
 

  
Abstract— The performance and efficiency of Web Services can 

be greatly increased in conversational and streaming message 
exchanges by streaming the message exchange paradigm. In this 
paper, we describe our design and implementation of a novel 
approach to the message exchange optimization. This area is 
particularly important to applications in physically constrained 
mobile computing environments but potentially has other 
application areas. The verboseness of XML-based SOAP 
representation imposes possible overheads in mobile Web Service 
applications. We separate data content from the syntax and use 
streaming message exchanges. The redundant or static massage 
parts are stored in shared metadata space – the Context-store. 
The streamed messages are not self descriptive. But the 
combination of the message and the negotiation captured in the 
Context-store is self descriptive. We describe our architecture and 
evaluate our approach by testing the performance of the resulting 
system. The empirical result shows that our framework 
outperforms the conventional Web Services in conversational and 
streaming message exchanges with mobile clients. We 
demonstrate how to find the breakeven point at which our 
methods overtake the conventional SOAP messaging, for a 
particular application.  

 
 

Index Terms—Grid/Web Service, Quality of Service, Web 
Service Performance, Mobile Application 

I. INTRODUCTION 

eb Service-based Service Oriented 
Architecture (SOA) have became a backbone 

of Grid computing because of its interoperability 
across the diverse services/application in a 
distributed environment. The Open Grid Services 
Architecture (OGSA) [1] [24] has defined the 
environment for offering Grid computing as a Web 
Service. Similarly, the simple interface and 
interoperability of Web Service architecture make 
mobile computing applications adopt Web Services 
as a model of communicating.  
 But the verbose nature of current XML-based 
SOAP [2] requires an alternative and more efficient 

 
 

solution for message exchanges in mobile 
environment, which holds many physical constraints 
like limited processing and batter power and slow 
and intermittent connection. The conventional 
SOAP communication model possesses major 
characteristics that may affect messaging 
performance. Serializing and de-serializing SOAP 
message consumes lots of resources. In-memory 
representation, for example floating point number, 
must be converted from and to textual format of 
SOAP message, which is an expensive process for 
limited mobile computing. Also, the message size is 
increased substantially by adding descriptive tags of 
XML syntax and it is another problem for narrow 
mobile connections.  
 High performance SOAP encoding is an open 
research area [4-6]. There have been many 
investigations to address a performance issue of 
mobile Web Service and to provide solutions. But 
these proposals and solutions tackle small pieces of 
the problem, rather than providing the system level 
solution. In this paper we describe our novel 
architecture for increasing a performance of message 
exchanges in mobile Web Service environments. 
Our Handheld Flexible Representation (HHFR) 
architecture provides a complete system from a 
representation of the message to the use of dynamic 
metadata repository for guaranteeing semantic 
consistency. The streamed messages are self 
descriptive when it is combined with the captured 
parts in the Context-store. Our system provides a 
logical binding between messages and the 
negotiation captured in the Context-store. As we 
show in Section 5, our framework outperforms the 
conventional SOAP messaging. We also 
demonstrate how to find the breakeven point at 
which our methods overtake the conventional SOAP 
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messaging. 
We organize this paper as follows. In Section 2, we 

discuss background works. Section 3 reviews HHFR 
architecture design. We illustrate implementation 
details of the system in Section 4. In Section 5, we 
discuss the performance evaluation based on our 
performance model. We conclude in Section 6.    

II. BACKGROUND 

The report of the W3C Workshop [7] on Binary 
Interchange of XML Information Item Sets (Infoset) 
[8] is the result of the increasing demand of binary 
form of XML-based communication. The report 
includes conclusion of workshop meeting on 
September 2003 as well as several dozens of position 
papers from various institutes [5, 9, 10]. The purpose 
of the workshop was to study methods to compress 
XML documents and transmit pre-parsed and 
schema specific object. It identified requirements of 
binary XML Infoset, for examples a) maintaining 
universal interoperability, b) producing a 
generalized solution that is not limited to a specific 
application domain, c) reducing process time 
including a data binding time, and d) negotiation - 
fall back to XML/SOAP text format if receiver can’t 
understand binary. Web Service performance has 
been more recently reviewed at the 15th Global Grid 
Forum workshop   (GGF 15) [11]. 

