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Summary
The performance of biomolecular molecular dynamics (MD) simulations has steadily increased

on modern high performance computing (HPC) resources but acceleration of the analysis of the

output trajectories has lagged behind so that analyzing simulations is becoming a bottleneck.

To close this gap, we studied the performance of parallel trajectory analysis with MPI and the

Python MDAnalysis library on three different XSEDE supercomputers where trajectories were

read from a Lustre parallel file system. Strong scaling performancewas impeded by stragglers,MPI

processes that were slower than the typical process. Stragglers were less prevalent for compute-

boundworkloads, thus pointing to file reading as a crucial bottleneck for scaling. However, a more

complicated picture emerged in which both the computation and the ingestion of data exhibited

close to ideal strong scaling behavior whereas stragglers were primarily caused by either large

MPI communication costs or long times to open the single shared trajectory file. We improved

overall strong scaling performance by either subfiling (splitting the trajectory into separate files)

or MPI-IO with Parallel HDF5 trajectory files. We obtained near ideal strong scaling on up to 384

cores (16 nodes), thus reducing trajectory analysis times by two orders of magnitude compared

to the serial approach.

KEYWORDS:
Python, MPI, HPC, MDAnalysis, MPI I/O, Global Arrays , HDF5, Straggler, Molecular Dynamics,
Big Data, Trajectory Analysis

1 INTRODUCTION

Molecular dynamics (MD) simulations are a powerful method to generate new insights into the function of biomolecules 1–5. These simulations
produce trajectories—time series of atomic coordinates—that now routinely include millions of time steps and can measure Terabytes in size. These
trajectories need to be analyzed using statistical mechanics approaches 6,7 but because of the increasing size of data, trajectory analysis is becoming
a bottleneck in typical biomolecular simulation scientific workflows 8. Many data analysis tools and libraries have been developed to extract the
desired information from the output trajectories fromMD simulations 9–22 but few can efficiently use modern High Performance Computing (HPC)
resources to accelerate the analysis stage. MD trajectory analysis primarily requires reading of data from the file system; the processed output data
are typically negligible in size compared to the input data and therefore we exclusively investigate the reading aspects of trajectory I/O (i.e., the
“I”). We focus on theMDAnalysis package 17,18, which is an open-source object-oriented Python library for structural and temporal analysis of MD
simulation trajectories and individual protein structures. AlthoughMDAnalysis accelerates selected algorithms with OpenMP, it is not clear how to
best use it for scaling up analysis on multi-node supercomputers. Here we discuss the challenges and lessons-learned for making parallel analysis
on HPC resources feasible withMDAnalysis, which should also be broadly applicable to other general purpose trajectory analysis libraries.
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Previously, we had used a parallel split-apply-combine approach to study the performance of the commonly performed “RMSD fitting” analysis
problem 23–25, which calculates the minimal root mean squared distance (RMSD) of the positions of a subset of atoms to a reference conformation
under optimization of rigid body translations and rotations 7,26,27. We had investigated two parallel implementations, one using Dask 28 and one
using the message passing interface (MPI) withmpi4py 29,30. For bothDask andMPI, we had previously only been able to obtain good strong scaling
performance within a single node. Beyond a single node performance had dropped due to straggler tasks, a subset of tasks that had performed
abnormally slower than the typical task execution times; the total execution time had become dominated by stragglers and overall performance
had decreased. Stragglers are a well-known challenge to improving performance on HPC resources 31 but there has been little discussion of their
impact in the biomolecular simulation community.

In the present study, we analyzed the MPI case in more detail to better understand the origin of stragglers with the goal to find parallelization
approaches to speed up parallel post-processing of MD trajectories in the MDAnalysis library. We especially wanted to make efficient use of the
resources provided by current supercomputers such as multiple nodes with hundreds of CPU cores and a Lustre parallel file system.

As in our previous study 23 we selected the commonly used RMSD algorithm implemented inMDAnalysis as a typical use case. We employed the
single program multiple data (SPMD) paradigm to parallelize this algorithm on three different HPC resources (XSEDE’s SDSC Comet, LSU SuperMic,
and PSC Bridges 32). With SPMD, each process executes essentially the same operations on different parts of the data. The three clusters differed in
their architecture but all used Lustre as their parallel file system. We used Python (https://www.python.org/), a machine-independent, byte-code
interpreted, object-oriented programming language, which is well-established in the biomolecular simulation community with good support for
parallel programming for HPC 29,33. We found that communication and reading I/O were the two main scalability bottlenecks, with some indication
that read I/Omight have been interfering with the communications.We therefore focused on two different approaches tomitigate I/O bottlenecks:
MPI parallel I/O (MPI-IO) with the HDF5 file format and subfiling (trajectory file splitting). For subfiling, we obtained good results with the Global
Arrays package 33,34, which provides a convenient layer to access and manage arrays over multiple MPI ranks. Both MPI-IO and subfiling eliminated
stragglers and improved the performance with near ideal scaling, S(N) = N, i.e., the speed-up S scaled linearly with the number N of CPU cores
while exhibiting a slope of one.

The paper is organized as follows: We first review stragglers and existing approaches to parallelizing MD trajectory analysis in section 2. We
describe the software packages and algorithms in section 3 and the benchmarking environment in section 4. Section 5 explains how we measured
performance. The main results are presented in section 6, with section 7 demonstrating reproducibility on different supercomputers. We provide
general guidelines and lessons-learned in section 8 and finish with conclusions in section 9.

2 BACKGROUND AND RELATEDWORK

In our previous work, we found that straightforward implementation of simple parallelization with a split-apply-combine algorithm in Python failed
to scale beyond a single compute node 23 because a few tasks (MPI-ranks or Dask 28 processes) took much longer than the typical task and so
limited the overall performance. However, the cause for these straggler tasks remained obscure. Here, we studied the straggler problem in the
context of an MPI-parallelized trajectory analysis algorithm in Python and investigated solutions to overcome it. We briefly review stragglers in
section 2.1 and summarize existing approaches to parallel trajectory analysis in section 2.2.

2.1 Stragglers
Stragglers or outliers were traditionally considered in the context of MapReduce jobs that consist of multiple tasks that all have to finish for the
job to succeed: A straggler was a task that took an “unusually long time to complete” 35 and therefore substantially impeded job completion. In
general, any component of a parallel workflow whose runtime exceeds a typical run time (for example, 1.5 times the median runtime) can be con-
sidered a straggler 36. Stragglers are a challenge for improving performance on HPC resources 31; they are a known problem in frameworks such as
MapReduce 35,36, Spark 37–40, Hadoop 35, cloud data centers 31,41, and have a high impact on performance and energy consumption of big data sys-
tems 42. Both internal and external factors are known to contribute to stragglers. Internal factors include heterogeneous capacity of worker nodes
and resource competition due to other tasks running on the same worker node. External factors include resource competition due to co-hosted
applications, input data skew, remote input or output source being too slow, faulty hardware 35,43, and node mis-configuration 35. Competition
over scarce resources 36, in particular the network bandwidth, was found to lead to stragglers in writing on Lustre file systems 44. Garbage collec-
tion 37,38, Java virtual machine (JVM) positioning to cores 37, delays introduced while the tasks move from the scheduler to execution 39, disk I/O
during shuffling, Java’s just-in-time compilation 38, output skew 38, high CPU utilization, disk utilization, unhandled I/O access requests, and net-
work package loss 31 were also among other external factors that might introduce stragglers. A wide variety of approaches have been investigated
for detecting and mitigating stragglers, including tuning resource allocation and parallelism such as breaking the workload into many small tasks
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that are dynamically scheduled at runtime 45, slow Node-Threshold 35, speculative execution 35 and cause/resource-aware task management 36,
sampling or data distribution estimation techniques, SkewTune to avoid data imbalance 46, dynamic work rebalancing 41, blocked time analysis 47,
and intelligent scheduling 48.

In the present study, we analyzed large MD trajectories in parallel with MPI and Python and observed large variations in the completion time of
individual MPI ranks. These variations bore some similarity to the straggler tasks observed in MapReduce frameworks so we approached analyzing
and eliminating them in a similar fashion by systematically looking at different components of the problem, including read I/O from the shared
Lustre file system andMPI communication. Even though we specifically worked in with theMDAnalysis package, all these principles and techniques
are potentially applicable to MPI-parallelized data analysis in other Python-based libraries.

2.2 Other Packages with Parallel Analysis Capabilities
Different approaches to parallelizing the analysis ofMD trajectories have been proposed. HiMach 14 introduces scalable and flexible parallel Python
framework to deal with massiveMD trajectories, by combining and extending Google’sMapReduce and the VMD analysis tool 11. HiMach’s runtime
is responsible to parallelize and distribute Map and Reduce classes to assigned cores. HiMach uses parallel I/O for file access during map tasks
and MPI_Allgather in the reduction process. HiMach, however, does not discuss parallel analysis of analysis types that cannot be implemented via
MapReduce. Furthermore, HiMach is not available under an open source license, which makes it difficult to integrate community contributions and
add new state-of-the-art methods.

Wu et. al. 49 present a scalable parallel framework for distributed-memory post-simulation data analysis. This work consists of an interface
that allows a user to write analysis programs sequentially, and the machinery that ensures these programs execute in parallel automatically. The
main components of the proposed framework are (1) domain decomposition that splits computational domain into blocks with specified boundary
conditions, (2) HDF5 based parallel I/O (3) data exchange that communicates ghost atoms between neighbor blocks, and (4) parallel analysis
implementation of a real-world analysis application. This work does not discuss analysis methods which cannot be implemented using MapReduce
and is limited to HDF5 file format.

