoSQL or NewSQL NoSQL includes Document, Column, Key-value, Graph, Triple store 
Enterprise data systems  10 examples from NIST [1] integrate SQL/NoSQL 
Files or Objects Files as managed in iRODS and extremely common in scientific research. 

Objects most common in ABDS 
HDFS/Lustre/GPFS Are data and compute collocated? 
Archive/Batched 
/Streaming  

Streaming is Incremental update of datasets with new algorithms to achieve 
real-time response (G7) 

Storage system styles Styles include Shared, Dedicated, Permanent, and Transient 
Metadata/Provenance Define overall features of data and processing 
Internet of Things 24 [21] to 50 (Cisco [22, 23]) billion devices on the Internet by 2020 
HPC generated data Simulations generate visualization output that often needs to be mined 
GIS Geographical Information Systems provide access to geospatial data 
The facets of Table 8 cover the acquisition, storage, management and access to the data. The mantra of 
bringing computing to the data is an important principle, especially for the Internet of Things when it is 
often not practical since backend (clouds) are needed to provide adequate computing. It is interesting that 
the HPC approach of large shared file systems uses technologies like Lustre, which is rather different 
from commercial systems that use databases or HDFS.  Before the data gets to the compute system, there 
is often an initial data gathering phase which is characterized by a block size and timing. Block size varies 
from month (Remote Sensing, Seismic) to day (genomic) to seconds or lower (Real time control, 
streaming). This is measured by Archived/Batched/Streaming facets. Figure 1 stresses that an important 
source of data is the output of other programs, as data is streamed through a workflow. Other 
characteristics are needed for permanent auxiliary/comparison datasets which could be interdisciplinary, 
implying nontrivial data movement/replication. This is covered by the Variety facet in the Execution 
view. 

3.4 Processing or Run-time View of Ogres 

Table 9: Processing or Run-time View Facets of Ogres 
Micro Benchmarks A simple kernel or  mini-app used to measure core system performance 
LML Local Analytics or Local machine Learning 
GML Global Analytics or Machine Learning requiring iterative runtime (G5, G6) 
Base Statistics Simple statistics seen in Table 2 as MRStat  
Recommendations Collaborative Filtering and other recommender analytics 
Search/Query/Index Rich set of technologies used in Search, Query and Indexing data 
Classification Technologies to label data (SVM, Bayes, deep learning, clustering) 
Learning Training algorithms 
Optimization Methodology Machine Learning, Nonlinear Optimization, Least Squares, Linear/Quadratic 

Programming, Combinatorial Optimization, expectation maximization, Monte 
Carlo, Variational Bayes, Global Inference 

Streaming Growing class of fast online O(N) algorithms  
Alignment Variant of Search seen in sequence comparison as in BLAST 
Linear Algebra Many machine learning algorithms build on linear algebra kernels 
Graph Problem set up as a graph as opposed to vector, grid, etc. (G3) 
Visualization Important component of many analysis pipelines 



We have already stressed the importance and distinction between Local and Global Machine Learning. 
These are often associated with Expectation Maximization and Steepest descent methods. 

3.5 Analytics Algorithm/Kernels as Ogre Instances 

Table 10: Ogre Instances covering important Analytics 
Pleasingly Parallel (Map Only) or Local Machine Learning: ~any algorithm 

Map-Reduce 
Search, Query, Index: Dominant commercial use and important in Science with fewer users 
Recommender Systems including Collaborative filtering: Major commercial use, little use in Science 
Summarizing statistics (MRStat) as in LHC Data analysis (histograms) (G1) 
Linear Classifiers: Bayes, Random Forests 

Alignment and Streaming (G7) 
Genomic Alignment, Incremental Classifiers 

Global Analytics – Nonlinear Solvers (Structure depends on Objective Function) (G5, G6) 
Stochastic Gradient Descent SGD 
(L-)BFGS approximation to Newton’s Method 
Levenberg-Marquardt solver 

Global Analytics – Map-Collective (See Mahout, MLlib) (G2, G4, G6) 
Outlier Detection 
Clustering (many methods) related to community identification in networks 
Mixture Models, LDA (Latent Dirichlet Allocation), PLSI (Probabilistic Latent Semantic Indexing) 
SVM and Logistic Regression 
PageRank (find leading eigenvector of sparse matrix) 
SVD (Singular Value Decomposition) 
MDS (Multidimensional Scaling) 
Learning Neural Networks (Deep Learning) 
Hidden Markov Models 