We divide current approaches of expediting 
Grid/Web Service communication into following 
categories. First, most proposals that follows the 
XML Binary Characterization of the W3C have the 
goal of producing a self-contained alternative to an 
XML message, optimized for faster processing and 
smaller packet size. The approaches in this category 
replace a redundant vocabulary with indexes. Sun's 
Fast Infoset project [6], XML Schema-based 
Compression (XSBC) [12], XML Infoset Encoding 
(XBIS) are examples of the category.  

Secondly, there are non-self contained alternative 
approaches, such as Sun's Fast Web Services [5], the 
Indiana University Extreme! Lab’s recommendation 
[4] and the HHFR presented here. The last category 
includes message compression approaches. 
Compressing an XML document reduces the size, 
but increases processing time. Even XML-specific 

compression like XMill [13] that achieves better 
ratio than conventional compression utilities like 
GZip [14] doesn’t improve performance much 
because of the additional layer of processing, 
compression and decompression. Information 
external to a message is needed to interpret it. 

The Global Grid Forum’s Data Format Description 
Language (DFDL) [15] is a descriptive language that 
is proposed to describe a file or a stream in a binary 
format for Grid computing.  Like the older 
Extensible Scientific Interchange Language (XSIL) 
[16], it is XML-based and comes with an extensible 
Java Data model. DFDL architecture defines three 
primary layers: the lower layer (Mapping), the 
central layer (abstract Data Model), and the upper 
layer (API). The mapping layer defines the mapping 
between concrete representation and information 
content. For example, it defines a number format of 
data whether it is a big-endian or little-endian and a 
complex data format such as an array. The Data 
Model layer defines the data structure independent 
of their physical representation. It supports most of 
types that XML Schema Definition [17].   

III. THE DESIGN PRINCIPLES  

The key design goal of HHFR architecture is 
optimizing conventional SOAP messages. Smaller 
size messages reduce the transit time of message and 
this is a big gain for high latency and slow wireless 
connections. Also by simplifying the structure of 
messages, the HHFR runtime system expects to 
reduce parsing and serializing overhead that is 
imposed from verbose nature of SOAP. The types 
and structures of a SOAP message is syntax, which 

 

Figure. 1.  HHFR Architecture Overview 



 

make the message content descriptive. We achieve 
optimized representation of message contents by 
separating message contents from its syntax and 
streaming them in preferred representation. Figure 1 
depicts the overview of HHFR architecture. 
 
3.1. Replacement of XML Syntax With Optimized 
Representation 

HHFR provides message exchange option in a 
preferred representation, other than the conventional 
SOAP. An XML Based SOAP message itself is 
syntax (structure and type) and its verbose nature 
could impose performance bottleneck, which is 
magnified in wireless computing environments.  

The SOAP message has an outer-most element 
SOAP Envelope in its XML Document and it is 
composed optional headers and a body. The 
architecture handles static information (unchanging 
headers) of messages and dynamic information 
(payloads and headers that are applied to the 
individual message) differently.  

The redundant or unchanging headers are stored in 
the metadata repository, the Context-store. The 
application can store static information either in the 
negotiation stage or in the middle of the session. 

The body element contains a payload that is 
program instruction or data. Comparing to the 
individual message conversion approach that 
converts SOAP message into another 
self-descriptive message format, our message stream 
approach requires a data description written in a 
DFDL-style data descriptive language and an 
internal Data Model. So the data represented in 
preferred format is not self-descriptive, but the Data 
Model gotten from the data description uses. The 
relationships between data formats and 
representations are depicted in figure 2. 

Among alternative, a binary representation 
increases performance of HHFR architecture in 
several reasons. First, we can save the bandwidth of 
message exchanging. Since the descriptive tag of 
XML syntax increases the size of exchange data, 
having content data in binary format could save as 
high as a factor of ten if the message structure is 
especially redundant – for example in the case of 
array. A very simple message with a single text 

element can have its size reduced by half [3]. 
Secondly, the HHFR architecture can avoid a textual 
conversion; the process converts non-textual data 
into the text format and vice versa, by adopting a 
binary representation. This is expensive process, 
especially for relatively low-powered mobile 
devices.    