Zazen 50 is a novel task-assignment protocol to overcome the I/O bottleneck for many I/O bound tasks. This protocol caches a copy of simu-
lation output files on the local disks of the compute nodes of a cluster, and uses co-located data access with computation. Zazen is implemented
in a parallel disk cache system and avoids the overhead associated with querying metadata servers by reading data in parallel from local disks.
This approach has also been used to improve the performance of HiMach 14. It, however, advocates a specific architecture where a parallel super-
computer, which runs the simulations, immediately pushes the trajectory data to a local analysis cluster where trajectory fragments are cached on
node-local disks. In the absence of such a specific workflow, one would need to stage the trajectory across nodes, and the time for data distribution
is likely to reduce any gains from the parallel analysis.

VMD 11,51 provides molecular visualization and analysis tool through algorithmic and memory efficiency improvements, vectorization of key
CPU algorithms, GPU analysis and visualization algorithms, and good parallel I/O performance on supercomputers. It is one of the most advanced
programs for the visualization and analysis of MD simulations. It is, however, a large monolithic program, that can only be driven through its built-in
Tcl interface and thus is less well suited as a library that allows the rapid development of new algorithms or integration into workflows.

CPPTraj 19 offers multiple levels of parallelization (MPI and OpenMP) in a monolithic C++ implementation. CPPTraj allows parallel reads between
frames of the same trajectory but is especially geared towards processing an ensemble of many trajectories in parallel.

pyPcazip 52 is a suite of software tools written in Python for compression and analysis of MD simulation data, in particular ensembles of tra-
jectories. pyPcazip is MPI parallelized and is specific to PCA-based investigations of MD trajectories and supports a wide variety of trajectory file
formats (based on the capabilities of the underlying MDTraj package 20). pyPcazip can take one or many input MD trajectory files and convert them
into a highly compressed, HDF5-based pcz format with insignificant loss of information. However, the package does not support general purpose
analysis.

In situ analysis is an approach to execute analysis simultaneously with the running MD simulation so that I/O bottlenecks are mitigated 53,54.
Malakar et al. 53 studied the scalability challenges of time and space shared modes of analyzing large-scale MD simulations through a topology-
aware mapping for simulation and analysis using the LAMMPS code. Similarly, Taufer and colleagues 54 presented their own framework for in situ
analysis, which is based on the fast on-the-fly calculation ofmetadata that characterizes protein substructures via maximum eigenvalues of distance
matrices. These metadata are used to index trajectory frames and enable targeted analysis of trajectory subsets. Both studies provide important
ideas and approaches towards moving towards online-analysis in conjunction with a running simulation but are limited in generality.

All of the above frameworks provide tools for parallel analysis of MD trajectories. These frameworks, however, tend to fall short in providing
parallelism in the context of a general and flexible library for the analysis of MD trajectories. Although straggler tasks are a common challenge
arising in parallel analysis and arewell-known in the data analysis community (see Section 2.1), there is, to our knowledge, little discussion about this
problem in the biomolecular simulation community. Our own experience with a MapReduce approach in MDAnalysis 23 suggested that stragglers
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might be a somewhat under-appreciated problem. Therefore, in the present work we want to better understand requirements for efficient parallel
analysis of MD trajectories inMDAnalysis, but to also provide more general guidance that could benefit developments in other libraries inside and
outside of the scope of analysis of MD simulations.

3 ALGORITHMS AND SOFTWARE PACKAGES

For our investigation of parallel trajectory analysis we focus on usingMPI as the standard approach to parallelization in HPC.We employ the Python
language, which is widely used in the scientific community because it facilitates rapid development of small scripts and code prototypes as well
as development of large applications and highly portable and reusable modules and libraries. We use theMDAnalysis library to calculate a “RMSD
time series” (explained in section 3.1) as a representative use case. Further details on the software packages are provided in sections 3.2–3.4.

3.1 RMSD Calculation with MDAnalysis
Simulation data exist in trajectories in the form of time series of atom positions and sometimes velocities. Trajectories come in a plethora of different
and idiosyncratic file formats. MDAnalysis 17,18 is a widely used open source library to analyze trajectory files with an object oriented interface.
The library is written in Python, with time critical code in C/C++/Cython.MDAnalysis supports most file formats of simulation packages including
CHARMM 55, Gromacs 56, Amber 57, and NAMD 58 and the Protein Data Bank 59 format. At its core, it reads trajectory data in different formats and
makes them available through a uniform API; specifically, coordinates are represented as standard NumPy arrays 60.
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FIGURE 1 Flow chart of the MPI-parallelized RMSD algorithm, Algorithm 1. (a) Each MPI process performs the same steps but reads trajectory
frames from different blocks of the trajectory. The color scheme and labels in italics correspond to the colors and labels for measured timing
quantities in the following graphs (e.g., Figs. 2c and 2d). The names of the corresponding timing quantities from Table 3 are listed next to each step.
(b) Steps that access the shared Lustre file system with read I/O are included in the black bars; steps that communicate via the shared InfiniBand
network are included in the gray bars. The Lustre file system is accessed through the network and hence all I/O steps also use the network.

As a test case that is representative of a common task in the analysis of biomolecular simulation trajectories we calculated the time series of the
minimal structural root mean square distance (RMSD) after rigid body superposition 7,27. The RMSD is used to show the rigidity of protein domains
and more generally characterizes structural changes. It is calculated as a function of time t as

RMSD(t) = min
R,t

√√√√ 1

N

N∑
i=1

[
(R · xi(t) + t)− xref

i

]2 (1)

where xi(t) is the position of atom i at time t, xref
i is its position in a reference structure and the distance between these two is minimized by

finding the optimum 3 × 3 rotation matrix R and translation vector t. The optimum rigid body superposition was calculated with the QCPROT
algorithm 26,61 (implemented in Cython and available through the MDAnalysis.analysis.rms module 18).
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The RMSD trajectory analysis was parallelized as outlined in the flow chart in Figure 1, with further details available in Algorithm 1. Each MPI
process loads the core MDAnalysis structure (called the Universe), which includes loading a shared “topology” file with the simulation system
information and opening the shared trajectory file. Each process operates on a different block of frames and iterates through them by reading the
coordinates of a single frame into memory and performing the RMSD computation with them. Once all frames in the block are processed, the
trajectory file is closed and results are communicated to MPI rank 0 using MPI_Gather().

The RMSD was determined for a subset of protein atoms, the N = 214 Cα atoms of our test system (see section 4.3 for details). The time
complexity for the RMSD Algorithm 1 is O(T× N2) 26 where T is the number of frames in the trajectory and N the number of particles included
in the RMSD calculation.

Algorithm 1MPI-parallel Multi-frame RMSD Algorithm
Input: size: Total number of frames
ref: mobile group in the initial frame which will be considered as reference
start & stop: Starting and stopping frame index
topology & trajectory: files to read the data structure from
Output: Calculated RMSD arrays

1: procedure Block_RMSD(topology, trajectory, ref , start, stop)
2: u← Universe(topology, trajectory) . u hold all the information of the physical system
3: g← u.frames[start:stop]
4: for ∀iframe in g do
5: results[iframe]← RMSD(g, ref)
6: end for
7: return results
8: end procedure
9:

10: MPI Init
11: rank← rank ID
12: index← indices of mobile atom group
13: xref0← Reference atom group‚s position
14: out← Block_RMSD(topology, trajectory, xref0, start=start, stop=stop)
15:
16: Gather(out, RMSD_data, rank_ID=0)
17: MPI Finalize

3.2 MPI for Python (mpi4py)
MPI for Python (mpi4py) is a Python wrapper for the Message Passing Interface (MPI) standard and allows any Python program to employ multiple
processors 29,30. Performance degradation due to usingmpi4py is not prohibitive 29,30 and the overhead is far smaller than the overhead associated
with the use of interpreted versus compiled languages 33. Overheads in mpi4py are small compared to C code if efficient raw memory buffers are
used for communication 29, as used in the present study.

3.3 Global Arrays Toolkit
The Global Arrays (GA) toolkit provides users with a language interface that allows them to distribute data while maintaining the type of global
index space and programming syntax similar to what is available when programming on a single processor 34. Global Arrays is implemented with
Fortran-77 and C bindings and provides C++ and Python interfaces. It allows manipulating physically distributed dense multi-dimensional arrays
without explicitly defining communication and synchronization between processes. The underlying communication is determined by a runtime
environment, which defaults to the Communication runtime for Extreme Scale (ComEx) 62. ComEx uses sharedmemory for intra-node communication
and inter-node communication employs ComEx with MPI. Global Arrays in NumPy (GAiN) extends GA to Python through Numpy 33. The Global
Arrays toolkit provides functions to create global arrays (ga_create()) and to copy data to (ga_put()) and from (ga_get()) such a global array, as
well as additional functions for copying between arrays and freeing them 33. When a global array is created (ga_create()) each process will create
an array of the same shape and size, physically located in the local memory space of that process 34. The GA library maintains a list of all these
memory locations, which can be queried with the ga_access() function. Using a pointer returned by ga_access(), one can directly modify the
data that is local to each process. When a process tries to access a block of data the request is first decomposed into individual blocks representing
the contribution to the total request from the data held locally on each process (B. J. Palmer and J. Daily, personal communication). The requesting
process then makes individual requests to each of the remote processes.
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GA allows independent, asynchronous, and efficient access to logical blocks of physically distributed arrays, with no need for explicit cooperation
by other processes; in particular, it allows data locality to be explicitly specified and used 63. We investigated if communication cost could be
reduced by using Global Arrays. Algorithm 2 describes the RMSD algorithm with Global Arrays instead of MPI.