Global Analytics – Map-Communication (targets for Giraph) (G3) 
Graph Structure (Communities, subgraphs/motifs, diameter, maximal cliques, connected components) 
Network Dynamics - Graph simulation Algorithms (epidemiology) 

Global Analytics – Asynchronous Shared Memory (may be distributed algorithms) 
Graph Structure (Betweenness centrality, shortest path) (G3) 
Linear/Quadratic Programming, Combinatorial Optimization, Branch and Bound (G5) 
 

Table 10 records particular data analysis algorithms that play the same role as the members of the NAS 
parallel benchmarks. They form instances of Ogres covering a range of facets already introduced. These 
are deliberately kernels and further work is needed to specify more precise mechanisms. For example, 
there are many very different outlier and clustering algorithms corresponding to different scenarios (such 
as metric or non-metric spaces) and goals (such as tradeoff between performance and quality). Working 
with colleagues, we are developing benchmarks in the areas identified in Table 9. One should also 
introduce Ogre instances corresponding to full applications and workflows. These are important but not 
discussed here. We intend to investigate further work to introduce mini-apps as Ogre instances with broad 
coverage of the different facets in the 4 views.  

 

4. Hardware and Software Architecture Issues 

4.1 Six Important Architectures 

Table 11: Distinctive Software/Hardware Architectures for Data Analytics 



1 Pleasingly Parallel 
(Map Only) 

Includes local machine learning (LML) as in parallel decomposition over items and 
apply data processing to each item. Hadoop could be used but also other High 
Throughput Computing or Many Task tools 

2 Classic 
MapReduce 

Includes MRStat, search applications and those using collaborative filtering and motif 
finding implemented using classic MapReduce (Hadoop) 

3 Iterative Map-
Collective 

Iterative MapReduce using Collective Communication as needed in clustering – 
Hadoop with Harp, Spark, etc. 

4 Iterative Map- 
(Point to Point) 
Communication 

Iterative MapReduce such as Giraph with point-to-point communication; includes most 
graph algorithms such as maximum clique, connected component, finding diameter, 
community detection. Vary in difficulty of finding partitioning (classic parallel load 
balancing) 

5 Map-Streaming Architecture such as that of Apache Storm that supports streaming data. [24] A set of 
brokers holding data as it streams, supplying a set of long running tasks that filter and 
accumulate data. 

6 Shared (Large) 
Memory 

Thread-based (event driven) graph algorithms such as shortest path and Betweenness 
centrality. Large memory applications 

 

In Table 11, we present 6 problem architectures that map into 6 distinct system architectures which seem 
to cover the Ogres and their facets discussed in previous sections. Category 11.6 is the shared memory 
architecture needed for some graph algorithms that perform better here as well as for some large memory 
applications. The central batch architectures are 11.1 to 11.4 which correspond exactly to the four forms 
of MapReduce we have presented previously [25] summarized in Figures 2a) and Figure 2b), which 
introduces the Map-Streaming architecture. Note these six architectures only describe some of the facets 
in Tables 6-9. There are many other issues that need to be addressed including support of workflow and 
the data systems captured in the facets of Table 8. 

 

Figure 2. Six Distinctive Software/Hardware Architectures for Data Analytics 

Note that we separate Map-Collective [26, 27] and Map-(Point to Point) Communication following the 
Apache projects Hadoop, Spark and Giraph which focus on these cases. These programming models or 
runtimes differ in communication style (bandwidth versus latency), application abstraction (key-value 
versus graph), possible scheduling or load-balancing. HPC with MPI suggests that one could integrate 
categories 11.3 and 11.4 into a single environment. This approach is illustrated by the Harp plug-in for 
Hadoop which supports both models [28]. We recently added the map-streaming architecture of Table 
11.5 and Fig. 2b); recall that Table 2 listed 41 streaming applications in the 51 use cases. 

4.2 Comparison between Data Intensive and Simulation Problems 

We can use the Ogre facet analysis and the data analytics architectures to compare data intensive and 
simulation applications.  Looking back at Table 6, there are some clear similarities between them, with  
“Pleasingly parallel” (11.1), BSP and SPMD being common in both arenas.  However the Classic 
MapReduce architecture (11.2) is a major Big Data paradigm though much less common in simulations. 
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One example is the execution of multiple simulations (as in Quantum Monte Carlo) followed by a reduce 
operation to collect the results of different simulations. The Iterative Map-Collective architecture 
(category 11.3) is common in Big Data analytics such as clustering where there is no local graph structure 
and the parallel algorithms involve large-scale collectives but no point-to-point communication. The same 
structure is seen in N-body (long range force) or other “all-pairs” simulations without the locality typical 
from discretizing differential operators.  