 
3.2. Focus On Conversational Message Exchanges 

HHFR works best for the Web Services, where 
two participating endpoints exchange a stream of 
messages like a conversation. For applications using 
a specific service, message in the stream have the 
same structure and the same data information. 
Further much of the message header is identical. 
Therefore the structure and type of SOAP message 
contents in HHFR schema can be transmitted once, 
and rest of the message in the stream has only 
updated payloads. To establish such a message 
stream, two endpoints should negotiate at the 
beginning of the session.  They negotiate the 
preferred representation (for example, a binary 
representation), transport characteristic (TCP or 
UDP), and quality of service issues (reliable 
messaging and/or security). The negotiation uses a 
conventional SOAP message, so that two endpoints 
fall back to the SOAP message based Web Service 
communication, if they fail to negotiate.   
 
3.3. Negotiation 

The negotiation stage is required by the 
architecture design to set up the stream 
characteristics. 

As discussed, HHFR architecture uses the 

 
Figure. 2.  Relationships between different forms of 

SOAP messages and their defining context 



 

non-self-contained representation to exchange 
messages. So data, exchanging messages, should be 
paired with description information to be processed 
by the corresponding endpoint. Two participating 
endpoints should exchange each other’s data 
description information at the beginning of the 
stream. 

Negotiating the method of message exchanges is 
also the essential role of the negotiation. It is well 
known fact that Data streaming can increase the 
message exchange performance in Web Services. So 
some investigate using HTTP Persistent connection, 
SMTP, or asynchronous messaging service, such as 
MQSeries as a transport. K. Chiu et al. [3] suggest 
using chunk overlaying and a pipelined sending over 
HTTP persistent connection, which is not always 
available for a network protocol implementation on 
all mobile devices and all cellular networks.  

The HHFR architecture provides fast 
communication channel. The channel can be either 
the same channel that is used for conventional SOAP 
message exchange or a separate channel to the one. 
If the fast communication option is implemented as a 
separate channel, it is efficient in its performance 
and also flexible to be implemented in various ways 
including asynchronous messaging scheme. But it 
also requires additional network resources – 
additional ports – and software modules to establish 
the connection. If the option is implemented as the 
same SOAP channel, it is achieved in higher 
interoperability, but also required to modify or adapt 
transport layer implementation of a SOAP Server. 
 Two participating endpoints negotiate all the 
issues above: let corresponding endpoint know the 
data format by exchanging description file, fast 
communication channel information to set up the 
connection, and related quality of service issues.  
 
3.4 Context-store (Information Service) 

WS-Context [18] compliant Information Service is 
message-based interface to a DB. As we discussed, 
the use of a Context-store reduces the bandwidth 
usage, but it also ensure the system semantically 
consistent. Note that the streamed messages are not 
directly self descriptive. However the combination 
of 

the message and the negotiation captured in the 
Context-store is self descriptive. For example, it 
provides a fault-tolerance feature: when the service 
endpoint is out-of-service, the service gets the 
required context from the Context-store after the 
recovery. The use of the Context-store guarantees 
the system and participants semantically consistent: 
if there is a third party who audits a session, it gets 
contexts from the Context-store and understands a 
session by filling up the missing SOAP parts saved at 
the store. 

IV. IMPLEMENTATION 

To demonstrate the effectiveness of the HHFR 
architecture, we have implemented a prototype 
mobile Web Service framework based on the 
architecture. The HHFR architecture consists of 
HHFR Schema and processor, fast communication 
channel with flexible representations, and the 
Context-store. Steps of the normal session are as 
follows: 1) HHFR-capable endpoint sends a 
negotiation request to the intended endpoint. The 
negotiation request is a conventional SOAP message 
that includes characteristics of the following session. 
2) In the negotiation message, a service client 
endpoint – a negotiation initiator – sends an input 
data description written in the HHFR schema, which 
we describe later in this chapter, and a service 
endpoint – a negotiation responder – sends an output 
data description. 3) Two endpoint use second 
transport channel for message exchange where they 

 
Figure. 3.  Simple Overview of Implementation  



 

stream messages. Messages in the stream are in the 
form of negotiated representation.  4) The redundant 
or unchanging message parts – static metadata – are 
stored into a dynamic metadata repository, the 
Context-store during the session.   