Algorithm 2MPI-parallel Multi-frame RMSD using Global Arrays
Input:size: Total number of frames assigned to each rank Nb

g_a: Initialized Global Arrays
xref0: mobile group in the initial frame which will be considered as reference
start & stop: that tell which block of trajectory (frames) is assigned to each rank
topology & trajectory: files to read the data structure from
Include: Block_RMSD() from Algorithm 1

1: bsize← ceil(trajectory.number_frames / size)
2: g_a← ga.create(ga.C_DBL, [bsize*size,2], "RMSD")
3: buf← np.zeros([bsize*size,2], dtype=float)
4: out← Block_RMSD(topology, trajectory, xref0, start=start, stop=stop)
5: ga.put(g_a, out, (start,0), (stop,2))
6: if rank == 0 then
7: buf← ga.get(g_a, lo=None, hi=None)
8: end if

3.4 MPI and Parallel HDF5
HDF5 is a structured self-describing hierarchical data format which is the standard mechanism for storing large quantities of numerical data
in Python (http://www.hdfgroup.org/HDF5, 64). Parallel HDF5 (PHDF5) typically sits on top of a MPI-IO layer and can use MPI-IO optimiza-
tions. In PHDF5, all file access is coordinated by the MPI library; otherwise, multiple processes would compete over accessing the same file on
disk. MPI-based applications launch multiple parallel instances of the Python interpreter that communicate with each other via the MPI library.
Implementation is straightforward as long as the user supplies a MPI communicator and takes into account some constraints required for data
consistency 64. HDF5 itself handles nearly all the details involved with coordinating file access when the shared file is opened through the mpio
driver.

MPI has two flavors of operation: collective (all processes have to participate in the same order) and independent (processes can perform the
operation in any order or not at all) 64. With PHDF5, modifications to file metadata must be performed collectively and although all processes
perform the same task, they do not need to be synchronized 64. Other tasks and any type of data operations can be performed independently by
processes. In the present study, we use independent operations.

4 BENCHMARK ENVIRONMENT

Our benchmark environment consisted of three different XSEDE 32 HPC resources (described in section 4.1), the software stack used (section 4.2),
which had to be compiled for each resource, and the common test data set (section 4.3).

4.1 HPC Resources
The computational experiments were executed on standard compute nodes of three XSEDE 32 supercomputers, SDSC Comet, PSC Bridges, and LSU
SuperMIC (Table 1). SDSC Comet is a 2 PFlop/s cluster with 2,020 compute nodes in total. It is optimized for running a large number of medium-size
calculations (up to 1,024 cores) to support the most prevalent type of calculation on XSEDE resources. PSC Bridges is a 1.35 PFlop/s cluster with
different types of computational nodes, including 16 GPU nodes, 8 large memory and 2 extreme memory nodes, and 752 regular nodes. It was
designed to flexibly support both traditional (medium scale calculations) and non-traditional (data analytics) HPC uses. LSU SuperMIC offers 360
standard compute nodes with a peak performance of 557 TFlop/s. The parallel file system on all three machines is Lustre (http://lustre.org/) and is
shared between the nodes of each cluster.
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Name Nodes Number
of Nodes CPUs RAM Network Topology Scheduler and

Resource Manager
parallel

file system

SDSC Comet Compute 6400
2 Intel Xeon (E5-2680v3)
12 cores/CPU, 2.5 GHz

128 GB DDR4 DRAM 56 Gbps IB SLURM Lustre

PSC Bridges RSM 752
2 Intel Haswell (E5-2695 v3)

14 cores/CPU, 2.3 GHz
128 GB, DDR4-2133MHz 12.37 Gbps OPA SLURM Lustre

LSU SuperMIC Standard 360
2 Intel Ivy Bridge (E5-2680)
10 cores/CPU, 2.8 GHz

64 GB, DDR3-1866MHz 56 Gbps IB PBS Lustre

TABLE 1 Configuration of the HPC resources that were benchmarked. Only a subset of the total available nodes were used. IB: InfiniBand; OPA:
Omni-Path Architecture.

4.2 Software
Table 2 lists the tools and libraries that were required for our computational experiments. Many domain specific packages are not available in
the standard software installation on supercomputers. We therefore had to compile them, which in some cases required substantial effort due to
non-standard building and installation procedures or lack of good documentation. Because this is a common problem that hinders reproducibility
we provide detailed version information, notes on the installation process, as well as comments on the ease of installation and the quality of the
documentation in Table 2. For the MPI implementation we used Open MPI release 1.10.7 (https://www.open-mpi.org/) consistently everywhere.
Detailed instructions to create the computing environments together with the benchmarking code can be found in the GitHub repository. Carefully
setting up the same software stack on the three different supercomputers allowed us to clearly demonstrate the reproducibility of our results and
showed that our findings were not dependent on machine specifics.

4.3 Data Set
The test system contained the protein adenylate kinase with 214 amino acid residues and 3341 atoms in total 65 and the topology information
(atoms types and bonds) was stored in a file in CHARMM PSF format. The test trajectory was created by concatenating 600 copies of a MD
trajectorywith 4,187 time frames (saved every 240 ps for a total simulated time of 1.004µs) in CHARMMDCD format 66 and converting toGromacs
XTC format trajectory, as described for the “600x” trajectory in Khoshlessan et al. 23 . The trajectory had a file size of about 30 GB and contained
2,512,200 frames (corresponding to 602.4 µs simulated time). The file size was relatively small because water molecules that were also part of
the original MD simulations were stripped to reduce the original file size by a factor of about 10; such preprocessing is a common approach if one
is only interested in the protein behavior. Thus, the trajectory represents a small to medium system size in the number of atoms and coordinates
that have to be loaded into memory for each time frame. The XTC format is a format with lossy compression 67,68, which also contributed to the
compact file size. XTC trades lower I/O demands for higher CPU demands during decompression and therefore performed well in our previous
study 23. Although 2,512,200 frames represents a long simulation for current standards, such trajectories will become increasingly common due to
the use of special hardware 69,70 and GPU-acceleration 56,71,72.

5 METHODS

Documentation and benchmark codes aremade available in the code repository https://github.com/hpcanalytics/supplement-hpc-py-parallel-mdanalysis
under the GNU General Public License v3.0 (code) and the Creative Commons Attribution-ShareAlike (documentation) and are archived under
DOI 10.5281/zenodo.3351616. These materials should enable users to recreate the computational environment on the tested XSEDE HPC
resources (SDSC Comet, PSC Bridges, LSU SuperMIC), prepare data files, and run the computational experiments.

In the following we define the quantities and approach used for our performance measurements, with a full summary of all definitions in Table 3.
We evaluated MPI performance of the parallel RMSD time series algorithm 1 by timing the total time to solution as well as the execution time for
different parts of the code for individual MPI ranks with the help of the Python time.time() function.
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Package Version Description Ease of Installation Documentation Installation Dependencies

GCC 4.9.4 GNU Compiler Collection 0 ++

via configuration
files, environment
or command line options,
minimal configuration
is required

–

Open MPI 1.10.7 MPI Implementation 0 ++

via configuration
files, environment
or command line options,
minimal configuration
is required

–

Global Arrays 5.6.1 Global Arrays − +

via configuration files,
environment
or command line options,
several optional configuration
settings available

MAMA, ARMCI
MPI 1.x/2.x/3.x
implementation like
Open MPI
built with shared/dynamic
libraries, GCC

Python 2.7.13 Python language + ++ Conda Installation –

MPI4py 3.0.0 MPI for Python + ++ Conda Installation

Python 2.7 or above,
MPI 1.x/2.x/3.x
implementation like
Open MPI
built with shared/dynamic
libraries, Cython

GA4py 1.0 Global Arrays for Python 0 0 Python setuptools

Global Arrays, Python 2 only,
MPI 1.x/2.x/3.x
implementation like
Open MPI
built with shared/dynamic
libraries, Cython,
MPI4py, Numpy

PHDF5 1.10.1 Parallel HDF5 − ++

via configuration files,
environment
or command line options,
several optional configuration
settings available

MPI 1.x/2.x/3.x
implementation like
Open MPI
GNU, MPIF90,
MPICC, MPICXX

H5py 2.7.1 Pythonic wrapper around the HDF5 + ++ Conda Installation
Python 2.7, or above,
PHDF5, Cython

MDAnalysis 0.17.0
Python library to analyze
trajectories from MD simulations

+ ++ Conda Installation
Python >=2.7, Cython,
GNU, Numpy

TABLE 2 Detailed comparison on the dependencies and installation of different software packages used in the present study. Software was built
from source or obtained via a package manager and installed on the multi-user HPC systems in Table 1. Evaluation of ease of installation and
documentation uses a subjective scale with “++” (excellent), “+” (good), “0” (average), and “−” (difficult/lacking) and reflects the experience of a
typical domain scientist at the graduate/post-graduate level in a discipline such as computational biophysics or chemistry.