Many simulation problems have the Map-Communication (category 11.4) architecture with many 
smallish point-to-point messages coming from local interactions between points defining systems to be 
simulated. The importance of sparse data structures and algorithms is well understood in simulations and 
is seen in some Big Data problems such as PageRank, which calculates the leading eigenvector of the 
sparse matrix formed by internet site links. Other Big Data sparse data structures are seen in user-item 
ratings and bags of words problems (although these have feature that suggest sparseness corresponds to 
missing information and not to zero values). Most items are rated by only a few users and many 
documents contain a small fraction of the word vocabulary. However important data analytics involve full 
matrix algorithms. For example, recent papers [28-30] on a new Multidimensional Scaling method use 
conjugate gradient solvers with full matrices as opposed to the new sparse conjugate gradient benchmark 
HPCG being developed for supercomputer (Top500) evaluations [31]. 

Note that there are similarities between some Big Data graph problems and particle simulations with an 
unusual potential defined by the graph node connectivity. Both use the Map-Communication architecture, 
and the links in a Big Data graph are equivalent to strength of force between the graph nodes considered 
as particles. In this analogy, many Big Data problems are “long range force” corresponding to a graph 
where all nodes are linked to each other. As in simulation cases, these O(N2) problems are typically very 
compute intense but straightforward to parallelize efficiently. It is interesting to consider the analogue of 
the “fast multi-pole” methods for the fully connected Big Data problems, which can dramatically improve 
the performance to O(N) or O(NlogN) as discussed in Sec. 3.3.  Finally note the network connections 
used in deep learning are indeed sparse, but in recent image interpretation studies [32], the network 
weights are block sparse (corresponding to links to pixel blocks) and can be formulated as full matrix 
operations with GPUs and MPI running efficiently with these blocks.  

The map-streaming architecture (11.5) is seen in problems such as Twitter analysis and data assimilation 
where large-scale simulations are updated by streaming data. The final architecture of category11.6 
(Shared Memory) is important in some applications but not heavily used in either simulations or Big 
Data, although large memory systems are used extensively in gene assembly applications.  

The above discussion focuses on a qualitative comparison of Big Data applications with traditional 
simulation (HPC) applications, namely comparing the structure. As is evident, there are similarities as 
well as points of distinction. It is likely, however, that there will be significant differences in values of 
facets of the “execution features” view for the two application classes; for instance  the distribution of the 
values of different ratios (e.g., ratio of computing to I/O, ratio of memory to I/O, etc.)  characterizing the 
computational feature will be different. We will investigate both quantitative and qualitative differences 
in future work. 

 

4.3 A Big Data Software Environment 

We have previously described [33-35] how we propose to implement Big Data applications exploiting the 
HPBDS architecture sketched in Table 12 [36]. This combines the best practice commercial Big Data 



software with an emphasis on Apache projects with HPC subsystems. Table 12 illustrates by green 
shading those layers where HPC adds significant value to the Apache stack ABDS. Note that high 
performance communication is known to be critical for simulations but is also essential for many 
scientific Big Data applications. Commercial applications have large “search” (10.2) components 
corresponding to the huge number of users accessing commercial Big Data systems. In science, this step 
is necessary – especially for good data management – but is a much lower fraction of system use as the 
number of scientists accessing data is far lower than the number of users of commercial Big Data. 

  

Table 12: Kaleidoscope of (Apache) Big Data Stack (ABDS) and HPC Technologies  
Cross-
Cutting 

Functions 
1) Message 
and Data 
Protocols: 
Avro, Thrift, 
Protobuf 
2) Distributed 
Coordination: 
Google 
Chubby, 
Zookeeper, 
Giraffe, 
JGroups 
3) Security & 
Privacy: 
InCommon, 
Eduroam 
OpenStack 
Keystone, 
LDAP, Sentry, 
Sqrrl, OpenID, 
SAML OAuth 
4) 
Monitoring: 
Ambari, 
Ganglia, 
Nagios, Inca 

 