To focus on investigating optimizing message 
exchanges, we use existing efforts to address and 
implement issues that are out of our research 
interests, such as a Web Service container, a SOAP 
parser for mobile environment, and a metadata 
repository. The overview of implementation is 
depicted in figure 3. 

 
4.1. Negotiation Scheme 

A normal HHFR session is starting with a 
negotiation stage, where two endpoints exchange 
negotiation SOAP message. By design, a negotiation 
stage is essential to establish characteristics of 
following stream. During the stage, a service 
endpoint returns characteristics that are suggested by 
a negotiation initiator and selected and confirmed by 
the service endpoint. In the prototype 
implementation, the stage simply starts when the 
initiator sends a SOAP request to an intended service 
endpoint and ends when the initiator receives a 
response from the service. 

The negotiation stage distinguishes whether the 
service endpoint is the HHFR-capable or not.  Since 
the negotiation stage is performed over the 
conventional SOAP protocol, this interoperable 
method enables the service endpoint (the negotiation 
responder) to reject a HHFR session and uses a 
conventional SOAP based Web Service 
communication. The client (the SOAP initiator) 
must fall back if it receives a SOAP fault, which 
means the responding service doesn’t have proper 
(exported) method in it and doesn’t understand the 
negotiation SOAP message. 

 
4.2. HHFR Schema: Data Description Language 

To map non-XML based data – separated message 
contents and XML data – SOAP message or any 
preferred representation, we define a DFDL-style 
data descriptive language, the HHFR schema. It is a 
small subset of XSD with some additions. The 
architecture of HHFR schema is similar to that of 

DFDL:  the HHFR Schema describes data format, a 
Schema Processor (DSParser) builds a HHFR Data 
Model, and the Streamer converts data content from 
and to a preferred presentation format data. 

HHFR Schema defines a subset of XSD 
components: simple type definition, complex type 
definition, element declaration, and attribute 
declaration. HHFR Schema defines limited number 
of simple type built-in to XML Schema. They are 
string, int, byte, float, Boolean. Current 
version of HHFR Schema doesn’t support 
user-defined sympleType. The complexType 
element of the HHFR Schema can have mixed 
content, but can not have simple content and empty 
content. So we declare complexType element 
without mixed attribute. The following is an 
example:  

 
<xs:element name="HHFR"> 
  <xs:complexType>     

 <xs:element name="String1" type="string"/> 
 <xs:element name="String2" type="string"/> 

  </xs:complexType> 
</xs:element> 
 

The HHFR Schema processing involves several 
modules as depicted in figure 4. The HHFR Schema 
processor, DSParser, gets a HHFR Schema, which is 
contained in the negotiation request and response 
SOAP message as depicted as step 1) of figure 4, as 
an input and produces a internal HHFR Data Model 
as an output as depicted as step 2). The relation 
between the HHFR Schema and HHFR Data Model 
is similar to the relation between an XML Document 
and its Java DOM Object.  

After two steps, the HHFR runtime is ready to start 

 

Figure. 4.  HHFR Schema processing and interactions 
between related modules. 



 

a fast communication option, which is discussed in 
the following section and to process input data 
through streamer. The streamer is an 
interpret-style stub object [19], which is popular 
design style in many data marshalling 
implementation. Compare to more efficient 
compiled-style stub [19], which is popular in many 
client and server RPC implementation, the 
interpret-style stub is more flexible to dynamic 
representation of input data. The stub doesn’t need to 
be re-complied to different data representation. The 
stub reads and writes message packets, which is a 
unit of message in a preferred representation, 
through switch statements. In the prototype, the 
binary representation that is a sequence of byte is a 
default representation format for the message packet.   
 
4.3. Data Streaming 

The data streaming is the key feature of our HHFR 
Prototype design and it enables the system to achieve 
efficient message exchange in mobile Web Service 
environment. Through streaming, message 
exchanges overcome the wireless network problems, 
such as high latency and slow connection. Especially 
in flexible representation, we shorten the message 
transit time and reduce the bandwidth usage.  