5.1 Timing Observables
We abbreviate the timings in the following as variables tLn where Ln refers to the line number in algorithm 1. We measured in the function
block_rmsd() the read I/O time for ingesting the data of one trajectory frame from the file system into memory, tframe

I/O = tL4, and the compute
time per trajectory frame to perform the computation, tframe

comp = tL5. The total read I/O time for a MPI rank, tI/O =
∑Nb

frame=1 t
frame
I/O , is the sum over all

I/O times for all the Nframes frames assigned to the rank; similarly, the total compute time for a MPI rank is tcomp =
∑Nb

frame=1 t
frame
comp . The time delay

between the end of the last iteration and exiting the for loop is tend_loop = tL6. The time topening_trajectory = tL2 + tL3 measures the problem setup,
which includes data structure initialization and opening of topology and trajectory files. The communication time, tcomm = tL16, is the time to gather
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Quantity Definition

Nb Ntotal
frames/N

tend_loop tL6

topening_trajectory tL2 + tL3

tcomp
∑Nb

frame=1 t
frame
comp

tI/O
∑Nb

frame=1 t
frame
I/O

tall_frame tL4 + tL5 + tL6

tRMSD tL1 + ...+ tL8

tcomm/MPI tL16

tcomm/GA tL5 + tL6 + tL7 + tL8

tcomm tcomm/MPI (Alg. 1) or tcomm/GA (Alg. 2)
tOverhead1 tall_frame − tI/O − tcomp − tend_loop

tOverhead2 tRMSD − tall_frame − topening_trajectory

tN tRMSD + tcomm

tcomp
1
N

∑N
rank=1 tcomp

tI/O
1
N

∑N
rank=1 tI/O

tcomm
1
N

∑N
rank=1 tcomm

ttotal max tN

TABLE 3 Summary of measured timing quantities. Timings are collected for the specified line numbers in the code, labeled as tLn where Ln refers
to the line number in the corresponding algorithm. tcomm/MPI (in Algorithm 1) and tcomm/GA (in Algorithm 2) are both referred to as tcomm in the text.
Variables in the top half of the table refer to measurements of an individual MPI rank. Variables in the bottom half are aggregates such as averages
over all ranks or the total time to solution.

all data from all processor ranks to rank zero. The total time (for all frames) spent in block_rmsd() is tRMSD =
∑8

i=1 tLi. There are parts of the code
in block_rmsd() that are not covered by the detailed timing information of tcomp and tI/O. Unaccounted time is considered as overhead. We define
tOverhead1 and tOverhead2 as the overheads of the calculations (see Table 3 for the definitions); both are expected to be negligible, which was the case
in all our measurements. Finally, the total time to completion of a single MPI rank, when utilizing N cores for the execution of the overall experiment,
is tN, and as a result tRMSD + tcomm ≡ tN.

5.2 Performance Parameters
We measured the total time to solution ttotal(N) with N MPI processes on N cores, which is effectively ttotal(N) ≈ max(tN). Strong scaling was
quantified by the speed-up

S(N) =
ttotal(1)

ttotal(N)
, (2)

relative to performance on a single core (ttotal(1)), and the efficiency

E(N) =
S(N)

N
. (3)

Averages over ranks were calculated as

tcomp =
1

N

N∑
rank=1

tcomp =
1

N

N∑
rank=1

Nb∑
frame=1

tframe
comp , (4)

tI/O =
1

N

N∑
rank=1

tI/O =
1

N

N∑
rank=1

Nb∑
frame=1

tframe
I/O , (5)

and

tcomm =
1

N

N∑
rank=1

tcomm. (6)

Additionally, we introduced two performance parameters that we found to be indicative of the occurrence of stragglers. We defined the ratio
of compute time to read I/O time for the serial code as

Rcomp/IO =
tcomp

tI/O
=
tcomp/N total

frames
tI/O/N

total
frames

=
tframe
comp

tframe
I/O

(7)
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where the last equality shows that the ratio can also be computed from the average times per frame, tframe
comp and tframe

I/O . Rcomp/IO was calculated with
the serial versions of our algorithms (on a single CPU core) in order to characterize the computational problem in the absence of parallelization.
The ratio of compute to communication time was defined by the ratio of average total compute time to the average total communication time

Rcomp/comm =
tcomp

tcomm
. (8)

Because tcomm cannot be measured for a serial code, we estimated Rcomp/comm from the rank-averages (Eqs. 4 and 6) for a given number of MPI
ranks.

6 COMPUTATIONAL EXPERIMENTS

We had previously measured the performance of the MPI-parallelized RMSD analysis task on two different HPC resources (SDSC Comet and
TACC Stampede) and had found that it only scaled well up to a single node due to high variance in the runtime of the MPI ranks, similar to the
straggler phenomenon observed in big-data analytics 23. However, the ultimate cause for this high variance could not be ascertained. We therefore
performed more measurements with more detailed timing information (see section 5) on SDSC Comet (described in this section) and two other
supercomputers (summarized in section 7) in order to better understand the origin of the stragglers and find solutions to overcome them.

6.1 RMSD Benchmark
We measured strong scaling for the RMSD analysis task (Algorithm 1) with the 2,512,200 frame test trajectory (section 4.3) on 1 to 72 cores (one
to three nodes) of SDSC Comet (Figures 2a and 2b). We observed poor strong scaling performance beyond a single node (24 cores), comparable to
our previous results 23. A more detailed analysis showed that the RMSD computation, and to a lesser degree the read I/O, considered on their own,
scaled well beyond 50 cores (yellow and blue lines in Figure 2c). But communication (sending results back to MPI rank 0 with MPI_Gather(); red
line in Figure 2c) and the initial file opening (loading the system information into the MDAnalysis.Universe data structure from a shared “topology”
file and opening the shared trajectory file; gray line in Figure 2c) started to dominate beyond 50 cores. Communication cost and initial time for
opening the trajectory were distributed unevenly across MPI ranks, as shown in Figure 2d. The ranks that took much longer to complete than the
typical execution time of the other ranks were the stragglers that hurt performance.

We qualitatively denoted by straggler any MPI rank that took at least about twice as long as the group of ranks that finished fastest, roughly
following the original description of a straggler as a task that took an “unusually long time to complete” 35. The fast-finishing ranks were generally
clearly distinguishable in the per-rank timings such as in Figures 2d and A1d. Such a qualitative definition of stragglers was sufficient for our purpose
to identify scalability bottlenecks, as shown in the following discussion.

Identification of Scalability Bottlenecks
In the example shown in Figure 2d, 62 ranks out of 72 took about 60 s (the stragglers) whereas the remaining ranks only took about 20 s. In other
instances, far fewer ranks were stragglers, as shown, for example, in Figure A1d. The detailed breakdown of the time spent on each rank (Figure 2d)
showed that the computation, tcomp, was relatively constant across ranks. The time spent on reading data from the shared trajectory file on the
Lustre file system into memory, tI/O, showed variability across different ranks. The stragglers, however, appeared to be defined by occasionally
much larger communication times, tcomm (line 16 in Algorithm 1), which were on the order of 30 s, and by larger times to initially open the trajectory
(line 2 in Algorithm 1). tcomm varied across different ranks and was barely measurable for a few of them. Although the data in Figure 2d represented
one run and in other instances different number of ranks were stragglers, the averages over all ranks in five independent repeats (Figure 2c) showed
that increased tcomm were generally the reason for large variations in the run time for each rank. This initial analysis indicated that communication
was a major issue that prevented good scaling beyond a single node but the problems related to file I/O also played an important role in limiting
scaling performance.

Influence of Hardware
We ran the same benchmarks on multiple HPC systems that were equipped with a Lustre parallel file system [XSEDE’s PSC Bridges (Fig. A1) and
LSU SuperMIC (Fig. A2)], and observed the occurrence of stragglers, in a manner very similar to the results described for SDSC Comet. There was no
clear pattern in which certain MPI ranks would always be a straggler, and neither could we trace stragglers to specific cores or nodes. Therefore,
the phenomenon of stragglers in the RMSD case was reproducible on different clusters and thus appeared to be independent from the underlying
hardware.
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FIGURE 2 Performance of the RMSD task parallelized with MPI on SDSC Comet. Results were communicated back to rank 0. Five independent
repeats were performed to collect statistics. (a-c) The error bars show standard deviation with respect to the mean. In serial, there is no communi-
cation and no data points are shown for N = 1 in (c). (d) Compute tcomp, read I/O tI/O, communication tcomm, ending the for loop tend_loop, opening
the trajectory topening_trajectory, and overheads toverhead1, toverhead2 per MPI rank; see Table 3 for definitions. These are data from one run of the five
repeats. MPI ranks 0, 12–27 and 29–72 are stragglers.
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6.2 Effect of Compute to I/O Ratio on Performance
The results in section 6.1 indicated opening the trajectory, communication, and read I/O to be important factors that appeared to correlate with
stragglers. In order to better characterize the RMSD task, we computed the ratio between the time to complete the computation and the time
spent on I/O per frame. The average values were tframe

comp = 0.09 ms, tframe
IO = 0.3 ms, resulting in a compute-to-I/O ratio Rcomp/IO ≈ 0.3 (Eq. 7).

Because Rcomp/IO � 1, the RMSD analysis task was characterized as I/O bound.
As we were not able to achieve good scaling beyond a single node, we hypothesized that decreasing the I/O load relative to the compute

load would interleave read I/O with longer periods of computation, thus reducing the impact of I/O contention and the impact of stragglers. We
therefore set out to measure compute bound tasks, i.e. ones with Rcomp/IO � 1. To measure the effect of the Rcomp/IO ratio on performance but
leaving other parameters the same, we artificially increased the computational load by repeating the same RMSD calculation (line 10, algorithm 1)
40, 70 and 100 times in a loop, resulting in forty-fold (“40×”), seventy-fold (“70×”), and one hundred-fold (“100×”) load increases.