17) Workflow-Orchestration: ODE, ActiveBPEL, Airavata, Pegasus, Kepler, Swift, Taverna, Triana, 
Trident, BioKepler, Galaxy, IPython, Dryad, Naiad, Oozie, Tez, Google FlumeJava, Crunch, Cascading, 
Scalding, e-Science Central, Azure Data Factory, Google Cloud Dataflow, NiFi (NSA), Jitterbit, Talend, 
Pentaho, Apatar 
16) Application and Analytics: Mahout , MLlib , MLbase, DataFu, R, pbdR, Bioconductor, ImageJ, 
OpenCV, Scalapack, PetSc, Azure Machine Learning, Google Prediction API & Translation API, mlpy, 
scikit-learn, PyBrain, CompLearn, DAAL(Intel), Caffe, Torch, Theano, DL4j, H2O, IBM Watson, 
Oracle PGX, GraphLab, GraphX, IBM System G, GraphBuilder(Intel), TinkerPop, Google Fusion 
Tables, CINET, NWB, Elasticsearch, Kibana, Logstash, Graylog, Splunk, Tableau, D3.js, three.js, Potree 
15B) Application Hosting Frameworks: Google App Engine, AppScale, Red Hat OpenShift, Heroku, 
Aerobatic, AWS Elastic Beanstalk, Azure, Cloud Foundry, Pivotal, IBM BlueMix, Ninefold, Jelastic, 
Stackato, appfog, CloudBees, Engine Yard, CloudControl, dotCloud, Dokku, OSGi, HUBzero, OODT, 
Agave, Atmosphere 
15A) High level Programming: Kite, Hive, HCatalog, Tajo, Shark, Phoenix, Impala, MRQL, SAP 
HANA, HadoopDB, PolyBase, Pivotal HD/Hawq, Presto, Google Dremel, Google BigQuery, Amazon 
Redshift, Drill, Kyoto Cabinet, Pig, Sawzall, Google Cloud DataFlow, Summingbird  
14B) Streams: Storm, S4, Samza, Granules, Google MillWheel, Amazon Kinesis, LinkedIn Databus, 
Facebook Puma/Ptail/Scribe/ODS, Azure Stream Analytics  
14A) Basic Programming model and runtime, SPMD, MapReduce: Hadoop, Spark, Twister, 
Stratosphere (Apache Flink), Reef, Hama, Giraph, Pregel, Pegasus, Ligra, GraphChi 
13) Inter process communication Collectives, point-to-point, publish-subscribe: MPI, Harp, Netty, 
ZeroMQ, ActiveMQ, RabbitMQ, NaradaBrokering, QPid, Kafka, Kestrel, JMS, AMQP, Stomp, MQTT, 
Public Cloud: Amazon SNS, Lambda, Google Pub Sub, Azure Queues, Event Hubs  
12) In-memory databases/caches: Gora (general object from NoSQL), Memcached, Redis, LMDB (key 
value), Hazelcast, Ehcache, Infinispan 
12) Object-relational mapping: Hibernate, OpenJPA, EclipseLink, DataNucleus, ODBC/JDBC  
12) Extraction Tools: UIMA, Tika 
11C) SQL(NewSQL): Oracle, DB2, SQL Server, SQLite, MySQL, PostgreSQL, CUBRID, Galera 
Cluster, SciDB, Rasdaman, Apache Derby, Pivotal Greenplum, Google Cloud SQL, Azure SQL, 
Amazon RDS, Google F1, IBM dashDB, N1QL, BlinkDB 
11B) NoSQL: Lucene, Solr, Solandra, Voldemort, Riak, Berkeley DB, Kyoto/Tokyo Cabinet, Tycoon, 
Tyrant, MongoDB, Espresso, CouchDB, Couchbase, IBM Cloudant, Pivotal Gemfire, HBase, Google 
Bigtable, LevelDB, Megastore and Spanner, Accumulo, Cassandra, RYA, Sqrrl, Neo4J, Yarcdata, 
AllegroGraph, Facebook Tao, Titan:db, Jena, Sesame 
Public Cloud: Azure Table, Amazon Dynamo, Google DataStore 
11A) File management: iRODS, NetCDF, CDF, HDF, OPeNDAP, FITS, RCFile, ORC, Parquet 
10) Data Transport: BitTorrent, HTTP, FTP, SSH, Globus Online (GridFTP), Flume, Sqoop, Pivotal 
GPLOAD/GPFDIST 
9) Cluster Resource Management: Mesos, Yarn, Helix, Llama, Google Omega, Facebook Corona, 
Celery, HTCondor, SGE, OpenPBS, Moab, Slurm, Torque, Globus Tools, Pilot Jobs 
8) File systems: HDFS, Swift, Haystack, f4, Cinder, Ceph, FUSE, Gluster, Lustre, GPFS, GFFS 
Public Cloud: Amazon S3, Azure Blob, Google Cloud Storage 
7) Interoperability: Libvirt, Libcloud, JClouds, TOSCA, OCCI, CDMI, Whirr, Saga, Genesis 
6) DevOps: Docker, Puppet, Chef, Ansible, SaltStack, Boto, Cobbler, Xcat, Razor, CloudMesh, Juju, 
Foreman, OpenStack Heat, Rocks, Cisco Intelligent Automation for Cloud, Ubuntu MaaS, Facebook 
Tupperware, AWS OpsWorks, OpenStack Ironic, Google Kubernetes, Buildstep, Gitreceive 
5) IaaS Management from HPC to hypervisors: Xen, KVM, Hyper-V, VirtualBox, OpenVZ, LXC, 
Linux-Vserver, OpenStack, OpenNebula, Eucalyptus, Nimbus, CloudStack, CoreOS, VMware ESXi, 
vSphere and vCloud, Amazon, Azure, Google and other public Clouds,  
Networking: Google Cloud DNS, Amazon Route 53     
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5 Discussion and Conclusion 