A fast communication channel of the HHFR 
Prototype provides an alternative to the default 
HTTP communication method that is asynchronous 
and optimized. As described, the negotiation 
response from the service must contain the endpoint 
address (IP and port number).  The second 
communication channel is initiated by the service 
client.  

The fast communication channel layer for the TCP 
receptor is shown in figure 5. On the service 
provider, StreamConnectionFactory waits for an 
incoming connection on a server socket and creates a 
StreamConnection that holds all streaming related 
classes, such as a StreamReader, StreamWriter, 
and Streamer. Data that an application attempts to 
send is queued in a StreamWriter. The path 
includes HHFRHandler and StreamConnection. 
Received data follows the opposite path and is 
delivered to the onMessage method. 
 

4.4. Context-store 
The redundant message parts may be treated as 

metadata and placed in a metadata store.  We adapt 
an Information Service (metadata catalog system) 
for storing transitory metadata needed to describe 
distributed shared information. The Information 
System, Fault Tolerant High Performance 
Information Service (FTHPIS) [20 - 21] which use 
and extend WS-Context Specification [18], is 
developed by Community Grids Laboratory of 
Indiana University and is being used as a third party 
transitory metadata store to store redundant parts of 
the SOAP messages which are being exchanged 
between Two endpoint. This way, the size of SOAP 
messages is being minimized to make the service 
communication much faster. The redundant parts of 
a SOAP message can be considered as XML 
fragments which are encoded in every SOAP 
message exchanged among two services. These 
XML elements are stored as “context”, i.e. metadata 
associated to a conversation”, into the Information 
Service. Each context is referred with a system 
defined URI where the uniqueness of the URI is 
ensured by the Information Service. The 
corresponding URI replaces the redundant XML 
elements in the SOAP messages, which in turn 
reduces the size of the message for faster message 
transfer. Upon receiving the SOAP message, the 
corresponding parties interact with the WS-Context 
compliant Information Service to retrieve the context 
associated with the URIs listed in the SOAP 

 
Figure. 5.  Fast Communication Channel Layer 

 



 

message. 
As depicted in figure 6, the two primary 

WS-Context related functionalities of Information 
Services are getContent() and setContent() 
methods, which provide access and store operations 
Method can be called whenever context needs to 
create, update, or retrieve context in Context-store 
(Information service). The Context-store client 1 ) 
first, create ContextServiceHandler object with 
the Context Service URl, 2) second, store given 
context of any type paired with an unique identifier, 
and 3) retrieve context. ContextServiceHandler 
object is a wrapper class and provides 
getContent() and setContent() methods.  

V. EVALUATION 

We perform benchmark tests to evaluate our 
investigated framework. The comparison between 
the performance results of the conventional SOAP 
and the results of our system shows how much 
performance gains we have. 

 
5.1. Performance Cost Analyze Modeling  

We propose a cost analysis model for HHFR 
runtime system. We assume following basic system 
parameter to analyze the cost.  
 
• t1 : cost (time delay) per message for HHFR 

session 
• t2 : cost (time delay) per message for the 

conventional SOAP session 
• Oa : overhead time for accessing Context-store 
• Ob : overhead time for negotiation stage 
• Oc : overhead time for Design HHFR Schema 

document. 
 

Assume we have n messages in a session. The cost 
of message exchanges in HHFR session consists of 
message exchange cost (t1n) and overheads (Oa + Ob 
+ Oc).  

Chhfr = t1n + Oa + Ob + Oc (1) 
 

The cost of message exchanges in the conventional 
SOAP session consists of message exchange cost 
(t2n).  

Csoap = t2n  (2) 
 
 t1, t2, Oc are the parameters that depend on the size 
of message. Oa could depend on the size of message.  

Even though we define the overhead for designing 
HHFR Schema, it is zero value for current 
framework because it is implemented as ad-hoc 
method. 

 
5.2 Configurations 

The host running our benchmark applications are 
installed on the server machine and they use Axis as 
a Web Service container. HHFR Clients are installed 
on the Treo 600 machine. 
System.currentTimeMillis() call of MIDP 

[22], which has 10 millisecond precision, is used for 
timing measurements. Table 1 contains a summary 
of testing environments. 