6.2.1 Effect of Increased Compute Workload
For an X-fold increase in workload, we expected the workload for the computation to scale with X as tcomp(X) = Ntotal

framesXt
frame
comp while the read I/O

workload tI/O(X) = Ntotal
framest

frame
I/O (number of frames times the average time to read a frame) should remain independent of X. Therefore, the ratio

for any X should be Rcomp/IO(X) = tcomp(X)/tI/O(X) = XRcomp/IO(X = 1), i.e., Rcomp/IO should just linearly scale with the workload factor X. The
measured Rcomp/IO ratios of 11, 19, 27 for the increased computational workloads agreed with this theoretical analysis, as shown in Table 4.

Workload X tcomp (s) tI/O (s) Rcomp/IO

measured theoretical

1× 226 791 0.29
40× 8655 791 11 11
70× 15148 791 19 20

100× 21639 791 27 29

TABLE 4 Change in Rcomp/IO ratio with change in the RMSD workload X. The RMSD workload was artificially increased in order to examine the
effect of compute to I/O ratio on the performance. The reported compute and I/O time were measured based on the serial version using one core.
The theoretical Rcomp/IO (see text) is provided for comparison.

We performed the experiments with increased workload to measure the effect of the Rcomp/IO ratio on performance (Figure 3). The strong
scaling performance as measured by the speed-up S(N) improved with increasing Rcomp/IO ratio (Figure 3a). The calculations consistently showed
better scaling performance to larger numbers of cores for higher Rcomp/IO ratios, e.g., N = 56 cores for the 70× RMSD task. The speed-up and
efficiency approached their ideal value for each processor count with increasing Rcomp/IO ratio (Figures 3b and 3c). Even for moderately compute-
bound workloads, such as the 40× and 70× RMSD tasks, increasing the computational workload over I/O reduced the impact of stragglers even
though they still contributed to large variations in timing across different ranks and thus irregular scaling.

We also investigated the influence of the ratio of compute to communication costs (Rcomp/comm, Eq. 8) on performance in B. We found evidence
to support the hypothesis that a larger ratio was beneficial, provided I/O costs could also be reduced. However, read I/O ultimately seemed to be
the key determinant for performance, as discussed in the next sections.

6.2.2 Effect of Absence of Read I/O on Communication
In order to study an extreme case of a compute-bound task, we eliminated all I/O from the RMSD task by randomly generating artificial trajectory
data in memory; the data had the the same size as if they had been obtained from the trajectory file. The time for the data generation was excluded
and no file access was necessary. Without any I/O, performance improved markedly (Figure 4), with reasonable scaling up to 72 cores (3 nodes). No
stragglers were observed because overall communication time decreased and showed less variability; nevertheless, an increase in communication
time prevented ideal scaling performance. Although in practice I/O cannot be avoided, this experiment demonstrated that accessing the trajectory
file on the Lustre file system is at least one cause for the observed stragglers.
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FIGURE 3 Effect of Rcomp/IO ratio on performance of the RMSD task on SDSC Comet. We tested performance for Rcomp/IO ratios of 0.3, 11, 19,
27, which correspond to 1× RMSD, 40× RMSD, 70× RMSD, and 100× RMSD respectively. (a) Effect of Rcomp/IO on the speed-up. (b) Change in
speed-up with respect toRcomp/IO for different processor counts. (c) Change in the efficiency with respect toRcomp/IO for different processor counts.
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(b) Time comparison on different parts of the calculations per MPI rank when I/O is removed

FIGURE 4 Comparison of the performance of the RMSD task with I/O (Rcomp/IO ≈ 0.3) and without I/O (Rcomp/IO = +∞) on SDSC Comet. Five
repeats were performed to collect statistics. (a) Speed-up. The error bars show standard deviation with respect to the mean. (b) Compute tcomp,
read I/O tI/O = 0, communication tcomm, ending the for loop tend_loop, opening the trajectory topening_trajectory, and overheads toverhead1, toverhead2 per
MPI rank. (See Table 3 for definitions.)

6.3 Reducing I/O Cost
In order to improve performance we needed to employ strategies to avoid the competition over file access across different ranks when the Rcomp/IO

ratio was small. To this end, we experimentedwith two different ways for reducing the I/O cost: 1) splitting the trajectory file into as many segments
as the number of processes, thus using file-per-process access, and 2) using the HDF5 file format together with MPI-IO parallel reads instead of
the XTC trajectory format. We discuss these two approaches and their performance improvements in detail in the following sections.

Page 13 of 33

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience



For Peer Review

14 KHOSHLESSAN et al

6.3.1 Splitting the Trajectories (“subfiling”)
Subfiling is a mechanism previously used for splitting a large multi-dimensional global array to a number of smaller subarrays in which each smaller
array is saved in a separate file. Subfiling reduces the file system control overhead by decreasing the number of processes concurrently accessing a
shared file 73,74. Because subfiling is known to improve programming flexibility and performance of parallel shared-file I/O, we investigated splitting
our trajectory file into as many trajectory segments as the number of processes. The trajectory file was split intoN segments, one for each process,
with each segment having Nb frames. This way, each process would access its own trajectory segment file without competing for file accesses.

We ran a benchmark up to 8 nodes (192 cores) and observed rather better scaling behavior with efficiencies above 0.6 (Figure 5b and 5c)
with the delay time for stragglers reduced from 65 s to about 10 s for 72 processes. However, scaling was still far from ideal due to the MPI
communication costs. Although the delay due to communication was much smaller than compared to parallel RMSD with shared-file I/O [compare
Figure 5d (tStragglercomm � tcomp + tI/O) to Figure 2d (tStragglercomm ≈ tcomp + tI/O)], it was still delaying several processes and resulted in longer job completion
times (Figure 5d). These delayed tasks impacted performance so that speed-up remained far from ideal (Figure 5c).
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(d) Time comparison on different parts of the calculations per MPI rank with MPI collective communica-
tions.
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(e) Time comparison on different parts of the calculations per MPI rank using Global Arrays

FIGURE5Comparison of the performance of the RMSD task on SDSCCometwhen the trajectories are split (subfiling). The communication step used
either MPI collective communications (“MPI”, with MPI_Gather()) or Global Arrays (“ga”, as described in Section 6.4). In the case of Global Arrays, all
ranks updated the global RMSD array (ga_put()) and rank 0 accessed the whole RMSD array through the global memory address (ga_get()). Five
repeats were performed to collect statistics. (a) Compute and I/O scaling versus number of processes. In serial, there is no communication and no
data points are shown for N = 1. (b) Total time scaling versus number of processes. (c) Speed-up. (a-c) The error bars show standard deviation with
respect to the mean. (d-e) Compute tcomp, read I/O tI/O, communication tcomm, access to the whole global RMSD array by rank 0, tAccess_Global_Array,
ending the for loop tend_loop, opening the trajectory topening_trajectory, and overheads toverhead1, toverhead2 per MPI rank; see Table 3 for the definitions.
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The subfiling approach appeared promising but it required preprocessing of trajectory files and additional storage space for the segments. We
benchmarked the necessary time for splitting the trajectory in parallel using different number of MPI processes (Table 5); in general the operation
scaled well, with efficiencies> 0.8 although performance fluctuated, as seen for the case on six nodes where the efficiency dropped to 0.34 for the
run. These preprocessing times were not included in the estimates because we focused on better understanding the principal causes of stragglers
and we wanted to make the results directly comparable to the results of the previous sections. Nevertheless, from an end user perspective,
preprocessing of trajectories can be integrated in workflows (especially as the data in Table 5 indicated good scaling) and the preprocessing time
can be quickly amortized if the trajectories are analyzed repeatedly.

Nseg Np nodes time (s) S E

24 24 1 89.9 1.0 1.0
48 48 2 46.8 1.9 0.96
72 72 3 33.7 2.7 0.89
96 96 4 25.1 3.6 0.89

144 144 6 43.7 2.1 0.34
192 192 8 13.5 6.7 0.83

TABLE 5 The wall-clock time spent for writing Nseg trajectory segments using Np processes using MPI on SDSC Comet. One set of runs was
performed for the timings. Scaling S and efficiency E are relative to the 1 node case (24 MPI processes).

Often trajectories from MD simulations on HPC machines are produced and kept in smaller files or segments that can be concatenated to form
a full continuous trajectory file. These trajectory segments could be used for the subfiling approach. However, it might not be feasible to have
exactly one segment per MPI rank, with all segments of equal size, which constitutes the ideal case for subfiling. MDAnalysis can create virtual
trajectories from separate trajectory segment files that appear to the user as a single trajectory. In C we investigated if this so-called ChainReader
functionality could benefit from the subfiling approach. We found some improvements in performance but discovered limitations in the design of
the ChainReader (namely that all segment files are initially opened) that will have to be addressed before equivalent performance can be reached.

6.3.2 MPI-based Parallel HDF5
In the HPC community, parallel I/O with MPI-IO is widely used in order to address I/O limitations. We investigated MPI-based Parallel HDF5 to
improve I/O scaling. We converted our XTC trajectory file into a simple custom HDF5 format so that we could test the performance of parallel I/O
with the HDF5 file format. The code for this file format conversion can be found in the GitHub repository. The time it took to convert our XTC file
with 2, 512, 200 frames into HDF5 format was about 5,400 s on a local workstation with network file system (NFS).