This is only an initial discussion about our objectives, scope and methodology, and is by no means a 
complete or comprehensive body of work. It is motivated by the fact that there are several existing efforts 
at describing and highlighting Big Data applications, yet many are domain or usage specific. We move 
beyond any specific set of applications, and focus on Big Data applications and analytics kernels that are 
generally considered to be of relevance/importance to science and engineering using a context that 
includes a limited set of commercial problems. Using this broad range of Big Data applications as our 
working set, this paper is an attempt at distilling the Big Data properties (facets divided into 4 views) and 
organizing the plethora of disparate Big Data applications using these properties. Although we validate 
using analytics kernels, this classification/organization will in turn shed light on and help provide better 
understanding of both the structure of science and engineering Big Data applications, as well as 
determinants of their performance. In Section 4, we show how a deeper appreciation of the Ogre facets 
will help design and implement better hardware and software systems.  
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Appendix: 71 NIST Use Cases 

The 71 NIST Use Cases with number in each broad area 
Government Operation(4): National Archives and Records Administration, Census Bureau 
Commercial(8): Finance in Cloud, Cloud Backup, Mendeley (Citations), Netflix, Web Search, Digital Materials, 
Cargo shipping (as in UPS) 
Defense(3): Sensors, Image surveillance, Situation Assessment 
Healthcare and Life Sciences(10): Medical records, Graph and Probabilistic analysis, Pathology, Bioimaging, 
Genomics, Epidemiology, People Activity models, Biodiversity 
Deep Learning and Social Media(6): Driving Car, Geolocate images/cameras, Twitter, Crowd Sourcing, 
Network Science, NIST benchmark datasets 
The Ecosystem for Research(4): Metadata, Collaboration, Language Translation, Light source experiments 
Astronomy and Physics(5): Sky Surveys including comparison to simulation, Large Hadron Collider at CERN, 
Belle Accelerator II in Japan 
Earth, Environmental and Polar Science(10): Radar Scattering in Atmosphere, Earthquake, Ocean, Earth 
Observation, Ice sheet Radar scattering, Earth radar mapping, Climate simulation datasets, Atmospheric 
turbulence identification, Subsurface Biogeochemistry (microbes to watersheds), AmeriFlux and FLUXNET gas 
sensors 
Energy(1): Smart grid 
Enterprise Data Systems(10): Multiple users performing interactive queries and updates on a database with 
basic availability and eventual consistency (BASE); Perform real time analytics on data source streams and notify 
users when specified events occur; Move data from external data sources into a highly horizontally scalable data 
store, transform it using highly horizontally scalable processing (e.g. Map-Reduce), and return it to the 
horizontally scalable data store (ELT); Perform batch analytics on the data in a highly horizontally scalable data 
store using highly horizontally scalable processing (e.g. MapReduce) with a user-friendly interface (e.g. SQL); 
Perform interactive analytics on data in analytics-optimized database; Visualize data extracted from horizontally 
scalable Big Data store; Move data from a highly horizontally scalable data store into a traditional Enterprise 
Data Warehouse; Extract, process, and move data from data stores to archives; Combine data from Cloud 
databases and on premise data stores for analytics, data mining, and/or machine learning; Orchestrate multiple 
sequential and parallel data transformations and/or analytic processing using a workflow manager 
Security & Privacy(10): Consumer Digital Media Usage; Nielsen Homescan; Web Traffic Analytics; Health 
Information Exchange; Personal Genetic Privacy; Pharma Clinic Trial Data Sharing; Cyber-security; Aviation 
Industry; Military - Unmanned Vehicle sensor data; Education - “Common Core” Student Performance Reporting 
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