 
Table 1 Summary of Machine Configurations 

 
Axis and Context-store: GridFarm 8 

Processor Intel® Xeon™ CPU (2.40GHz) 
RAM 2GB total 

Bandwidth 100Mbps 
OS GNU/Linux (kernel release 2.4.22) 

Java Version Java 2 platform, Standard Edition (1.5.0-06) 
SOAP Engine AXIS 1.2 (in Tomcat 5.5.8) 

 
Service Client: Treo 600 

Processor ARM (144MHz) 
RAM 32MB total, 24MB user available 

Bandwidth 14.4Kbps 
OS Palm 5.2.1.H 

Java Version Java 2 platform, Micro Edition  
CLDC 1.1 and MIDP 2.0 

 

Figure. 6.  Context-store operation overview 
 



 

 

 
5.3 Parameter Evaluation 

We perform tests to get Oa by measuring Round 
Trip Times (RTTs) of the Context-store (Information 
Service) accessing. The message used in the test is a 
 sample SOAP header document in a WS-Reliable 
Messaging [23] Specification. The size of WSRM 
header is 847 bytes and the size of the entire SOAP 
request message for accessing Context-store is 
1.58KB.  

The test setup is depicted in figure 7 and the figure 
8 shows results.  
 To get t1 and t2 parameters, we measure a total 
session time of given applications. We benchmark 
two application performances. The first application 
is a string concatenation service. It produces a single 
string, concatenated from all strings in an array – a 
pure-text data domain. The second application is a 
floating point number addition service that 

calculates 

the summation of all floating point numbers of an 
array in a message. The floating point numbers are 
representing a float data domain, where the 
conventional Web Services message processing 
includes a float-to-text conversion that consumes 
many process cycles. We also measure the 
conventional SOAP-based Web Service 
performance measurement of two given applications 
with the same setup, which give us the t2 parameter 
measurement.  
 As depicted in figure 9, the connection setup for 
the test is partly wireless and partly wired. The test 
scenario is as follows: 1) a service client prepares a 
message with a given array size. 2) it sends one 
message to a service provider. 3) the service provider 
processes the message and returns a result in a 
message to the client. 4) repeat step 1-3 for each 
message. 
 The table 2 and 3 shows the benchmarking results 
of the string concatenation application. The 
comparisons of the result are depicted in figure 14, 
15, 16. The table 4 and 5 shows the benchmarking 
results of the floating point number addition 
application. The comparisons of the result are 
depicted in figure 11, 12, 13. The total session time 
in tables and graphs are including negotiation 
overhead (Ob). We plot only partial results of the 
total session time of SOAP test on the graph, since 
some results are too big and comparison graphs 
would be less meaningful. 

 

Figure. 9.  Connection Setup for Performance 
Evaluation 
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Figure. 8.  Round Trip Time of  
Context-store accessing Tests 

 

Figure. 7.  Context-store operation overview 
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Figure. 11.  Comparisons of floating point number 
addition test results (5 Floats Per Message) 

Figure. 14.  Comparisons of string concatenation test 
results (2 Strings Per Message) 
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Figure. 12.  Comparisons of floating point number 
addition test results (10 Floats Per Message) 

Figure. 15.  Comparisons of string concatenation test 
results (4 Strings Per Message) 
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Figure. 13.  Comparisons of floating point number 
addition test results (15 Floats Per Message) 

Figure. 16.  Comparisons of string concatenation test 
results (8 Strings Per Message) 

 



 

Table 2 Total Session Time (msec) of String Concatenation 
Application Tests over HHFR 
 

Number of Messages Per Session Message Size 
n = 1 n = 2 n = 4 n = 8 

2 Strings 5580 5710 5730 6100 
4 Strings 5660 6010 6030 6470 
8 Strings 5950 6310 6530 7070 

64 Strings 11890 13570 19730 29660 
Table 3 Total Session Time (msec) of String Concatenation 

Application Tests over SOAP 
 

Number of Messages Per Session Message Size 
n = 1 n = 2 n = 4 n = 8 

2 Strings 3440 6060 14720 26040 
4 Strings 3670 6710 15050 28490 
8 Strings 4260 9590 16390 30790 

64 Strings 6510 15640 28020 54200 
 

Table 4 Total Session Time (msec) of Floating Point 
Number Addition Application Tests over HHFR 