We ran our benchmark on up to 16 nodes (384 cores) on SDSC Comet and we observed near ideal scaling behavior Figures 6a and 6b) with
parallel efficiencies above 0.8 on up to 8 nodes (Figure A3a) with no straggler tasks (Figure 6d). The trajectory reading I/O (tI/O) was the dominant
contribution, followed by compute (tcomp), but because both contributions scaled well, overall scaling performance remained good, even for 384
cores. We observed a low-performing outlier for 12 nodes (288 cores) with slower I/O than typical but did not further investigate. Importantly, the
trajectory opening cost remained negligible (in the millisecond range) and the cost for MPI communication also remained small (below 0.1 s, even
for 16 nodes). Overall, parallel MPI with HDF5 appeared to be a robust approach to obtain good scaling, even for I/O-bound tasks.

6.4 Testing the Global Arrays Toolkit
TheGlobal Arrays (GA) toolkit 34 is a convenient layer to represent and access arrays acrossmultipleMPI ranks and nodes. Because of its convenience
and possibly reduced communications overhead due to its use of shared memory on a physical node and MPI for inter-node communication (see
Section 3.3) we wanted to compare parallel trajectory analysis with GA to the MPI-based implementation that was discussed in the previous
sections.

With GA, one large RMSD array called the global array was defined and each MPI rank updated its associated block in the global RMSD array
using ga_put() (Algorithm 2). At the end, when all the processes exited the block_rmsd() function and updated their local block in the global
array, rank 0 accessed the whole global array using ga_access(). In GA, the time for communication is tga_put() + tga_access(). We tested that the
approach with GA (Algorithm 2) gave the same results as the previously discussed approach with MPI_Gather() (Algorithm 1).
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FIGURE 6 Performance of the RMSD task withMPI-based parallel HDF5 (MPI-IO) on SDSC Comet. Data are read from the file system from a shared
HDF5 file format instead of XTC format (independent I/O) and results are communicated back to rank 0. Five repeats were performed to collect
statistics. (a-c) The error bars show standard deviation with respect to the mean. In serial, there is no communication and no data points are shown
for N = 1 in (c). (d) Compute tcomp, read I/O tI/O, communication tcomm, ending the for loop tend_loop, opening the trajectory topening_trajectory, and
overheads toverhead1, toverhead2 per MPI rank; see Table 3 for definitions. These are typical data from one run of the five repeats.

Shared file
Using GA improved the strong scaling performance (Figures 7a and 7b) by reducing the communication time. Nevertheless, the remaining variation
in the trajectory I/O part of the calculation and in particular the initial opening of the trajectory prevented ideal scaling (Figure 7c). Stragglers were
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(d) Time comparison on different parts of the calculations per MPI rank

FIGURE 7 Performance of the RMSD task using Global Arrays on SDSC Comet. All ranks updated the global RMSD array (ga_put()) and rank 0
accessed the whole RMSD array through the global memory address (ga_get()). Five repeats were performed to collect statistics. (a-c) The error
bars show standard deviation with respect to the mean. In serial, there is no communication and not data points are shown for N = 1 in (c). In
(d), compute tcomp, read I/O tI/O, communication tcomm, access to the whole global array by rank 0, tAccess_Global_Array, ending the for loop tend_loop,
opening the trajectory topening_trajectory, and overheads toverhead1, toverhead2 per MPI rank are shown; see Table 3 for definitions. These are typical data
from one run of the five repeats. MPI ranks 20 and 56 were stragglers.

primarily due to the fact that all ranks had to open the same trajectory file at the beginning of the execution (Figure 7d). In this case, these slow
processes took about 50 s, which was slower than the mean execution time of all other ranks of 17 s. Trajectory opening was already problematic
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in the initial test (Figure 2c), which was still dominated by the communication cost. By substantially reducing communication cost, the simultaneous
trajectory opening by multiple ranks emerged as the next dominant cause for stragglers.

Subfiling
We tested subfiling (see Section 6.3.1) with GA to reduce the initial delay due to trajectory opening. Under otherwise identical conditions as in the
previous section we now observed near ideal scaling behavior with efficiencies above 0.9 (Figure 5b and 5c) without any straggler tasks (Figure 5e).
Although the reason why in our case GA appeared to be more efficient than direct MPI-based communication remained unclear, these results
showed that contention for file access clearly impacted performance. By removing the contention, near ideal scaling could be achieved.

6.5 Likely Causes of Stragglers
The data indicated that an increase in the duration of both MPI communication and trajectory file access lead to large variability in the run time
of individual MPI processes and ultimately poor scaling performance beyond a single node. A discussion of likely causes for stragglers begins with
the observation that opening and reading a single trajectory file from multiple MPI processes appeared to be at the center of the problem.

In MDAnalysis, individual trajectory frames are loaded into memory, which ensures that even systems with tens of millions of atoms can be
efficiently analyzed on resources with moderate RAM sizes. The test trajectory (file size 30 GB) had 2, 512, 200 frames in total so each frame was
about 0.011MB in size. With tI/O ≈ 0.3ms per frame, the data were ingested at a rate of about 40MB/s for a single process. For 24MPI ranks (one
SDSC Comet node), the aggregated reading rate would have been about 1 GB/s, well within the available bandwidth of 56 Gb/s of the InfiniBand
network interface that served the Lustre file system, but nevertheless sufficient to produce substantial constant network traffic.

Furthermore, in our study the default Lustre stripe size value was 1 MB, i.e., the amount of contiguous data stored on a single Lustre object
storage target (OST). Each I/O request read a single Lustre stripe but because the I/O size (0.011 MB) was smaller than the stripe size, many
of these I/O requests were likely just accessing the same stripe on the same OST but nevertheless had to acquire a new reading lock for each
request. The reason for this behavior is related to ensuring POSIX consistency that relates to POSIX I/O API and POSIX I/O semantics, which can
have adverse effects on scalability and performance. Parallel file systems like Lustre implement sophisticated distributed locking mechanisms to
ensure consistency. For example, locking mechanisms ensures that a node can not read from a file or part of a file while it might be being modified
by another node. In fact, when the application I/O is not designed in a way to avoid scenarios where multiple nodes are fighting over locks for
overlapping extents, Lustre can suffer from scalability limitations 75. Continuously keeping metadata updated in order to have fully consistent reads
and writes (POSIX metadata management), requires writing a new value for the file’s last-accessed time (POSIX atime) every time a file is read,
imposing a significant burden on parallel file system 76. It was observed that contention for the interconnect between OSTs and compute nodes
due to MPI communication may lead to variable performance in I/O measurements 77. Conversely, our data suggest that single-shared-file I/O on
Lustre can negatively affect MPI communication as well, even at moderate numbers (tens to hundreds) of concurrent requests, similar to recent
network simulations that predicted interference betweenMPI and I/O traffic 78. This work indicated that MPI traffic (inter-process communication)
can be affected by increasing I/O, and in particular, a few MPI processes were always delayed by one to two orders of magnitude more than the
median time. In summary, these observations in the context of the work by Brown et al. 78 suggest that our observed stragglers with large variance
in the communication step might be due to interference of MPI communications with the I/O requests on the same network.

7 REPRODUCIBILITY AND PERFORMANCE COMPARISON ON DIFFERENT CLUSTERS

In this section we compare the performance of the RMSD task on different HPC resources (Table 1) to examine the robustness of the methods we
used for our performance study and to ensure that the results are general and independent from the specific HPC system. Scripts and instructions
to set up the computational environments and reproduce our computational experiments are provided in a git repository as described in section 5.

In A, we demonstrated that stragglers occur on PSC Bridges (Figure A1) and LSU SuperMIC (Figure A2) in a manner similar to the one observed on
SDSC Comet (section 6.1). We performed additional comparisons for several cases discussed previously, namely (1) splitting the trajectories with
blocking collective communications in MPI, (2) splitting the trajectories with Global Arrays for communications, and (3) MPI-based parallel HDF5.

7.1 Splitting the Trajectories
Figure 8 shows the strong scaling of the RMSD task on different HPC resources. Splitting the trajectories with Global Arrays for communication
resulted in very good scaling performance on LSU SuperMIC, similar to the results obtained on SDSC Comet. The results withMPI blocking collective
communication (instead of Global Arrays) were also comparable between the two clusters, with scaling far from ideal due to the communication
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cost (see section 6.3.1 and Figures 5d and A4). Overall, the scaling of the RMSD task is better on LSU SuperMIC than on SDSC Comet and the
performance gap increased with increasing core number. The results on LSU SuperMIC confirmed the conclusion obtained on SDSC Comet that at
least in this case Global Arrays performed better than MPI blocking collective communication.

MPI MPI

(a) Scaling total

MPI MPI

(b) Speed-up

MPI
MPI

MPI

(c) Scaling of tcomp and tI/O.

FIGURE 8 Comparison of the performance of the RMSD task across different clusters (SDSC Comet, LSU SuperMIC) when the trajectories are split
(subfiling). Results were communicated back to rank 0 either with MPI collective communications (label “MPI”) or using Global Arrays (label “GA”).
Five repeats were performed to collect statistics. The error bars show the standard deviation with respect to the mean.

7.2 MPI-based Parallel HDF5
Figure 9 shows the scaling on SDSC Comet, LSU SuperMIC, and PSC Bridges using MPI-based parallel HDF5. Performance on SDSC Comet and LSU
SuperMIC was very good with near ideal linear strong scaling. The performance on PSC Bridges was sensitive to how many cores per node were
used. Using all 28 cores in a node resulted in poor performance but decreasing the number of cores per node and equally distributing processes
over nodes improved the scaling (Figure 9), mainly by reducing variation in the I/O times.

The main difference between the runs on PSC Bridges and SDSC Comet/LSU SuperMIC appeared to be the variance in tI/O (Figure 9c). The I/O
time distribution was fairly small and uniform across all ranks on SDSC Comet and LSU SuperMIC (Figures 10b and 6d). However, on PSC Bridges the
I/O time was on average about two and a half times larger and the I/O time distribution was also more variable across different ranks (Figure 10a).
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FIGURE 9 Comparison of the performance of the RMSD task across different clusters (SDSC Comet, PSC Bridges, LSU SuperMIC) with MPI-IO. Data
were read from a sharedHDF5 file instead of an XTC file, usingMPI independent I/O in the PHDF5 library. Results were communicated back to rank
0. NP/Nnodes indicates that number of processes used for the task were equally distributed over all compute nodes. Five repeats were performed
to collect statistics. The error bars show standard deviation with respect to mean. In (b) only results up to 100 cores are shown to simplify the
comparison; see Fig. 6b for SDSC Comet and Fig. A3c for LSU SuperMic data.

7.3 Comparison of Compute and I/O Scaling Across Different Clusters
A full comparison of compute and I/O scaling across different clusters for different test cases and algorithms is shown in Table 6. For MPI-based
parallel HDF5, both the compute and I/O time onBridgeswere consistently larger than their corresponding values on SDSCComet and LSUSuperMIC.
For example, with one core the corresponding compute and I/O time were tcomp = 387 s, tI/O = 1318 s versus 225 s, 423 s on SDSC Comet and
273 s, 503 s on LSU SuperMIC. This performance difference became larger with increasing core number. When the trajectories were split and Global
Arrays was used for communication both SDSC Comet and LSU SuperMIC showed similar performance.
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0 20 40 60
Processor Ranks

0

2

4

6

8

10

To
ta

l T
im

e 
(s

)

Compute
IO
Communication

Overhead2
Overhead1

Opening_trajectory
Ending_loop

(b) LSU SuperMIC

FIGURE 10 Examples of timing perMPI rank for the RMSD task withMPI-based parallel HDF5 on (a) PSC Bridges and (b) LSU SuperMIC. Five repeats
were performed to collect statistics and these were typical data from one run of the five repeats. Compute tcomp, read I/O tI/O, communication
tcomm, ending the for loop tend_loop, opening the trajectory topening_trajectory, and overheads toverhead1, toverhead2 perMPI rank; see Table 3 for definitions.

Overall, the results from SDSC Comet and LSU SuperMIC are consistent with each other. Performance on PSC Bridges seemed sensitive to the
exact allocation of cores on each node but nevertheless the approaches that decreased the occurrence of stragglers on SDSC Comet and LSU
SuperMIC also improved performance on PSC Bridges. Thus, the findings described in the previous sections are valid for a range of different HPC
clusters with Lustre file systems.

8 GUIDELINES FOR IMPROVING PARALLEL TRAJECTORY ANALYSIS PERFORMANCE

Although the performance measurements were performed withMDAnalysis and therefore capture some details of this library such as the specific
timings for file reading, we believe that the broad picture is fairly general and applies to any Python-based approach that uses MPI for parallelizing
trajectory access with a split-apply-combine approach. Based on the lessons that we learned, we suggest the following guidelines to improve strong
scaling performance:

Heuristic 1 Calculate compute to I/O ratio (Rcomp/IO, Eq. 7) and compute to communication ratio (Rcomp/comm, Eq. 8). Rcomp/IO determines whether
the task is compute bound (Rcomp/IO � 1) or IO bound (Rcomp/IO � 1). Rcomp/comm determines whether the task is communication bound
( tcomp
tcomm

� 1) or compute bound (Rcomp/IO � 1).

As discussed in Section 6.2, for I/O bound problems the interference between MPI communication and I/O traffic can be problematic 51,78

and the performance of the task will be affected by the straggler tasks that delay job completion time.

Heuristic 2 For Rcomp/IO ≥ 1, single-shared-file I/O can be used and will not decrease performance. One may consider the following cases:

Heuristic 2.1 If Rcomp/comm � 1, the task is compute bound and will scale well as shown in Figure 3.

Heuristic 2.2 If Rcomp/comm � 1, one might consider using Global Arrays to improve scaling by utilizing efficient distribution of data via the
shared arrays (section 6.4).

Heuristic 3 For Rcomp/IO ≤ 1 the task is I/O bound and single-shared-file I/O should be avoided to remove unnecessary metadata operations. One
might want to consider the following steps:

Heuristic 3.1 If there is access to HDF5 format, use MPI-based Parallel HDF5 (Section 6.3.2).

Heuristic 3.2 If the trajectory file is not in HDF5 format then one can consider subfiling and split the single trajectory file into as many
trajectory segments as the number of processes. Splitting the trajectories can be easily performed in parallel and trajectory conversion
may be integrated into the beginning of standard workflows for MD simulations. Alternatively, trajectories may be kept in smaller
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chunks if they are already produced in batches; for instance, when running simulations with Gromacs 56, the gmx mdrun -noappend

option produces individual trajectory segments instead of extending an existing trajectory file.

Heuristic 3.3 In case of Rcomp/comm � 1, use of Global Arrays may be considered to potentially improve scaling (Section 6.3.1).

9 CONCLUSIONS

We analyzed the strong scaling performance of a typical task when analyzing MD trajectories, the calculation of the time series of the RMSD of
a protein, with the widely used Python-based MDAnalysis library. The task was parallelized with MPI following the split-apply-combine approach
by having each MPI process analyze a contiguous segment of the trajectory. This approach did not scale beyond a single node because straggler
MPI processes exhibited large upward variations in runtime. Stragglers were primarily caused by either increased MPI communication costs or
increased time to open the single shared trajectory file whereas both the computation and the ingestion of data exhibited close to ideal strong
scaling behavior. Stragglers were less prevalent for compute-bound workloads (i.e., Rcomp/IO � 1), suggesting that file read I/O was responsible
for poor MPI communication. In particular, artificially removing all I/O substantially improved performance of the communication step and thus
brought overall performance close to ideal (i.e., linear increase in speed-up with processor count with slope one). By performing benchmarks on
three different XSEDE supercomputers we showed that our results were independent from the specifics of the hardware and local environment.
Our results hint at the possibility that stragglers might be due to the competition between MPI messages and the Lustre file system on the shared
InfiniBand interconnect, which would be consistent with other similar observations 51 and theoretical predictions by Brown et al. 78 . One possible
interpretation of our results is that for a sufficiently large per-frame compute workload, read I/O interferes much less with communication than for
an I/O bound task that almost continuously accesses the file system. This interpretation suggested that we needed to improve read I/O to reduce
interference.

We investigated subfiling (splitting of the trajectories into separate files, one for each MPI rank) and MPI-based parallel I/O. Subfiling improved
scaling, especially when combined with the Global Arrays toolkit. Global Arrays reduced the communication cost compared to MPI collective com-
munications even though it only acts as programming layer to access data across multiple nodes in a convenient array form and also uses MPI for
its inter-node data exchange. Subfiling with Global Arrays achieved nearly ideal scaling up to 192 cores (8 nodes on SDSC Comet). When we used
MPI-based parallel I/O through HDF5 together with MPI for communications we achieved nearly ideal performance up to 384 cores (16 nodes on
SDSC Comet) and speed-ups of two orders of magnitude compared to the serial execution. The latter approach appears to be a promising way for-
ward as it directly builds on very widely used technology (MPI-IO and HDF5) and echoes the experience of the wider HPC community that parallel
file I/O is necessary for efficient data handling.

The biomolecular simulation community suffers from a large number of trajectory file formats with very few being based on HDF5, with the
exception of the H5MD format 79 and the MDTraj HDF5 format 20. Our work suggests that HDF5-based formats should be seriously considered as
the default for MD simulations if users want to make efficient use of their HPC systems for analysis. Alternatively, enabling MPI-IO for trajectory
readers in libraries such asMDAnalysis might also provide a path forward to better read performance.

We summarized our findings in a number of guidelines for improving the scaling of parallel analysis of MD trajectory data. We showed that it is
feasible to run an I/O bound analysis task on HPC resources with a Lustre parallel file system and achieve good scaling behavior up to 384 CPU
cores with an almost 300-fold speed-up compared to serial execution. Although we focused on theMDAnalysis library, similar strategies are likely
to be more generally applicable and useful to the wider biomolecular simulation community.
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APPENDIX

A ADDITIONAL DATA

Figure A1 shows performance of the RMSD task on PSC Bridges.
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FIGURE A1 PSC Bridges: Performance of the RMSD task. Results are communicated back to rank 0. Five independent repeats were performed to
collect statistics. (a-c) The error bars show standard deviationwith respect to themean. In serial, there is no communication and hence no data point
is shown for N = 1 in (c). (d) Compute tcomp, read I/O tI/O, communication tcomm, ending the for loop tend_loop, opening the trajectory topening_trajectory,
and overheads toverhead1, toverhead2 per MPI rank; see Table 3 for definitions. These are data from one run of the five repeats. MPI ranks 0 and 70
are stragglers.
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Figure A2 shows performance of the RMSD task on LSU SuperMIC.