 
Number of Messages Per Session Message Size 

n = 1 n = 5 n = 10 n = 100 
5 Floats 5440 5790 6500 20360 

10 Floats 5650 6210 7870 22780 
15 Floats 5700 6500 8790 24510 

 
Table 5 Total Session Time (msec) of Floating Point 

Number Addition Application Tests over SOAP 
 

Number of Messages Per Session Message Size 
n = 1 n = 5 n = 10 n = 100 

5 Floats 3260 17620 35960 330750 
10 Floats 3480 20890 37720 353340 
15 Floats 3800 22100 42790 387840 

 
In addition to measuring t1, t2, we also measure the 

negotiation to get Ob overheads by measuring RTTs.   
The size of HHFR Schema used in the test is 326 
bytes and the size of the entire SOAP request 
message for Negotiation is 1.07 KB. The results are 
shown in figure 10. As table 6 shows, values for 
overhead parameters are similar. Presumably, the 
similarity comes from the fact that the physically 
constrained mobile environment is a major factor of 
the overhead. So we can differentiate overhead 
parameters of mobile environments and 
conventional Web Service environments as O 
(mobile) and O(ws). For example, Oa(ws) from 

measurements independent from our experiments in 
this paper shows Oa(ws) = 20 msec. 

 
Table 6 Overhead Parameters and Values 

 
Parameter Value 
Oa(mobile) 4120 (msec) 
Ob(mobile) 4800 (msec) 

 

 
5.4 Performance Comparisons 

We compare the performance of HHFR and 
conventional SOAP message exchange using our 
proposed performance model and parameters we get 
from the benchmark tests. The table 6 shows the 
overhead parameters and values.  We get t1 and t2. 
Then using those numbers to calculate breakeven 
points nbe.  

The parameters for each application are different. 
So we calculate both breakpoints. Using the test 
result of 10 floats per message, we get following 
parameters:  

 
t1 = 250, t2 = 3780, Oa = 4500, Ob = 4800, Oc = 0 
 

Then break even point is: 
 

t1nbe + Oa + Ob + Oc = t2nbe 

nbe= 2.88 
 

Thus, if we have more than three messages per our 
floating point number addition session, HHFR 
performs more efficiently than the conventional 
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Figure. 10.  Round Trip Time of  
Negotiation Stage 

 



 

SOAP.  
Similar to the floats case, to calculate a breakeven 

point of string concatenation application, we use the 
test result of 4 strings per message, we get following 
parameters:  

t1 = 120, t2 = 3580, Oa = 4500, Ob = 4800, Oc = 0 
 
Then break even point is: 

nbe= 2.68 
 

If we have more than three messages per our string 
concatenation session, HHFR performs more 
efficiently than the conventional SOAP. 

VI. CONCLUSION 

We investigate a novel approach to Web Service 
performance, in which the system 1) separates 
message contents from XML syntax, 2) chooses a 
preferred representation, and 3) exchanges messages 
in a streaming fashion. This approach implemented 
as a single complete system can increase efficiency 
of message exchanging, since applications can avoid 
the textual conversion and conventional 
serializing/parsing. Reduced message size by storing 
static parts of message and having optimal 
representation helps applications save network 
bandwidths. The streamed messages are not directly 
self descriptive. However the combination of the 
message and the negotiation captured in the 
Context-store is self descriptive. Our presentation is 
particularly focused on applications in mobile 
computing environments, but the approach may be 
more general.  

We compare our system with the conventional 
SOAP communication model and as expected 
empirical results based on our performance model 
shows substantial performance gains by adapting the 
approach. As well, we demonstrate how to find the 
breakeven point at which our HHFR architecture 
overtakes the conventional SOAP messaging, for 
controlled application. The breakeven points are 
different from applications to applications, but the 
general methodology can be applied to any 
application domains that define its messaging style 
as conversational or streaming. 
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