10
0

10
1

10
2

NProcesses

10
1

10
2

10
3

To
ta

l t
im

e 
t to

ta
l(s

)

(a) Scaling total

25 50 75 100 125 150
NProcesses

20

40

60

80

100

120

140

160

Sp
ee

d 
U

p 
(S

=
t 1 t N

)

(b) Speed-up

10
0

10
1

10
2

NProcesses

10
0

10
1

10
2

10
3

10
4

Ti
m

e 
(s

)

IO
Compute

Opening Trajectory
Communication

(c) Scaling for different components

0 20 40 60
Processor Ranks

0

10

20

30

40

50

60

To
ta

l T
im

e 
(s

)

Compute
IO
Communication

Overhead2
Overhead1

Opening_trajectory
Ending_loop

(d) Time comparison on different parts of the calculations per MPI rank (example)

FIGURE A2 LSU SuperMIC: Performance of the RMSD task with MPI. Results are communicated back to rank 0. Five independent repeats were
performed to collect statistics. (a-c) The error bars show standard deviation with respect to mean. In serial, there is no communication and hence
the data points for N = 1 are not shown in (c). (d) Compute tcomp, read I/O tI/O, communication tcomm, ending the for loop tend_loop, opening the
trajectory topening_trajectory, and overheads toverhead1, toverhead2 perMPI rank; see Table 3 for definitions. These are data from one run of the five repeats.

Figure A3 shows comparison of the parallel efficiency of the RMSD task between different test cases on SDSC Comet, PSC Bridges, and LSU
SuperMIC.

Figure A4 shows how RMSD task scales with the increase in the number of cores when the trajectories are split using Global Arrays for
communication compared to using MPI for communications on LSU SuperMIC.
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FIGURE A3 Comparison of the parallel efficiency between different test cases on (a) SDSC Comet (data for “MPI Parallel IO” are only shown up
to 192 cores for better comparison across different scenarios, see Fig. 6b for equivalent scaling data up to 384 cores), (b) PSC Bridges, and (c) LSU
SuperMIC. Five repeats were performed to collect statistics and error bars show standard deviation with respect to mean.
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FIGURE A4 LSU SuperMIC: Comparison of the performance of the RMSD task with subfiling and using either MPI (“MPI”) or Global Arrays (“ga”)
for communication. For Global Arrays, all ranks update the global array (ga_put()) and rank 0 accesses the whole RMSD array through the global
memory address (ga_get()). Five repeats were performed to collect statistics. (a) Compute and I/O scaling versus number of processes. (b) Total
time scaling versus number of processes. (c) Speed-up. (a-c) The error bars show standard deviation with respect to mean.

B EFFECT OF Rcomp/comm ON PERFORMANCE

In Section 6.3, we improved scaling limitations due to read I/O by splitting the trajectory, but scaling remained far from ideal when MPI communi-
cation was used; the use of Global Arrays lead to better scaling (see Section 6.4) because the effective communication cost was reduced. Although
we were not able to identify the reason for the better performance of Global Arrays (it still uses MPI as a communicator), the results motivated
an analysis in terms of the communication costs. In addition to the compute to I/O ratio Rcomp/IO discussed in Section 6.2 we defined another
performance parameter called the compute to communication ratio Rcomp/comm (Eq. 8).

We analyzed the data for variable workloads (see Section 6.2) in terms of the Rcomp/comm ratio. The performance clearly depended on the
Rcomp/comm ratio (Figure B5). Performance improved with increasing Rcomp/comm ratios (Figure B5b and B5a) even if the communication time was
larger (Figure B5c). Althoughwe still observed stragglers due to communication at largerRcomp/comm ratios (70×RMSDand 100×RMSD), their effect
on performance remained modest because the overall performance was dominated by the compute load. Evidently, as long as overall performance
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is dominated by a component such as compute that scales well, then performance problems with components such as communication will be
masked and overall acceptable performance can still be achieved (Figures B5a and B5b).

Communication was usually not problematic within one node because of the shared memory environment. For less than 24 processes, i.e., a
single compute node on SDSC Comet, the scaling was good and Rcomp/comm � 1 for all RMSD loads (Figures B5a and B5b). However, beyond a
single compute node (> 24 cores), scaling appeared to improve with increasing Rcomp/comm ratio while the communication overhead decreased in
importance (Figures B5a and B5b).
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FIGURE B5 Effect of the ratio of compute to communication time Rcomp/comm on scaling performance on SDSC Comet. (a) Scaling for different
computational workloads. (Same as Figure 3a.) (b) Change in Rcomp/comm with the number of processes N for different workloads. (c) Comparison of
communication time for different RMSD workloads. Five repeats were performed to collect statistics and error bars show standard deviation with
respect to mean.

C PERFORMANCE OF THE CHAINREADER FOR SPLIT TRAJECTORIES

In section 6.3.1 we showed how subfiling (splitting the trajectories) would help to overcome I/O limitations and improve scaling. However, the
number of trajectories may not necessarily be equal to the number of processes. For example, trajectories fromMD simulations on supercomputers
are often kept in small segments in individual files that need to be concatenated later to form a trajectory that can be analyzed with common
tools. Such segments might be useful for subfiling but making sure that the number of processes is equal to the number of trajectory files will
not always be feasible.MDAnalysis can transparently represent multiple trajectories as one virtual trajectory using the ChainReader. This feature is
convenient for serial analysis when trajectories are maintained as segments. In the current implementation of ChainReader, each process opens all
the trajectory segment files but I/O will only happen from a specific block of the trajectory specific to that process only.

We wanted to test if the ChainReader would benefit from the gains measured for the subfiling approach. Specifically, we measured if the MPI-
parallelized RMSD task (with Np ranks) would benefit if the trajectory was split into Nseg = Np trajectory segments, corresponding to an ideal
scenario.

In order to perform our experiments we had to work around an issue with the XTC format reader in MDAnalysis that was related to the
XTC random-access functionality that the MDAnalysis.coordinates.XTC.XTCReader class provides: The Gromacs XTC format 67,68 is a lossy-
compression, XDR-based file format that was never designed for random access and the compressed format itself does not support fast random
seeking. The XTCReader stores persistent offsets for trajectory frames to disk 18 in order to enable efficient access to random frames. These offsets
will be generated automatically the first time a trajectory is opened and the offsets are stored in hidden *.xtc_offsets.npz files. The advantage
of these persistent offset files is that after opening the trajectory for the first time, opening the same file will be very fast, and random access is
immediately available. However, stored offsets can get out of sync with the trajectory they refer to. To prevent the use of stale offset data, tra-
jectory file data (number of atoms, size of the file and last modification time) are also stored for validation. If any of these parameters change the
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(d) Time comparison of different parts of the calculations per MPI rank using ChainReader with MPI
collective communications
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(e) Time comparison on different parts of the calculations per MPI rank using ChainReader using Global
Arrays

FIGURE C6 Comparison on the performance of the MDAnalysis ChainReader for the RMSD task on SDSC Comet when the trajectories are split;
for the communication step either collective MPI (“MPI”) or Global Arrays (“ga”) was used. In case of Global Arrays, all ranks update the global array
(ga_put()) and rank 0 accesses the whole RMSD array through the global memory address (ga_get()). Five repeats were performed to collect
statistics. (a) Compute and I/O scaling versus number of processes. (b) Total time scaling versus number of processes. (c) Speed-up. (a-c) The error
bars show standard deviation with respect to the mean. (d-e) Compute tcomp, read I/O tI/O, communication tcomm, access to the whole global array
by rank 0 tAccess_Global_Array, ending the for loop tend_loop, opening the trajectory topening_trajectory, and overheads toverhead1, toverhead2 per MPI rank. (See
Table 3 for the definitions.)

offsets are recalculated. If the XTC changes but the offset file is not updated then the offset file can be detected as invalid. With ChainReader in
parallel, each process opens all the trajectories because each process builds its own MDAnalysis.Universe data structure. If an invalid offset file
is detected (perhaps because of wrong file modification timestamps across nodes), several processes might want to recalculate these parameters
and rebuild the offset file, which can lead to a race condition. In order to avoid the race condition, we removed this check fromMDAnalysis for the
purpose of the measurements presented here, but this comes at the price of not checking the validity of the offset files at all; future versions of
MDAnalysis may lift this limitation. We obtained the results for the ChainReader with this modified version ofMDAnalysis that eliminates the race
condition by assuming that XTC index files are always valid.

Figure C6 shows the results for performance of the ChainReader for the RMSD task using either collective MPI or Global Arrays (GA) for the
communication step. With GA good strong scaling performance was observable up to 144 cores (Figure C6c); without GA, strong scaling plateaued
for more than 92 cores. In both cases, strong scaling performance was worse than what was achieved when each MPI process was assigned its
own trajectory segment as described in Section 6.3.1. The strong scaling performance did not suffer because of the computation and the read I/O
because both tcomp and tI/O showed excellent strong scaling up to 196 cores (Figure C6a). Instead the time for ending the for loop tend_loop, which

Page 32 of 33

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience



For Peer Review

KHOSHLESSAN et al 33

includes the time for closing the trajectory file, and opening the trajectory topening_trajectory appeared to be the scaling bottleneck. These results
differed from the subfiling results (section 6.3.1) where neither tend_loop nor topening_trajectory limited scaling (Figures 5d and 5e).

Althoughwe did not further investigate the deeper cause for the reduced scaling performance of the ChainReader, we speculate that the primary
problem is related to each MPI rank having to open all trajectory files in their ChainReader instance even though they will only read from a small
subset. For Np ranks and Nseg file segments, in total, NpNseg file opening/closing operations have to be performed. Each server that is part of a
Lustre file system can only handle a limited number of I/O requests (read, write, stat, open, close, etc.) per second. A large number of such requests,
from one or more users and one or more jobs, can lead to contention for storage resources. For Np = Nseg = 100, the Lustre file system has to
perform 10,000 of these operations almost simultaneously, which might degrade performance.
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